When the last CPU in an rdt_domain goes offline, its rdt_domain struct gets
freed. Current pseudo-locking code is unaware of this scenario and tries to
dereference the freed structure in a few places.
Add checks to prevent pseudo-locking code from doing this.
While further work is needed to seamlessly restore resource groups (not
just pseudo-locking) to their configuration when the domain is brought back
online, the immediate issue of invalid pointers is addressed here.
Fixes: f4e80d67a5 ("x86/intel_rdt: Resctrl files reflect pseudo-locked information")
Fixes: 443810fe61 ("x86/intel_rdt: Create debugfs files for pseudo-locking testing")
Fixes: 746e08590b ("x86/intel_rdt: Create character device exposing pseudo-locked region")
Fixes: 33dc3e410a ("x86/intel_rdt: Make CPU information accessible for pseudo-locked regions")
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/231f742dbb7b00a31cc104416860e27dba6b072d.1539384145.git.reinette.chatre@intel.com
Commit
5de97c9f6d ("x86/mce: Factor out and deprecate the /dev/mcelog driver")
moved the old interface into one file including mce_helper definition as
static and "extern". Remove one.
Fixes: 5de97c9f6d ("x86/mce: Factor out and deprecate the /dev/mcelog driver")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Tony Luck <tony.luck@intel.com>
CC: linux-edac <linux-edac@vger.kernel.org>
CC: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20181017170554.18841-3-bigeasy@linutronix.de
Implement the required wait and kick callbacks to support PV spinlocks in
Hyper-V guests.
[ tglx: Document the requirement for disabling interrupts in the wait()
callback. Remove goto and unnecessary includes. Add prototype
for hv_vcpu_is_preempted(). Adapted to pending paravirt changes. ]
Signed-off-by: Yi Sun <yi.y.sun@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Michael Kelley (EOSG) <Michael.H.Kelley@microsoft.com>
Cc: chao.p.peng@intel.com
Cc: chao.gao@intel.com
Cc: isaku.yamahata@intel.com
Cc: tianyu.lan@microsoft.com
Link: https://lkml.kernel.org/r/1538987374-51217-3-git-send-email-yi.y.sun@linux.intel.com
When a new resource group is created it is initialized with a default
allocation that considers which portions of cache are currently
available for sharing across all resource groups or which portions of
cache are currently unused.
If a CDP allocation forms part of a resource group that is in exclusive
mode then it should be ensured that no new allocation overlaps with any
resource that shares the underlying hardware. The current initial
allocation does not take this sharing of hardware into account and
a new allocation in a resource that shares the same
hardware would affect the exclusive resource group.
Fix this by considering the allocation of a peer RDT domain - a RDT
domain sharing the same hardware - as part of the test to determine
which portion of cache is in use and available for use.
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: jithu.joseph@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b1f7ec08b1695be067de416a4128466d49684317.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CBM overlap test is used to manage the allocations of RDT resources
where overlap is possible between resource groups. When a resource group
is in exclusive mode then there should be no overlap between resource
groups.
The current overlap test only considers overlap between the same
resources, for example, that usage of a RDT_RESOURCE_L2DATA resource
in one resource group does not overlap with usage of a RDT_RESOURCE_L2DATA
resource in another resource group. The problem with this is that it
allows overlap between a RDT_RESOURCE_L2DATA resource in one resource
group with a RDT_RESOURCE_L2CODE resource in another resource group -
even if both resource groups are in exclusive mode. This is a problem
because even though these appear to be different resources they end up
sharing the same underlying hardware and thus does not fulfill the
user's request for exclusive use of hardware resources.
Fix this by including the CDP peer (if there is one) in every CBM
overlap test. This does not impact the overlap between resources
within the same exclusive resource group that is allowed.
Fixes: 49f7b4efa1 ("x86/intel_rdt: Enable setting of exclusive mode")
Reported-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jithu Joseph <jithu.joseph@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/e538b7f56f7ca15963dce2e00ac3be8edb8a68e1.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a utility that, when provided with a RDT resource and an
instance of this RDT resource (a RDT domain), would return pointers to
the RDT resource and RDT domain that share the same hardware. This is
specific to the CDP resources that share the same hardware.
For example, if a pointer to the RDT_RESOURCE_L2DATA resource (struct
rdt_resource) and a pointer to an instance of this resource (struct
rdt_domain) is provided, then it will return a pointer to the
RDT_RESOURCE_L2CODE resource as well as the specific instance that
shares the same hardware as the provided rdt_domain.
This utility is created in support of the "exclusive" resource group
mode where overlap of resource allocation between resource groups need
to be avoided. The overlap test need to consider not just the matching
resources, but also the resources that share the same hardware.
Temporarily mark it as unused in support of patch testing to avoid
compile warnings until it is used.
Fixes: 49f7b4efa1 ("x86/intel_rdt: Enable setting of exclusive mode")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jithu Joseph <jithu.joseph@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/9b4bc4d59ba2e903b6a3eb17e16ef41a8e7b7c3e.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While the DOC at the beginning of lib/bitmap.c explicitly states that
"The number of valid bits in a given bitmap does _not_ need to be an
exact multiple of BITS_PER_LONG.", some of the bitmap operations do
indeed access BITS_PER_LONG portions of the provided bitmap no matter
the size of the provided bitmap. For example, if bitmap_intersects()
is provided with an 8 bit bitmap the operation will access
BITS_PER_LONG bits from the provided bitmap. While the operation
ensures that these extra bits do not affect the result, the memory
is still accessed.
The capacity bitmasks (CBMs) are typically stored in u32 since they
can never exceed 32 bits. A few instances exist where a bitmap_*
operation is performed on a CBM by simply pointing the bitmap operation
to the stored u32 value.
The consequence of this pattern is that some bitmap_* operations will
access out-of-bounds memory when interacting with the provided CBM. This
is confirmed with a KASAN test that reports:
BUG: KASAN: stack-out-of-bounds in __bitmap_intersects+0xa2/0x100
and
BUG: KASAN: stack-out-of-bounds in __bitmap_weight+0x58/0x90
Fix this by moving any CBM provided to a bitmap operation needing
BITS_PER_LONG to an 'unsigned long' variable.
[ tglx: Changed related function arguments to unsigned long and got rid
of the _cbm extra step ]
Fixes: 72d5050566 ("x86/intel_rdt: Add utilities to test pseudo-locked region possibility")
Fixes: 49f7b4efa1 ("x86/intel_rdt: Enable setting of exclusive mode")
Fixes: d9b48c86eb ("x86/intel_rdt: Display resource groups' allocations' size in bytes")
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/69a428613a53f10e80594679ac726246020ff94f.1538686926.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have a special segment descriptor entry in the GDT, whose sole purpose is to
encode the CPU and node numbers in its limit (size) field. There are user-space
instructions that allow the reading of the limit field, which gives us a really
fast way to read the CPU and node IDs from the vDSO for example.
But the naming of related functionality does not make this clear, at all:
VDSO_CPU_SIZE
VDSO_CPU_MASK
__CPU_NUMBER_SEG
GDT_ENTRY_CPU_NUMBER
vdso_encode_cpu_node
vdso_read_cpu_node
There's a number of problems:
- The 'VDSO_CPU_SIZE' doesn't really make it clear that these are number
of bits, nor does it make it clear which 'CPU' this refers to, i.e.
that this is about a GDT entry whose limit encodes the CPU and node number.
- Furthermore, the 'CPU_NUMBER' naming is actively misleading as well,
because the segment limit encodes not just the CPU number but the
node ID as well ...
So use a better nomenclature all around: name everything related to this trick
as 'CPUNODE', to make it clear that this is something special, and add
_BITS to make it clear that these are number of bits, and propagate this to
every affected name:
VDSO_CPU_SIZE => VDSO_CPUNODE_BITS
VDSO_CPU_MASK => VDSO_CPUNODE_MASK
__CPU_NUMBER_SEG => __CPUNODE_SEG
GDT_ENTRY_CPU_NUMBER => GDT_ENTRY_CPUNODE
vdso_encode_cpu_node => vdso_encode_cpunode
vdso_read_cpu_node => vdso_read_cpunode
This, beyond being less confusing, also makes it easier to grep for all related
functionality:
$ git grep -i cpunode arch/x86
Also, while at it, fix "return is not a function" style sloppiness in vdso_encode_cpunode().
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1537312139-5580-2-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the CPU/node NR segment descriptor (GDT_ENTRY_CPU_NUMBER) is
initialized relatively late during CPU init, from the vCPU code, which
has a number of disadvantages, such as hotplug CPU notifiers and SMP
cross-calls.
Instead just initialize it much earlier, directly in cpu_init().
This reduces complexity and increases robustness.
[ mingo: Wrote new changelog. ]
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Markus T Metzger <markus.t.metzger@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1537312139-5580-9-git-send-email-chang.seok.bae@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In resctrl filesystem, mount options exist to enable L3/L2 CDP and MBA
Software Controller features if the platform supports them:
mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps]] /sys/fs/resctrl
But currently only "cdp" option is displayed in /proc/mounts. "cdpl2" and
"mba_MBps" options are not shown even when they are active.
Before:
# mount -t resctrl resctrl -o cdp,mba_MBps /sys/fs/resctrl
# grep resctrl /proc/mounts
/sys/fs/resctrl /sys/fs/resctrl resctrl rw,relatime,cdp 0 0
After:
# mount -t resctrl resctrl -o cdp,mba_MBps /sys/fs/resctrl
# grep resctrl /proc/mounts
/sys/fs/resctrl /sys/fs/resctrl resctrl rw,relatime,cdp,mba_MBps 0 0
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/1536796118-60135-1-git-send-email-fenghua.yu@intel.com
Switch to bitmap_zalloc() to show clearly what is allocated. Besides that
it returns a pointer of bitmap type instead of opaque void *.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180830115039.63430-1-andriy.shevchenko@linux.intel.com
Clang warns when multiple pairs of parentheses are used for a single
conditional statement.
arch/x86/kernel/cpu/amd.c:925:14: warning: equality comparison with
extraneous parentheses [-Wparentheses-equality]
if ((c->x86 == 6)) {
~~~~~~~^~~~
arch/x86/kernel/cpu/amd.c:925:14: note: remove extraneous parentheses
around the comparison to silence this warning
if ((c->x86 == 6)) {
~ ^ ~
arch/x86/kernel/cpu/amd.c:925:14: note: use '=' to turn this equality
comparison into an assignment
if ((c->x86 == 6)) {
^~
=
1 warning generated.
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181002224511.14929-1-natechancellor@gmail.com
Link: https://github.com/ClangBuiltLinux/linux/issues/187
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Going primarily by:
https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors
with additional information gleaned from other related pages; notably:
- Bonnell shrink was called Saltwell
- Moorefield is the Merriefield refresh which makes it Airmont
The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE
for i in `git grep -l FAM6_ATOM` ; do
sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \
-e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \
-e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \
-e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \
-e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \
-e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \
-e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \
-e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \
-e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \
-e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \
-e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i}
done
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: dave.hansen@linux.intel.com
Cc: len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The success of a cache pseudo-locked region is measured using
performance monitoring events that are programmed directly at the time
the user requests a measurement.
Modifying the performance event registers directly is not appropriate
since it circumvents the in-kernel perf infrastructure that exists to
manage these resources and provide resource arbitration to the
performance monitoring hardware.
The cache pseudo-locking measurements are modified to use the in-kernel
perf infrastructure. Performance events are created and validated with
the appropriate perf API. The performance counters are still read as
directly as possible to avoid the additional cache hits. This is
done safely by first ensuring with the perf API that the counters have
been programmed correctly and only accessing the counters in an
interrupt disabled section where they are not able to be moved.
As part of the transition to the in-kernel perf infrastructure the L2
and L3 measurements are split into two separate measurements that can
be triggered independently. This separation prevents additional cache
misses incurred during the extra testing code used to decide if a
L2 and/or L3 measurement should be made.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: peterz@infradead.org
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/fc24e728b446404f42c78573c506e98cd0599873.1537468643.git.reinette.chatre@intel.com
A perf event has many attributes that are maintained in a separate
structure that should be provided when a new perf_event is created.
In preparation for the transition to perf_events the required attribute
structures are created for all the events that may be used in the
measurements. Most attributes for all the events are identical. The
actual configuration, what specifies what needs to be measured, is what
will be different between the events used. This configuration needs to
be done with X86_CONFIG that cannot be used as part of the designated
initializers used here, this will be introduced later.
Although they do look identical at this time the attribute structures
needs to be maintained separately since a perf_event will maintain a
pointer to its unique attributes.
In support of patch testing the new structs are given the unused attribute
until their use in later patches.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1822f6164e221a497648d108913d056ab675d5d0.1537377064.git.reinette.chatre@intel.com
Local register variables were used in an effort to improve the
accuracy of the measurement of cache residency of a pseudo-locked
region. This was done to ensure that only the cache residency of
the memory is measured and not the cache residency of the variables
used to perform the measurement.
While local register variables do accomplish the goal they do require
significant care since different architectures have different registers
available. Local register variables also cannot be used with valuable
developer tools like KASAN.
Significant testing has shown that similar accuracy in measurement
results can be obtained by replacing local register variables with
regular local variables.
Make use of local variables in the critical code but do so with
READ_ONCE() to prevent the compiler from merging or refetching reads.
Ensure these variables are initialized before the measurement starts,
and ensure it is only the local variables that are accessed during
the measurement.
With the removal of the local register variables and using READ_ONCE()
there is no longer a motivation for using a direct wrmsr call (that
avoids the additional tracing code that may clobber the local register
variables).
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/f430f57347414e0691765d92b144758ab93d8407.1537377064.git.reinette.chatre@intel.com
The Hygon Dhyana CPU has a topology extensions bit in CPUID. With
this bit, the kernel can get the cache information. So add support in
cpuid4_cache_lookup_regs() to get the correct cache size.
The Hygon Dhyana CPU also discovers num_cache_leaves via CPUID leaf
0x8000001d, so add support to it in find_num_cache_leaves().
Also add cacheinfo_hygon_init_llc_id() and init_hygon_cacheinfo()
functions to initialize Dhyana cache info. Setup cache cpumap in the
same way as AMD does.
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: bp@alien8.de
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/2a686b2ac0e2f5a1f2f5f101124d9dd44f949731.1537533369.git.puwen@hygon.cn
Add x86 architecture support for a new processor: Hygon Dhyana Family
18h. Carve out initialization code needed by Dhyana into a separate
compilation unit.
To identify Hygon Dhyana CPU, add a new vendor type X86_VENDOR_HYGON.
Since Dhyana uses AMD functionality to a large degree, select
CPU_SUP_AMD which provides that functionality.
[ bp: drop explicit license statement as it has an SPDX tag already. ]
Signed-off-by: Pu Wen <puwen@hygon.cn>
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: x86@kernel.org
Cc: thomas.lendacky@amd.com
Link: https://lkml.kernel.org/r/1a882065223bacbde5726f3beaa70cebd8dcd814.1537533369.git.puwen@hygon.cn
If spectrev2 mitigation has been enabled, RSB is filled on context switch
in order to protect from various classes of spectrev2 attacks.
If this mitigation is enabled, say so in sysfs for spectrev2.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "WoodhouseDavid" <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: "SchauflerCasey" <casey.schaufler@intel.com>
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251438580.15880@cbobk.fhfr.pm
STIBP is a feature provided by certain Intel ucodes / CPUs. This feature
(once enabled) prevents cross-hyperthread control of decisions made by
indirect branch predictors.
Enable this feature if
- the CPU is vulnerable to spectre v2
- the CPU supports SMT and has SMT siblings online
- spectre_v2 mitigation autoselection is enabled (default)
After some previous discussion, this leaves STIBP on all the time, as wrmsr
on crossing kernel boundary is a no-no. This could perhaps later be a bit
more optimized (like disabling it in NOHZ, experiment with disabling it in
idle, etc) if needed.
Note that the synchronization of the mask manipulation via newly added
spec_ctrl_mutex is currently not strictly needed, as the only updater is
already being serialized by cpu_add_remove_lock, but let's make this a
little bit more future-proof.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "WoodhouseDavid" <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: "SchauflerCasey" <casey.schaufler@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251438240.15880@cbobk.fhfr.pm
Presently we check first if CPUID is enabled. If it is not already
enabled, then we next call identify_cpu_without_cpuid() and clear
X86_FEATURE_CPUID.
Unfortunately, identify_cpu_without_cpuid() is the function where CPUID
becomes _enabled_ on Cyrix 6x86/6x86L CPUs.
Reverse the calling sequence so that CPUID is first enabled, and then
check a second time to see if the feature has now been activated.
[ bp: Massage commit message and remove trailing whitespace. ]
Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Matthew Whitehead <tedheadster@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180921212041.13096-3-tedheadster@gmail.com
There are comments in processor-cyrix.h advising you to _not_ make calls
using the deprecated macros in this style:
setCx86_old(CX86_CCR4, getCx86_old(CX86_CCR4) | 0x80);
This is because it expands the macro into a non-functioning calling
sequence. The calling order must be:
outb(CX86_CCR2, 0x22);
inb(0x23);
From the comments:
* When using the old macros a line like
* setCx86(CX86_CCR2, getCx86(CX86_CCR2) | 0x88);
* gets expanded to:
* do {
* outb((CX86_CCR2), 0x22);
* outb((({
* outb((CX86_CCR2), 0x22);
* inb(0x23);
* }) | 0x88), 0x23);
* } while (0);
The new macros fix this problem, so use them instead.
Signed-off-by: Matthew Whitehead <tedheadster@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jia Zhang <qianyue.zj@alibaba-inc.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180921212041.13096-2-tedheadster@gmail.com
Clear the MCE struct which is used for collecting the injection details
after injection.
Also, populate it with more details from the machine.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20180905081954.10391-1-bp@alien8.de
In order to determine a sane default cache allocation for a new CAT/CDP
resource group, all resource groups are checked to determine which cache
portions are available to share. At this time all possible CLOSIDs
that can be supported by the resource is checked. This is problematic
if the resource supports more CLOSIDs than another CAT/CDP resource. In
this case, the number of CLOSIDs that could be allocated are fewer than
the number of CLOSIDs that can be supported by the resource.
Limit the check of closids to that what is supported by the system based
on the minimum across all resources.
Fixes: 95f0b77ef ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Xiaochen Shen" <xiaochen.shen@intel.com>
Cc: "Chen Yu" <yu.c.chen@intel.com>
Link: https://lkml.kernel.org/r/1537048707-76280-10-git-send-email-fenghua.yu@intel.com
It is possible for a resource group to consist out of MBA as well as
CAT/CDP resources. The "exclusive" resource mode only applies to the
CAT/CDP resources since MBA allocations cannot be specified to overlap
or not. When a user requests a resource group to become "exclusive" then it
can only be successful if there are CAT/CDP resources in the group
and none of their CBMs associated with the group's CLOSID overlaps with
any other resource group.
Fix the "exclusive" mode setting by failing if there isn't any CAT/CDP
resource in the group and ensuring that the CBM checking is only done on
CAT/CDP resources.
Fixes: 49f7b4efa ("x86/intel_rdt: Enable setting of exclusive mode")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Xiaochen Shen" <xiaochen.shen@intel.com>
Cc: "Chen Yu" <yu.c.chen@intel.com>
Link: https://lkml.kernel.org/r/1537048707-76280-9-git-send-email-fenghua.yu@intel.com
A loop is used to check if a CAT resource's CBM of one CLOSID
overlaps with the CBM of another CLOSID of the same resource. The loop
is run over all CLOSIDs supported by the resource.
The problem with running the loop over all CLOSIDs supported by the
resource is that its number of supported CLOSIDs may be more than the
number of supported CLOSIDs on the system, which is the minimum number of
CLOSIDs supported across all resources.
Fix the loop to only consider the number of system supported CLOSIDs,
not all that are supported by the resource.
Fixes: 49f7b4efa ("x86/intel_rdt: Enable setting of exclusive mode")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Xiaochen Shen" <xiaochen.shen@intel.com>
Cc: "Chen Yu" <yu.c.chen@intel.com>
Link: https://lkml.kernel.org/r/1537048707-76280-8-git-send-email-fenghua.yu@intel.com
A system supporting pseudo-locking may have MBA as well as CAT
resources of which only the CAT resources could support cache
pseudo-locking. When the schemata to be pseudo-locked is provided it
should be checked that that schemata does not attempt to pseudo-lock a
MBA resource.
Fixes: e0bdfe8e3 ("x86/intel_rdt: Support creation/removal of pseudo-locked region")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Xiaochen Shen" <xiaochen.shen@intel.com>
Cc: "Chen Yu" <yu.c.chen@intel.com>
Link: https://lkml.kernel.org/r/1537048707-76280-7-git-send-email-fenghua.yu@intel.com
When a new resource group is created, it is initialized with sane
defaults that currently assume the resource being initialized is a CAT
resource. This code path is also followed by a MBA resource that is not
allocated the same as a CAT resource and as a result we encounter the
following unchecked MSR access error:
unchecked MSR access error: WRMSR to 0xd51 (tried to write 0x0000
000000000064) at rIP: 0xffffffffae059994 (native_write_msr+0x4/0x20)
Call Trace:
mba_wrmsr+0x41/0x80
update_domains+0x125/0x130
rdtgroup_mkdir+0x270/0x500
Fix the above by ensuring the initial allocation is only attempted on a
CAT resource.
Fixes: 95f0b77ef ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Xiaochen Shen" <xiaochen.shen@intel.com>
Cc: "Chen Yu" <yu.c.chen@intel.com>
Link: https://lkml.kernel.org/r/1537048707-76280-6-git-send-email-fenghua.yu@intel.com
When multiple resources are managed by RDT, the number of CLOSIDs used
is the minimum of the CLOSIDs supported by each resource. In the function
rdt_bit_usage_show(), the annotated bitmask is created to depict how the
CAT supporting caches are being used. During this annotated bitmask
creation, each resource group is queried for its mode that is used as a
label in the annotated bitmask.
The maximum number of resource groups is currently assumed to be the
number of CLOSIDs supported by the resource for which the information is
being displayed. This is incorrect since the number of active CLOSIDs is
the minimum across all resources.
If information for a cache instance with more CLOSIDs than another is
being generated we thus encounter a warning like:
invalid mode for closid 8
WARNING: CPU: 88 PID: 1791 at [SNIP]/arch/x86/kernel/cpu/intel_rdt_rdtgroup.c
:827 rdt_bit_usage_show+0x221/0x2b0
Fix this by ensuring that only the number of supported CLOSIDs are
considered.
Fixes: e651901187 ("x86/intel_rdt: Introduce "bit_usage" to display cache allocations details")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Xiaochen Shen" <xiaochen.shen@intel.com>
Cc: "Chen Yu" <yu.c.chen@intel.com>
Link: https://lkml.kernel.org/r/1537048707-76280-5-git-send-email-fenghua.yu@intel.com
The number of CLOSIDs supported by a system is the minimum number of
CLOSIDs supported by any of its resources. Care should be taken when
iterating over the CLOSIDs of a resource since it may be that the number
of CLOSIDs supported on the system is less than the number of CLOSIDs
supported by the resource.
Introduce a helper function that can be used to query the number of
CLOSIDs that is supported by all resources, irrespective of how many
CLOSIDs are supported by a particular resource.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Xiaochen Shen" <xiaochen.shen@intel.com>
Cc: "Chen Yu" <yu.c.chen@intel.com>
Link: https://lkml.kernel.org/r/1537048707-76280-4-git-send-email-fenghua.yu@intel.com
Chen Yu reported a divide-by-zero error when accessing the 'size'
resctrl file when a MBA resource is enabled.
divide error: 0000 [#1] SMP PTI
CPU: 93 PID: 1929 Comm: cat Not tainted 4.19.0-rc2-debug-rdt+ #25
RIP: 0010:rdtgroup_cbm_to_size+0x7e/0xa0
Call Trace:
rdtgroup_size_show+0x11a/0x1d0
seq_read+0xd8/0x3b0
Quoting Chen Yu's report: This is because for MB resource, the
r->cache.cbm_len is zero, thus calculating size in rdtgroup_cbm_to_size()
will trigger the exception.
Fix this issue in the 'size' file by getting correct memory bandwidth value
which is in MBps when MBA software controller is enabled or in percentage
when MBA software controller is disabled.
Fixes: d9b48c86eb ("x86/intel_rdt: Display resource groups' allocations in bytes")
Reported-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Chen Yu <yu.c.chen@intel.com>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Xiaochen Shen" <xiaochen.shen@intel.com>
Link: https://lkml.kernel.org/r/20180904174614.26682-1-yu.c.chen@intel.com
Link: https://lkml.kernel.org/r/1537048707-76280-3-git-send-email-fenghua.yu@intel.com
Each resource is associated with a parsing callback to parse the data
provided from user space when writing schemata file.
The 'data' parameter in the callbacks is defined as a void pointer which
is error prone due to lack of type check.
parse_bw() processes the 'data' parameter as a string while its caller
actually passes the parameter as a pointer to struct rdt_cbm_parse_data.
Thus, parse_bw() takes wrong data and causes failure of parsing MBA
throttle value.
To fix the issue, the 'data' parameter in all parsing callbacks is defined
and handled as a pointer to struct rdt_parse_data (renamed from struct
rdt_cbm_parse_data).
Fixes: 7604df6e16 ("x86/intel_rdt: Support flexible data to parsing callbacks")
Fixes: 9ab9aa15c3 ("x86/intel_rdt: Ensure requested schemata respects mode")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Chen Yu" <yu.c.chen@intel.com>
Link: https://lkml.kernel.org/r/1537048707-76280-2-git-send-email-fenghua.yu@intel.com
Get rid of local @cpu variable which is unused in the
!CONFIG_IA32_EMULATION case.
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1536806985-24197-1-git-send-email-zhongjiang@huawei.com
[ Clean up commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
The SYSCALL64 trampoline has a couple of nice properties:
- The usual sequence of SWAPGS followed by two GS-relative accesses to
set up RSP is somewhat slow because the GS-relative accesses need
to wait for SWAPGS to finish. The trampoline approach allows
RIP-relative accesses to set up RSP, which avoids the stall.
- The trampoline avoids any percpu access before CR3 is set up,
which means that no percpu memory needs to be mapped in the user
page tables. This prevents using Meltdown to read any percpu memory
outside the cpu_entry_area and prevents using timing leaks
to directly locate the percpu areas.
The downsides of using a trampoline may outweigh the upsides, however.
It adds an extra non-contiguous I$ cache line to system calls, and it
forces an indirect jump to transfer control back to the normal kernel
text after CR3 is set up. The latter is because x86 lacks a 64-bit
direct jump instruction that could jump from the trampoline to the entry
text. With retpolines enabled, the indirect jump is extremely slow.
Change the code to map the percpu TSS into the user page tables to allow
the non-trampoline SYSCALL64 path to work under PTI. This does not add a
new direct information leak, since the TSS is readable by Meltdown from the
cpu_entry_area alias regardless. It does allow a timing attack to locate
the percpu area, but KASLR is more or less a lost cause against local
attack on CPUs vulnerable to Meltdown regardless. As far as I'm concerned,
on current hardware, KASLR is only useful to mitigate remote attacks that
try to attack the kernel without first gaining RCE against a vulnerable
user process.
On Skylake, with CONFIG_RETPOLINE=y and KPTI on, this reduces syscall
overhead from ~237ns to ~228ns.
There is a possible alternative approach: Move the trampoline within 2G of
the entry text and make a separate copy for each CPU. This would allow a
direct jump to rejoin the normal entry path. There are pro's and con's for
this approach:
+ It avoids a pipeline stall
- It executes from an extra page and read from another extra page during
the syscall. The latter is because it needs to use a relative
addressing mode to find sp1 -- it's the same *cacheline*, but accessed
using an alias, so it's an extra TLB entry.
- Slightly more memory. This would be one page per CPU for a simple
implementation and 64-ish bytes per CPU or one page per node for a more
complex implementation.
- More code complexity.
The current approach is chosen for simplicity and because the alternative
does not provide a significant benefit, which makes it worth.
[ tglx: Added the alternative discussion to the changelog ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/8c7c6e483612c3e4e10ca89495dc160b1aa66878.1536015544.git.luto@kernel.org
This is preparation for looking at trap number and fault address in the
handlers for uaccess errors. No functional change.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-kernel@vger.kernel.org
Cc: dvyukov@google.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20180828201421.157735-6-jannh@google.com
Handle the case where microcode gets loaded on the BSP's hyperthread
sibling first and the boot_cpu_data's microcode revision doesn't get
updated because of early exit due to the siblings sharing a microcode
engine.
For that, simply write the updated revision on all CPUs unconditionally.
Signed-off-by: Filippo Sironi <sironi@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: prarit@redhat.com
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1533050970-14385-1-git-send-email-sironi@amazon.de
When preparing an MCE record for logging, boot_cpu_data.microcode is used
to read out the microcode revision on the box.
However, on systems where late microcode update has happened, the microcode
revision output in a MCE log record is wrong because
boot_cpu_data.microcode is not updated when the microcode gets updated.
But, the microcode revision saved in boot_cpu_data's microcode member
should be kept up-to-date, regardless, for consistency.
Make it so.
Fixes: fa94d0c6e0 ("x86/MCE: Save microcode revision in machine check records")
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: sironi@amazon.de
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180731112739.32338-1-prarit@redhat.com
The microcode revision is already readable for non-root users via
/proc/cpuinfo. Thus, there's no reason to keep the same information
readable by root only in /sys/devices/system/cpu/cpuX/microcode/.
Make .../processor_flags world-readable too, while at it.
Reported-by: Tim Burgess <timb@dug.com>
Signed-off-by: Jacek Tomaka <jacek.tomaka@poczta.fm>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180825035039.14409-1-jacekt@dugeo.com
On Nehalem and newer core CPUs the CPU cache internally uses 44 bits
physical address space. The L1TF workaround is limited by this internal
cache address width, and needs to have one bit free there for the
mitigation to work.
Older client systems report only 36bit physical address space so the range
check decides that L1TF is not mitigated for a 36bit phys/32GB system with
some memory holes.
But since these actually have the larger internal cache width this warning
is bogus because it would only really be needed if the system had more than
43bits of memory.
Add a new internal x86_cache_bits field. Normally it is the same as the
physical bits field reported by CPUID, but for Nehalem and newerforce it to
be at least 44bits.
Change the L1TF memory size warning to use the new cache_bits field to
avoid bogus warnings and remove the bogus comment about memory size.
Fixes: 17dbca1193 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Reported-by: George Anchev <studio@anchev.net>
Reported-by: Christopher Snowhill <kode54@gmail.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Michael Hocko <mhocko@suse.com>
Cc: vbabka@suse.cz
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180824170351.34874-1-andi@firstfloor.org
Pull x86 fixes from Thomas Gleixner:
- Correct the L1TF fallout on 32bit and the off by one in the 'too much
RAM for protection' calculation.
- Add a helpful kernel message for the 'too much RAM' case
- Unbreak the VDSO in case that the compiler desides to use indirect
jumps/calls and emits retpolines which cannot be resolved because the
kernel uses its own thunks, which does not work for the VDSO. Make it
use the builtin thunks.
- Re-export start_thread() which was unexported when the 32/64bit
implementation was unified. start_thread() is required by modular
binfmt handlers.
- Trivial cleanups
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/l1tf: Suggest what to do on systems with too much RAM
x86/speculation/l1tf: Fix off-by-one error when warning that system has too much RAM
x86/kvm/vmx: Remove duplicate l1d flush definitions
x86/speculation/l1tf: Fix overflow in l1tf_pfn_limit() on 32bit
x86/process: Re-export start_thread()
x86/mce: Add notifier_block forward declaration
x86/vdso: Fix vDSO build if a retpoline is emitted
* memory_failure() gets confused by dev_pagemap backed mappings. The
recovery code has specific enabling for several possible page states
that needs new enabling to handle poison in dax mappings. Teach
memory_failure() about ZONE_DEVICE pages.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5DAy15EJMCV1R6v9YGjFFmlTOEoFAlt9ui8ACgkQYGjFFmlT
OEpNRw//XGj9s7sezfJFeol4psJlRUd935yii/gmJRgi/yPf2VxxQG9qyM6SMBUc
75jASfOL6FSsfxHz0kplyWzMDNdrTkNNAD+9rv80FmY7GqWgcas9DaJX7jZ994vI
5SRO7pfvNZcXlo7IhqZippDw3yxkIU9Ufi0YQKaEUm7GFieptvCZ0p9x3VYfdvwM
BExrxQe0X1XUF4xErp5P78+WUbKxP47DLcucRDig8Q7dmHELUdyNzo3E1SVoc7m+
3CmvyTj6XuFQgOZw7ZKun1BJYfx/eD5ZlRJLZbx6wJHRtTXv/Uea8mZ8mJ31ykN9
F7QVd0Pmlyxys8lcXfK+nvpL09QBE0/PhwWKjmZBoU8AdgP/ZvBXLDL/D6YuMTg6
T4wwtPNJorfV4lVD06OliFkVI4qbKbmNsfRq43Ns7PCaLueu4U/eMaSwSH99UMaZ
MGbO140XW2RZsHiU9yTRUmZq73AplePEjxtzR8oHmnjo45nPDPy8mucWPlkT9kXA
oUFMhgiviK7dOo19H4eaPJGqLmHM93+x5tpYxGqTr0dUOXUadKWxMsTnkID+8Yi7
/kzQWCFvySz3VhiEHGuWkW08GZT6aCcpkREDomnRh4MEnETlZI8bblcuXYOCLs6c
nNf1SIMtLdlsl7U1fEX89PNeQQ2y237vEDhFQZftaalPeu/JJV0=
=Ftop
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm memory-failure update from Dave Jiang:
"As it stands, memory_failure() gets thoroughly confused by dev_pagemap
backed mappings. The recovery code has specific enabling for several
possible page states and needs new enabling to handle poison in dax
mappings.
In order to support reliable reverse mapping of user space addresses:
1/ Add new locking in the memory_failure() rmap path to prevent races
that would typically be handled by the page lock.
2/ Since dev_pagemap pages are hidden from the page allocator and the
"compound page" accounting machinery, add a mechanism to determine
the size of the mapping that encompasses a given poisoned pfn.
3/ Given pmem errors can be repaired, change the speculatively
accessed poison protection, mce_unmap_kpfn(), to be reversible and
otherwise allow ongoing access from the kernel.
A side effect of this enabling is that MADV_HWPOISON becomes usable
for dax mappings, however the primary motivation is to allow the
system to survive userspace consumption of hardware-poison via dax.
Specifically the current behavior is:
mce: Uncorrected hardware memory error in user-access at af34214200
{1}[Hardware Error]: It has been corrected by h/w and requires no further action
mce: [Hardware Error]: Machine check events logged
{1}[Hardware Error]: event severity: corrected
Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users
[..]
Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed
mce: Memory error not recovered
<reboot>
...and with these changes:
Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000
Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption
Memory failure: 0x20cb00: recovery action for dax page: Recovered
Given all the cross dependencies I propose taking this through
nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax
folks"
* tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm:
libnvdimm, pmem: Restore page attributes when clearing errors
x86/memory_failure: Introduce {set, clear}_mce_nospec()
x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses
mm, memory_failure: Teach memory_failure() about dev_pagemap pages
filesystem-dax: Introduce dax_lock_mapping_entry()
mm, memory_failure: Collect mapping size in collect_procs()
mm, madvise_inject_error: Let memory_failure() optionally take a page reference
mm, dev_pagemap: Do not clear ->mapping on final put
mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages
filesystem-dax: Set page->index
device-dax: Set page->index
device-dax: Enable page_mapping()
device-dax: Convert to vmf_insert_mixed and vm_fault_t
Two users have reported [1] that they have an "extremely unlikely" system
with more than MAX_PA/2 memory and L1TF mitigation is not effective.
Make the warning more helpful by suggesting the proper mem=X kernel boot
parameter to make it effective and a link to the L1TF document to help
decide if the mitigation is worth the unusable RAM.
[1] https://bugzilla.suse.com/show_bug.cgi?id=1105536
Suggested-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/966571f0-9d7f-43dc-92c6-a10eec7a1254@suse.cz
Currently memory_failure() returns zero if the error was handled. On
that result mce_unmap_kpfn() is called to zap the page out of the kernel
linear mapping to prevent speculative fetches of potentially poisoned
memory. However, in the case of dax mapped devmap pages the page may be
in active permanent use by the device driver, so it cannot be unmapped
from the kernel.
Instead of marking the page not present, marking the page UC should
be sufficient for preventing poison from being pre-fetched into the
cache. Convert mce_unmap_pfn() to set_mce_nospec() remapping the page as
UC, to hide it from speculative accesses.
Given that that persistent memory errors can be cleared by the driver,
include a facility to restore the page to cacheable operation,
clear_mce_nospec().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: <linux-edac@vger.kernel.org>
Cc: <x86@kernel.org>
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Here is the bit set of char/misc drivers for 4.19-rc1
There is a lot here, much more than normal, seems like everyone is
writing new driver subsystems these days... Anyway, major things here
are:
- new FSI driver subsystem, yet-another-powerpc low-level
hardware bus
- gnss, finally an in-kernel GPS subsystem to try to tame all of
the crazy out-of-tree drivers that have been floating around
for years, combined with some really hacky userspace
implementations. This is only for GNSS receivers, but you
have to start somewhere, and this is great to see.
Other than that, there are new slimbus drivers, new coresight drivers,
new fpga drivers, and loads of DT bindings for all of these and existing
drivers.
Full details of everything is in the shortlog.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCW3g7ew8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykfBgCeOG0RkSI92XVZe0hs/QYFW9kk8JYAnRBf3Qpm
cvW7a+McOoKz/MGmEKsi
=TNfn
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the bit set of char/misc drivers for 4.19-rc1
There is a lot here, much more than normal, seems like everyone is
writing new driver subsystems these days... Anyway, major things here
are:
- new FSI driver subsystem, yet-another-powerpc low-level hardware
bus
- gnss, finally an in-kernel GPS subsystem to try to tame all of the
crazy out-of-tree drivers that have been floating around for years,
combined with some really hacky userspace implementations. This is
only for GNSS receivers, but you have to start somewhere, and this
is great to see.
Other than that, there are new slimbus drivers, new coresight drivers,
new fpga drivers, and loads of DT bindings for all of these and
existing drivers.
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (255 commits)
android: binder: Rate-limit debug and userspace triggered err msgs
fsi: sbefifo: Bump max command length
fsi: scom: Fix NULL dereference
misc: mic: SCIF Fix scif_get_new_port() error handling
misc: cxl: changed asterisk position
genwqe: card_base: Use true and false for boolean values
misc: eeprom: assignment outside the if statement
uio: potential double frees if __uio_register_device() fails
eeprom: idt_89hpesx: clean up an error pointer vs NULL inconsistency
misc: ti-st: Fix memory leak in the error path of probe()
android: binder: Show extra_buffers_size in trace
firmware: vpd: Fix section enabled flag on vpd_section_destroy
platform: goldfish: Retire pdev_bus
goldfish: Use dedicated macros instead of manual bit shifting
goldfish: Add missing includes to goldfish.h
mux: adgs1408: new driver for Analog Devices ADGS1408/1409 mux
dt-bindings: mux: add adi,adgs1408
Drivers: hv: vmbus: Cleanup synic memory free path
Drivers: hv: vmbus: Remove use of slow_virt_to_phys()
Drivers: hv: vmbus: Reset the channel callback in vmbus_onoffer_rescind()
...
Pull networking updates from David Miller:
"Highlights:
- Gustavo A. R. Silva keeps working on the implicit switch fallthru
changes.
- Support 802.11ax High-Efficiency wireless in cfg80211 et al, From
Luca Coelho.
- Re-enable ASPM in r8169, from Kai-Heng Feng.
- Add virtual XFRM interfaces, which avoids all of the limitations of
existing IPSEC tunnels. From Steffen Klassert.
- Convert GRO over to use a hash table, so that when we have many
flows active we don't traverse a long list during accumluation.
- Many new self tests for routing, TC, tunnels, etc. Too many
contributors to mention them all, but I'm really happy to keep
seeing this stuff.
- Hardware timestamping support for dpaa_eth/fsl-fman from Yangbo Lu.
- Lots of cleanups and fixes in L2TP code from Guillaume Nault.
- Add IPSEC offload support to netdevsim, from Shannon Nelson.
- Add support for slotting with non-uniform distribution to netem
packet scheduler, from Yousuk Seung.
- Add UDP GSO support to mlx5e, from Boris Pismenny.
- Support offloading of Team LAG in NFP, from John Hurley.
- Allow to configure TX queue selection based upon RX queue, from
Amritha Nambiar.
- Support ethtool ring size configuration in aquantia, from Anton
Mikaev.
- Support DSCP and flowlabel per-transport in SCTP, from Xin Long.
- Support list based batching and stack traversal of SKBs, this is
very exciting work. From Edward Cree.
- Busyloop optimizations in vhost_net, from Toshiaki Makita.
- Introduce the ETF qdisc, which allows time based transmissions. IGB
can offload this in hardware. From Vinicius Costa Gomes.
- Add parameter support to devlink, from Moshe Shemesh.
- Several multiplication and division optimizations for BPF JIT in
nfp driver, from Jiong Wang.
- Lots of prepatory work to make more of the packet scheduler layer
lockless, when possible, from Vlad Buslov.
- Add ACK filter and NAT awareness to sch_cake packet scheduler, from
Toke Høiland-Jørgensen.
- Support regions and region snapshots in devlink, from Alex Vesker.
- Allow to attach XDP programs to both HW and SW at the same time on
a given device, with initial support in nfp. From Jakub Kicinski.
- Add TLS RX offload and support in mlx5, from Ilya Lesokhin.
- Use PHYLIB in r8169 driver, from Heiner Kallweit.
- All sorts of changes to support Spectrum 2 in mlxsw driver, from
Ido Schimmel.
- PTP support in mv88e6xxx DSA driver, from Andrew Lunn.
- Make TCP_USER_TIMEOUT socket option more accurate, from Jon
Maxwell.
- Support for templates in packet scheduler classifier, from Jiri
Pirko.
- IPV6 support in RDS, from Ka-Cheong Poon.
- Native tproxy support in nf_tables, from Máté Eckl.
- Maintain IP fragment queue in an rbtree, but optimize properly for
in-order frags. From Peter Oskolkov.
- Improvde handling of ACKs on hole repairs, from Yuchung Cheng"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1996 commits)
bpf: test: fix spelling mistake "REUSEEPORT" -> "REUSEPORT"
hv/netvsc: Fix NULL dereference at single queue mode fallback
net: filter: mark expected switch fall-through
xen-netfront: fix warn message as irq device name has '/'
cxgb4: Add new T5 PCI device ids 0x50af and 0x50b0
net: dsa: mv88e6xxx: missing unlock on error path
rds: fix building with IPV6=m
inet/connection_sock: prefer _THIS_IP_ to current_text_addr
net: dsa: mv88e6xxx: bitwise vs logical bug
net: sock_diag: Fix spectre v1 gadget in __sock_diag_cmd()
ieee802154: hwsim: using right kind of iteration
net: hns3: Add vlan filter setting by ethtool command -K
net: hns3: Set tx ring' tc info when netdev is up
net: hns3: Remove tx ring BD len register in hns3_enet
net: hns3: Fix desc num set to default when setting channel
net: hns3: Fix for phy link issue when using marvell phy driver
net: hns3: Fix for information of phydev lost problem when down/up
net: hns3: Fix for command format parsing error in hclge_is_all_function_id_zero
net: hns3: Add support for serdes loopback selftest
bnxt_en: take coredump_record structure off stack
...
allmodconfig+CONFIG_INTEL_KVM=n results in the following build error.
ERROR: "l1tf_vmx_mitigation" [arch/x86/kvm/kvm.ko] undefined!
Fixes: 5b76a3cff0 ("KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry")
Reported-by: Meelis Roos <mroos@linux.ee>
Cc: Meelis Roos <mroos@linux.ee>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCW3LkCgAKCRCAXGG7T9hj
vtyfAQDTMUqfBlpz9XqFyTBTFRkP3aVtnEeE7BijYec+RXPOxwEAsiXwZPsmW/AN
up+NEHqPvMOcZC8zJZ9THCiBgOxligY=
=F51X
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
- add dma-buf functionality to Xen grant table handling
- fix for booting the kernel as Xen PVH dom0
- fix for booting the kernel as a Xen PV guest with
CONFIG_DEBUG_VIRTUAL enabled
- other minor performance and style fixes
* tag 'for-linus-4.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/balloon: fix balloon initialization for PVH Dom0
xen: don't use privcmd_call() from xen_mc_flush()
xen/pv: Call get_cpu_address_sizes to set x86_virt/phys_bits
xen/biomerge: Use true and false for boolean values
xen/gntdev: don't dereference a null gntdev_dmabuf on allocation failure
xen/spinlock: Don't use pvqspinlock if only 1 vCPU
xen/gntdev: Implement dma-buf import functionality
xen/gntdev: Implement dma-buf export functionality
xen/gntdev: Add initial support for dma-buf UAPI
xen/gntdev: Make private routines/structures accessible
xen/gntdev: Allow mappings for DMA buffers
xen/grant-table: Allow allocating buffers suitable for DMA
xen/balloon: Share common memory reservation routines
xen/grant-table: Make set/clear page private code shared
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
Pull x86 timer updates from Thomas Gleixner:
"Early TSC based time stamping to allow better boot time analysis.
This comes with a general cleanup of the TSC calibration code which
grew warts and duct taping over the years and removes 250 lines of
code. Initiated and mostly implemented by Pavel with help from various
folks"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/kvmclock: Mark kvm_get_preset_lpj() as __init
x86/tsc: Consolidate init code
sched/clock: Disable interrupts when calling generic_sched_clock_init()
timekeeping: Prevent false warning when persistent clock is not available
sched/clock: Close a hole in sched_clock_init()
x86/tsc: Make use of tsc_calibrate_cpu_early()
x86/tsc: Split native_calibrate_cpu() into early and late parts
sched/clock: Use static key for sched_clock_running
sched/clock: Enable sched clock early
sched/clock: Move sched clock initialization and merge with generic clock
x86/tsc: Use TSC as sched clock early
x86/tsc: Initialize cyc2ns when tsc frequency is determined
x86/tsc: Calibrate tsc only once
ARM/time: Remove read_boot_clock64()
s390/time: Remove read_boot_clock64()
timekeeping: Default boot time offset to local_clock()
timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset()
s390/time: Add read_persistent_wall_and_boot_offset()
x86/xen/time: Output xen sched_clock time from 0
x86/xen/time: Initialize pv xen time in init_hypervisor_platform()
...
Pull x86 PTI updates from Thomas Gleixner:
"The Speck brigade sadly provides yet another large set of patches
destroying the perfomance which we carefully built and preserved
- PTI support for 32bit PAE. The missing counter part to the 64bit
PTI code implemented by Joerg.
- A set of fixes for the Global Bit mechanics for non PCID CPUs which
were setting the Global Bit too widely and therefore possibly
exposing interesting memory needlessly.
- Protection against userspace-userspace SpectreRSB
- Support for the upcoming Enhanced IBRS mode, which is preferred
over IBRS. Unfortunately we dont know the performance impact of
this, but it's expected to be less horrible than the IBRS
hammering.
- Cleanups and simplifications"
* 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/mm/pti: Move user W+X check into pti_finalize()
x86/relocs: Add __end_rodata_aligned to S_REL
x86/mm/pti: Clone kernel-image on PTE level for 32 bit
x86/mm/pti: Don't clear permissions in pti_clone_pmd()
x86/mm/pti: Fix 32 bit PCID check
x86/mm/init: Remove freed kernel image areas from alias mapping
x86/mm/init: Add helper for freeing kernel image pages
x86/mm/init: Pass unconverted symbol addresses to free_init_pages()
mm: Allow non-direct-map arguments to free_reserved_area()
x86/mm/pti: Clear Global bit more aggressively
x86/speculation: Support Enhanced IBRS on future CPUs
x86/speculation: Protect against userspace-userspace spectreRSB
x86/kexec: Allocate 8k PGDs for PTI
Revert "perf/core: Make sure the ring-buffer is mapped in all page-tables"
x86/mm: Remove in_nmi() warning from vmalloc_fault()
x86/entry/32: Check for VM86 mode in slow-path check
perf/core: Make sure the ring-buffer is mapped in all page-tables
x86/pti: Check the return value of pti_user_pagetable_walk_pmd()
x86/pti: Check the return value of pti_user_pagetable_walk_p4d()
x86/entry/32: Add debug code to check entry/exit CR3
...
Pull x86 cache QoS (RDT/CAR) updates from Thomas Gleixner:
"Add support for pseudo-locked cache regions.
Cache Allocation Technology (CAT) allows on certain CPUs to isolate a
region of cache and 'lock' it. Cache pseudo-locking builds on the fact
that a CPU can still read and write data pre-allocated outside its
current allocated area on cache hit. With cache pseudo-locking data
can be preloaded into a reserved portion of cache that no application
can fill, and from that point on will only serve cache hits. The cache
pseudo-locked memory is made accessible to user space where an
application can map it into its virtual address space and thus have a
region of memory with reduced average read latency.
The locking is not perfect and gets totally screwed by WBINDV and
similar mechanisms, but it provides a reasonable enhancement for
certain types of latency sensitive applications.
The implementation extends the current CAT mechanism and provides a
generally useful exclusive CAT mode on which it builds the extra
pseude-locked regions"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
x86/intel_rdt: Disable PMU access
x86/intel_rdt: Fix possible circular lock dependency
x86/intel_rdt: Make CPU information accessible for pseudo-locked regions
x86/intel_rdt: Support restoration of subset of permissions
x86/intel_rdt: Fix cleanup of plr structure on error
x86/intel_rdt: Move pseudo_lock_region_clear()
x86/intel_rdt: Limit C-states dynamically when pseudo-locking active
x86/intel_rdt: Support L3 cache performance event of Broadwell
x86/intel_rdt: More precise L2 hit/miss measurements
x86/intel_rdt: Create character device exposing pseudo-locked region
x86/intel_rdt: Create debugfs files for pseudo-locking testing
x86/intel_rdt: Create resctrl debug area
x86/intel_rdt: Ensure RDT cleanup on exit
x86/intel_rdt: Resctrl files reflect pseudo-locked information
x86/intel_rdt: Support creation/removal of pseudo-locked region
x86/intel_rdt: Pseudo-lock region creation/removal core
x86/intel_rdt: Discover supported platforms via prefetch disable bits
x86/intel_rdt: Add utilities to test pseudo-locked region possibility
x86/intel_rdt: Split resource group removal in two
x86/intel_rdt: Enable entering of pseudo-locksetup mode
...
Pull x86 cpu updates from Thomas Gleixner:
"Two small updates for the CPU code:
- Improve NUMA emulation
- Add the EPT_AD CPU feature bit"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpufeatures: Add EPT_AD feature bit
x86/numa_emulation: Introduce uniform split capability
x86/numa_emulation: Fix emulated-to-physical node mapping
Pull x86 RAS updates from Thomas Gleixner:
"A small set of changes to the RAS core:
- Rework of the MCE bank scanning code
- Y2038 converion"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Cleanup __mc_scan_banks()
x86/mce: Carve out bank scanning code
x86/mce: Remove !banks check
x86/mce: Carve out the crashing_cpu check
x86/mce: Always use 64-bit timestamps
The kernel unnecessarily prevents late microcode loading when SMT is
disabled. It should be safe to allow it if all the primary threads are
online.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Josh reported that the late SMT evaluation in cpu_smt_state_init() sets
cpu_smt_control to CPU_SMT_NOT_SUPPORTED in case that 'nosmt' was supplied
on the kernel command line as it cannot differentiate between SMT disabled
by BIOS and SMT soft disable via 'nosmt'. That wreckages the state and
makes the sysfs interface unusable.
Rework this so that during bringup of the non boot CPUs the availability of
SMT is determined in cpu_smt_allowed(). If a newly booted CPU is not a
'primary' thread then set the local cpu_smt_available marker and evaluate
this explicitely right after the initial SMP bringup has finished.
SMT evaulation on x86 is a trainwreck as the firmware has all the
information _before_ booting the kernel, but there is no interface to query
it.
Fixes: 73d5e2b472 ("cpu/hotplug: detect SMT disabled by BIOS")
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit d94a155c59 ("x86/cpu: Prevent cpuinfo_x86::x86_phys_bits
adjustment corruption") has moved the query and calculation of the
x86_virt_bits and x86_phys_bits fields of the cpuinfo_x86 struct
from the get_cpu_cap function to a new function named
get_cpu_address_sizes.
One of the call sites related to Xen PV VMs was unfortunately missed
in the aforementioned commit. This prevents successful boot-up of
kernel versions 4.17 and up in Xen PV VMs if CONFIG_DEBUG_VIRTUAL
is enabled, due to the following code path:
enlighten_pv.c::xen_start_kernel
mmu_pv.c::xen_reserve_special_pages
page.h::__pa
physaddr.c::__phys_addr
physaddr.h::phys_addr_valid
phys_addr_valid uses boot_cpu_data.x86_phys_bits to validate physical
addresses. boot_cpu_data.x86_phys_bits is no longer populated before
the call to xen_reserve_special_pages due to the aforementioned commit
though, so the validation performed by phys_addr_valid fails, which
causes __phys_addr to trigger a BUG, preventing boot-up.
Signed-off-by: M. Vefa Bicakci <m.v.b@runbox.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: xen-devel@lists.xenproject.org
Cc: x86@kernel.org
Cc: stable@vger.kernel.org # for v4.17 and up
Fixes: d94a155c59 ("x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Bit 3 of ARCH_CAPABILITIES tells a hypervisor that L1D flush on vmentry is
not needed. Add a new value to enum vmx_l1d_flush_state, which is used
either if there is no L1TF bug at all, or if bit 3 is set in ARCH_CAPABILITIES.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Three changes to the content of the sysfs file:
- If EPT is disabled, L1TF cannot be exploited even across threads on the
same core, and SMT is irrelevant.
- If mitigation is completely disabled, and SMT is enabled, print "vulnerable"
instead of "vulnerable, SMT vulnerable"
- Reorder the two parts so that the main vulnerability state comes first
and the detail on SMT is second.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Peter is objecting to the direct PMU access in RDT. Right now the PMU usage
is broken anyway as it is not coordinated with perf.
Until this discussion settled, disable the PMU mechanics by simply
rejecting the type '2' measurement in the resctrl file.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
CC: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: hpa@zytor.com
Future Intel processors will support "Enhanced IBRS" which is an "always
on" mode i.e. IBRS bit in SPEC_CTRL MSR is enabled once and never
disabled.
From the specification [1]:
"With enhanced IBRS, the predicted targets of indirect branches
executed cannot be controlled by software that was executed in a less
privileged predictor mode or on another logical processor. As a
result, software operating on a processor with enhanced IBRS need not
use WRMSR to set IA32_SPEC_CTRL.IBRS after every transition to a more
privileged predictor mode. Software can isolate predictor modes
effectively simply by setting the bit once. Software need not disable
enhanced IBRS prior to entering a sleep state such as MWAIT or HLT."
If Enhanced IBRS is supported by the processor then use it as the
preferred spectre v2 mitigation mechanism instead of Retpoline. Intel's
Retpoline white paper [2] states:
"Retpoline is known to be an effective branch target injection (Spectre
variant 2) mitigation on Intel processors belonging to family 6
(enumerated by the CPUID instruction) that do not have support for
enhanced IBRS. On processors that support enhanced IBRS, it should be
used for mitigation instead of retpoline."
The reason why Enhanced IBRS is the recommended mitigation on processors
which support it is that these processors also support CET which
provides a defense against ROP attacks. Retpoline is very similar to ROP
techniques and might trigger false positives in the CET defense.
If Enhanced IBRS is selected as the mitigation technique for spectre v2,
the IBRS bit in SPEC_CTRL MSR is set once at boot time and never
cleared. Kernel also has to make sure that IBRS bit remains set after
VMEXIT because the guest might have cleared the bit. This is already
covered by the existing x86_spec_ctrl_set_guest() and
x86_spec_ctrl_restore_host() speculation control functions.
Enhanced IBRS still requires IBPB for full mitigation.
[1] Speculative-Execution-Side-Channel-Mitigations.pdf
[2] Retpoline-A-Branch-Target-Injection-Mitigation.pdf
Both documents are available at:
https://bugzilla.kernel.org/show_bug.cgi?id=199511
Originally-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim C Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1533148945-24095-1-git-send-email-sai.praneeth.prakhya@intel.com
Some Intel processors have an EPT feature whereby the accessed & dirty bits
in EPT entries can be updated by HW. MSR IA32_VMX_EPT_VPID_CAP exposes the
presence of this capability.
There is no point in trying to use that new feature bit in the VMX code as
VMX needs to read the MSR anyway to access other bits, but having the
feature bit for EPT_AD in place helps virtualization management as it
exposes "ept_ad" in /proc/cpuinfo/$proc/flags if the feature is present.
[ tglx: Amended changelog ]
Signed-off-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Peter Shier <pshier@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180801180657.138051-1-pshier@google.com
The article "Spectre Returns! Speculation Attacks using the Return Stack
Buffer" [1] describes two new (sub-)variants of spectrev2-like attacks,
making use solely of the RSB contents even on CPUs that don't fallback to
BTB on RSB underflow (Skylake+).
Mitigate userspace-userspace attacks by always unconditionally filling RSB on
context switch when the generic spectrev2 mitigation has been enabled.
[1] https://arxiv.org/pdf/1807.07940.pdf
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1807261308190.997@cbobk.fhfr.pm
This change allows creating kernfs files and directories with arbitrary
uid/gid instead of always using GLOBAL_ROOT_UID/GID by extending
kernfs_create_dir_ns() and kernfs_create_file_ns() with uid/gid arguments.
The "simple" kernfs_create_file() and kernfs_create_dir() are left alone
and always create objects belonging to the global root.
When creating symlinks ownership (uid/gid) is taken from the target kernfs
object.
Co-Developed-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the entry-stack as a trampoline to enter the kernel. The entry-stack is
already in the cpu_entry_area and will be mapped to userspace when PTI is
enabled.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-8-git-send-email-joro@8bytes.org
commit b3b7c4795c ("x86/MCE: Serialize sysfs changes") introduced a min
interval limitation when setting the check interval for polled MCEs.
However, the logic is that 0 disables polling for corrected MCEs, see
Documentation/x86/x86_64/machinecheck. The limitation prevents disabling.
Remove this limitation and allow the value 0 to disable polling again.
Fixes: b3b7c4795c ("x86/MCE: Serialize sysfs changes")
Signed-off-by: Dewet Thibaut <thibaut.dewet@nokia.com>
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@nokia.com>
[ Massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180716084927.24869-1-alexander.sverdlin@nokia.com
Introduce the 'l1tf=' kernel command line option to allow for boot-time
switching of mitigation that is used on processors affected by L1TF.
The possible values are:
full
Provides all available mitigations for the L1TF vulnerability. Disables
SMT and enables all mitigations in the hypervisors. SMT control via
/sys/devices/system/cpu/smt/control is still possible after boot.
Hypervisors will issue a warning when the first VM is started in
a potentially insecure configuration, i.e. SMT enabled or L1D flush
disabled.
full,force
Same as 'full', but disables SMT control. Implies the 'nosmt=force'
command line option. sysfs control of SMT and the hypervisor flush
control is disabled.
flush
Leaves SMT enabled and enables the conditional hypervisor mitigation.
Hypervisors will issue a warning when the first VM is started in a
potentially insecure configuration, i.e. SMT enabled or L1D flush
disabled.
flush,nosmt
Disables SMT and enables the conditional hypervisor mitigation. SMT
control via /sys/devices/system/cpu/smt/control is still possible
after boot. If SMT is reenabled or flushing disabled at runtime
hypervisors will issue a warning.
flush,nowarn
Same as 'flush', but hypervisors will not warn when
a VM is started in a potentially insecure configuration.
off
Disables hypervisor mitigations and doesn't emit any warnings.
Default is 'flush'.
Let KVM adhere to these semantics, which means:
- 'lt1f=full,force' : Performe L1D flushes. No runtime control
possible.
- 'l1tf=full'
- 'l1tf-flush'
- 'l1tf=flush,nosmt' : Perform L1D flushes and warn on VM start if
SMT has been runtime enabled or L1D flushing
has been run-time enabled
- 'l1tf=flush,nowarn' : Perform L1D flushes and no warnings are emitted.
- 'l1tf=off' : L1D flushes are not performed and no warnings
are emitted.
KVM can always override the L1D flushing behavior using its 'vmentry_l1d_flush'
module parameter except when lt1f=full,force is set.
This makes KVM's private 'nosmt' option redundant, and as it is a bit
non-systematic anyway (this is something to control globally, not on
hypervisor level), remove that option.
Add the missing Documentation entry for the l1tf vulnerability sysfs file
while at it.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.202758176@linutronix.de
The CPU_SMT_NOT_SUPPORTED state is set (if the processor does not support
SMT) when the sysfs SMT control file is initialized.
That was fine so far as this was only required to make the output of the
control file correct and to prevent writes in that case.
With the upcoming l1tf command line parameter, this needs to be set up
before the L1TF mitigation selection and command line parsing happens.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142323.121795971@linutronix.de
All mitigation modes can be switched at run time with a static key now:
- Use sysfs_streq() instead of strcmp() to handle the trailing new line
from sysfs writes correctly.
- Make the static key management handle multiple invocations properly.
- Set the module parameter file to RW
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142322.954525119@linutronix.de
If Extended Page Tables (EPT) are disabled or not supported, no L1D
flushing is required. The setup function can just avoid setting up the L1D
flush for the EPT=n case.
Invoke it after the hardware setup has be done and enable_ept has the
correct state and expose the EPT disabled state in the mitigation status as
well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142322.612160168@linutronix.de
Store the effective mitigation of VMX in a status variable and use it to
report the VMX state in the l1tf sysfs file.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/20180713142322.433098358@linutronix.de
Lockdep is reporting a possible circular locking dependency:
======================================================
WARNING: possible circular locking dependency detected
4.18.0-rc1-test-test+ #4 Not tainted
------------------------------------------------------
user_example/766 is trying to acquire lock:
0000000073479a0f (rdtgroup_mutex){+.+.}, at: pseudo_lock_dev_mmap
but task is already holding lock:
000000001ef7a35b (&mm->mmap_sem){++++}, at: vm_mmap_pgoff+0x9f/0x
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&mm->mmap_sem){++++}:
_copy_to_user+0x1e/0x70
filldir+0x91/0x100
dcache_readdir+0x54/0x160
iterate_dir+0x142/0x190
__x64_sys_getdents+0xb9/0x170
do_syscall_64+0x86/0x200
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #1 (&sb->s_type->i_mutex_key#3){++++}:
start_creating+0x60/0x100
debugfs_create_dir+0xc/0xc0
rdtgroup_pseudo_lock_create+0x217/0x4d0
rdtgroup_schemata_write+0x313/0x3d0
kernfs_fop_write+0xf0/0x1a0
__vfs_write+0x36/0x190
vfs_write+0xb7/0x190
ksys_write+0x52/0xc0
do_syscall_64+0x86/0x200
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #0 (rdtgroup_mutex){+.+.}:
__mutex_lock+0x80/0x9b0
pseudo_lock_dev_mmap+0x2f/0x170
mmap_region+0x3d6/0x610
do_mmap+0x387/0x580
vm_mmap_pgoff+0xcf/0x110
ksys_mmap_pgoff+0x170/0x1f0
do_syscall_64+0x86/0x200
entry_SYSCALL_64_after_hwframe+0x49/0xbe
other info that might help us debug this:
Chain exists of:
rdtgroup_mutex --> &sb->s_type->i_mutex_key#3 --> &mm->mmap_sem
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&mm->mmap_sem);
lock(&sb->s_type->i_mutex_key#3);
lock(&mm->mmap_sem);
lock(rdtgroup_mutex);
*** DEADLOCK ***
1 lock held by user_example/766:
#0: 000000001ef7a35b (&mm->mmap_sem){++++}, at: vm_mmap_pgoff+0x9f/0x110
rdtgroup_mutex is already being released temporarily during pseudo-lock
region creation to prevent the potential deadlock between rdtgroup_mutex
and mm->mmap_sem that is obtained during device_create(). Move the
debugfs creation into this area to avoid the same circular dependency.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/fffb57f9c6b8285904c9a60cc91ce21591af17fe.1531332480.git.reinette.chatre@intel.com
Pull x86/pti updates from Thomas Gleixner:
"Two small fixes correcting the handling of SSB mitigations on AMD
processors"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/bugs: Fix the AMD SSBD usage of the SPEC_CTRL MSR
x86/bugs: Update when to check for the LS_CFG SSBD mitigation
Don't access the provided buffer out of bounds - this can cause a kernel
out-of-bounds read when invoked through sys_splice() or other things that
use kernel_write()/__kernel_write().
Fixes: 7f8ec5a4f0 ("x86/mtrr: Convert to use strncpy_from_user() helper")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180706215003.156702-1-jannh@google.com
The Hyper-V feature and hint flags in hyperv-tlfs.h are all defined
with the string "X64" in the name. Some of these flags are indeed
x86/x64 specific, but others are not. For the ones that are used
in architecture independent Hyper-V driver code, or will be used in
the upcoming support for Hyper-V for ARM64, this patch removes the
"X64" from the name.
This patch changes the flags that are currently known to be
used on multiple architectures. Hyper-V for ARM64 is still a
work-in-progress and the Top Level Functional Spec (TLFS) has not
been separated into x86/x64 and ARM64 areas. So additional flags
may need to be updated later.
This patch only changes symbol names. There are no functional
changes.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add standard interrupt handler annotations to
hyperv_vector_handler(). This does not fix any observed
bug, but avoids potential removal of the code by link
time optimization and makes it consistent with
hv_stimer0_vector_handler in the same source file.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On AMD, the presence of the MSR_SPEC_CTRL feature does not imply that the
SSBD mitigation support should use the SPEC_CTRL MSR. Other features could
have caused the MSR_SPEC_CTRL feature to be set, while a different SSBD
mitigation option is in place.
Update the SSBD support to check for the actual SSBD features that will
use the SPEC_CTRL MSR.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 6ac2f49edb ("x86/bugs: Add AMD's SPEC_CTRL MSR usage")
Link: http://lkml.kernel.org/r/20180702213602.29202.33151.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If either the X86_FEATURE_AMD_SSBD or X86_FEATURE_VIRT_SSBD features are
present, then there is no need to perform the check for the LS_CFG SSBD
mitigation support.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180702213553.29202.21089.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a resource group enters pseudo-locksetup mode it reflects that the
platform supports cache pseudo-locking and the resource group is unused,
ready to be used for a pseudo-locked region. Until it is set up as a
pseudo-locked region the resource group is "locked down" such that no new
tasks or cpus can be assigned to it. This is accomplished in a user visible
way by making the cpus, cpus_list, and tasks resctrl files inaccassible
(user cannot read from or write to these files).
When the resource group changes to pseudo-locked mode it represents a cache
pseudo-locked region. While not appropriate to make any changes to the cpus
assigned to this region it is useful to make it easy for the user to see
which cpus are associated with the pseudo-locked region.
Modify the permissions of the cpus/cpus_list file when the resource group
changes to pseudo-locked mode to support reading (not writing). The
information presented to the user when reading the file are the cpus
associated with the pseudo-locked region.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/12756b7963b6abc1bffe8fb560b87b75da827bd1.1530421961.git.reinette.chatre@intel.com
As the mode of a resource group changes, the operations it can support may
also change. One way in which the supported operations are managed is to
modify the permissions of the files within the resource group's resctrl
directory.
At the moment only two possible permissions are supported: the default
permissions or no permissions in support for when the operation is "locked
down". It is possible where an operation on a resource group may have more
possibilities. For example, if by default changes can be made to the
resource group by writing to a resctrl file while the current settings can
be obtained by reading from the file, then it may be possible that in
another mode it is only possible to read the current settings, and not
change them.
Make it possible to modify some of the permissions of a resctrl file in
support of a more flexible way to manage the operations on a resource
group. In this preparation work the original behavior is maintained where
all permissions are restored.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/8773aadfade7bcb2c48a45fa294a04d2c03bb0a1.1530421961.git.reinette.chatre@intel.com
When a resource group enters pseudo-locksetup mode a pseudo_lock_region is
associated with it. When the user writes to the resource group's schemata
file the CBM of the requested pseudo-locked region is entered into the
pseudo_lock_region struct. If any part of pseudo-lock region creation fails
the resource group will remain in pseudo-locksetup mode with the
pseudo_lock_region associated with it.
In case of failure during pseudo-lock region creation care needs to be
taken to ensure that the pseudo_lock_region struct associated with the
resource group is cleared from any pseudo-locking data - especially the
CBM. This is because the existence of a pseudo_lock_region struct with a
CBM is significant in other areas of the code, for example, the display of
bit_usage and initialization of a new resource group.
Fix the error path of pseudo-lock region creation to ensure that the
pseudo_lock_region struct is cleared at each error exit.
Fixes: 018961ae55 ("x86/intel_rdt: Pseudo-lock region creation/removal core")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/49b4782f6d204d122cee3499e642b2772a98d2b4.1530421026.git.reinette.chatre@intel.com
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for x86:
- Make Xen PV guest deal with speculative store bypass correctly
- Address more fallout from the 5-Level pagetable handling. Undo an
__initdata annotation to avoid section mismatch and malfunction
when post init code would touch the freed variable.
- Handle exception fixup in math_error() before calling notify_die().
The reverse call order incorrectly triggers notify_die() listeners
for soemthing which is handled correctly at the site which issues
the floating point instruction.
- Fix an off by one in the LLC topology calculation on AMD
- Handle non standard memory block sizes gracefully un UV platforms
- Plug a memory leak in the microcode loader
- Sanitize the purgatory build magic
- Add the x86 specific device tree bindings directory to the x86
MAINTAINER file patterns"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Fix 'no5lvl' handling
Revert "x86/mm: Mark __pgtable_l5_enabled __initdata"
x86/CPU/AMD: Fix LLC ID bit-shift calculation
MAINTAINERS: Add file patterns for x86 device tree bindings
x86/microcode/intel: Fix memleak in save_microcode_patch()
x86/platform/UV: Add kernel parameter to set memory block size
x86/platform/UV: Use new set memory block size function
x86/platform/UV: Add adjustable set memory block size function
x86/build: Remove unnecessary preparation for purgatory
Revert "kexec/purgatory: Add clean-up for purgatory directory"
x86/xen: Add call of speculative_store_bypass_ht_init() to PV paths
x86: Call fixup_exception() before notify_die() in math_error()
Pull x86 pti fixes from Thomas Gleixner:
"Two small updates for the speculative distractions:
- Make it more clear to the compiler that array_index_mask_nospec()
is not subject for optimizations. It's not perfect, but ...
- Don't report XEN PV guests as vulnerable because their mitigation
state depends on the hypervisor. Report unknown and refer to the
hypervisor requirement"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/spectre_v1: Disable compiler optimizations over array_index_mask_nospec()
x86/pti: Don't report XenPV as vulnerable
Pull ras fixes from Thomas Gleixner:
"A set of fixes for RAS/MCE:
- Improve the error message when the kernel cannot recover from a MCE
so the maximum amount of information gets provided.
- Individually check MCE recovery features on SkyLake CPUs instead of
assuming none when the CAPID0 register does not advertise the
general ability for recovery.
- Prevent MCE to output inconsistent messages which first show an
error location and then claim that the source is unknown.
- Prevent overwriting MCi_STATUS in the attempt to gather more
information when a fatal MCE has alreay been detected. This leads
to empty status values in the printout and failing to react
promptly on the fatal event"
* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Fix incorrect "Machine check from unknown source" message
x86/mce: Do not overwrite MCi_STATUS in mce_no_way_out()
x86/mce: Check for alternate indication of machine check recovery on Skylake
x86/mce: Improve error message when kernel cannot recover
early_identify_cpu() has to use early version of pgtable_l5_enabled()
that doesn't rely on cpu_feature_enabled().
Defining USE_EARLY_PGTABLE_L5 before all includes does the trick.
I lost the define in one of reworks of the original patch.
Fixes: 372fddf709 ("x86/mm: Introduce the 'no5lvl' kernel parameter")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180622220841.54135-3-kirill.shutemov@linux.intel.com
There is no simple yes/no test to determine if pseudo-locking was
successful. In order to test pseudo-locking we expose a debugfs file for
each pseudo-locked region that will record the latency of reading the
pseudo-locked memory at a stride of 32 bytes (hardcoded). These numbers
will give us an idea of locking was successful or not since they will
reflect cache hits and cache misses (hardware prefetching is disabled
during the test).
The new debugfs file "pseudo_lock_measure" will, when the
pseudo_lock_mem_latency tracepoint is enabled, record the latency of
accessing each cache line twice.
Kernel tracepoints offer us histograms (when CONFIG_HIST_TRIGGERS is
enabled) that is a simple way to visualize the memory access latency
and immediately see any cache misses. For example, the hist trigger
below before trigger of the measurement will display the memory access
latency and instances at each latency:
echo 'hist:keys=latency' > /sys/kernel/debug/tracing/events/resctrl/\
pseudo_lock_mem_latency/trigger
echo 1 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
echo 1 > /sys/kernel/debug/resctrl/<newlock>/pseudo_lock_measure
echo 0 > /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/enable
cat /sys/kernel/debug/tracing/events/resctrl/pseudo_lock_mem_latency/hist
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/6b2ea76181099d1b79ccfa7d3be24497ab2d1a45.1529706536.git.reinette.chatre@intel.com
The user requests a pseudo-locked region by providing a schemata to a
resource group that is in the pseudo-locksetup mode. This is the
functionality that consumes the parsed user data and creates the
pseudo-locked region.
First, required information is deduced from user provided data.
This includes, how much memory does the requested bitmask represent,
which CPU the requested region is associated with, and what is the
cache line size of that cache (to learn the stride needed for locking).
Second, a contiguous block of memory matching the requested bitmask is
allocated.
Finally, pseudo-locking is performed. The resource group already has the
allocation that reflects the requested bitmask. With this class of service
active and interference minimized, the allocated memory is loaded into the
cache.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/67391160bbf06143bc62d856d3d234eb152008b7.1529706536.git.reinette.chatre@intel.com
A pseudo-locked region does not have a class of service associated with
it and thus not tracked in the array of control values maintained as
part of the domain. Even so, when the user provides a new bitmask for
another resource group it needs to be checked for interference with
existing pseudo-locked regions.
Additionally only one pseudo-locked region can be created in any cache
hierarchy.
Introduce two utilities in support of above scenarios: (1) a utility
that can be used to test if a given capacity bitmask overlaps with any
pseudo-locked regions associated with a particular cache instance, (2) a
utility that can be used to test if a pseudo-locked region exists within
a particular cache hierarchy.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b8e31dbdcf22ddf71df46072647b47e7558abb32.1529706536.git.reinette.chatre@intel.com
The user can request entering pseudo-locksetup mode by writing
"pseudo-locksetup" to the mode file. Act on this request as well as
support switching from a pseudo-locksetup mode (before pseudo-locked
mode was entered). It is not supported to modify the mode once
pseudo-locked mode has been entered.
The schemata reflects the new mode by adding "uninitialized" to all
resources. The size resctrl file reports zero for all cache domains in
support of the uninitialized nature. Since there are no users of this
class of service its allocations can be ignored when searching for
appropriate default allocations for new resource groups. For the same
reason resource groups in pseudo-locksetup mode are not considered when
testing if new resource groups may overlap.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/56f553334708022903c296284e62db3bbc1ff150.1529706536.git.reinette.chatre@intel.com
The locksetup mode is the way in which the user communicates that the
resource group will be used for a pseudo-locked region. Locksetup mode
should thus ensure that all restrictions on a resource group are met before
locksetup mode can be entered. The resource group should also be configured
to ensure that it cannot be modified in unsupported ways when a
pseudo-locked region.
Introduce the support where the request for entering locksetup mode can be
validated. This includes: CDP is not active, no cpus or tasks are assigned
to the resource group, monitoring is not in progress on the resource
group. Once the resource group is determined ready for a pseudo-locked
region it is configured to not allow future changes to these properties.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b120f71ced30116bcc6c6f651e8a7906ae6b903d.1529706536.git.reinette.chatre@intel.com
When a resource group is used for Cache Pseudo-Locking then the region of
cache ends up being orphaned with no class of service referring to it. The
resctrl files intended to manage how the classes of services are utilized
thus become irrelevant.
The fact that a resctrl file is not relevant can be communicated to the
user by setting all of its permissions to zero. That is, its read, write,
and execute permissions are unset for all users.
Introduce two utilities, rdtgroup_kn_mode_restrict() and
rdtgroup_kn_mode_restore(), that can be used to restrict and restore the
permissions of a file or directory belonging to a resource group.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/7afdbf5551b2f93cd45d61fbf5e01d87331f529a.1529706536.git.reinette.chatre@intel.com
By default, if the opener has CAP_DAC_OVERRIDE, a kernfs file can be opened
regardless of RW permissions. Writing to a kernfs file will thus succeed
even if permissions are 0000.
It's required to restrict the actions that can be performed on a resource
group from userspace based on the mode of the resource group. This
restriction will be done through a modification of the file
permissions. That is, for example, if a resource group is locked then the
user cannot add tasks to the resource group.
For this restriction through file permissions to work it has to be ensured
that the permissions are always respected. To do so the resctrl filesystem
is created with the KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK flag that will result
in open(2) failing with -EACCESS regardless of CAP_DAC_OVERRIDE if the
permission does not have the respective read or write access.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/26f4fc25f110bfc07c2d2c8b2c4ee904922fedf7.1529706536.git.reinette.chatre@intel.com
With cache regions now explicitly marked as "shareable" or "exclusive"
we would like to communicate to the user how portions of the cache
are used.
Introduce "bit_usage" that indicates for each resource
how portions of the cache are configured to be used.
To assist the user to distinguish whether the sharing is from software or
hardware we add the following annotation:
0 - currently unused
X - currently available for sharing and used by software and hardware
H - currently used by hardware only but available for software use
S - currently used and shareable by software only
E - currently used exclusively by one resource group
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/105d44c40e582c2b7e2dccf0ae247e5e61137d4b.1529706536.git.reinette.chatre@intel.com
Currently when a new resource group is created its allocations would be
those that belonged to the resource group to which its closid belonged
previously.
That is, we can encounter a case like:
mkdir newgroup
cat newgroup/schemata
L2:0=ff;1=ff
echo 'L2:0=0xf0;1=0xf0' > newgroup/schemata
cat newgroup/schemata
L2:0=0xf0;1=0xf0
rmdir newgroup
mkdir newnewgroup
cat newnewgroup/schemata
L2:0=0xf0;1=0xf0
When the new group is created it would be reasonable to expect its
allocations to be initialized with all regions that it can possibly use.
At this time these regions would be all that are shareable by other
resource groups as well as regions that are not currently used.
If the available cache region is found to be non-contiguous the
available region is adjusted to enforce validity.
When a new resource group is created the hardware is initialized with
these new default allocations.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/c468ed79340b63024111978e01430bb9589d85c0.1529706536.git.reinette.chatre@intel.com
The current logic incorrectly calculates the LLC ID from the APIC ID.
Unless specified otherwise, the LLC ID should be calculated by removing
the Core and Thread ID bits from the least significant end of the APIC
ID. For more info, see "ApicId Enumeration Requirements" in any Fam17h
PPR document.
[ bp: Improve commit message. ]
Fixes: 68091ee7ac ("Calculate last level cache ID from number of sharing threads")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1528915390-30533-1-git-send-email-suravee.suthikulpanit@amd.com
The TOPOEXT reenablement is a workaround for broken BIOSen which didn't
enable the CPUID bit. amd_get_topology_early(), however, relies on
that bit being set so that it can read out the CPUID leaf and set
smp_num_siblings properly.
Move the reenablement up to early_init_amd(). While at it, simplify
amd_get_topology_early().
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If we don't have MCA banks, we won't see machine checks anyway. Drop the
check.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180622095428.626-5-bp@alien8.de
Carve out the rendezvous handler timeout avoidance check into a separate
function in order to simplify the #MC handler.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180622095428.626-4-bp@alien8.de
The machine check timestamp uses get_seconds(), which returns an
'unsigned long' number that might overflow on 32-bit architectures (in
the distant future) and is therefore deprecated.
The normal replacement would be ktime_get_real_seconds(), but that needs
to use a sequence lock that might cause a deadlock if the MCE happens at
just the wrong moment. The __ktime_get_real_seconds() skips that lock
and is safer here, but has a miniscule risk of returning the wrong time
when we read it on a 32-bit architecture at the same time as updating
the epoch, i.e. from before y2106 overflow time to after, or vice versa.
This seems to be an acceptable risk in this particular case, and is the
same thing we do in kdb.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: y2038@lists.linaro.org
Link: http://lkml.kernel.org/r/20180618100759.1921750-1-arnd@arndb.de
Some injection testing resulted in the following console log:
mce: [Hardware Error]: CPU 22: Machine Check Exception: f Bank 1: bd80000000100134
mce: [Hardware Error]: RIP 10:<ffffffffc05292dd> {pmem_do_bvec+0x11d/0x330 [nd_pmem]}
mce: [Hardware Error]: TSC c51a63035d52 ADDR 3234bc4000 MISC 88
mce: [Hardware Error]: PROCESSOR 0:50654 TIME 1526502199 SOCKET 0 APIC 38 microcode 2000043
mce: [Hardware Error]: Run the above through 'mcelog --ascii'
Kernel panic - not syncing: Machine check from unknown source
This confused everybody because the first line quite clearly shows
that we found a logged error in "Bank 1", while the last line says
"unknown source".
The problem is that the Linux code doesn't do the right thing
for a local machine check that results in a fatal error.
It turns out that we know very early in the handler whether the
machine check is fatal. The call to mce_no_way_out() has checked
all the banks for the CPU that took the local machine check. If
it says we must crash, we can do so right away with the right
messages.
We do scan all the banks again. This means that we might initially
not see a problem, but during the second scan find something fatal.
If this happens we print a slightly different message (so I can
see if it actually every happens).
[ bp: Remove unneeded severity assignment. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org # 4.2
Link: http://lkml.kernel.org/r/52e049a497e86fd0b71c529651def8871c804df0.1527283897.git.tony.luck@intel.com
mce_no_way_out() does a quick check during #MC to see whether some of
the MCEs logged would require the kernel to panic immediately. And it
passes a struct mce where MCi_STATUS gets written.
However, after having saved a valid status value, the next iteration
of the loop which goes over the MCA banks on the CPU, overwrites the
valid status value because we're using struct mce as storage instead of
a temporary variable.
Which leads to MCE records with an empty status value:
mce: [Hardware Error]: CPU 0: Machine Check Exception: 6 Bank 0: 0000000000000000
mce: [Hardware Error]: RIP 10:<ffffffffbd42fbd7> {trigger_mce+0x7/0x10}
In order to prevent the loss of the status register value, return
immediately when severity is a panic one so that we can panic
immediately with the first fatal MCE logged. This is also the intention
of this function and not to noodle over the banks while a fatal MCE is
already logged.
Tony: read the rest of the MCA bank to populate the struct mce fully.
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20180622095428.626-8-bp@alien8.de
To support force disabling of SMT it's required to know the number of
thread siblings early. amd_get_topology() cannot be called before the APIC
driver is selected, so split out the part which initializes
smp_num_siblings and invoke it from amd_early_init().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Old code used to check whether CPUID ext max level is >= 0x80000008 because
that last leaf contains the number of cores of the physical CPU. The three
functions called there now do not depend on that leaf anymore so the check
can go.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Make use of the new early detection function to initialize smp_num_siblings
on the boot cpu before the MP-Table or ACPI/MADT scan happens. That's
required for force disabling SMT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To support force disabling of SMT it's required to know the number of
thread siblings early. detect_extended_topology() cannot be called before
the APIC driver is selected, so split out the part which initializes
smp_num_siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To support force disabling of SMT it's required to know the number of
thread siblings early. detect_ht() cannot be called before the APIC driver
is selected, so split out the part which initializes smp_num_siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Real 32bit AMD CPUs do not have SMT and the only value of the call was to
reach the magic printout which got removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
The value of this printout is dubious at best and there is no point in
having it in two different places along with convoluted ways to reach it.
Remove it completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Xen PV domain kernel is not by design affected by meltdown as it's
enforcing split CR3 itself. Let's not report such systems as "Vulnerable"
in sysfs (we're also already forcing PTI to off in X86_HYPER_XEN_PV cases);
the security of the system ultimately depends on presence of mitigation in
the Hypervisor, which can't be easily detected from DomU; let's report
that.
Reported-and-tested-by: Mike Latimer <mlatimer@suse.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1806180959080.6203@cbobk.fhfr.pm
[ Merge the user-visible string into a single line. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The pr_warn in l1tf_select_mitigation would have used the prior pr_fmt
which was defined as "Spectre V2 : ".
Move the function to be past SSBD and also define the pr_fmt.
Fixes: 17dbca1193 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
L1TF core kernel workarounds are cheap and normally always enabled, However
they still should be reported in sysfs if the system is vulnerable or
mitigated. Add the necessary CPU feature/bug bits.
- Extend the existing checks for Meltdowns to determine if the system is
vulnerable. All CPUs which are not vulnerable to Meltdown are also not
vulnerable to L1TF
- Check for 32bit non PAE and emit a warning as there is no practical way
for mitigation due to the limited physical address bits
- If the system has more than MAX_PA/2 physical memory the invert page
workarounds don't protect the system against the L1TF attack anymore,
because an inverted physical address will also point to valid
memory. Print a warning in this case and report that the system is
vulnerable.
Add a function which returns the PFN limit for the L1TF mitigation, which
will be used in follow up patches for sanity and range checks.
[ tglx: Renamed the CPU feature bit to L1TF_PTEINV ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
The changes to automatically test for working stack protector compiler
support in the Kconfig files removed the special STACKPROTECTOR_AUTO
option that picked the strongest stack protector that the compiler
supported.
That was all a nice cleanup - it makes no sense to have the AUTO case
now that the Kconfig phase can just determine the compiler support
directly.
HOWEVER.
It also meant that doing "make oldconfig" would now _disable_ the strong
stackprotector if you had AUTO enabled, because in a legacy config file,
the sane stack protector configuration would look like
CONFIG_HAVE_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_NONE is not set
# CONFIG_CC_STACKPROTECTOR_REGULAR is not set
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_STACKPROTECTOR_AUTO=y
and when you ran this through "make oldconfig" with the Kbuild changes,
it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
used to be disabled (because it was really enabled by AUTO), and would
disable it in the new config, resulting in:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_CC_STACKPROTECTOR=y
# CONFIG_CC_STACKPROTECTOR_STRONG is not set
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
That's dangerously subtle - people could suddenly find themselves with
the weaker stack protector setup without even realizing.
The solution here is to just rename not just the old RECULAR stack
protector option, but also the strong one. This does that by just
removing the CC_ prefix entirely for the user choices, because it really
is not about the compiler support (the compiler support now instead
automatially impacts _visibility_ of the options to users).
This results in "make oldconfig" actually asking the user for their
choice, so that we don't have any silent subtle security model changes.
The end result would generally look like this:
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
CONFIG_STACKPROTECTOR=y
CONFIG_STACKPROTECTOR_STRONG=y
CONFIG_CC_HAS_SANE_STACKPROTECTOR=y
where the "CC_" versions really are about internal compiler
infrastructure, not the user selections.
Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 updates and fixes from Thomas Gleixner:
- Fix the (late) fallout from the vector management rework causing
hlist corruption and irq descriptor reference leaks caused by a
missing sanity check.
The straight forward fix triggered another long standing issue to
surface. The pre rework code hid the issue due to being way slower,
but now the chance that user space sees an EBUSY error return when
updating irq affinities is way higher, though quite a bunch of
userspace tools do not handle it properly despite the fact that EBUSY
could be returned for at least 10 years.
It turned out that the EBUSY return can be avoided completely by
utilizing the existing delayed affinity update mechanism for irq
remapped scenarios as well. That's a bit more error handling in the
kernel, but avoids fruitless fingerpointing discussions with tool
developers.
- Decouple PHYSICAL_MASK from AMD SME as its going to be required for
the upcoming Intel memory encryption support as well.
- Handle legacy device ACPI detection properly for newer platforms
- Fix the wrong argument ordering in the vector allocation tracepoint
- Simplify the IDT setup code for the APIC=n case
- Use the proper string helpers in the MTRR code
- Remove a stale unused VDSO source file
- Convert the microcode update lock to a raw spinlock as its used in
atomic context.
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt: Enable CMT and MBM on new Skylake stepping
x86/apic/vector: Print APIC control bits in debugfs
genirq/affinity: Defer affinity setting if irq chip is busy
x86/platform/uv: Use apic_ack_irq()
x86/ioapic: Use apic_ack_irq()
irq_remapping: Use apic_ack_irq()
x86/apic: Provide apic_ack_irq()
genirq/migration: Avoid out of line call if pending is not set
genirq/generic_pending: Do not lose pending affinity update
x86/apic/vector: Prevent hlist corruption and leaks
x86/vector: Fix the args of vector_alloc tracepoint
x86/idt: Simplify the idt_setup_apic_and_irq_gates()
x86/platform/uv: Remove extra parentheses
x86/mm: Decouple dynamic __PHYSICAL_MASK from AMD SME
x86: Mark native_set_p4d() as __always_inline
x86/microcode: Make the late update update_lock a raw lock for RT
x86/mtrr: Convert to use strncpy_from_user() helper
x86/mtrr: Convert to use match_string() helper
x86/vdso: Remove unused file
x86/i8237: Register device based on FADT legacy boot flag
New stepping of Skylake has fixes for cache occupancy and memory
bandwidth monitoring.
Update the code to enable these by default on newer steppings.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: stable@vger.kernel.org # v4.14
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Link: https://lkml.kernel.org/r/20180608160732.9842-1-tony.luck@intel.com
Since we added support to add recovery from some errors inside the kernel in:
commit b2f9d678e2 ("x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries")
we have done a less than stellar job at reporting the cause of recoverable
machine checks that occur in other parts of the kernel. The user just gets
the unhelpful message:
mce: [Hardware Error]: Machine check: Action required: unknown MCACOD
doubly unhelpful when they check the manual for the reported IA32_MSR_STATUS.MCACOD
and see that it is listed as one of the standard recoverable values.
Add an extra rule to the MCE severity table to catch this case and report it
as:
mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel
Fixes: b2f9d678e2 ("x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries")
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org # 4.6+
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/4cc7c465150a9a48b8b9f45d0b840278e77eb9b5.1527283897.git.tony.luck@intel.com
Both AMD and Intel can have SPEC_CTRL_MSR for SSBD.
However AMD also has two more other ways of doing it - which
are !SPEC_CTRL MSR ways.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: kvm@vger.kernel.org
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: andrew.cooper3@citrix.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180601145921.9500-4-konrad.wilk@oracle.com
The AMD document outlining the SSBD handling
124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
mentions that if CPUID 8000_0008.EBX[24] is set we should be using
the SPEC_CTRL MSR (0x48) over the VIRT SPEC_CTRL MSR (0xC001_011f)
for speculative store bypass disable.
This in effect means we should clear the X86_FEATURE_VIRT_SSBD
flag so that we would prefer the SPEC_CTRL MSR.
See the document titled:
124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199889
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: kvm@vger.kernel.org
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: andrew.cooper3@citrix.com
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20180601145921.9500-3-konrad.wilk@oracle.com
The AMD document outlining the SSBD handling
124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
mentions that the CPUID 8000_0008.EBX[26] will mean that the
speculative store bypass disable is no longer needed.
A copy of this document is available at:
https://bugzilla.kernel.org/show_bug.cgi?id=199889
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: kvm@vger.kernel.org
Cc: andrew.cooper3@citrix.com
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180601145921.9500-2-konrad.wilk@oracle.com
Pull x86 cache resource controller updates from Thomas Gleixner:
"An update for the Intel Resource Director Technolgy (RDT) which adds a
feedback driven software controller to runtime adjust the bandwidth
allocation MSRs.
This makes the allocations more accurate and allows to use bandwidth
values in understandable units (MB/s) instead of using percentage
based allocations as the original, still available, interface.
The software controller can be enabled with a new mount option for the
resctrl filesystem"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt/mba_sc: Feedback loop to dynamically update mem bandwidth
x86/intel_rdt/mba_sc: Prepare for feedback loop
x86/intel_rdt/mba_sc: Add schemata support
x86/intel_rdt/mba_sc: Add initialization support
x86/intel_rdt/mba_sc: Enable/disable MBA software controller
x86/intel_rdt/mba_sc: Documentation for MBA software controller(mba_sc)
Pull x86 RAS updates from Thomas Gleixner:
- Fix a stack out of bounds write in the MCE error injection code.
- Avoid IPIs during CPU hotplug to read the MCx_MISC block address from
a remote CPU. That's fragile and pointless because the block
addresses are the same on all CPUs. So they can be read once and
local.
- Add support for MCE broadcasting on newer VIA Centaur CPUs.
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE/AMD: Read MCx_MISC block addresses on any CPU
x86/MCE: Fix stack out-of-bounds write in mce-inject.c: Flags_read()
x86/MCE: Enable MCE broadcasting on new Centaur CPUs
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups"
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apm: Fix spelling mistake: "caculate" -> "calculate"
x86/mtrr: Rename main.c to mtrr.c and remove duplicate prefixes
x86: Remove pr_fmt duplicate logging prefixes
x86/early-quirks: Rename duplicate define of dev_err
x86/bpf: Clean up non-standard comments, to make the code more readable
Pull x86 boot updates from Ingo Molnar:
- Centaur CPU updates (David Wang)
- AMD and other CPU topology enumeration improvements and fixes
(Borislav Petkov, Thomas Gleixner, Suravee Suthikulpanit)
- Continued 5-level paging work (Kirill A. Shutemov)
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Mark __pgtable_l5_enabled __initdata
x86/mm: Mark p4d_offset() __always_inline
x86/mm: Introduce the 'no5lvl' kernel parameter
x86/mm: Stop pretending pgtable_l5_enabled is a variable
x86/mm: Unify pgtable_l5_enabled usage in early boot code
x86/boot/compressed/64: Fix trampoline page table address calculation
x86/CPU: Move x86_cpuinfo::x86_max_cores assignment to detect_num_cpu_cores()
x86/Centaur: Report correct CPU/cache topology
x86/CPU: Move cpu_detect_cache_sizes() into init_intel_cacheinfo()
x86/CPU: Make intel_num_cpu_cores() generic
x86/CPU: Move cpu local function declarations to local header
x86/CPU/AMD: Derive CPU topology from CPUID function 0xB when available
x86/CPU: Modify detect_extended_topology() to return result
x86/CPU/AMD: Calculate last level cache ID from number of sharing threads
x86/CPU: Rename intel_cacheinfo.c to cacheinfo.c
perf/events/amd/uncore: Fix amd_uncore_llc ID to use pre-defined cpu_llc_id
x86/CPU/AMD: Have smp_num_siblings and cpu_llc_id always be present
x86/Centaur: Initialize supported CPU features properly
Pull RCU updates from Ingo Molnar:
- updates to the handling of expedited grace periods
- updates to reduce lock contention in the rcu_node combining tree
[ These are in preparation for the consolidation of RCU-bh,
RCU-preempt, and RCU-sched into a single flavor, which was
requested by Linus in response to a security flaw whose root cause
included confusion between the multiple flavors of RCU ]
- torture-test updates that save their users some time and effort
- miscellaneous fixes
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
rcu/x86: Provide early rcu_cpu_starting() callback
torture: Make kvm-find-errors.sh find build warnings
rcutorture: Abbreviate kvm.sh summary lines
rcutorture: Print end-of-test state in kvm.sh summary
rcutorture: Print end-of-test state
torture: Fold parse-torture.sh into parse-console.sh
torture: Add a script to edit output from failed runs
rcu: Update list of rcu_future_grace_period() trace events
rcu: Drop early GP request check from rcu_gp_kthread()
rcu: Simplify and inline cpu_needs_another_gp()
rcu: The rcu_gp_cleanup() function does not need cpu_needs_another_gp()
rcu: Make rcu_start_this_gp() check for out-of-range requests
rcu: Add funnel locking to rcu_start_this_gp()
rcu: Make rcu_start_future_gp() caller select grace period
rcu: Inline rcu_start_gp_advanced() into rcu_start_future_gp()
rcu: Clear request other than RCU_GP_FLAG_INIT at GP end
rcu: Cleanup, don't put ->completed into an int
rcu: Switch __rcu_process_callbacks() to rcu_accelerate_cbs()
rcu: Avoid __call_rcu_core() root rcu_node ->lock acquisition
rcu: Make rcu_migrate_callbacks wake GP kthread when needed
...
Pull RCU fix from Paul E. McKenney:
"This additional v4.18 pull request contains a single commit that fell
through the cracks:
Provide early rcu_cpu_starting() callback for the benefit of the
x86/mtrr code, which needs RCU to be available on incoming CPUs
earlier than has been the case in the past."
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__reload_late() is called from stop_machine context and thus cannot
acquire a non-raw spinlock on PREEMPT_RT.
Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Pei Zhang <pezhang@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20180524154420.24455-1-swood@redhat.com
Only CPUs which speculate can speculate. Therefore, it seems prudent
to test for cpu_no_speculation first and only then determine whether
a specific speculating CPU is susceptible to store bypass speculation.
This is underlined by all CPUs currently listed in cpu_no_speculation
were present in cpu_no_spec_store_bypass as well.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: konrad.wilk@oracle.com
Link: https://lkml.kernel.org/r/20180522090539.GA24668@light.dominikbrodowski.net
The x86/mtrr code does horrific things because hardware. It uses
stop_machine_from_inactive_cpu(), which does a wakeup (of the stopper
thread on another CPU), which uses RCU, all before the CPU is onlined.
RCU complains about this, because wakeups use RCU and RCU does
(rightfully) not consider offline CPUs for grace-periods.
Fix this by initializing RCU way early in the MTRR case.
Tested-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Add !SMP support, per 0day Test Robot report. ]
Merge speculative store buffer bypass fixes from Thomas Gleixner:
- rework of the SPEC_CTRL MSR management to accomodate the new fancy
SSBD (Speculative Store Bypass Disable) bit handling.
- the CPU bug and sysfs infrastructure for the exciting new Speculative
Store Bypass 'feature'.
- support for disabling SSB via LS_CFG MSR on AMD CPUs including
Hyperthread synchronization on ZEN.
- PRCTL support for dynamic runtime control of SSB
- SECCOMP integration to automatically disable SSB for sandboxed
processes with a filter flag for opt-out.
- KVM integration to allow guests fiddling with SSBD including the new
software MSR VIRT_SPEC_CTRL to handle the LS_CFG based oddities on
AMD.
- BPF protection against SSB
.. this is just the core and x86 side, other architecture support will
come separately.
* 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (49 commits)
bpf: Prevent memory disambiguation attack
x86/bugs: Rename SSBD_NO to SSB_NO
KVM: SVM: Implement VIRT_SPEC_CTRL support for SSBD
x86/speculation, KVM: Implement support for VIRT_SPEC_CTRL/LS_CFG
x86/bugs: Rework spec_ctrl base and mask logic
x86/bugs: Remove x86_spec_ctrl_set()
x86/bugs: Expose x86_spec_ctrl_base directly
x86/bugs: Unify x86_spec_ctrl_{set_guest,restore_host}
x86/speculation: Rework speculative_store_bypass_update()
x86/speculation: Add virtualized speculative store bypass disable support
x86/bugs, KVM: Extend speculation control for VIRT_SPEC_CTRL
x86/speculation: Handle HT correctly on AMD
x86/cpufeatures: Add FEATURE_ZEN
x86/cpufeatures: Disentangle SSBD enumeration
x86/cpufeatures: Disentangle MSR_SPEC_CTRL enumeration from IBRS
x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP
KVM: SVM: Move spec control call after restore of GS
x86/cpu: Make alternative_msr_write work for 32-bit code
x86/bugs: Fix the parameters alignment and missing void
x86/bugs: Make cpu_show_common() static
...
We used rdmsr_safe_on_cpu() to make sure we're reading the proper CPU's
MISC block addresses. However, that caused trouble with CPU hotplug due to
the _on_cpu() helper issuing an IPI while IRQs are disabled.
But we don't have to do that: the block addresses are the same on any CPU
so we can read them on any CPU. (What practically happens is, we read them
on the BSP and cache them, and for later reads, we service them from the
cache).
Suggested-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
... into a global, two-dimensional array and service subsequent reads from
that cache to avoid rdmsr_on_cpu() calls during CPU hotplug (IPIs with IRQs
disabled).
In addition, this fixes a KASAN slab-out-of-bounds read due to wrong usage
of the bank->blocks pointer.
Fixes: 27bd595027 ("x86/mce/AMD: Get address from already initialized block")
Reported-by: Johannes Hirte <johannes.hirte@datenkhaos.de>
Tested-by: Johannes Hirte <johannes.hirte@datenkhaos.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20180414004230.GA2033@probook
mba_sc is a feedback loop where we periodically read MBM counters and
try to restrict the bandwidth below a max value so the below is always
true:
"current bandwidth(cur_bw) < user specified bandwidth(user_bw)"
The frequency of these checks is currently 1s and we just tag along the
MBM overflow timer to do the updates. Doing it once in a second also
makes the calculation of bandwidth easy. The steps of increase or
decrease of bandwidth is the minimum granularity specified by the
hardware.
Although the MBA's goal is to restrict the bandwidth below a maximum,
there may be a need to even increase the bandwidth. Since MBA controls
the L2 external bandwidth where as MBM measures the L3 external
bandwidth, we may end up restricting some rdtgroups unnecessarily. This
may happen in the sequence where rdtgroup (set of jobs) had high
"L3 <-> memory traffic" in initial phases -> mba_sc kicks in and reduced
bandwidth percentage values -> but after some it has mostly "L2 <-> L3"
traffic. In this scenario mba_sc increases the bandwidth percentage when
there is lesser memory traffic.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-7-git-send-email-vikas.shivappa@linux.intel.com
When MBA software controller is enabled, a per domain storage is required
for user specified bandwidth in "MBps" and the "percentage" values which
are programmed into the IA32_MBA_THRTL_MSR. Add support for these data
structures and initialization.
The MBA percentage values have a default max value of 100 but however the
max value in MBps is not available from the hardware so it's set to
U32_MAX.
This simply says that the control group can use all bandwidth by default
but does not say what is the actual max bandwidth available. The actual
bandwidth that is available may depend on lot of factors like QPI link,
number of memory channels, memory channel frequency, its width and memory
speed, how many channels are configured and also if memory interleaving is
enabled. So there is no way to determine the maximum at runtime reliably.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1524263781-14267-4-git-send-email-vikas.shivappa@linux.intel.com
This kernel parameter allows to force kernel to use 4-level paging even
if hardware and kernel support 5-level paging.
The option may be useful to work around regressions related to 5-level
paging.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180518103528.59260-5-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "336996 Speculative Execution Side Channel Mitigations" from
May defines this as SSB_NO, hence lets sync-up.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using
speculative store bypass disable (SSBD) under SVM. This will allow guests
to use SSBD on hardware that uses non-architectural mechanisms for enabling
SSBD.
[ tglx: Folded the migration fixup from Paolo Bonzini ]
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the necessary logic for supporting the emulated VIRT_SPEC_CTRL MSR to
x86_virt_spec_ctrl(). If either X86_FEATURE_LS_CFG_SSBD or
X86_FEATURE_VIRT_SPEC_CTRL is set then use the new guest_virt_spec_ctrl
argument to check whether the state must be modified on the host. The
update reuses speculative_store_bypass_update() so the ZEN-specific sibling
coordination can be reused.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
x86_spec_ctrL_mask is intended to mask out bits from a MSR_SPEC_CTRL value
which are not to be modified. However the implementation is not really used
and the bitmask was inverted to make a check easier, which was removed in
"x86/bugs: Remove x86_spec_ctrl_set()"
Aside of that it is missing the STIBP bit if it is supported by the
platform, so if the mask would be used in x86_virt_spec_ctrl() then it
would prevent a guest from setting STIBP.
Add the STIBP bit if supported and use the mask in x86_virt_spec_ctrl() to
sanitize the value which is supplied by the guest.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
x86_spec_ctrl_set() is only used in bugs.c and the extra mask checks there
provide no real value as both call sites can just write x86_spec_ctrl_base
to MSR_SPEC_CTRL. x86_spec_ctrl_base is valid and does not need any extra
masking or checking.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
x86_spec_ctrl_base is the system wide default value for the SPEC_CTRL MSR.
x86_spec_ctrl_get_default() returns x86_spec_ctrl_base and was intended to
prevent modification to that variable. Though the variable is read only
after init and globaly visible already.
Remove the function and export the variable instead.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Function bodies are very similar and are going to grow more almost
identical code. Add a bool arg to determine whether SPEC_CTRL is being set
for the guest or restored to the host.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The upcoming support for the virtual SPEC_CTRL MSR on AMD needs to reuse
speculative_store_bypass_update() to avoid code duplication. Add an
argument for supplying a thread info (TIF) value and create a wrapper
speculative_store_bypass_update_current() which is used at the existing
call site.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Some AMD processors only support a non-architectural means of enabling
speculative store bypass disable (SSBD). To allow a simplified view of
this to a guest, an architectural definition has been created through a new
CPUID bit, 0x80000008_EBX[25], and a new MSR, 0xc001011f. With this, a
hypervisor can virtualize the existence of this definition and provide an
architectural method for using SSBD to a guest.
Add the new CPUID feature, the new MSR and update the existing SSBD
support to use this MSR when present.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
AMD is proposing a VIRT_SPEC_CTRL MSR to handle the Speculative Store
Bypass Disable via MSR_AMD64_LS_CFG so that guests do not have to care
about the bit position of the SSBD bit and thus facilitate migration.
Also, the sibling coordination on Family 17H CPUs can only be done on
the host.
Extend x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() with an
extra argument for the VIRT_SPEC_CTRL MSR.
Hand in 0 from VMX and in SVM add a new virt_spec_ctrl member to the CPU
data structure which is going to be used in later patches for the actual
implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Add a ZEN feature bit so family-dependent static_cpu_has() optimizations
can be built for ZEN.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The SSBD enumeration is similarly to the other bits magically shared
between Intel and AMD though the mechanisms are different.
Make X86_FEATURE_SSBD synthetic and set it depending on the vendor specific
features or family dependent setup.
Change the Intel bit to X86_FEATURE_SPEC_CTRL_SSBD to denote that SSBD is
controlled via MSR_SPEC_CTRL and fix up the usage sites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The availability of the SPEC_CTRL MSR is enumerated by a CPUID bit on
Intel and implied by IBRS or STIBP support on AMD. That's just confusing
and in case an AMD CPU has IBRS not supported because the underlying
problem has been fixed but has another bit valid in the SPEC_CTRL MSR,
the thing falls apart.
Add a synthetic feature bit X86_FEATURE_MSR_SPEC_CTRL to denote the
availability on both Intel and AMD.
While at it replace the boot_cpu_has() checks with static_cpu_has() where
possible. This prevents late microcode loading from exposing SPEC_CTRL, but
late loading is already very limited as it does not reevaluate the
mitigation options and other bits and pieces. Having static_cpu_has() is
the simplest and least fragile solution.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Intel and AMD have different CPUID bits hence for those use synthetic bits
which get set on the respective vendor's in init_speculation_control(). So
that debacles like what the commit message of
c65732e4f7 ("x86/cpu: Restore CPUID_8000_0008_EBX reload")
talks about don't happen anymore.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20180504161815.GG9257@pd.tnic
Replace the open coded string fetch from user-space with strncpy_from_user().
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/20180515180535.89703-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The helper returns index of the matching string in an array.
Replace the open coded array lookup with match_string().
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/20180515175759.89315-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kbuild uses the first file as the name for KBUILD_MODNAME.
mtrr uses main.c as its first file, so rename that file to mtrr.c
and fixup the Makefile.
Remove the now duplicate "mtrr: " prefixes from the logging calls.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/ae1fa81a0d1fad87571967b91ea90f70f486e853.1525964384.git.joe@perches.com
No point in exposing all these functions globaly as they are strict local
to the cpu management code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fixes: 7bb4d366c ("x86/bugs: Make cpu_show_common() static")
Fixes: 24f7fc83b ("x86/bugs: Provide boot parameters for the spec_store_bypass_disable mitigation")
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
cpu_show_common() is not used outside of arch/x86/kernel/cpu/bugs.c, so
make it static.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
__ssb_select_mitigation() returns one of the members of enum ssb_mitigation,
not ssb_mitigation_cmd; fix the prototype to reflect that.
Fixes: 24f7fc83b9 ("x86/bugs: Provide boot parameters for the spec_store_bypass_disable mitigation")
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel collateral will reference the SSB mitigation bit in IA32_SPEC_CTL[2]
as SSBD (Speculative Store Bypass Disable).
Hence changing it.
It is unclear yet what the MSR_IA32_ARCH_CAPABILITIES (0x10a) Bit(4) name
is going to be. Following the rename it would be SSBD_NO but that rolls out
to Speculative Store Bypass Disable No.
Also fixed the missing space in X86_FEATURE_AMD_SSBD.
[ tglx: Fixup x86_amd_rds_enable() and rds_tif_to_amd_ls_cfg() as well ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Derive topology information from Extended Topology Enumeration (CPUID
function 0xB) when the information is available.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524865681-112110-3-git-send-email-suravee.suthikulpanit@amd.com
Current implementation does not communicate whether it can successfully
detect CPUID function 0xB information. Therefore, modify the function to
return success or error codes. This will be used by subsequent patches.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1524865681-112110-2-git-send-email-suravee.suthikulpanit@amd.com
Last Level Cache ID can be calculated from the number of threads sharing
the cache, which is available from CPUID Fn0x8000001D (Cache Properties).
This is used to left-shift the APIC ID to derive LLC ID.
Therefore, default to this method unless the APIC ID enumeration does not
follow the scheme.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-5-git-send-email-suravee.suthikulpanit@amd.com
Since this file contains general cache-related information for x86,
rename the file to a more generic name.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-4-git-send-email-suravee.suthikulpanit@amd.com
Move smp_num_siblings and cpu_llc_id to cpu/common.c so that they're
always present as symbols and not only in the CONFIG_SMP case. Then,
other code using them doesn't need ugly ifdeffery anymore. Get rid of
some ifdeffery.
Signed-off-by: Borislav Petkov <bpetkov@suse.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-2-git-send-email-suravee.suthikulpanit@amd.com
Each of the strings that we want to put into the buf[MAX_FLAG_OPT_SIZE]
in flags_read() is two characters long. But the sprintf() adds
a trailing newline and will add a terminating NUL byte. So
MAX_FLAG_OPT_SIZE needs to be 4.
sprintf() calls vsnprintf() and *that* does return:
" * The return value is the number of characters which would
* be generated for the given input, excluding the trailing
* '\0', as per ISO C99."
Note the "excluding".
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180427163707.ktaiysvbk3yhk4wm@agluck-desk
Unless explicitly opted out of, anything running under seccomp will have
SSB mitigations enabled. Choosing the "prctl" mode will disable this.
[ tglx: Adjusted it to the new arch_seccomp_spec_mitigate() mechanism ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The migitation control is simpler to implement in architecture code as it
avoids the extra function call to check the mode. Aside of that having an
explicit seccomp enabled mode in the architecture mitigations would require
even more workarounds.
Move it into architecture code and provide a weak function in the seccomp
code. Remove the 'which' argument as this allows the architecture to decide
which mitigations are relevant for seccomp.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For certain use cases it is desired to enforce mitigations so they cannot
be undone afterwards. That's important for loader stubs which want to
prevent a child from disabling the mitigation again. Will also be used for
seccomp(). The extra state preserving of the prctl state for SSB is a
preparatory step for EBPF dymanic speculation control.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There's no reason for these to be changed after boot.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Adjust arch_prctl_get/set_spec_ctrl() to operate on tasks other than
current.
This is needed both for /proc/$pid/status queries and for seccomp (since
thread-syncing can trigger seccomp in non-current threads).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add prctl based control for Speculative Store Bypass mitigation and make it
the default mitigation for Intel and AMD.
Andi Kleen provided the following rationale (slightly redacted):
There are multiple levels of impact of Speculative Store Bypass:
1) JITed sandbox.
It cannot invoke system calls, but can do PRIME+PROBE and may have call
interfaces to other code
2) Native code process.
No protection inside the process at this level.
3) Kernel.
4) Between processes.
The prctl tries to protect against case (1) doing attacks.
If the untrusted code can do random system calls then control is already
lost in a much worse way. So there needs to be system call protection in
some way (using a JIT not allowing them or seccomp). Or rather if the
process can subvert its environment somehow to do the prctl it can already
execute arbitrary code, which is much worse than SSB.
To put it differently, the point of the prctl is to not allow JITed code
to read data it shouldn't read from its JITed sandbox. If it already has
escaped its sandbox then it can already read everything it wants in its
address space, and do much worse.
The ability to control Speculative Store Bypass allows to enable the
protection selectively without affecting overall system performance.
Based on an initial patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The Speculative Store Bypass vulnerability can be mitigated with the
Reduced Data Speculation (RDS) feature. To allow finer grained control of
this eventually expensive mitigation a per task mitigation control is
required.
Add a new TIF_RDS flag and put it into the group of TIF flags which are
evaluated for mismatch in switch_to(). If these bits differ in the previous
and the next task, then the slow path function __switch_to_xtra() is
invoked. Implement the TIF_RDS dependent mitigation control in the slow
path.
If the prctl for controlling Speculative Store Bypass is disabled or no
task uses the prctl then there is no overhead in the switch_to() fast
path.
Update the KVM related speculation control functions to take TID_RDS into
account as well.
Based on a patch from Tim Chen. Completely rewritten.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Having everything in nospec-branch.h creates a hell of dependencies when
adding the prctl based switching mechanism. Move everything which is not
required in nospec-branch.h to spec-ctrl.h and fix up the includes in the
relevant files.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
AMD does not need the Speculative Store Bypass mitigation to be enabled.
The parameters for this are already available and can be done via MSR
C001_1020. Each family uses a different bit in that MSR for this.
[ tglx: Expose the bit mask via a variable and move the actual MSR fiddling
into the bugs code as that's the right thing to do and also required
to prepare for dynamic enable/disable ]
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Intel and AMD SPEC_CTRL (0x48) MSR semantics may differ in the
future (or in fact use different MSRs for the same functionality).
As such a run-time mechanism is required to whitelist the appropriate MSR
values.
[ tglx: Made the variable __ro_after_init ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Intel CPUs expose methods to:
- Detect whether RDS capability is available via CPUID.7.0.EDX[31],
- The SPEC_CTRL MSR(0x48), bit 2 set to enable RDS.
- MSR_IA32_ARCH_CAPABILITIES, Bit(4) no need to enable RRS.
With that in mind if spec_store_bypass_disable=[auto,on] is selected set at
boot-time the SPEC_CTRL MSR to enable RDS if the platform requires it.
Note that this does not fix the KVM case where the SPEC_CTRL is exposed to
guests which can muck with it, see patch titled :
KVM/SVM/VMX/x86/spectre_v2: Support the combination of guest and host IBRS.
And for the firmware (IBRS to be set), see patch titled:
x86/spectre_v2: Read SPEC_CTRL MSR during boot and re-use reserved bits
[ tglx: Distangled it from the intel implementation and kept the call order ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Contemporary high performance processors use a common industry-wide
optimization known as "Speculative Store Bypass" in which loads from
addresses to which a recent store has occurred may (speculatively) see an
older value. Intel refers to this feature as "Memory Disambiguation" which
is part of their "Smart Memory Access" capability.
Memory Disambiguation can expose a cache side-channel attack against such
speculatively read values. An attacker can create exploit code that allows
them to read memory outside of a sandbox environment (for example,
malicious JavaScript in a web page), or to perform more complex attacks
against code running within the same privilege level, e.g. via the stack.
As a first step to mitigate against such attacks, provide two boot command
line control knobs:
nospec_store_bypass_disable
spec_store_bypass_disable=[off,auto,on]
By default affected x86 processors will power on with Speculative
Store Bypass enabled. Hence the provided kernel parameters are written
from the point of view of whether to enable a mitigation or not.
The parameters are as follows:
- auto - Kernel detects whether your CPU model contains an implementation
of Speculative Store Bypass and picks the most appropriate
mitigation.
- on - disable Speculative Store Bypass
- off - enable Speculative Store Bypass
[ tglx: Reordered the checks so that the whole evaluation is not done
when the CPU does not support RDS ]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Add the sysfs file for the new vulerability. It does not do much except
show the words 'Vulnerable' for recent x86 cores.
Intel cores prior to family 6 are known not to be vulnerable, and so are
some Atoms and some Xeon Phi.
It assumes that older Cyrix, Centaur, etc. cores are immune.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
A guest may modify the SPEC_CTRL MSR from the value used by the
kernel. Since the kernel doesn't use IBRS, this means a value of zero is
what is needed in the host.
But the 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to
the other bits as reserved so the kernel should respect the boot time
SPEC_CTRL value and use that.
This allows to deal with future extensions to the SPEC_CTRL interface if
any at all.
Note: This uses wrmsrl() instead of native_wrmsl(). I does not make any
difference as paravirt will over-write the callq *0xfff.. with the wrmsrl
assembler code.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
The 336996-Speculative-Execution-Side-Channel-Mitigations.pdf refers to all
the other bits as reserved. The Intel SDM glossary defines reserved as
implementation specific - aka unknown.
As such at bootup this must be taken it into account and proper masking for
the bits in use applied.
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=199511
[ tglx: Made x86_spec_ctrl_base __ro_after_init ]
Suggested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Those SysFS functions have a similar preamble, as such make common
code to handle them.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Combine the various logic which goes through all those
x86_cpu_id matching structures in one function.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
The recent commt which addresses the x86_phys_bits corruption with
encrypted memory on CPUID reload after a microcode update lost the reload
of CPUID_8000_0008_EBX as well.
As a consequence IBRS and IBRS_FW are not longer detected
Restore the behaviour by bringing the reload of CPUID_8000_0008_EBX
back. This restore has a twist due to the convoluted way the cpuid analysis
works:
CPUID_8000_0008_EBX is used by AMD to enumerate IBRB, IBRS, STIBP. On Intel
EBX is not used. But the speculation control code sets the AMD bits when
running on Intel depending on the Intel specific speculation control
bits. This was done to use the same bits for alternatives.
The change which moved the 8000_0008 evaluation out of get_cpu_cap() broke
this nasty scheme due to ordering. So that on Intel the store to
CPUID_8000_0008_EBX clears the IBRB, IBRS, STIBP bits which had been set
before by software.
So the actual CPUID_8000_0008_EBX needs to go back to the place where it
was and the phys/virt address space calculation cannot touch it.
In hindsight this should have used completely synthetic bits for IBRB,
IBRS, STIBP instead of reusing the AMD bits, but that's for 4.18.
/me needs to find time to cleanup that steaming pile of ...
Fixes: d94a155c59 ("x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption")
Reported-by: Jörg Otte <jrg.otte@gmail.com>
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: kirill.shutemov@linux.intel.com
Cc: Borislav Petkov <bp@alien8.de
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805021043510.1668@nanos.tec.linutronix.de
Make kernel print the correct number of TLB entries on Intel Xeon Phi 7210
(and others)
Before:
[ 0.320005] Last level dTLB entries: 4KB 0, 2MB 0, 4MB 0, 1GB 0
After:
[ 0.320005] Last level dTLB entries: 4KB 256, 2MB 128, 4MB 128, 1GB 16
The entries do exist in the official Intel SMD but the type column there is
incorrect (states "Cache" where it should read "TLB"), but the entries for
the values 0x6B, 0x6C and 0x6D are correctly described as 'Data TLB'.
Signed-off-by: Jacek Tomaka <jacek.tomaka@poczta.fm>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180423161425.24366-1-jacekt@dugeo.com
Vitezslav reported a case where the
"Timeout during microcode update!"
panic would hit. After a deeper look, it turned out that his .config had
CONFIG_HOTPLUG_CPU disabled which practically made save_mc_for_early() a
no-op.
When that happened, the discovered microcode patch wasn't saved into the
cache and the late loading path wouldn't find any.
This, then, lead to early exit from __reload_late() and thus CPUs waiting
until the timeout is reached, leading to the panic.
In hindsight, that function should have been written so it does not return
before the post-synchronization. Oh well, I know better now...
Fixes: bb8c13d61a ("x86/microcode: Fix CPU synchronization routine")
Reported-by: Vitezslav Samel <vitezslav@samel.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vitezslav Samel <vitezslav@samel.cz>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180418081140.GA2439@pc11.op.pod.cz
Link: https://lkml.kernel.org/r/20180421081930.15741-2-bp@alien8.de
save_mc_for_early() was a no-op on !CONFIG_HOTPLUG_CPU but the
generic_load_microcode() path saves the microcode patches it has found into
the cache of patches which is used for late loading too. Regardless of
whether CPU hotplug is used or not.
Make the saving unconditional so that late loading can find the proper
patch.
Reported-by: Vitezslav Samel <vitezslav@samel.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vitezslav Samel <vitezslav@samel.cz>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180418081140.GA2439@pc11.op.pod.cz
Link: https://lkml.kernel.org/r/20180421081930.15741-1-bp@alien8.de
Pull x86 fixes from Thomas Gleixner:
"A set of fixes and updates for x86:
- Address a swiotlb regression which was caused by the recent DMA
rework and made driver fail because dma_direct_supported() returned
false
- Fix a signedness bug in the APIC ID validation which caused invalid
APIC IDs to be detected as valid thereby bloating the CPU possible
space.
- Fix inconsisten config dependcy/select magic for the MFD_CS5535
driver.
- Fix a corruption of the physical address space bits when encryption
has reduced the address space and late cpuinfo updates overwrite
the reduced bit information with the original value.
- Dominiks syscall rework which consolidates the architecture
specific syscall functions so all syscalls can be wrapped with the
same macros. This allows to switch x86/64 to struct pt_regs based
syscalls. Extend the clearing of user space controlled registers in
the entry patch to the lower registers"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Fix signedness bug in APIC ID validity checks
x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption
x86/olpc: Fix inconsistent MFD_CS5535 configuration
swiotlb: Use dma_direct_supported() for swiotlb_ops
syscalls/x86: Adapt syscall_wrapper.h to the new syscall stub naming convention
syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()
syscalls/core, syscalls/x86: Clean up compat syscall stub naming convention
syscalls/core, syscalls/x86: Clean up syscall stub naming convention
syscalls/x86: Extend register clearing on syscall entry to lower registers
syscalls/x86: Unconditionally enable 'struct pt_regs' based syscalls on x86_64
syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32
syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscalls
syscalls/x86: Use 'struct pt_regs' based syscall calling convention for 64-bit syscalls
syscalls/core: Introduce CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y
x86/syscalls: Don't pointlessly reload the system call number
x86/mm: Fix documentation of module mapping range with 4-level paging
x86/cpuid: Switch to 'static const' specifier
Some features (Intel MKTME, AMD SME) reduce the number of effectively
available physical address bits. cpuinfo_x86::x86_phys_bits is adjusted
accordingly during the early cpu feature detection.
Though if get_cpu_cap() is called later again then this adjustement is
overwritten. That happens in setup_pku(), which is called after
detect_tme().
To address this, extract the address sizes enumeration into a separate
function, which is only called only from early_identify_cpu() and from
generic_identify().
This makes get_cpu_cap() safe to be called later during boot proccess
without overwriting cpuinfo_x86::x86_phys_bits.
[ tglx: Massaged changelog ]
Fixes: cb06d8e3d0 ("x86/tme: Detect if TME and MKTME is activated by BIOS")
Reported-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: linux-mm@kvack.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180410092704.41106-1-kirill.shutemov@linux.intel.com
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past invalid
privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as of now)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJay19UAAoJEL/70l94x66DGKYIAIu9PTHAEwaX0et15fPW5y2x
rrtS355lSAmMrPJ1nePRQ+rProD/1B0Kizj3/9O+B9OTKKRsorRYNa4CSu9neO2k
N3rdE46M1wHAPwuJPcYvh3iBVXtgbMayk1EK5aVoSXaMXEHh+PWZextkl+F+G853
kC27yDy30jj9pStwnEFSBszO9ua/URdKNKBATNx8WUP6d9U/dlfm5xv3Dc3WtKt2
UMGmog2wh0i7ecXo7hRkMK4R7OYP3ZxAexq5aa9BOPuFp+ZdzC/MVpN+jsjq2J/M
Zq6RNyA2HFyQeP0E9QgFsYS2BNOPeLZnT5Jg1z4jyiD32lAZ/iC51zwm4oNKcDM=
=bPlD
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- VHE optimizations
- EL2 address space randomization
- speculative execution mitigations ("variant 3a", aka execution past
invalid privilege register access)
- bugfixes and cleanups
PPC:
- improvements for the radix page fault handler for HV KVM on POWER9
s390:
- more kvm stat counters
- virtio gpu plumbing
- documentation
- facilities improvements
x86:
- support for VMware magic I/O port and pseudo-PMCs
- AMD pause loop exiting
- support for AMD core performance extensions
- support for synchronous register access
- expose nVMX capabilities to userspace
- support for Hyper-V signaling via eventfd
- use Enlightened VMCS when running on Hyper-V
- allow userspace to disable MWAIT/HLT/PAUSE vmexits
- usual roundup of optimizations and nested virtualization bugfixes
Generic:
- API selftest infrastructure (though the only tests are for x86 as
of now)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (174 commits)
kvm: x86: fix a prototype warning
kvm: selftests: add sync_regs_test
kvm: selftests: add API testing infrastructure
kvm: x86: fix a compile warning
KVM: X86: Add Force Emulation Prefix for "emulate the next instruction"
KVM: X86: Introduce handle_ud()
KVM: vmx: unify adjacent #ifdefs
x86: kvm: hide the unused 'cpu' variable
KVM: VMX: remove bogus WARN_ON in handle_ept_misconfig
Revert "KVM: X86: Fix SMRAM accessing even if VM is shutdown"
kvm: Add emulation for movups/movupd
KVM: VMX: raise internal error for exception during invalid protected mode state
KVM: nVMX: Optimization: Dont set KVM_REQ_EVENT when VMExit with nested_run_pending
KVM: nVMX: Require immediate-exit when event reinjected to L2 and L1 event pending
KVM: x86: Fix misleading comments on handling pending exceptions
KVM: x86: Rename interrupt.pending to interrupt.injected
KVM: VMX: No need to clear pending NMI/interrupt on inject realmode interrupt
x86/kvm: use Enlightened VMCS when running on Hyper-V
x86/hyper-v: detect nested features
x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits
...
Pull trivial tree updates from Jiri Kosina.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
kfifo: fix inaccurate comment
tools/thermal: tmon: fix for segfault
net: Spelling s/stucture/structure/
edd: don't spam log if no EDD information is present
Documentation: Fix early-microcode.txt references after file rename
tracing: Block comments should align the * on each line
treewide: Fix typos in printk
GenWQE: Fix a typo in two comments
treewide: Align function definition open/close braces
Here is the big set of char/misc driver patches for 4.17-rc1.
There are a lot of little things in here, nothing huge, but all
important to the different hardware types involved:
- thunderbolt driver updates
- parport updates (people still care...)
- nvmem driver updates
- mei updates (as always)
- hwtracing driver updates
- hyperv driver updates
- extcon driver updates
- and a handfull of even smaller driver subsystem and individual
driver updates
All of these have been in linux-next with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWsShSQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykNqwCfUbfvopswb1PesHCLABDBsFQChgoAniDa6pS9
kI8TN5MdLN85UU27Mkb6
=BzFR
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc updates from Greg KH:
"Here is the big set of char/misc driver patches for 4.17-rc1.
There are a lot of little things in here, nothing huge, but all
important to the different hardware types involved:
- thunderbolt driver updates
- parport updates (people still care...)
- nvmem driver updates
- mei updates (as always)
- hwtracing driver updates
- hyperv driver updates
- extcon driver updates
- ... and a handful of even smaller driver subsystem and individual
driver updates
All of these have been in linux-next with no reported issues"
* tag 'char-misc-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (149 commits)
hwtracing: Add HW tracing support menu
intel_th: Add ACPI glue layer
intel_th: Allow forcing host mode through drvdata
intel_th: Pick up irq number from resources
intel_th: Don't touch switch routing in host mode
intel_th: Use correct method of finding hub
intel_th: Add SPDX GPL-2.0 header to replace GPLv2 boilerplate
stm class: Make dummy's master/channel ranges configurable
stm class: Add SPDX GPL-2.0 header to replace GPLv2 boilerplate
MAINTAINERS: Bestow upon myself the care for drivers/hwtracing
hv: add SPDX license id to Kconfig
hv: add SPDX license to trace
Drivers: hv: vmbus: do not mark HV_PCIE as perf_device
Drivers: hv: vmbus: respect what we get from hv_get_synint_state()
/dev/mem: Avoid overwriting "err" in read_mem()
eeprom: at24: use SPDX identifier instead of GPL boiler-plate
eeprom: at24: simplify the i2c functionality checking
eeprom: at24: fix a line break
eeprom: at24: tweak newlines
eeprom: at24: refactor at24_probe()
...
Pull x86 timer updates from Ingo Molnar:
"Two changes: add the new convert_art_ns_to_tsc() API for upcoming
Intel Goldmont+ drivers, and remove the obsolete rdtscll() API"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsc: Get rid of rdtscll()
x86/tsc: Convert ART in nanoseconds to TSC
Pull x86 platform updates from Ingo Molnar:
"The main changes in this cycle were:
- Add "Jailhouse" hypervisor support (Jan Kiszka)
- Update DeviceTree support (Ivan Gorinov)
- Improve DMI date handling (Andy Shevchenko)"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/PCI: Fix a potential regression when using dmi_get_bios_year()
firmware/dmi_scan: Uninline dmi_get_bios_year() helper
x86/devicetree: Use CPU description from Device Tree
of/Documentation: Specify local APIC ID in "reg"
MAINTAINERS: Add entry for Jailhouse
x86/jailhouse: Allow to use PCI_MMCONFIG without ACPI
x86: Consolidate PCI_MMCONFIG configs
x86: Align x86_64 PCI_MMCONFIG with 32-bit variant
x86/jailhouse: Enable PCI mmconfig access in inmates
PCI: Scan all functions when running over Jailhouse
jailhouse: Provide detection for non-x86 systems
x86/devicetree: Fix device IRQ settings in DT
x86/devicetree: Initialize device tree before using it
pci: Simplify code by using the new dmi_get_bios_year() helper
ACPI/sleep: Simplify code by using the new dmi_get_bios_year() helper
x86/pci: Simplify code by using the new dmi_get_bios_year() helper
dmi: Introduce the dmi_get_bios_year() helper function
x86/platform/quark: Re-use DEFINE_SHOW_ATTRIBUTE() macro
x86/platform/atom: Re-use DEFINE_SHOW_ATTRIBUTE() macro
Pull x86 mm updates from Ingo Molnar:
- Extend the memmap= boot parameter syntax to allow the redeclaration
and dropping of existing ranges, and to support all e820 range types
(Jan H. Schönherr)
- Improve the W+X boot time security checks to remove false positive
warnings on Xen (Jan Beulich)
- Support booting as Xen PVH guest (Juergen Gross)
- Improved 5-level paging (LA57) support, in particular it's possible
now to have a single kernel image for both 4-level and 5-level
hardware (Kirill A. Shutemov)
- AMD hardware RAM encryption support (SME/SEV) fixes (Tom Lendacky)
- Preparatory commits for hardware-encrypted RAM support on Intel CPUs.
(Kirill A. Shutemov)
- Improved Intel-MID support (Andy Shevchenko)
- Show EFI page tables in page_tables debug files (Andy Lutomirski)
- ... plus misc fixes and smaller cleanups
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (56 commits)
x86/cpu/tme: Fix spelling: "configuation" -> "configuration"
x86/boot: Fix SEV boot failure from change to __PHYSICAL_MASK_SHIFT
x86/mm: Update comment in detect_tme() regarding x86_phys_bits
x86/mm/32: Remove unused node_memmap_size_bytes() & CONFIG_NEED_NODE_MEMMAP_SIZE logic
x86/mm: Remove pointless checks in vmalloc_fault
x86/platform/intel-mid: Add special handling for ACPI HW reduced platforms
ACPI, x86/boot: Introduce the ->reduced_hw_early_init() ACPI callback
ACPI, x86/boot: Split out acpi_generic_reduce_hw_init() and export
x86/pconfig: Provide defines and helper to run MKTME_KEY_PROG leaf
x86/pconfig: Detect PCONFIG targets
x86/tme: Detect if TME and MKTME is activated by BIOS
x86/boot/compressed/64: Handle 5-level paging boot if kernel is above 4G
x86/boot/compressed/64: Use page table in trampoline memory
x86/boot/compressed/64: Use stack from trampoline memory
x86/boot/compressed/64: Make sure we have a 32-bit code segment
x86/mm: Do not use paravirtualized calls in native_set_p4d()
kdump, vmcoreinfo: Export pgtable_l5_enabled value
x86/boot/compressed/64: Prepare new top-level page table for trampoline
x86/boot/compressed/64: Set up trampoline memory
x86/boot/compressed/64: Save and restore trampoline memory
...
Pull x86 RAS updates from Ingo Molnar:
"The main changes in this cycle were:
- AMD MCE support/decoding improvements (Yazen Ghannam)
- general MCE header cleanups and reorganization (Borislav Petkov)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "x86/mce/AMD: Collect error info even if valid bits are not set"
x86/MCE: Cleanup and complete struct mce fields definitions
x86/mce/AMD: Carve out SMCA get_block_address() code
x86/mce/AMD: Get address from already initialized block
x86/mce/AMD, EDAC/mce_amd: Enumerate Reserved SMCA bank type
x86/mce/AMD: Pass the bank number to smca_get_bank_type()
x86/mce/AMD: Collect error info even if valid bits are not set
x86/mce: Issue the 'mcelog --ascii' message only on !AMD
x86/mce: Convert 'struct mca_config' bools to a bitfield
x86/mce: Put private structures and definitions into the internal header
Trivial fix to spelling mistake in the pr_err_once() error message text.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Link: http://lkml.kernel.org/r/20180313154709.1015-1-colin.king@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
TLFS 5.0 says: "Support for an enlightened VMCS interface is reported with
CPUID leaf 0x40000004. If an enlightened VMCS interface is supported,
additional nested enlightenments may be discovered by reading the CPUID
leaf 0x4000000A (see 2.4.11)."
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
mshyperv.h now only contains fucntions/variables we define in kernel, all
definitions from TLFS should go to hyperv-tlfs.h.
'enum hv_cpuid_function' is removed as we already have this info in
hyperv-tlfs.h, code in mshyperv.c is adjusted accordingly.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
hyperv.h is not part of uapi, there are no (known) users outside of kernel.
We are making changes to this file to match current Hyper-V Hypervisor
Top-Level Functional Specification (TLFS, see:
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs)
and we don't want to maintain backwards compatibility.
Move the file renaming to hyperv-tlfs.h to avoid confusing it with
mshyperv.h. In future, all definitions from TLFS should go to it and
all kernel objects should go to mshyperv.h or include/linux/hyperv.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This reverts commit 4b1e84276a.
Software uses the valid bits to decide if the values can be used for
further processing or other actions. So setting the valid bits will have
software act on values that it shouldn't be acting on.
The recommendation to save all the register values does not mean that
the values are always valid.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: tony.luck@intel.com
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: bp@suse.de
Cc: linux-edac@vger.kernel.org
Link: https://lkml.kernel.org/r/20180326191526.64314-1-Yazen.Ghannam@amd.com
As Kai pointed out, the primary reason for adjusting x86_phys_bits is to
reflect that the the address space is reduced and not the ability to
communicate the available physical address space to virtual machines.
Suggested-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: linux-mm@kvack.org
Link: https://lkml.kernel.org/r/20180315134907.9311-2-kirill.shutemov@linux.intel.com
The file Documentation/x86/early-microcode.txt was renamed to
Documentation/x86/microcode.txt in 0e3258753f, but it was still
referenced by its old name in a three places:
* Documentation/x86/00-INDEX
* arch/x86/Kconfig
* arch/x86/kernel/cpu/microcode/amd.c
This commit updates these references accordingly.
Fixes: 0e3258753f ("x86/microcode: Document the three loading methods")
Signed-off-by: Jaak Ristioja <jaak@ristioja.ee>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Commit 99770737ca ("x86/asm/tsc: Add rdtscll() merge helper") added
rdtscll() in August 2015 along with the comment:
/* Deprecated, keep it for a cycle for easier merging: */
12 cycles later it's really overdue for removal.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86/pti updates from Thomas Gleixner:
"Another set of melted spectrum updates:
- Iron out the last late microcode loading issues by actually
checking whether new microcode is present and preventing the CPU
synchronization to run into a timeout induced hang.
- Remove Skylake C2 from the microcode blacklist according to the
latest Intel documentation
- Fix the VM86 POPF emulation which traps if VIP is set, but VIF is
not. Enhance the selftests to catch that kind of issue
- Annotate indirect calls/jumps for objtool on 32bit. This is not a
functional issue, but for consistency sake its the right thing to
do.
- Fix a jump label build warning observed on SPARC64 which uses 32bit
storage for the code location which is casted to 64 bit pointer w/o
extending it to 64bit first.
- Add two new cpufeature bits. Not really an urgent issue, but
provides them for both x86 and x86/kvm work. No impact on the
current kernel"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Fix CPU synchronization routine
x86/microcode: Attempt late loading only when new microcode is present
x86/speculation: Remove Skylake C2 from Speculation Control microcode blacklist
jump_label: Fix sparc64 warning
x86/speculation, objtool: Annotate indirect calls/jumps for objtool on 32-bit kernels
x86/vm86/32: Fix POPF emulation
selftests/x86/entry_from_vm86: Add test cases for POPF
selftests/x86/entry_from_vm86: Exit with 1 if we fail
x86/cpufeatures: Add Intel PCONFIG cpufeature
x86/cpufeatures: Add Intel Total Memory Encryption cpufeature
vmx_save_host_state() is only called from kvm_arch_vcpu_ioctl_run() so
the context is pretty well defined and as we're past 'swapgs' MSR_GS_BASE
should contain kernel's GS base which we point to irq_stack_union.
Add new kernelmode_gs_base() API, irq_stack_union needs to be exported
as KVM can be build as module.
Acked-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Emanuel reported an issue with a hang during microcode update because my
dumb idea to use one atomic synchronization variable for both rendezvous
- before and after update - was simply bollocks:
microcode: microcode_reload_late: late_cpus: 4
microcode: __reload_late: cpu 2 entered
microcode: __reload_late: cpu 1 entered
microcode: __reload_late: cpu 3 entered
microcode: __reload_late: cpu 0 entered
microcode: __reload_late: cpu 1 left
microcode: Timeout while waiting for CPUs rendezvous, remaining: 1
CPU1 above would finish, leave and the others will still spin waiting for
it to join.
So do two synchronization atomics instead, which makes the code a lot more
straightforward.
Also, since the update is serialized and it also takes quite some time per
microcode engine, increase the exit timeout by the number of CPUs on the
system.
That's ok because the moment all CPUs are done, that timeout will be cut
short.
Furthermore, panic when some of the CPUs timeout when returning from a
microcode update: we can't allow a system with not all cores updated.
Also, as an optimization, do not do the exit sync if microcode wasn't
updated.
Reported-by: Emanuel Czirai <xftroxgpx@protonmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Emanuel Czirai <xftroxgpx@protonmail.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20180314183615.17629-2-bp@alien8.de
Return UCODE_NEW from the scanning functions to denote that new microcode
was found and only then attempt the expensive synchronization dance.
Reported-by: Emanuel Czirai <xftroxgpx@protonmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Emanuel Czirai <xftroxgpx@protonmail.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lkml.kernel.org/r/20180314183615.17629-1-bp@alien8.de
In accordance with Intel's microcode revision guidance from March 6 MCU
rev 0xc2 is cleared on both Skylake H/S and Skylake Xeon E3 processors
that share CPUID 506E3.
Signed-off-by: Alexander Sergeyev <sergeev917@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jia Zhang <qianyue.zj@alibaba-inc.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kyle Huey <me@kylehuey.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180313193856.GA8580@localhost.localdomain
Intel PCONFIG targets are enumerated via new CPUID leaf 0x1b. This patch
detects all supported targets of PCONFIG and implements helper to check
if the target is supported.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kai Huang <kai.huang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180305162610.37510-5-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IA32_TME_ACTIVATE MSR (0x982) can be used to check if BIOS has enabled
TME and MKTME. It includes which encryption policy/algorithm is selected
for TME or available for MKTME. For MKTME, the MSR also enumerates how
many KeyIDs are available.
We would need to exclude KeyID bits from physical address bits.
detect_tme() would adjust cpuinfo_x86::x86_phys_bits accordingly.
We have to do this even if we are not going to use KeyID bits
ourself. VM guests still have to know that these bits are not usable
for physical address.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kai Huang <kai.huang@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180305162610.37510-3-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86/pti updates from Thomas Gleixner:
"Yet another pile of melted spectrum related updates:
- Drop native vsyscall support finally as it causes more trouble than
benefit.
- Make microcode loading more robust. There were a few issues
especially related to late loading which are now surfacing because
late loading of the IB* microcodes addressing spectre issues has
become more widely used.
- Simplify and robustify the syscall handling in the entry code
- Prevent kprobes on the entry trampoline code which lead to kernel
crashes when the probe hits before CR3 is updated
- Don't check microcode versions when running on hypervisors as they
are considered as lying anyway.
- Fix the 32bit objtool build and a coment typo"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kprobes: Fix kernel crash when probing .entry_trampoline code
x86/pti: Fix a comment typo
x86/microcode: Synchronize late microcode loading
x86/microcode: Request microcode on the BSP
x86/microcode/intel: Look into the patch cache first
x86/microcode: Do not upload microcode if CPUs are offline
x86/microcode/intel: Writeback and invalidate caches before updating microcode
x86/microcode/intel: Check microcode revision before updating sibling threads
x86/microcode: Get rid of struct apply_microcode_ctx
x86/spectre_v2: Don't check microcode versions when running under hypervisors
x86/vsyscall/64: Drop "native" vsyscalls
x86/entry/64/compat: Save one instruction in entry_INT80_compat()
x86/entry: Do not special-case clone(2) in compat entry
x86/syscalls: Use COMPAT_SYSCALL_DEFINEx() macros for x86-only compat syscalls
x86/syscalls: Use proper syscall definition for sys_ioperm()
x86/entry: Remove stale syscall prototype
x86/syscalls/32: Simplify $entry == $compat entries
objtool: Fix 32-bit build
The check_interval file in
/sys/devices/system/machinecheck/machinecheck<cpu number>
directory is a global timer value for MCE polling. If it is changed by one
CPU, mce_restart() broadcasts the event to other CPUs to delete and restart
the MCE polling timer and __mcheck_cpu_init_timer() reinitializes the
mce_timer variable.
If more than one CPU writes a specific value to the check_interval file
concurrently, mce_timer is not protected from such concurrent accesses and
all kinds of explosions happen. Since only root can write to those sysfs
variables, the issue is not a big deal security-wise.
However, concurrent writes to these configuration variables is void of
reason so the proper thing to do is to serialize the access with a mutex.
Boris:
- Make store_int_with_restart() use device_store_ulong() to filter out
negative intervals
- Limit min interval to 1 second
- Correct locking
- Massage commit message
Signed-off-by: Seunghun Han <kkamagui@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180302202706.9434-1-kkamagui@gmail.com
Updating microcode used to be relatively rare. Now that it has become
more common we should save the microcode version in a machine check
record to make sure that those people looking at the error have this
important information bundled with the rest of the logged information.
[ Borislav: Simplify a bit. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180301233449.24311-1-tony.luck@intel.com
This is the only spot where the 'const static' specifier is used;
everywhere else 'static const' is preferred, as static should be the
first specifier.
This is just a cosmetic fix that aligns this, no functional change.
Signed-off-by: Ralf Ramsauer <ralf.ramsauer@oth-regensburg.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Gayatri Kammela <gayatri.kammela@intel.com>
Link: https://lkml.kernel.org/r/20180307160734.6691-1-ralf.ramsauer@oth-regensburg.de
Original idea by Ashok, completely rewritten by Borislav.
Before you read any further: the early loading method is still the
preferred one and you should always do that. The following patch is
improving the late loading mechanism for long running jobs and cloud use
cases.
Gather all cores and serialize the microcode update on them by doing it
one-by-one to make the late update process as reliable as possible and
avoid potential issues caused by the microcode update.
[ Borislav: Rewrite completely. ]
Co-developed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Link: https://lkml.kernel.org/r/20180228102846.13447-8-bp@alien8.de
... so that any newer version can land in the cache and can later be
fished out by the application functions. Do that before grabbing the
hotplug lock.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Link: https://lkml.kernel.org/r/20180228102846.13447-7-bp@alien8.de
The cache might contain a newer patch - look in there first.
A follow-on change will make sure newest patches are loaded into the
cache of microcode patches.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Link: https://lkml.kernel.org/r/20180228102846.13447-6-bp@alien8.de
Avoid loading microcode if any of the CPUs are offline, and issue a
warning. Having different microcode revisions on the system at any time
is outright dangerous.
[ Borislav: Massage changelog. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Link: http://lkml.kernel.org/r/1519352533-15992-4-git-send-email-ashok.raj@intel.com
Link: https://lkml.kernel.org/r/20180228102846.13447-5-bp@alien8.de
Updating microcode is less error prone when caches have been flushed and
depending on what exactly the microcode is updating. For example, some
of the issues around certain Broadwell parts can be addressed by doing a
full cache flush.
[ Borislav: Massage it and use native_wbinvd() in both cases. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Link: http://lkml.kernel.org/r/1519352533-15992-3-git-send-email-ashok.raj@intel.com
Link: https://lkml.kernel.org/r/20180228102846.13447-4-bp@alien8.de
After updating microcode on one of the threads of a core, the other
thread sibling automatically gets the update since the microcode
resources on a hyperthreaded core are shared between the two threads.
Check the microcode revision on the CPU before performing a microcode
update and thus save us the WRMSR 0x79 because it is a particularly
expensive operation.
[ Borislav: Massage changelog and coding style. ]
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Link: http://lkml.kernel.org/r/1519352533-15992-2-git-send-email-ashok.raj@intel.com
Link: https://lkml.kernel.org/r/20180228102846.13447-3-bp@alien8.de
It is a useless remnant from earlier times. Use the ucode_state enum
directly.
No functional change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: Arjan Van De Ven <arjan.van.de.ven@intel.com>
Link: https://lkml.kernel.org/r/20180228102846.13447-2-bp@alien8.de
As:
1) It's known that hypervisors lie about the environment anyhow (host
mismatch)
2) Even if the hypervisor (Xen, KVM, VMWare, etc) provided a valid
"correct" value, it all gets to be very murky when migration happens
(do you provide the "new" microcode of the machine?).
And in reality the cloud vendors are the ones that should make sure that
the microcode that is running is correct and we should just sing lalalala
and trust them.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
Cc: kvm <kvm@vger.kernel.org>
Cc: Krčmář <rkrcmar@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
CC: "H. Peter Anvin" <hpa@zytor.com>
CC: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180226213019.GE9497@char.us.oracle.com
The 2016 version of Hyper-V offers the option to operate the guest VM
per-vcpu stimer's in Direct Mode, which means the timer interupts on its
own vector rather than queueing a VMbus message. Direct Mode reduces
timer processing overhead in both the hypervisor and the guest, and
avoids having timer interrupts pollute the VMbus interrupt stream for
the synthetic NIC and storage. This patch enables Direct Mode by
default on stimer0 when running on a version of Hyper-V that supports
it.
In prep for coming support of Hyper-V on ARM64, the arch independent
portion of the code contains calls to routines that will be populated
on ARM64 but are not needed and do nothing on x86.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull x86 fixes from Thomas Gleixner:
"Yet another pile of melted spectrum related changes:
- sanitize the array_index_nospec protection mechanism: Remove the
overengineered array_index_nospec_mask_check() magic and allow
const-qualified types as index to avoid temporary storage in a
non-const local variable.
- make the microcode loader more robust by properly propagating error
codes. Provide information about new feature bits after micro code
was updated so administrators can act upon.
- optimizations of the entry ASM code which reduce code footprint and
make the code simpler and faster.
- fix the {pmd,pud}_{set,clear}_flags() implementations to work
properly on paravirt kernels by removing the address translation
operations.
- revert the harmful vmexit_fill_RSB() optimization
- use IBRS around firmware calls
- teach objtool about retpolines and add annotations for indirect
jumps and calls.
- explicitly disable jumplabel patching in __init code and handle
patching failures properly instead of silently ignoring them.
- remove indirect paravirt calls for writing the speculation control
MSR as these calls are obviously proving the same attack vector
which is tried to be mitigated.
- a few small fixes which address build issues with recent compiler
and assembler versions"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
KVM/VMX: Optimize vmx_vcpu_run() and svm_vcpu_run() by marking the RDMSR path as unlikely()
KVM/x86: Remove indirect MSR op calls from SPEC_CTRL
objtool, retpolines: Integrate objtool with retpoline support more closely
x86/entry/64: Simplify ENCODE_FRAME_POINTER
extable: Make init_kernel_text() global
jump_label: Warn on failed jump_label patching attempt
jump_label: Explicitly disable jump labels in __init code
x86/entry/64: Open-code switch_to_thread_stack()
x86/entry/64: Move ASM_CLAC to interrupt_entry()
x86/entry/64: Remove 'interrupt' macro
x86/entry/64: Move the switch_to_thread_stack() call to interrupt_entry()
x86/entry/64: Move ENTER_IRQ_STACK from interrupt macro to interrupt_entry
x86/entry/64: Move PUSH_AND_CLEAR_REGS from interrupt macro to helper function
x86/speculation: Move firmware_restrict_branch_speculation_*() from C to CPP
objtool: Add module specific retpoline rules
objtool: Add retpoline validation
objtool: Use existing global variables for options
x86/mm/sme, objtool: Annotate indirect call in sme_encrypt_execute()
x86/boot, objtool: Annotate indirect jump in secondary_startup_64()
x86/paravirt, objtool: Annotate indirect calls
...
If no monitoring feature is detected because all monitoring features are
disabled during boot time or there is no monitoring feature in hardware,
creating rdtgroup sub-directory by "mkdir" command reports error:
mkdir: cannot create directory ‘/sys/fs/resctrl/p1’: No such file or directory
But the sub-directory actually is generated and content is correct:
cpus cpus_list schemata tasks
The error is because rdtgroup_mkdir_ctrl_mon() returns non zero value after
the sub-directory is created and the returned value is reported as an error
to user.
Clear the returned value to report to user that the sub-directory is
actually created successfully.
Signed-off-by: Wang Hui <john.wanghui@huawei.com>
Signed-off-by: Zhang Yanfei <yanfei.zhang@huawei.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vikas <vikas.shivappa@intel.com>
Cc: Xiaochen Shen <xiaochen.shen@intel.com>
Link: http://lkml.kernel.org/r/1519356363-133085-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Carve out the SMCA code in get_block_address() into a separate helper
function.
No functional change.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
[ Save an indentation level. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180215210943.11530-4-Yazen.Ghannam@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The block address is saved after the block is initialized when
threshold_init_device() is called.
Use the saved block address, if available, rather than trying to
rediscover it.
This will avoid a call trace, when resuming from suspend, due to the
rdmsr_safe_on_cpu() call in get_block_address(). The rdmsr_safe_on_cpu()
call issues an IPI but we're running with interrupts disabled. This
triggers:
WARNING: CPU: 0 PID: 11523 at kernel/smp.c:291 smp_call_function_single+0xdc/0xe0
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.14.x
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180221101900.10326-8-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, bank 4 is reserved on Fam17h, so we chose not to initialize
bank 4 in the smca_banks array. This means that when we check if a bank
is initialized, like during boot or resume, we will see that bank 4 is
not initialized and try to initialize it.
This will cause a call trace, when resuming from suspend, due to
rdmsr_*on_cpu() calls in the init path. The rdmsr_*on_cpu() calls issue
an IPI but we're running with interrupts disabled. This triggers:
WARNING: CPU: 0 PID: 11523 at kernel/smp.c:291 smp_call_function_single+0xdc/0xe0
...
Reserved banks will be read-as-zero, so their MCA_IPID register will be
zero. So, like the smca_banks array, the threshold_banks array will not
have an entry for a reserved bank since all its MCA_MISC* registers will
be zero.
Enumerate a "Reserved" bank type that matches on a HWID_MCATYPE of 0,0.
Use the "Reserved" type when checking if a bank is reserved. It's
possible that other bank numbers may be reserved on future systems.
Don't try to find the block address on reserved banks.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.14.x
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180221101900.10326-7-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pass the bank number to smca_get_bank_type() since that's all we need.
Also, we should compare the bank number to MAX_NR_BANKS (size of the
smca_banks array) not the number of bank types. Bank types are reused
for multiple banks, so the number of types can be different from the
number of banks in a system and thus we could return an invalid bank
type.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.14.x
Cc: <stable@vger.kernel.org> # 4.14.x: 11cf887728 x86/MCE/AMD: Define a function to get SMCA bank type
Cc: <stable@vger.kernel.org> # 4.14.x: c6708d50f1 x86/MCE: Report only DRAM ECC as memory errors on AMD systems
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180221101900.10326-6-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The MCA banks log error info into MCA_ADDR, MCA_MISC0, and MCA_SYND even
if the corresponding valid bits are not set:
"Error handlers should save the values in MCA_ADDR, MCA_MISC0,
and MCA_SYND even if MCA_STATUS[AddrV], MCA_STATUS[MiscV], and
MCA_STATUS[SyndV] are zero."
Do so by setting those bits so that code down the MCE processing path
doesn't need to be changed.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180221101900.10326-5-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... to save space when future flags are added.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180221101900.10326-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... because they don't need to be exported outside of MCE.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20180221101900.10326-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With some microcode upgrades, new CPUID features can become visible on
the CPU. Check what the kernel has mirrored now and issue a warning
hinting at possible things the user/admin can do to make use of the
newly visible features.
Originally-by: Ashok Raj <ashok.raj@intel.com>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180216112640.11554-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a callback function which the microcode loader calls when microcode
has been updated to a newer revision. Do the callback only when no error
was encountered during loading.
Tested-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180216112640.11554-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... so that callers can know when microcode was updated and act
accordingly.
Tested-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180216112640.11554-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Misc fixes all across the map:
- /proc/kcore vsyscall related fixes
- LTO fix
- build warning fix
- CPU hotplug fix
- Kconfig NR_CPUS cleanups
- cpu_has() cleanups/robustification
- .gitignore fix
- memory-failure unmapping fix
- UV platform fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
x86/error_inject: Make just_return_func() globally visible
x86/platform/UV: Fix GAM Range Table entries less than 1GB
x86/build: Add arch/x86/tools/insn_decoder_test to .gitignore
x86/smpboot: Fix uncore_pci_remove() indexing bug when hot-removing a physical CPU
x86/mm/kcore: Add vsyscall page to /proc/kcore conditionally
vfs/proc/kcore, x86/mm/kcore: Fix SMAP fault when dumping vsyscall user page
x86/Kconfig: Further simplify the NR_CPUS config
x86/Kconfig: Simplify NR_CPUS config
x86/MCE: Fix build warning introduced by "x86: do not use print_symbol()"
x86/cpufeature: Update _static_cpu_has() to use all named variables
x86/cpufeature: Reindent _static_cpu_has()
Pull x86 PTI and Spectre related fixes and updates from Ingo Molnar:
"Here's the latest set of Spectre and PTI related fixes and updates:
Spectre:
- Add entry code register clearing to reduce the Spectre attack
surface
- Update the Spectre microcode blacklist
- Inline the KVM Spectre helpers to get close to v4.14 performance
again.
- Fix indirect_branch_prediction_barrier()
- Fix/improve Spectre related kernel messages
- Fix array_index_nospec_mask() asm constraint
- KVM: fix two MSR handling bugs
PTI:
- Fix a paranoid entry PTI CR3 handling bug
- Fix comments
objtool:
- Fix paranoid_entry() frame pointer warning
- Annotate WARN()-related UD2 as reachable
- Various fixes
- Add Add Peter Zijlstra as objtool co-maintainer
Misc:
- Various x86 entry code self-test fixes
- Improve/simplify entry code stack frame generation and handling
after recent heavy-handed PTI and Spectre changes. (There's two
more WIP improvements expected here.)
- Type fix for cache entries
There's also some low risk non-fix changes I've included in this
branch to reduce backporting conflicts:
- rename a confusing x86_cpu field name
- de-obfuscate the naming of single-TLB flushing primitives"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
x86/entry/64: Fix CR3 restore in paranoid_exit()
x86/cpu: Change type of x86_cache_size variable to unsigned int
x86/spectre: Fix an error message
x86/cpu: Rename cpu_data.x86_mask to cpu_data.x86_stepping
selftests/x86/mpx: Fix incorrect bounds with old _sigfault
x86/mm: Rename flush_tlb_single() and flush_tlb_one() to __flush_tlb_one_[user|kernel]()
x86/speculation: Add <asm/msr-index.h> dependency
nospec: Move array_index_nospec() parameter checking into separate macro
x86/speculation: Fix up array_index_nospec_mask() asm constraint
x86/debug: Use UD2 for WARN()
x86/debug, objtool: Annotate WARN()-related UD2 as reachable
objtool: Fix segfault in ignore_unreachable_insn()
selftests/x86: Disable tests requiring 32-bit support on pure 64-bit systems
selftests/x86: Do not rely on "int $0x80" in single_step_syscall.c
selftests/x86: Do not rely on "int $0x80" in test_mremap_vdso.c
selftests/x86: Fix build bug caused by the 5lvl test which has been moved to the VM directory
selftests/x86/pkeys: Remove unused functions
selftests/x86: Clean up and document sscanf() usage
selftests/x86: Fix vDSO selftest segfault for vsyscall=none
x86/entry/64: Remove the unused 'icebp' macro
...
Currently, x86_cache_size is of type int, which makes no sense as we
will never have a valid cache size equal or less than 0. So instead of
initializing this variable to -1, it can perfectly be initialized to 0
and use it as an unsigned variable instead.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Addresses-Coverity-ID: 1464429
Link: http://lkml.kernel.org/r/20180213192208.GA26414@embeddedor.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If i == ARRAY_SIZE(mitigation_options) then we accidentally print
garbage from one space beyond the end of the mitigation_options[] array.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: KarimAllah Ahmed <karahmed@amazon.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Fixes: 9005c6834c ("x86/spectre: Simplify spectre_v2 command line parsing")
Link: http://lkml.kernel.org/r/20180214071416.GA26677@mwanda
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86_mask is a confusing name which is hard to associate with the
processor's stepping.
Additionally, correct an indent issue in lib/cpu.c.
Signed-off-by: Jia Zhang <qianyue.zj@alibaba-inc.com>
[ Updated it to more recent kernels. ]
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: tony.luck@intel.com
Link: http://lkml.kernel.org/r/1514771530-70829-1-git-send-email-qianyue.zj@alibaba-inc.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For boot-time switching between 4- and 5-level paging we need to be able
to fold p4d page table level at runtime. It requires variable
PGDIR_SHIFT and PTRS_PER_P4D.
The change doesn't affect the kernel image size much:
text data bss dec hex filename
8628091 4734304 1368064 14730459 e0c4db vmlinux.before
8628393 4734340 1368064 14730797 e0c62d vmlinux.after
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180214111656.88514-7-kirill.shutemov@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the following commit:
ce0fa3e56a ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages")
... we added code to memory_failure() to unmap the page from the
kernel 1:1 virtual address space to avoid speculative access to the
page logging additional errors.
But memory_failure() may not always succeed in taking the page offline,
especially if the page belongs to the kernel. This can happen if
there are too many corrected errors on a page and either mcelog(8)
or drivers/ras/cec.c asks to take a page offline.
Since we remove the 1:1 mapping early in memory_failure(), we can
end up with the page unmapped, but still in use. On the next access
the kernel crashes :-(
There are also various debug paths that call memory_failure() to simulate
occurrence of an error. Since there is no actual error in memory, we
don't need to map out the page for those cases.
Revert most of the previous attempt and keep the solution local to
arch/x86/kernel/cpu/mcheck/mce.c. Unmap the page only when:
1) there is a real error
2) memory_failure() succeeds.
All of this only applies to 64-bit systems. 32-bit kernel doesn't map
all of memory into kernel space. It isn't worth adding the code to unmap
the piece that is mapped because nobody would run a 32-bit kernel on a
machine that has recoverable machine checks.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert (Persistent Memory) <elliott@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org #v4.14
Fixes: ce0fa3e56a ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Harmonize all the Spectre messages so that a:
dmesg | grep -i spectre
... gives us most Spectre related kernel boot messages.
Also fix a few other details:
- clarify a comment about firmware speculation control
- s/KPTI/PTI
- remove various line-breaks that made the code uglier
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This reverts commit 64e16720ea.
We cannot call C functions like that, without marking all the
call-clobbered registers as, well, clobbered. We might have got away
with it for now because the __ibp_barrier() function was *fairly*
unlikely to actually use any other registers. But no. Just no.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan.van.de.ven@intel.com
Cc: dave.hansen@intel.com
Cc: jmattson@google.com
Cc: karahmed@amazon.de
Cc: kvm@vger.kernel.org
Cc: pbonzini@redhat.com
Cc: rkrcmar@redhat.com
Cc: sironi@amazon.de
Link: http://lkml.kernel.org/r/1518305967-31356-3-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Arjan points out that the Intel document only clears the 0xc2 microcode
on *some* parts with CPUID 506E3 (INTEL_FAM6_SKYLAKE_DESKTOP stepping 3).
For the Skylake H/S platform it's OK but for Skylake E3 which has the
same CPUID it isn't (yet) cleared.
So removing it from the blacklist was premature. Put it back for now.
Also, Arjan assures me that the 0x84 microcode for Kaby Lake which was
featured in one of the early revisions of the Intel document was never
released to the public, and won't be until/unless it is also validated
as safe. So those can change to 0x80 which is what all *other* versions
of the doc have identified.
Once the retrospective testing of existing public microcodes is done, we
should be back into a mode where new microcodes are only released in
batches and we shouldn't even need to update the blacklist for those
anyway, so this tweaking of the list isn't expected to be a thing which
keeps happening.
Requested-by: Arjan van de Ven <arjan.van.de.ven@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan.van.de.ven@intel.com
Cc: dave.hansen@intel.com
Cc: kvm@vger.kernel.org
Cc: pbonzini@redhat.com
Link: http://lkml.kernel.org/r/1518449255-2182-1-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is the mindless scripted replacement of kernel use of POLL*
variables as described by Al, done by this script:
for V in IN OUT PRI ERR RDNORM RDBAND WRNORM WRBAND HUP RDHUP NVAL MSG; do
L=`git grep -l -w POLL$V | grep -v '^t' | grep -v /um/ | grep -v '^sa' | grep -v '/poll.h$'|grep -v '^D'`
for f in $L; do sed -i "-es/^\([^\"]*\)\(\<POLL$V\>\)/\\1E\\2/" $f; done
done
with de-mangling cleanups yet to come.
NOTE! On almost all architectures, the EPOLL* constants have the same
values as the POLL* constants do. But they keyword here is "almost".
For various bad reasons they aren't the same, and epoll() doesn't
actually work quite correctly in some cases due to this on Sparc et al.
The next patch from Al will sort out the final differences, and we
should be all done.
Scripted-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following commit:
7b6061627e ("x86: do not use print_symbol()")
... introduced a new build warning on 32-bit x86:
arch/x86/kernel/cpu/mcheck/mce.c:237:21: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast]
pr_cont("{%pS}", (void *)m->ip);
^
Fix the type mismatch between the 'void *' expected by %pS and the mce->ip
field which is u64 by casting to long.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-kernel@vger.kernel.org
Fixes: 7b6061627e ("x86: do not use print_symbol()")
Link: http://lkml.kernel.org/r/20180210145314.22174-1-bp@alien8.de
[ Cleaned up the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel have retroactively blessed the 0xc2 microcode on Skylake mobile
and desktop parts, and the Gemini Lake 0x22 microcode is apparently fine
too. We blacklisted the latter purely because it was present with all
the other problematic ones in the 2018-01-08 release, but now it's
explicitly listed as OK.
We still list 0x84 for the various Kaby Lake / Coffee Lake parts, as
that appeared in one version of the blacklist and then reverted to
0x80 again. We can change it if 0x84 is actually announced to be safe.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan.van.de.ven@intel.com
Cc: jmattson@google.com
Cc: karahmed@amazon.de
Cc: kvm@vger.kernel.org
Cc: pbonzini@redhat.com
Cc: rkrcmar@redhat.com
Cc: sironi@amazon.de
Link: http://lkml.kernel.org/r/1518305967-31356-2-git-send-email-dwmw@amazon.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
Pull spectre/meltdown updates from Thomas Gleixner:
"The next round of updates related to melted spectrum:
- The initial set of spectre V1 mitigations:
- Array index speculation blocker and its usage for syscall,
fdtable and the n180211 driver.
- Speculation barrier and its usage in user access functions
- Make indirect calls in KVM speculation safe
- Blacklisting of known to be broken microcodes so IPBP/IBSR are not
touched.
- The initial IBPB support and its usage in context switch
- The exposure of the new speculation MSRs to KVM guests.
- A fix for a regression in x86/32 related to the cpu entry area
- Proper whitelisting for known to be safe CPUs from the mitigations.
- objtool fixes to deal proper with retpolines and alternatives
- Exclude __init functions from retpolines which speeds up the boot
process.
- Removal of the syscall64 fast path and related cleanups and
simplifications
- Removal of the unpatched paravirt mode which is yet another source
of indirect unproteced calls.
- A new and undisputed version of the module mismatch warning
- A couple of cleanup and correctness fixes all over the place
Yet another step towards full mitigation. There are a few things still
missing like the RBS underflow mitigation for Skylake and other small
details, but that's being worked on.
That said, I'm taking a belated christmas vacation for a week and hope
that everything is magically solved when I'm back on Feb 12th"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
KVM/SVM: Allow direct access to MSR_IA32_SPEC_CTRL
KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL
KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES
KVM/x86: Add IBPB support
KVM/x86: Update the reverse_cpuid list to include CPUID_7_EDX
x86/speculation: Fix typo IBRS_ATT, which should be IBRS_ALL
x86/pti: Mark constant arrays as __initconst
x86/spectre: Simplify spectre_v2 command line parsing
x86/retpoline: Avoid retpolines for built-in __init functions
x86/kvm: Update spectre-v1 mitigation
KVM: VMX: make MSR bitmaps per-VCPU
x86/paravirt: Remove 'noreplace-paravirt' cmdline option
x86/speculation: Use Indirect Branch Prediction Barrier in context switch
x86/cpuid: Fix up "virtual" IBRS/IBPB/STIBP feature bits on Intel
x86/spectre: Fix spelling mistake: "vunerable"-> "vulnerable"
x86/spectre: Report get_user mitigation for spectre_v1
nl80211: Sanitize array index in parse_txq_params
vfs, fdtable: Prevent bounds-check bypass via speculative execution
x86/syscall: Sanitize syscall table de-references under speculation
x86/get_user: Use pointer masking to limit speculation
...
I'm seeing build failures from the two newly introduced arrays that
are marked 'const' and '__initdata', which are mutually exclusive:
arch/x86/kernel/cpu/common.c:882:43: error: 'cpu_no_speculation' causes a section type conflict with 'e820_table_firmware_init'
arch/x86/kernel/cpu/common.c:895:43: error: 'cpu_no_meltdown' causes a section type conflict with 'e820_table_firmware_init'
The correct annotation is __initconst.
Fixes: fec9434a12 ("x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180202213959.611210-1-arnd@arndb.de
Pull printk updates from Petr Mladek:
- Add a console_msg_format command line option:
The value "default" keeps the old "[time stamp] text\n" format. The
value "syslog" allows to see the syslog-like "<log
level>[timestamp] text" format.
This feature was requested by people doing regression tests, for
example, 0day robot. They want to have both filtered and full logs
at hands.
- Reduce the risk of softlockup:
Pass the console owner in a busy loop.
This is a new approach to the old problem. It was first proposed by
Steven Rostedt on Kernel Summit 2017. It marks a context in which
the console_lock owner calls console drivers and could not sleep.
On the other side, printk() callers could detect this state and use
a busy wait instead of a simple console_trylock(). Finally, the
console_lock owner checks if there is a busy waiter at the end of
the special context and eventually passes the console_lock to the
waiter.
The hand-off works surprisingly well and helps in many situations.
Well, there is still a possibility of the softlockup, for example,
when the flood of messages stops and the last owner still has too
much to flush.
There is increasing number of people having problems with
printk-related softlockups. We might eventually need to get better
solution. Anyway, this looks like a good start and promising
direction.
- Do not allow to schedule in console_unlock() called from printk():
This reverts an older controversial commit. The reschedule helped
to avoid softlockups. But it also slowed down the console output.
This patch is obsoleted by the new console waiter logic described
above. In fact, the reschedule made the hand-off less effective.
- Deprecate "%pf" and "%pF" format specifier:
It was needed on ia64, ppc64 and parisc64 to dereference function
descriptors and show the real function address. It is done
transparently by "%ps" and "pS" format specifier now.
Sergey Senozhatsky found that all the function descriptors were in
a special elf section and could be easily detected.
- Remove printk_symbol() API:
It has been obsoleted by "%pS" format specifier, and this change
helped to remove few continuous lines and a less intuitive old API.
- Remove redundant memsets:
Sergey removed unnecessary memset when processing printk.devkmsg
command line option.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk: (27 commits)
printk: drop redundant devkmsg_log_str memsets
printk: Never set console_may_schedule in console_trylock()
printk: Hide console waiter logic into helpers
printk: Add console owner and waiter logic to load balance console writes
kallsyms: remove print_symbol() function
checkpatch: add pF/pf deprecation warning
symbol lookup: introduce dereference_symbol_descriptor()
parisc64: Add .opd based function descriptor dereference
powerpc64: Add .opd based function descriptor dereference
ia64: Add .opd based function descriptor dereference
sections: split dereference_function_descriptor()
openrisc: Fix conflicting types for _exext and _stext
lib: do not use print_symbol()
irq debug: do not use print_symbol()
sysfs: do not use print_symbol()
drivers: do not use print_symbol()
x86: do not use print_symbol()
unicore32: do not use print_symbol()
sh: do not use print_symbol()
mn10300: do not use print_symbol()
...
Here is the set of "big" driver core patches for 4.16-rc1.
The majority of the work here is in the firmware subsystem, with reworks
to try to attempt to make the code easier to handle in the long run, but
no functional change. There's also some tree-wide sysfs attribute
fixups with lots of acks from the various subsystem maintainers, as well
as a handful of other normal fixes and changes.
And finally, some license cleanups for the driver core and sysfs code.
All have been in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWnLvPw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynNzACgkzjPoBytJWbpWFt6SR6L33/u4kEAnRFvVCGL
s6ygQPQhZIjKk2Lxa2hC
=Zihy
-----END PGP SIGNATURE-----
Merge tag 'driver-core-4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the set of "big" driver core patches for 4.16-rc1.
The majority of the work here is in the firmware subsystem, with
reworks to try to attempt to make the code easier to handle in the
long run, but no functional change. There's also some tree-wide sysfs
attribute fixups with lots of acks from the various subsystem
maintainers, as well as a handful of other normal fixes and changes.
And finally, some license cleanups for the driver core and sysfs code.
All have been in linux-next for a while with no reported issues"
* tag 'driver-core-4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (48 commits)
device property: Define type of PROPERTY_ENRTY_*() macros
device property: Reuse property_entry_free_data()
device property: Move property_entry_free_data() upper
firmware: Fix up docs referring to FIRMWARE_IN_KERNEL
firmware: Drop FIRMWARE_IN_KERNEL Kconfig option
USB: serial: keyspan: Drop firmware Kconfig options
sysfs: remove DEBUG defines
sysfs: use SPDX identifiers
drivers: base: add coredump driver ops
sysfs: add attribute specification for /sysfs/devices/.../coredump
test_firmware: fix missing unlock on error in config_num_requests_store()
test_firmware: make local symbol test_fw_config static
sysfs: turn WARN() into pr_warn()
firmware: Fix a typo in fallback-mechanisms.rst
treewide: Use DEVICE_ATTR_WO
treewide: Use DEVICE_ATTR_RO
treewide: Use DEVICE_ATTR_RW
sysfs.h: Use octal permissions
component: add debugfs support
bus: simple-pm-bus: convert bool SIMPLE_PM_BUS to tristate
...
Pull poll annotations from Al Viro:
"This introduces a __bitwise type for POLL### bitmap, and propagates
the annotations through the tree. Most of that stuff is as simple as
'make ->poll() instances return __poll_t and do the same to local
variables used to hold the future return value'.
Some of the obvious brainos found in process are fixed (e.g. POLLIN
misspelled as POLL_IN). At that point the amount of sparse warnings is
low and most of them are for genuine bugs - e.g. ->poll() instance
deciding to return -EINVAL instead of a bitmap. I hadn't touched those
in this series - it's large enough as it is.
Another problem it has caught was eventpoll() ABI mess; select.c and
eventpoll.c assumed that corresponding POLL### and EPOLL### were
equal. That's true for some, but not all of them - EPOLL### are
arch-independent, but POLL### are not.
The last commit in this series separates userland POLL### values from
the (now arch-independent) kernel-side ones, converting between them
in the few places where they are copied to/from userland. AFAICS, this
is the least disruptive fix preserving poll(2) ABI and making epoll()
work on all architectures.
As it is, it's simply broken on sparc - try to give it EPOLLWRNORM and
it will trigger only on what would've triggered EPOLLWRBAND on other
architectures. EPOLLWRBAND and EPOLLRDHUP, OTOH, are never triggered
at all on sparc. With this patch they should work consistently on all
architectures"
* 'misc.poll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (37 commits)
make kernel-side POLL... arch-independent
eventpoll: no need to mask the result of epi_item_poll() again
eventpoll: constify struct epoll_event pointers
debugging printk in sg_poll() uses %x to print POLL... bitmap
annotate poll(2) guts
9p: untangle ->poll() mess
->si_band gets POLL... bitmap stored into a user-visible long field
ring_buffer_poll_wait() return value used as return value of ->poll()
the rest of drivers/*: annotate ->poll() instances
media: annotate ->poll() instances
fs: annotate ->poll() instances
ipc, kernel, mm: annotate ->poll() instances
net: annotate ->poll() instances
apparmor: annotate ->poll() instances
tomoyo: annotate ->poll() instances
sound: annotate ->poll() instances
acpi: annotate ->poll() instances
crypto: annotate ->poll() instances
block: annotate ->poll() instances
x86: annotate ->poll() instances
...
Hyper-V supports Live Migration notification. This is supposed to be used
in conjunction with TSC emulation: when a VM is migrated to a host with
different TSC frequency for some short period the host emulates the
accesses to TSC and sends an interrupt to notify about the event. When the
guest is done updating everything it can disable TSC emulation and
everything will start working fast again.
These notifications weren't required until now as Hyper-V guests are not
supposed to use TSC as a clocksource: in Linux the TSC is even marked as
unstable on boot. Guests normally use 'tsc page' clocksource and host
updates its values on migrations automatically.
Things change when with nested virtualization: even when the PV
clocksources (kvm-clock or tsc page) are passed through to the nested
guests the TSC frequency and frequency changes need to be know..
Hyper-V Top Level Functional Specification (as of v5.0b) wrongly specifies
EAX:BIT(12) of CPUID:0x40000009 as the feature identification bit. The
right one to check is EAX:BIT(13) of CPUID:0x40000003. I was assured that
the fix in on the way.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: devel@linuxdriverproject.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Cathy Avery <cavery@redhat.com>
Cc: Mohammed Gamal <mmorsy@redhat.com>
Link: https://lkml.kernel.org/r/20180124132337.30138-4-vkuznets@redhat.com
Pull siginfo cleanups from Eric Biederman:
"Long ago when 2.4 was just a testing release copy_siginfo_to_user was
made to copy individual fields to userspace, possibly for efficiency
and to ensure initialized values were not copied to userspace.
Unfortunately the design was complex, it's assumptions unstated, and
humans are fallible and so while it worked much of the time that
design failed to ensure unitialized memory is not copied to userspace.
This set of changes is part of a new design to clean up siginfo and
simplify things, and hopefully make the siginfo handling robust enough
that a simple inspection of the code can be made to ensure we don't
copy any unitializied fields to userspace.
The design is to unify struct siginfo and struct compat_siginfo into a
single definition that is shared between all architectures so that
anyone adding to the set of information shared with struct siginfo can
see the whole picture. Hopefully ensuring all future si_code
assignments are arch independent.
The design is to unify copy_siginfo_to_user32 and
copy_siginfo_from_user32 so that those function are complete and cope
with all of the different cases documented in signinfo_layout. I don't
think there was a single implementation of either of those functions
that was complete and correct before my changes unified them.
The design is to introduce a series of helpers including
force_siginfo_fault that take the values that are needed in struct
siginfo and build the siginfo structure for their callers. Ensuring
struct siginfo is built correctly.
The remaining work for 4.17 (unless someone thinks it is post -rc1
material) is to push usage of those helpers down into the
architectures so that architecture specific code will not need to deal
with the fiddly work of intializing struct siginfo, and then when
struct siginfo is guaranteed to be fully initialized change copy
siginfo_to_user into a simple wrapper around copy_to_user.
Further there is work in progress on the issues that have been
documented requires arch specific knowledge to sort out.
The changes below fix or at least document all of the issues that have
been found with siginfo generation. Then proceed to unify struct
siginfo the 32 bit helpers that copy siginfo to and from userspace,
and generally clean up anything that is not arch specific with regards
to siginfo generation.
It is a lot but with the unification you can of siginfo you can
already see the code reduction in the kernel"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (45 commits)
signal/memory-failure: Use force_sig_mceerr and send_sig_mceerr
mm/memory_failure: Remove unused trapno from memory_failure
signal/ptrace: Add force_sig_ptrace_errno_trap and use it where needed
signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap
signal: Helpers for faults with specialized siginfo layouts
signal: Add send_sig_fault and force_sig_fault
signal: Replace memset(info,...) with clear_siginfo for clarity
signal: Don't use structure initializers for struct siginfo
signal/arm64: Better isolate the COMPAT_TASK portion of ptrace_hbptriggered
ptrace: Use copy_siginfo in setsiginfo and getsiginfo
signal: Unify and correct copy_siginfo_to_user32
signal: Remove the code to clear siginfo before calling copy_siginfo_from_user32
signal: Unify and correct copy_siginfo_from_user32
signal/blackfin: Remove pointless UID16_SIGINFO_COMPAT_NEEDED
signal/blackfin: Move the blackfin specific si_codes to asm-generic/siginfo.h
signal/tile: Move the tile specific si_codes to asm-generic/siginfo.h
signal/frv: Move the frv specific si_codes to asm-generic/siginfo.h
signal/ia64: Move the ia64 specific si_codes to asm-generic/siginfo.h
signal/powerpc: Remove redefinition of NSIGTRAP on powerpc
signal: Move addr_lsb into the _sigfault union for clarity
...
Despite the fact that all the other code there seems to be doing it, just
using set_cpu_cap() in early_intel_init() doesn't actually work.
For CPUs with PKU support, setup_pku() calls get_cpu_cap() after
c->c_init() has set those feature bits. That resets those bits back to what
was queried from the hardware.
Turning the bits off for bad microcode is easy to fix. That can just use
setup_clear_cpu_cap() to force them off for all CPUs.
I was less keen on forcing the feature bits *on* that way, just in case
of inconsistencies. I appreciate that the kernel is going to get this
utterly wrong if CPU features are not consistent, because it has already
applied alternatives by the time secondary CPUs are brought up.
But at least if setup_force_cpu_cap() isn't being used, we might have a
chance of *detecting* the lack of the corresponding bit and either
panicking or refusing to bring the offending CPU online.
So ensure that the appropriate feature bits are set within get_cpu_cap()
regardless of how many extra times it's called.
Fixes: 2961298e ("x86/cpufeatures: Clean up Spectre v2 related CPUID flags")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: karahmed@amazon.de
Cc: peterz@infradead.org
Cc: bp@alien8.de
Link: https://lkml.kernel.org/r/1517322623-15261-1-git-send-email-dwmw@amazon.co.uk
Pull x86 RAS updates from Ingo Molnar:
- various AMD SMCA error parsing/reporting improvements (Yazen Ghannam)
- extend Intel CMCI error reporting to more cases (Xie XiuQi)
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE: Make correctable error detection look at the Deferred bit
x86/MCE: Report only DRAM ECC as memory errors on AMD systems
x86/MCE/AMD: Define a function to get SMCA bank type
x86/mce/AMD: Don't set DEF_INT_TYPE in MSR_CU_DEF_ERR on SMCA systems
x86/MCE: Extend table to report action optional errors through CMCI too
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJabj6pAAoJEHm+PkMAQRiGs8cIAJQFkCWnbz86e3vG4DuWhyA8
CMGHCQdUOxxFGa/ixhIiuetbC0x+JVHAjV2FwVYbAQfaZB3pfw2iR1ncQxpAP1AI
oLU9vBEqTmwKMPc9CM5rRfnLFWpGcGwUNzgPdxD5yYqGDtcM8K840mF6NdkYe5AN
xU8rv1wlcFPF4A5pvHCH0pvVmK4VxlVFk/2H67TFdxBs4PyJOnSBnf+bcGWgsKO6
hC8XIVtcKCH2GfFxt5d0Vgc5QXJEpX1zn2mtCa1MwYRjN2plgYfD84ha0xE7J0B0
oqV/wnjKXDsmrgVpncr3txd4+zKJFNkdNRE4eLAIupHo2XHTG4HvDJ5dBY2NhGU=
=sOml
-----END PGP SIGNATURE-----
Merge tag 'v4.15' into x86/pti, to be able to merge dependent changes
Time has come to switch PTI development over to a v4.15 base - we'll still
try to make sure that all PTI fixes backport cleanly to v4.14 and earlier.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86/pti updates from Thomas Gleixner:
"Another set of melted spectrum related changes:
- Code simplifications and cleanups for RSB and retpolines.
- Make the indirect calls in KVM speculation safe.
- Whitelist CPUs which are known not to speculate from Meltdown and
prepare for the new CPUID flag which tells the kernel that a CPU is
not affected.
- A less rigorous variant of the module retpoline check which merily
warns when a non-retpoline protected module is loaded and reflects
that fact in the sysfs file.
- Prepare for Indirect Branch Prediction Barrier support.
- Prepare for exposure of the Speculation Control MSRs to guests, so
guest OSes which depend on those "features" can use them. Includes
a blacklist of the broken microcodes. The actual exposure of the
MSRs through KVM is still being worked on"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Simplify indirect_branch_prediction_barrier()
x86/retpoline: Simplify vmexit_fill_RSB()
x86/cpufeatures: Clean up Spectre v2 related CPUID flags
x86/cpu/bugs: Make retpoline module warning conditional
x86/bugs: Drop one "mitigation" from dmesg
x86/nospec: Fix header guards names
x86/alternative: Print unadorned pointers
x86/speculation: Add basic IBPB (Indirect Branch Prediction Barrier) support
x86/cpufeature: Blacklist SPEC_CTRL/PRED_CMD on early Spectre v2 microcodes
x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown
x86/msr: Add definitions for new speculation control MSRs
x86/cpufeatures: Add AMD feature bits for Speculation Control
x86/cpufeatures: Add Intel feature bits for Speculation Control
x86/cpufeatures: Add CPUID_7_EDX CPUID leaf
module/retpoline: Warn about missing retpoline in module
KVM: VMX: Make indirect call speculation safe
KVM: x86: Make indirect calls in emulator speculation safe
Pull x86 timer updates from Thomas Gleixner:
"A small set of updates for x86 specific timers:
- Mark TSC invariant on a subset of Centaur CPUs
- Allow TSC calibration without PIT on mobile platforms which lack
legacy devices"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/centaur: Mark TSC invariant
x86/tsc: Introduce early tsc clocksource
x86/time: Unconditionally register legacy timer interrupt
x86/tsc: Allow TSC calibration without PIT
Pull x86 platform updates from Thomas Gleixner:
"The platform support for x86 contains the following updates:
- A set of updates for the UV platform to support new CPUs and to fix
some of the UV4A BAU MRRs
- The initial platform support for the jailhouse hypervisor to allow
native Linux guests (inmates) in non-root cells.
- A fix for the PCI initialization on Intel MID platforms"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/jailhouse: Respect pci=lastbus command line settings
x86/jailhouse: Set X86_FEATURE_TSC_KNOWN_FREQ
x86/platform/intel-mid: Move PCI initialization to arch_init()
x86/platform/uv/BAU: Replace hard-coded values with MMR definitions
x86/platform/UV: Fix UV4A BAU MMRs
x86/platform/UV: Fix GAM MMR references in the UV x2apic code
x86/platform/UV: Fix GAM MMR changes in UV4A
x86/platform/UV: Add references to access fixed UV4A HUB MMRs
x86/platform/UV: Fix UV4A support on new Intel Processors
x86/platform/UV: Update uv_mmrs.h to prepare for UV4A fixes
x86/jailhouse: Add PCI dependency
x86/jailhouse: Hide x2apic code when CONFIG_X86_X2APIC=n
x86/jailhouse: Initialize PCI support
x86/jailhouse: Wire up IOAPIC for legacy UART ports
x86/jailhouse: Halt instead of failing to restart
x86/jailhouse: Silence ACPI warning
x86/jailhouse: Avoid access of unsupported platform resources
x86/jailhouse: Set up timekeeping
x86/jailhouse: Enable PMTIMER
x86/jailhouse: Enable APIC and SMP support
...
Pull x86/cache updates from Thomas Gleixner:
"A set of patches which add support for L2 cache partitioning to the
Intel RDT facility"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt: Add command line parameter to control L2_CDP
x86/intel_rdt: Enable L2 CDP in MSR IA32_L2_QOS_CFG
x86/intel_rdt: Add two new resources for L2 Code and Data Prioritization (CDP)
x86/intel_rdt: Enumerate L2 Code and Data Prioritization (CDP) feature
x86/intel_rdt: Add L2CDP support in documentation
x86/intel_rdt: Update documentation
We want to expose the hardware features simply in /proc/cpuinfo as "ibrs",
"ibpb" and "stibp". Since AMD has separate CPUID bits for those, use them
as the user-visible bits.
When the Intel SPEC_CTRL bit is set which indicates both IBRS and IBPB
capability, set those (AMD) bits accordingly. Likewise if the Intel STIBP
bit is set, set the AMD STIBP that's used for the generic hardware
capability.
Hide the rest from /proc/cpuinfo by putting "" in the comments. Including
RETPOLINE and RETPOLINE_AMD which shouldn't be visible there. There are
patches to make the sysfs vulnerabilities information non-readable by
non-root, and the same should apply to all information about which
mitigations are actually in use. Those *shouldn't* appear in /proc/cpuinfo.
The feature bit for whether IBPB is actually used, which is needed for
ALTERNATIVEs, is renamed to X86_FEATURE_USE_IBPB.
Originally-by: Borislav Petkov <bp@suse.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ak@linux.intel.com
Cc: dave.hansen@intel.com
Cc: karahmed@amazon.de
Cc: arjan@linux.intel.com
Cc: torvalds@linux-foundation.org
Cc: peterz@infradead.org
Cc: bp@alien8.de
Cc: pbonzini@redhat.com
Cc: tim.c.chen@linux.intel.com
Cc: gregkh@linux-foundation.org
Link: https://lkml.kernel.org/r/1517070274-12128-2-git-send-email-dwmw@amazon.co.uk
If sysfs is disabled and RETPOLINE not defined:
arch/x86/kernel/cpu/bugs.c:97:13: warning: ‘spectre_v2_bad_module’ defined but not used
[-Wunused-variable]
static bool spectre_v2_bad_module;
Hide it.
Fixes: caf7501a1b ("module/retpoline: Warn about missing retpoline in module")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
There's a risk that a kernel which has full retpoline mitigations becomes
vulnerable when a module gets loaded that hasn't been compiled with the
right compiler or the right option.
To enable detection of that mismatch at module load time, add a module info
string "retpoline" at build time when the module was compiled with
retpoline support. This only covers compiled C source, but assembler source
or prebuilt object files are not checked.
If a retpoline enabled kernel detects a non retpoline protected module at
load time, print a warning and report it in the sysfs vulnerability file.
[ tglx: Massaged changelog ]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: gregkh@linuxfoundation.org
Cc: torvalds@linux-foundation.org
Cc: jeyu@kernel.org
Cc: arjan@linux.intel.com
Link: https://lkml.kernel.org/r/20180125235028.31211-1-andi@firstfloor.org
Centaur CPU has a constant frequency TSC and that TSC does not stop in
C-States. But because the corresponding TSC feature flags are not set for
that CPU, the TSC is treated as not constant frequency and assumed to stop
in C-States, which makes it an unreliable and unusable clock source.
Setting those flags tells the kernel that the TSC is usable, so it will
select it over HPET. The effect of this is that reading time stamps (from
kernel or user space) will be faster and more efficent.
Signed-off-by: davidwang <davidwang@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: qiyuanwang@zhaoxin.com
Cc: linux-pm@vger.kernel.org
Cc: brucechang@via-alliance.com
Cc: cooperyan@zhaoxin.com
Cc: benjaminpan@viatech.com
Link: https://lkml.kernel.org/r/1516616057-5158-1-git-send-email-davidwang@zhaoxin.com
Commit 24c2503255 ("x86/microcode: Do not access the initrd after it has
been freed") fixed attempts to access initrd from the microcode loader
after it has been freed. However, a similar KASAN warning was reported
(stack trace edited):
smpboot: Booting Node 0 Processor 1 APIC 0x11
==================================================================
BUG: KASAN: use-after-free in find_cpio_data+0x9b5/0xa50
Read of size 1 at addr ffff880035ffd000 by task swapper/1/0
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.14.8-slack #7
Hardware name: System manufacturer System Product Name/A88X-PLUS, BIOS 3003 03/10/2016
Call Trace:
dump_stack
print_address_description
kasan_report
? find_cpio_data
__asan_report_load1_noabort
find_cpio_data
find_microcode_in_initrd
__load_ucode_amd
load_ucode_amd_ap
load_ucode_ap
After some investigation, it turned out that a merge was done using the
wrong side to resolve, leading to picking up the previous state, before
the 24c2503255 fix. Therefore the Fixes tag below contains a merge
commit.
Revert the mismerge by catching the save_microcode_in_initrd_amd()
retval and thus letting the function exit with the last return statement
so that initrd_gone can be set to true.
Fixes: f26483eaed ("Merge branch 'x86/urgent' into x86/microcode, to resolve conflicts")
Reported-by: <higuita@gmx.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=198295
Link: https://lkml.kernel.org/r/20180123104133.918-2-bp@alien8.de
Commit b94b737331 ("x86/microcode/intel: Extend BDW late-loading with a
revision check") reduced the impact of erratum BDF90 for Broadwell model
79.
The impact can be reduced further by checking the size of the last level
cache portion per core.
Tony: "The erratum says the problem only occurs on the large-cache SKUs.
So we only need to avoid the update if we are on a big cache SKU that is
also running old microcode."
For more details, see erratum BDF90 in document #334165 (Intel Xeon
Processor E7-8800/4800 v4 Product Family Specification Update) from
September 2017.
Fixes: b94b737331 ("x86/microcode/intel: Extend BDW late-loading with a revision check")
Signed-off-by: Jia Zhang <zhang.jia@linux.alibaba.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1516321542-31161-1-git-send-email-zhang.jia@linux.alibaba.com
Today 4 architectures set ARCH_SUPPORTS_MEMORY_FAILURE (arm64, parisc,
powerpc, and x86), while 4 other architectures set __ARCH_SI_TRAPNO
(alpha, metag, sparc, and tile). These two sets of architectures do
not interesect so remove the trapno paramater to remove confusion.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull x86 pti fixes from Thomas Gleixner:
"A small set of fixes for the meltdown/spectre mitigations:
- Make kprobes aware of retpolines to prevent probes in the retpoline
thunks.
- Make the machine check exception speculation protected. MCE used to
issue an indirect call directly from the ASM entry code. Convert
that to a direct call into a C-function and issue the indirect call
from there so the compiler can add the retpoline protection,
- Make the vmexit_fill_RSB() assembly less stupid
- Fix a typo in the PTI documentation"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retpoline: Optimize inline assembler for vmexit_fill_RSB
x86/pti: Document fix wrong index
kprobes/x86: Disable optimizing on the function jumps to indirect thunk
kprobes/x86: Blacklist indirect thunk functions for kprobes
retpoline: Introduce start/end markers of indirect thunk
x86/mce: Make machine check speculation protected
The machine check idtentry uses an indirect branch directly from the low
level code. This evades the speculation protection.
Replace it by a direct call into C code and issue the indirect call there
so the compiler can apply the proper speculation protection.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by:Borislav Petkov <bp@alien8.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Niced-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801181626290.1847@nanos
L2 CDP can be controlled by kernel parameter "rdt=".
If "rdt=l2cdp", L2 CDP is turned on.
If "rdt=!l2cdp", L2 CDP is turned off.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: Vikas" <vikas.shivappa@intel.com>
Cc: Sai Praneeth" <sai.praneeth.prakhya@intel.com>
Cc: Reinette" <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1513810644-78015-7-git-send-email-fenghua.yu@intel.com
Bit 0 in MSR IA32_L2_QOS_CFG (0xc82) is L2 CDP enable bit. By default,
the bit is zero, i.e. L2 CAT is enabled, and L2 CDP is disabled. When
the resctrl mount parameter "cdpl2" is given, the bit is set to 1 and L2
CDP is enabled.
In L2 CDP mode, the L2 CAT mask MSRs are re-mapped into interleaved pairs
of mask MSRs for code (referenced by an odd CLOSID) and data (referenced by
an even CLOSID).
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: Vikas" <vikas.shivappa@intel.com>
Cc: Sai Praneeth" <sai.praneeth.prakhya@intel.com>
Cc: Reinette" <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1513810644-78015-6-git-send-email-fenghua.yu@intel.com
L2 data and L2 code are added as new resources in rdt_resources_all[]
and data in the resources are configured.
When L2 CDP is enabled, the schemata will have the two resources in
this format:
L2DATA:l2id0=xxxx;l2id1=xxxx;....
L2CODE:l2id0=xxxx;l2id1=xxxx;....
xxxx represent CBM (Cache Bit Mask) values in the schemata, similar to all
others (L2 CAT/L3 CAT/L3 CDP).
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: Vikas" <vikas.shivappa@intel.com>
Cc: Sai Praneeth" <sai.praneeth.prakhya@intel.com>
Cc: Reinette" <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1513810644-78015-5-git-send-email-fenghua.yu@intel.com
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- A rather involved set of memory hardware encryption fixes to
support the early loading of microcode files via the initrd. These
are larger than what we normally take at such a late -rc stage, but
there are two mitigating factors: 1) much of the changes are
limited to the SME code itself 2) being able to early load
microcode has increased importance in the post-Meltdown/Spectre
era.
- An IRQ vector allocator fix
- An Intel RDT driver use-after-free fix
- An APIC driver bug fix/revert to make certain older systems boot
again
- A pkeys ABI fix
- TSC calibration fixes
- A kdump fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/vector: Fix off by one in error path
x86/intel_rdt/cqm: Prevent use after free
x86/mm: Encrypt the initrd earlier for BSP microcode update
x86/mm: Prepare sme_encrypt_kernel() for PAGE aligned encryption
x86/mm: Centralize PMD flags in sme_encrypt_kernel()
x86/mm: Use a struct to reduce parameters for SME PGD mapping
x86/mm: Clean up register saving in the __enc_copy() assembly code
x86/idt: Mark IDT tables __initconst
Revert "x86/apic: Remove init_bsp_APIC()"
x86/mm/pkeys: Fix fill_sig_info_pkey
x86/tsc: Print tsc_khz, when it differs from cpu_khz
x86/tsc: Fix erroneous TSC rate on Skylake Xeon
x86/tsc: Future-proof native_calibrate_tsc()
kdump: Write the correct address of mem_section into vmcoreinfo
Pull x86 pti bits and fixes from Thomas Gleixner:
"This last update contains:
- An objtool fix to prevent a segfault with the gold linker by
changing the invocation order. That's not just for gold, it's a
general robustness improvement.
- An improved error message for objtool which spares tearing hairs.
- Make KASAN fail loudly if there is not enough memory instead of
oopsing at some random place later
- RSB fill on context switch to prevent RSB underflow and speculation
through other units.
- Make the retpoline/RSB functionality work reliably for both Intel
and AMD
- Add retpoline to the module version magic so mismatch can be
detected
- A small (non-fix) update for cpufeatures which prevents cpu feature
clashing for the upcoming extra mitigation bits to ease
backporting"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
module: Add retpoline tag to VERMAGIC
x86/cpufeature: Move processor tracing out of scattered features
objtool: Improve error message for bad file argument
objtool: Fix seg fault with gold linker
x86/retpoline: Add LFENCE to the retpoline/RSB filling RSB macros
x86/retpoline: Fill RSB on context switch for affected CPUs
x86/kasan: Panic if there is not enough memory to boot
intel_rdt_iffline_cpu() -> domain_remove_cpu() frees memory first and then
proceeds accessing it.
BUG: KASAN: use-after-free in find_first_bit+0x1f/0x80
Read of size 8 at addr ffff883ff7c1e780 by task cpuhp/31/195
find_first_bit+0x1f/0x80
has_busy_rmid+0x47/0x70
intel_rdt_offline_cpu+0x4b4/0x510
Freed by task 195:
kfree+0x94/0x1a0
intel_rdt_offline_cpu+0x17d/0x510
Do the teardown first and then free memory.
Fixes: 24247aeeab ("x86/intel_rdt/cqm: Improve limbo list processing")
Reported-by: Joseph Salisbury <joseph.salisbury@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Peter Zilstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: "Roderick W. Smith" <rod.smith@canonical.com>
Cc: 1733662@bugs.launchpad.net
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801161957510.2366@nanos
Processor tracing is already enumerated in word 9 (CPUID[7,0].EBX),
so do not duplicate it in the scattered features word.
Besides being more tidy, this will be useful for KVM when it presents
processor tracing to the guests. KVM selects host features that are
supported by both the host kernel (depending on command line options,
CPU errata, or whatever) and KVM. Whenever a full feature word exists,
KVM's code is written in the expectation that the CPUID bit number
matches the X86_FEATURE_* bit number, but this is not the case for
X86_FEATURE_INTEL_PT.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Link: http://lkml.kernel.org/r/1516117345-34561-1-git-send-email-pbonzini@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This part of Secure Encrypted Virtualization (SEV) patch series focuses on KVM
changes required to create and manage SEV guests.
SEV is an extension to the AMD-V architecture which supports running encrypted
virtual machine (VMs) under the control of a hypervisor. Encrypted VMs have their
pages (code and data) secured such that only the guest itself has access to
unencrypted version. Each encrypted VM is associated with a unique encryption key;
if its data is accessed to a different entity using a different key the encrypted
guest's data will be incorrectly decrypted, leading to unintelligible data.
This security model ensures that hypervisor will no longer able to inspect or
alter any guest code or data.
The key management of this feature is handled by a separate processor known as
the AMD Secure Processor (AMD-SP) which is present on AMD SOCs. The SEV Key
Management Specification (see below) provides a set of commands which can be
used by hypervisor to load virtual machine keys through the AMD-SP driver.
The patch series adds a new ioctl in KVM driver (KVM_MEMORY_ENCRYPT_OP). The
ioctl will be used by qemu to issue SEV guest-specific commands defined in Key
Management Specification.
The following links provide additional details:
AMD Memory Encryption white paper:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
AMD64 Architecture Programmer's Manual:
http://support.amd.com/TechDocs/24593.pdf
SME is section 7.10
SEV is section 15.34
SEV Key Management:
http://support.amd.com/TechDocs/55766_SEV-KM API_Specification.pdf
KVM Forum Presentation:
http://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf
SEV Guest BIOS support:
SEV support has been add to EDKII/OVMF BIOS
https://github.com/tianocore/edk2
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On context switch from a shallow call stack to a deeper one, as the CPU
does 'ret' up the deeper side it may encounter RSB entries (predictions for
where the 'ret' goes to) which were populated in userspace.
This is problematic if neither SMEP nor KPTI (the latter of which marks
userspace pages as NX for the kernel) are active, as malicious code in
userspace may then be executed speculatively.
Overwrite the CPU's return prediction stack with calls which are predicted
to return to an infinite loop, to "capture" speculation if this
happens. This is required both for retpoline, and also in conjunction with
IBRS for !SMEP && !KPTI.
On Skylake+ the problem is slightly different, and an *underflow* of the
RSB may cause errant branch predictions to occur. So there it's not so much
overwrite, as *filling* the RSB to attempt to prevent it getting
empty. This is only a partial solution for Skylake+ since there are many
other conditions which may result in the RSB becoming empty. The full
solution on Skylake+ is to use IBRS, which will prevent the problem even
when the RSB becomes empty. With IBRS, the RSB-stuffing will not be
required on context switch.
[ tglx: Added missing vendor check and slighty massaged comments and
changelog ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk
The Jailhouse hypervisor is able to statically partition a multicore
system into multiple so-called cells. Linux is used as boot loader and
continues to run in the root cell after Jailhouse is enabled. Linux can
also run in non-root cells.
Jailhouse does not emulate usual x86 devices. It also provides no
complex ACPI but basic platform information that the boot loader
forwards via setup data. This adds the infrastructure to detect when
running in a non-root cell so that the platform can be configured as
required in succeeding steps.
Support is limited to x86-64 so far, primarily because no boot loader
stub exists for i386 and, thus, we wouldn't be able to test the 32-bit
path.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: jailhouse-dev@googlegroups.com
Link: https://lkml.kernel.org/r/7f823d077b38b1a70c526b40b403f85688c137d3.1511770314.git.jan.kiszka@siemens.com
Pull x86 pti updates from Thomas Gleixner:
"This contains:
- a PTI bugfix to avoid setting reserved CR3 bits when PCID is
disabled. This seems to cause issues on a virtual machine at least
and is incorrect according to the AMD manual.
- a PTI bugfix which disables the perf BTS facility if PTI is
enabled. The BTS AUX buffer is not globally visible and causes the
CPU to fault when the mapping disappears on switching CR3 to user
space. A full fix which restores BTS on PTI is non trivial and will
be worked on.
- PTI bugfixes for EFI and trusted boot which make sure that the user
space visible page table entries have the NX bit cleared
- removal of dead code in the PTI pagetable setup functions
- add PTI documentation
- add a selftest for vsyscall to verify that the kernel actually
implements what it advertises.
- a sysfs interface to expose vulnerability and mitigation
information so there is a coherent way for users to retrieve the
status.
- the initial spectre_v2 mitigations, aka retpoline:
+ The necessary ASM thunk and compiler support
+ The ASM variants of retpoline and the conversion of affected ASM
code
+ Make LFENCE serializing on AMD so it can be used as speculation
trap
+ The RSB fill after vmexit
- initial objtool support for retpoline
As I said in the status mail this is the most of the set of patches
which should go into 4.15 except two straight forward patches still on
hold:
- the retpoline add on of LFENCE which waits for ACKs
- the RSB fill after context switch
Both should be ready to go early next week and with that we'll have
covered the major holes of spectre_v2 and go back to normality"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
x86,perf: Disable intel_bts when PTI
security/Kconfig: Correct the Documentation reference for PTI
x86/pti: Fix !PCID and sanitize defines
selftests/x86: Add test_vsyscall
x86/retpoline: Fill return stack buffer on vmexit
x86/retpoline/irq32: Convert assembler indirect jumps
x86/retpoline/checksum32: Convert assembler indirect jumps
x86/retpoline/xen: Convert Xen hypercall indirect jumps
x86/retpoline/hyperv: Convert assembler indirect jumps
x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
x86/retpoline/entry: Convert entry assembler indirect jumps
x86/retpoline/crypto: Convert crypto assembler indirect jumps
x86/spectre: Add boot time option to select Spectre v2 mitigation
x86/retpoline: Add initial retpoline support
objtool: Allow alternatives to be ignored
objtool: Detect jumps to retpoline thunks
x86/pti: Make unpoison of pgd for trusted boot work for real
x86/alternatives: Fix optimize_nops() checking
sysfs/cpu: Fix typos in vulnerability documentation
x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
...
Add a spectre_v2= option to select the mitigation used for the indirect
branch speculation vulnerability.
Currently, the only option available is retpoline, in its various forms.
This will be expanded to cover the new IBRS/IBPB microcode features.
The RETPOLINE_AMD feature relies on a serializing LFENCE for speculation
control. For AMD hardware, only set RETPOLINE_AMD if LFENCE is a
serializing instruction, which is indicated by the LFENCE_RDTSC feature.
[ tglx: Folded back the LFENCE/AMD fixes and reworked it so IBRS
integration becomes simple ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515707194-20531-5-git-send-email-dwmw@amazon.co.uk
Enable the use of -mindirect-branch=thunk-extern in newer GCC, and provide
the corresponding thunks. Provide assembler macros for invoking the thunks
in the same way that GCC does, from native and inline assembler.
This adds X86_FEATURE_RETPOLINE and sets it by default on all CPUs. In
some circumstances, IBRS microcode features may be used instead, and the
retpoline can be disabled.
On AMD CPUs if lfence is serialising, the retpoline can be dramatically
simplified to a simple "lfence; jmp *\reg". A future patch, after it has
been verified that lfence really is serialising in all circumstances, can
enable this by setting the X86_FEATURE_RETPOLINE_AMD feature bit in addition
to X86_FEATURE_RETPOLINE.
Do not align the retpoline in the altinstr section, because there is no
guarantee that it stays aligned when it's copied over the oldinstr during
alternative patching.
[ Andi Kleen: Rename the macros, add CONFIG_RETPOLINE option, export thunks]
[ tglx: Put actual function CALL/JMP in front of the macros, convert to
symbolic labels ]
[ dwmw2: Convert back to numeric labels, merge objtool fixes ]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515707194-20531-4-git-send-email-dwmw@amazon.co.uk
With LFENCE now a serializing instruction, use LFENCE_RDTSC in preference
to MFENCE_RDTSC. However, since the kernel could be running under a
hypervisor that does not support writing that MSR, read the MSR back and
verify that the bit has been set successfully. If the MSR can be read
and the bit is set, then set the LFENCE_RDTSC feature, otherwise set the
MFENCE_RDTSC feature.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/20180108220932.12580.52458.stgit@tlendack-t1.amdoffice.net
To aid in speculation control, make LFENCE a serializing instruction
since it has less overhead than MFENCE. This is done by setting bit 1
of MSR 0xc0011029 (DE_CFG). Some families that support LFENCE do not
have this MSR. For these families, the LFENCE instruction is already
serializing.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/20180108220921.12580.71694.stgit@tlendack-t1.amdoffice.net
Implement the CPU vulnerabilty show functions for meltdown, spectre_v1 and
spectre_v2.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linuxfoundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180107214913.177414879@linutronix.de
Add the bug bits for spectre v1/2 and force them unconditionally for all
cpus.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1515239374-23361-2-git-send-email-dwmw@amazon.co.uk
Instead of blacklisting all model 79 CPUs when attempting a late
microcode loading, limit that only to CPUs with microcode revisions <
0x0b000021 because only on those late loading may cause a system hang.
For such processors either:
a) a BIOS update which might contain a newer microcode revision
or
b) the early microcode loading method
should be considered.
Processors with revisions 0x0b000021 or higher will not experience such
hangs.
For more details, see erratum BDF90 in document #334165 (Intel Xeon
Processor E7-8800/4800 v4 Product Family Specification Update) from
September 2017.
[ bp: Heavily massage commit message and pr_* statements. ]
Fixes: 723f2828a9 ("x86/microcode/intel: Disable late loading on model 79")
Signed-off-by: Jia Zhang <qianyue.zj@alibaba-inc.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Cc: <stable@vger.kernel.org> # v4.14
Link: http://lkml.kernel.org/r/1514772287-92959-1-git-send-email-qianyue.zj@alibaba-inc.com
Pull more x86 pti fixes from Thomas Gleixner:
"Another small stash of fixes for fallout from the PTI work:
- Fix the modules vs. KASAN breakage which was caused by making
MODULES_END depend of the fixmap size. That was done when the cpu
entry area moved into the fixmap, but now that we have a separate
map space for that this is causing more issues than it solves.
- Use the proper cache flush methods for the debugstore buffers as
they are mapped/unmapped during runtime and not statically mapped
at boot time like the rest of the cpu entry area.
- Make the map layout of the cpu_entry_area consistent for 4 and 5
level paging and fix the KASLR vaddr_end wreckage.
- Use PER_CPU_EXPORT for per cpu variable and while at it unbreak
nvidia gfx drivers by dropping the GPL export. The subject line of
the commit tells it the other way around, but I noticed that too
late.
- Fix the ASM alternative macros so they can be used in the middle of
an inline asm block.
- Rename the BUG_CPU_INSECURE flag to BUG_CPU_MELTDOWN so the attack
vector is properly identified. The Spectre mitigations will come
with their own bug bits later"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pti: Rename BUG_CPU_INSECURE to BUG_CPU_MELTDOWN
x86/alternatives: Add missing '\n' at end of ALTERNATIVE inline asm
x86/tlb: Drop the _GPL from the cpu_tlbstate export
x86/events/intel/ds: Use the proper cache flush method for mapping ds buffers
x86/kaslr: Fix the vaddr_end mess
x86/mm: Map cpu_entry_area at the same place on 4/5 level
x86/mm: Set MODULES_END to 0xffffffffff000000
Use the name associated with the particular attack which needs page table
isolation for mitigation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Cc: Jiri Koshina <jikos@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Lutomirski <luto@amacapital.net>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Greg KH <gregkh@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801051525300.1724@nanos
print_symbol() is a very old API that has been obsoleted by %pS format
specifier in a normal printk() call.
Replace print_symbol() with a direct printk("%pS") call and correctly
handle continuous lines.
Link: http://lkml.kernel.org/r/20171211125025.2270-9-sergey.senozhatsky@gmail.com
To: Andrew Morton <akpm@linux-foundation.org>
To: Russell King <linux@armlinux.org.uk>
To: Catalin Marinas <catalin.marinas@arm.com>
To: Mark Salter <msalter@redhat.com>
To: Tony Luck <tony.luck@intel.com>
To: David Howells <dhowells@redhat.com>
To: Yoshinori Sato <ysato@users.sourceforge.jp>
To: Guan Xuetao <gxt@mprc.pku.edu.cn>
To: Borislav Petkov <bp@alien8.de>
To: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
To: Thomas Gleixner <tglx@linutronix.de>
To: Peter Zijlstra <peterz@infradead.org>
To: Vineet Gupta <vgupta@synopsys.com>
To: Fengguang Wu <fengguang.wu@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: LKML <linux-kernel@vger.kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-am33-list@redhat.com
Cc: linux-sh@vger.kernel.org
Cc: linux-edac@vger.kernel.org
Cc: x86@kernel.org
Cc: linux-snps-arc@lists.infradead.org
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Borislav Petkov <bp@suse.de> # mce.c part
[pmladek@suse.com: updated commit message]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Pull x86 page table isolation fixes from Thomas Gleixner:
"A couple of urgent fixes for PTI:
- Fix a PTE mismatch between user and kernel visible mapping of the
cpu entry area (differs vs. the GLB bit) and causes a TLB mismatch
MCE on older AMD K8 machines
- Fix the misplaced CR3 switch in the SYSCALL compat entry code which
causes access to unmapped kernel memory resulting in double faults.
- Fix the section mismatch of the cpu_tss_rw percpu storage caused by
using a different mechanism for declaration and definition.
- Two fixes for dumpstack which help to decode entry stack issues
better
- Enable PTI by default in Kconfig. We should have done that earlier,
but it slipped through the cracks.
- Exclude AMD from the PTI enforcement. Not necessarily a fix, but if
AMD is so confident that they are not affected, then we should not
burden users with the overhead"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/process: Define cpu_tss_rw in same section as declaration
x86/pti: Switch to kernel CR3 at early in entry_SYSCALL_compat()
x86/dumpstack: Print registers for first stack frame
x86/dumpstack: Fix partial register dumps
x86/pti: Make sure the user/kernel PTEs match
x86/cpu, x86/pti: Do not enable PTI on AMD processors
x86/pti: Enable PTI by default
AMD processors are not subject to the types of attacks that the kernel
page table isolation feature protects against. The AMD microarchitecture
does not allow memory references, including speculative references, that
access higher privileged data when running in a lesser privileged mode
when that access would result in a page fault.
Disable page table isolation by default on AMD processors by not setting
the X86_BUG_CPU_INSECURE feature, which controls whether X86_FEATURE_PTI
is set.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20171227054354.20369.94587.stgit@tlendack-t1.amdoffice.net
Pull x86 page table isolation updates from Thomas Gleixner:
"This is the final set of enabling page table isolation on x86:
- Infrastructure patches for handling the extra page tables.
- Patches which map the various bits and pieces which are required to
get in and out of user space into the user space visible page
tables.
- The required changes to have CR3 switching in the entry/exit code.
- Optimizations for the CR3 switching along with documentation how
the ASID/PCID mechanism works.
- Updates to dump pagetables to cover the user space page tables for
W+X scans and extra debugfs files to analyze both the kernel and
the user space visible page tables
The whole functionality is compile time controlled via a config switch
and can be turned on/off on the command line as well"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/ldt: Make the LDT mapping RO
x86/mm/dump_pagetables: Allow dumping current pagetables
x86/mm/dump_pagetables: Check user space page table for WX pages
x86/mm/dump_pagetables: Add page table directory to the debugfs VFS hierarchy
x86/mm/pti: Add Kconfig
x86/dumpstack: Indicate in Oops whether PTI is configured and enabled
x86/mm: Clarify the whole ASID/kernel PCID/user PCID naming
x86/mm: Use INVPCID for __native_flush_tlb_single()
x86/mm: Optimize RESTORE_CR3
x86/mm: Use/Fix PCID to optimize user/kernel switches
x86/mm: Abstract switching CR3
x86/mm: Allow flushing for future ASID switches
x86/pti: Map the vsyscall page if needed
x86/pti: Put the LDT in its own PGD if PTI is on
x86/mm/64: Make a full PGD-entry size hole in the memory map
x86/events/intel/ds: Map debug buffers in cpu_entry_area
x86/cpu_entry_area: Add debugstore entries to cpu_entry_area
x86/mm/pti: Map ESPFIX into user space
x86/mm/pti: Share entry text PMD
x86/entry: Align entry text section to PMD boundary
...
Force the entry through the trampoline only when PTI is active. Otherwise
go through the normal entry code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many x86 CPUs leak information to user space due to missing isolation of
user space and kernel space page tables. There are many well documented
ways to exploit that.
The upcoming software migitation of isolating the user and kernel space
page tables needs a misfeature flag so code can be made runtime
conditional.
Add the BUG bits which indicates that the CPU is affected and add a feature
bit which indicates that the software migitation is enabled.
Assume for now that _ALL_ x86 CPUs are affected by this. Exceptions can be
made later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 PTI preparatory patches from Thomas Gleixner:
"Todays Advent calendar window contains twentyfour easy to digest
patches. The original plan was to have twenty three matching the date,
but a late fixup made that moot.
- Move the cpu_entry_area mapping out of the fixmap into a separate
address space. That's necessary because the fixmap becomes too big
with NRCPUS=8192 and this caused already subtle and hard to
diagnose failures.
The top most patch is fresh from today and cures a brain slip of
that tall grumpy german greybeard, who ignored the intricacies of
32bit wraparounds.
- Limit the number of CPUs on 32bit to 64. That's insane big already,
but at least it's small enough to prevent address space issues with
the cpu_entry_area map, which have been observed and debugged with
the fixmap code
- A few TLB flush fixes in various places plus documentation which of
the TLB functions should be used for what.
- Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for
more than sysenter now and keeping the name makes backtraces
confusing.
- Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(),
which is only invoked on fork().
- Make vysycall more robust.
- A few fixes and cleanups of the debug_pagetables code. Check
PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the
C89 initialization of the address hint array which already was out
of sync with the index enums.
- Move the ESPFIX init to a different place to prepare for PTI.
- Several code moves with no functional change to make PTI
integration simpler and header files less convoluted.
- Documentation fixes and clarifications"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit
init: Invoke init_espfix_bsp() from mm_init()
x86/cpu_entry_area: Move it out of the fixmap
x86/cpu_entry_area: Move it to a separate unit
x86/mm: Create asm/invpcid.h
x86/mm: Put MMU to hardware ASID translation in one place
x86/mm: Remove hard-coded ASID limit checks
x86/mm: Move the CR3 construction functions to tlbflush.h
x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what
x86/mm: Remove superfluous barriers
x86/mm: Use __flush_tlb_one() for kernel memory
x86/microcode: Dont abuse the TLB-flush interface
x86/uv: Use the right TLB-flush API
x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack
x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation
x86/mm/64: Improve the memory map documentation
x86/ldt: Prevent LDT inheritance on exec
x86/ldt: Rework locking
arch, mm: Allow arch_dup_mmap() to fail
x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
...
Separate the cpu_entry_area code out of cpu/common.c and the fixmap.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
ec400ddeff ("x86/microcode_intel_early.c: Early update ucode on Intel's CPU")
... grubbed into tlbflush internals without coherent explanation.
Since it says its a precaution and the SDM doesn't mention anything like
this, take it out back.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: fenghua.yu@intel.com
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If the kernel oopses while on the trampoline stack, it will print
"<SYSENTER>" even if SYSENTER is not involved. That is rather confusing.
The "SYSENTER" stack is used for a lot more than SYSENTER now. Give it a
better string to display in stack dumps, and rename the kernel code to
match.
Also move the 32-bit code over to the new naming even though it still uses
the entry stack only for SYSENTER.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 syscall entry code changes for PTI from Ingo Molnar:
"The main changes here are Andy Lutomirski's changes to switch the
x86-64 entry code to use the 'per CPU entry trampoline stack'. This,
besides helping fix KASLR leaks (the pending Page Table Isolation
(PTI) work), also robustifies the x86 entry code"
* 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
x86/cpufeatures: Make CPU bugs sticky
x86/paravirt: Provide a way to check for hypervisors
x86/paravirt: Dont patch flush_tlb_single
x86/entry/64: Make cpu_entry_area.tss read-only
x86/entry: Clean up the SYSENTER_stack code
x86/entry/64: Remove the SYSENTER stack canary
x86/entry/64: Move the IST stacks into struct cpu_entry_area
x86/entry/64: Create a per-CPU SYSCALL entry trampoline
x86/entry/64: Return to userspace from the trampoline stack
x86/entry/64: Use a per-CPU trampoline stack for IDT entries
x86/espfix/64: Stop assuming that pt_regs is on the entry stack
x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0
x86/entry: Remap the TSS into the CPU entry area
x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct
x86/dumpstack: Handle stack overflow on all stacks
x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss
x86/kasan/64: Teach KASAN about the cpu_entry_area
x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area
x86/entry/gdt: Put per-CPU GDT remaps in ascending order
x86/dumpstack: Add get_stack_info() support for the SYSENTER stack
...
AMD systems may log Deferred errors. These are errors that are uncorrected
but which do not need immediate action. The MCA_STATUS[UC] bit may not be
set for Deferred errors.
Flag the error as not correctable when MCA_STATUS[Deferred] is set and
do not feed it into the Correctable Errors Collector.
[ bp: Massage commit message. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171212165143.27475-1-Yazen.Ghannam@amd.com
The MCA_STATUS[ErrorCodeExt] field is very bank type specific.
We currently check if the ErrorCodeExt value is 0x0 or 0x8 in
mce_is_memory_error(), but we don't check the bank number. This means
that we could flag non-memory errors as memory errors.
We know that we want to flag DRAM ECC errors as memory errors, so let's do
those cases first. We can add more cases later when needed.
Define a wrapper function in mce_amd.c so we can use SMCA enums.
[ bp: Remove brackets around return statements. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171207203955.118171-2-Yazen.Ghannam@amd.com
Scalable MCA systems have various types of banks. The bank's type
can determine how we handle errors from it. For example, if a bank
represents a UMC (Unified Memory Controller) then we will need to
convert its address from a normalized address to a system physical
address before handling the error.
[ bp: Verify m->bank is within range and use bank pointer. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171207203955.118171-1-Yazen.Ghannam@amd.com
There is currently no way to force CPU bug bits like CPU feature bits. That
makes it impossible to set a bug bit once at boot and have it stick for all
upcoming CPUs.
Extend the force set/clear arrays to handle bug bits as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.992156574@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The TSS is a fairly juicy target for exploits, and, now that the TSS
is in the cpu_entry_area, it's no longer protected by kASLR. Make it
read-only on x86_64.
On x86_32, it can't be RO because it's written by the CPU during task
switches, and we use a task gate for double faults. I'd also be
nervous about errata if we tried to make it RO even on configurations
without double fault handling.
[ tglx: AMD confirmed that there is no problem on 64-bit with TSS RO. So
it's probably safe to assume that it's a non issue, though Intel
might have been creative in that area. Still waiting for
confirmation. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.733700132@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The existing code was a mess, mainly because C arrays are nasty. Turn
SYSENTER_stack into a struct, add a helper to find it, and do all the
obvious cleanups this enables.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.653244723@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The IST stacks are needed when an IST exception occurs and are accessed
before any kernel code at all runs. Move them into struct cpu_entry_area.
The IST stacks are unlike the rest of cpu_entry_area: they're used even for
entries from kernel mode. This means that they should be set up before we
load the final IDT. Move cpu_entry_area setup to trap_init() for the boot
CPU and set it up for all possible CPUs at once in native_smp_prepare_cpus().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.480598743@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Handling SYSCALL is tricky: the SYSCALL handler is entered with every
single register (except FLAGS), including RSP, live. It somehow needs
to set RSP to point to a valid stack, which means it needs to save the
user RSP somewhere and find its own stack pointer. The canonical way
to do this is with SWAPGS, which lets us access percpu data using the
%gs prefix.
With PAGE_TABLE_ISOLATION-like pagetable switching, this is
problematic. Without a scratch register, switching CR3 is impossible, so
%gs-based percpu memory would need to be mapped in the user pagetables.
Doing that without information leaks is difficult or impossible.
Instead, use a different sneaky trick. Map a copy of the first part
of the SYSCALL asm at a different address for each CPU. Now RIP
varies depending on the CPU, so we can use RIP-relative memory access
to access percpu memory. By putting the relevant information (one
scratch slot and the stack address) at a constant offset relative to
RIP, we can make SYSCALL work without relying on %gs.
A nice thing about this approach is that we can easily switch it on
and off if we want pagetable switching to be configurable.
The compat variant of SYSCALL doesn't have this problem in the first
place -- there are plenty of scratch registers, since we don't care
about preserving r8-r15. This patch therefore doesn't touch SYSCALL32
at all.
This patch actually seems to be a small speedup. With this patch,
SYSCALL touches an extra cache line and an extra virtual page, but
the pipeline no longer stalls waiting for SWAPGS. It seems that, at
least in a tight loop, the latter outweights the former.
Thanks to David Laight for an optimization tip.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.403607157@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Historically, IDT entries from usermode have always gone directly
to the running task's kernel stack. Rearrange it so that we enter on
a per-CPU trampoline stack and then manually switch to the task's stack.
This touches a couple of extra cachelines, but it gives us a chance
to run some code before we touch the kernel stack.
The asm isn't exactly beautiful, but I think that fully refactoring
it can wait.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.225330557@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This has a secondary purpose: it puts the entry stack into a region
with a well-controlled layout. A subsequent patch will take
advantage of this to streamline the SYSCALL entry code to be able to
find it more easily.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.962042855@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
SYSENTER_stack should have reliable overflow detection, which
means that it needs to be at the bottom of a page, not the top.
Move it to the beginning of struct tss_struct and page-align it.
Also add an assertion to make sure that the fixed hardware TSS
doesn't cross a page boundary.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.881827433@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A future patch will move SYSENTER_stack to the beginning of cpu_tss
to help detect overflow. Before this can happen, fix several code
paths that hardcode assumptions about the old layout.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.722425540@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the GDT is an ad-hoc array of pages, one per CPU, in the
fixmap. Generalize it to be an array of a new 'struct cpu_entry_area'
so that we can cleanly add new things to it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.563271721@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This will simplify future changes that want scratch variables early in
the SYSENTER handler -- they'll be able to spill registers to the
stack. It also lets us get rid of a SWAPGS_UNSAFE_STACK user.
This does not depend on CONFIG_IA32_EMULATION=y because we'll want the
stack space even without IA32 emulation.
As far as I can tell, the reason that this wasn't done from day 1 is
that we use IST for #DB and #BP, which is IMO rather nasty and causes
a lot more problems than it solves. But, since #DB uses IST, we don't
actually need a real stack for SYSENTER (because SYSENTER with TF set
will invoke #DB on the IST stack rather than the SYSENTER stack).
I want to remove IST usage from these vectors some day, and this patch
is a prerequisite for that as well.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.312726423@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[ Note, this is a Git cherry-pick of the following commit:
2b67799bdf25 ("x86: Make X86_BUG_FXSAVE_LEAK detectable in CPUID on AMD")
... for easier x86 PTI code testing and back-porting. ]
The latest AMD AMD64 Architecture Programmer's Manual
adds a CPUID feature XSaveErPtr (CPUID_Fn80000008_EBX[2]).
If this feature is set, the FXSAVE, XSAVE, FXSAVEOPT, XSAVEC, XSAVES
/ FXRSTOR, XRSTOR, XRSTORS always save/restore error pointers,
thus making the X86_BUG_FXSAVE_LEAK workaround obsolete on such CPUs.
Signed-Off-By: Rudolf Marek <r.marek@assembler.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/bdcebe90-62c5-1f05-083c-eba7f08b2540@assembler.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull misc x86 fixes from Ingo Molnar:
- make CR4 handling irq-safe, which bug vmware guests ran into
- don't crash on early IRQs in Xen guests
- don't crash secondary CPU bringup if #UD assisted WARN()ings are
triggered
- make X86_BUG_FXSAVE_LEAK optional on newer AMD CPUs that have the fix
- fix AMD Fam17h microcode loading
- fix broadcom_postcore_init() if ACPI is disabled
- fix resume regression in __restore_processor_context()
- fix Sparse warnings
- fix a GCC-8 warning
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Change time() prototype to match __vdso_time()
x86: Fix Sparse warnings about non-static functions
x86/power: Fix some ordering bugs in __restore_processor_context()
x86/PCI: Make broadcom_postcore_init() check acpi_disabled
x86/microcode/AMD: Add support for fam17h microcode loading
x86/cpufeatures: Make X86_BUG_FXSAVE_LEAK detectable in CPUID on AMD
x86/idt: Load idt early in start_secondary
x86/xen: Support early interrupts in xen pv guests
x86/tlb: Disable interrupts when changing CR4
x86/tlb: Refactor CR4 setting and shadow write
The size for the Microcode Patch Block (MPB) for an AMD family 17h
processor is 3200 bytes. Add a #define for fam17h so that it does
not default to 2048 bytes and fail a microcode load/update.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20171130224640.15391.40247.stgit@tlendack-t1.amdoffice.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The latest AMD AMD64 Architecture Programmer's Manual
adds a CPUID feature XSaveErPtr (CPUID_Fn80000008_EBX[2]).
If this feature is set, the FXSAVE, XSAVE, FXSAVEOPT, XSAVEC, XSAVES
/ FXRSTOR, XRSTOR, XRSTORS always save/restore error pointers,
thus making the X86_BUG_FXSAVE_LEAK workaround obsolete on such CPUs.
Signed-off-by: Rudolf Marek <r.marek@assembler.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Tested-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: https://lkml.kernel.org/r/bdcebe90-62c5-1f05-083c-eba7f08b2540@assembler.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The McaIntrCfg register (MSRC000_0410), previously known as CU_DEFER_ERR,
is used on SMCA systems to set the LVT offset for the Threshold and
Deferred error interrupts.
This register was used on non-SMCA systems to also set the Deferred
interrupt type in bits 2:1. However, these bits are reserved on SMCA
systems.
Only set MSRC000_0410[2:1] on non-SMCA systems.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20171120162646.5210-1-Yazen.Ghannam@amd.com
According to the Intel SDM Volume 3B (253669-063US, July 2017), action
optional (SRAO) errors can be reported either via MCE or CMC:
In cases when SRAO is signaled via CMCI the error signature is
indicated via UC=1, PCC=0, S=0.
Type(*1) UC EN PCC S AR Signaling
---------------------------------------------------------------
UC 1 1 1 x x MCE
SRAR 1 1 0 1 1 MCE
SRAO 1 x(*2) 0 x(*2) 0 MCE/CMC
UCNA 1 x 0 0 0 CMC
CE 0 x x x x CMC
NOTES:
1. SRAR, SRAO and UCNA errors are supported by the processor only
when IA32_MCG_CAP[24] (MCG_SER_P) is set.
2. EN=1, S=1 when signaled via MCE. EN=x, S=0 when signaled via CMC.
And there is a description in 15.6.2 UCR Error Reporting and Logging, for
bit S:
S (Signaling) flag, bit 56 - Indicates (when set) that a machine check
exception was generated for the UCR error reported in this MC bank...
When the S flag in the IA32_MCi_STATUS register is clear, this UCR error
was not signaled via a machine check exception and instead was reported
as a corrected machine check (CMC).
So merge the two cases and just remove the S=0 check for SRAO in
mce_severity().
[ Borislav: Massage commit message.]
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Chen Wei <chenwei68@huawei.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1511575548-41992-1-git-send-email-xiexiuqi@huawei.com
Update the CPU features to include identifying and reporting on the
Secure Encrypted Virtualization (SEV) feature. SEV is identified by
CPUID 0x8000001f, but requires BIOS support to enable it (set bit 23 of
MSR_K8_SYSCFG and set bit 0 of MSR_K7_HWCR). Only show the SEV feature
as available if reported by CPUID and enabled by BIOS.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: kvm@vger.kernel.org
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Pull misc x86 fixes from Ingo Molnar:
- topology enumeration fixes
- KASAN fix
- two entry fixes (not yet the big series related to KASLR)
- remove obsolete code
- instruction decoder fix
- better /dev/mem sanity checks, hopefully working better this time
- pkeys fixes
- two ACPI fixes
- 5-level paging related fixes
- UMIP fixes that should make application visible faults more debuggable
- boot fix for weird virtualization environment
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
x86/decoder: Add new TEST instruction pattern
x86/PCI: Remove unused HyperTransport interrupt support
x86/umip: Fix insn_get_code_seg_params()'s return value
x86/boot/KASLR: Remove unused variable
x86/entry/64: Add missing irqflags tracing to native_load_gs_index()
x86/mm/kasan: Don't use vmemmap_populate() to initialize shadow
x86/entry/64: Fix entry_SYSCALL_64_after_hwframe() IRQ tracing
x86/pkeys/selftests: Fix protection keys write() warning
x86/pkeys/selftests: Rename 'si_pkey' to 'siginfo_pkey'
x86/mpx/selftests: Fix up weird arrays
x86/pkeys: Update documentation about availability
x86/umip: Print a warning into the syslog if UMIP-protected instructions are used
x86/smpboot: Fix __max_logical_packages estimate
x86/topology: Avoid wasting 128k for package id array
perf/x86/intel/uncore: Cache logical pkg id in uncore driver
x86/acpi: Reduce code duplication in mp_override_legacy_irq()
x86/acpi: Handle SCI interrupts above legacy space gracefully
x86/boot: Fix boot failure when SMP MP-table is based at 0
x86/mm: Limit mmap() of /dev/mem to valid physical addresses
x86/selftests: Add test for mapping placement for 5-level paging
...
This is the change making /proc/cpuinfo on x86 report current
CPU frequency in "cpu MHz" again in all cases and an additional
one dealing with an overzealous check in one of the helper
routines in the runtime PM framework.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJaDvBIAAoJEILEb/54YlRxZ58QAJP6p53XDcml8Risw9CrpnZV
6kBdFTYn6JSJiE4cALTER14ScqHQdTP2M6QJPDDLV5LwiQFa5fJYsSNP7F1Dpg4r
8V3QNZbBjpyc8rSGRUkjY7+WsvUUb2UWzEkLIUjOWIT4mfC969JxV/fBYEL7ZDn9
Wg7q79qI5Tss9PU2GUmaFtdkR0lqUIdNrrWe+qyLl0XHkrmU8DGL4XkPykdkwX0L
gn0i/RrK+5DBUVPR1qQTU2CO3751IdIDktpK3RLmWl/yb4TqlM4WKIhIZvvglc2g
S+OWGg/E4CNU6/EcGllNCPENAH7v0FNvvLMslPs6ao+wGQBcgO4R5d70dzobph/i
P1ns6iJbd+lgRlGSQBReVo/FWcwi4HrINRxAB4W88dBBxchHdt+G3/Juq6GiGEJi
mOh3ZHWd0J3mQEIWLKEcm5nHwIeY9yhCFJIpr5azte7JIz1fDuMnnp2gYl1SOVCK
CHv0uD8Mw7hQFC0Dzje8T0Hr29MBwpEJiXE4Eh+Fp4zWiI7BYd1TNtp5WPDtchhv
weqFqgDArN5gpkrZuSsxxg8eeRRwPeQR/mCyxofmsQ5lplCVJi8Ieqcf/KZrCy/c
1vHGJsn9ec2dNeQKTFFT5luznQSSSXoZCXprumFuTp2804E3Hpkf/UnAldc4EYSn
SwzAOO3gNA76eaFikvTK
=h6Ux
-----END PGP SIGNATURE-----
Merge tag 'pm-fixes-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull two power management fixes from Rafael Wysocki:
"This is the change making /proc/cpuinfo on x86 report current CPU
frequency in "cpu MHz" again in all cases and an additional one
dealing with an overzealous check in one of the helper routines in the
runtime PM framework"
* tag 'pm-fixes-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
PM / runtime: Drop children check from __pm_runtime_set_status()
x86 / CPU: Always show current CPU frequency in /proc/cpuinfo
After commit 890da9cf09 (Revert "x86: do not use cpufreq_quick_get()
for /proc/cpuinfo "cpu MHz"") the "cpu MHz" number in /proc/cpuinfo
on x86 can be either the nominal CPU frequency (which is constant)
or the frequency most recently requested by a scaling governor in
cpufreq, depending on the cpufreq configuration. That is somewhat
inconsistent and is different from what it was before 4.13, so in
order to restore the previous behavior, make it report the current
CPU frequency like the scaling_cur_freq sysfs file in cpufreq.
To that end, modify the /proc/cpuinfo implementation on x86 to use
aperfmperf_snapshot_khz() to snapshot the APERF and MPERF feedback
registers, if available, and use their values to compute the CPU
frequency to be reported as "cpu MHz".
However, do that carefully enough to avoid accumulating delays that
lead to unacceptable access times for /proc/cpuinfo on systems with
many CPUs. Run aperfmperf_snapshot_khz() once on all CPUs
asynchronously at the /proc/cpuinfo open time, add a single delay
upfront (if necessary) at that point and simply compute the current
frequency while running show_cpuinfo() for each individual CPU.
Also, to avoid slowing down /proc/cpuinfo accesses too much, reduce
the default delay between consecutive APERF and MPERF reads to 10 ms,
which should be sufficient to get large enough numbers for the
frequency computation in all cases.
Fixes: 890da9cf09 (Revert "x86: do not use cpufreq_quick_get() for /proc/cpuinfo "cpu MHz"")
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Even though aperfmperf_snapshot_khz() caches the samples.khz value to
return if called again in a sufficiently short time, its caller,
arch_freq_get_on_cpu(), still uses smp_call_function_single() to run it
which may allow user space to trigger an IPI storm by reading from the
scaling_cur_freq cpufreq sysfs file in a tight loop.
To avoid that, move the decision on whether or not to return the cached
samples.khz value to arch_freq_get_on_cpu().
This change was part of commit 941f5f0f6e ("x86: CPU: Fix up "cpu MHz"
in /proc/cpuinfo"), but it was not the reason for the revert and it
remains applicable.
Fixes: 4815d3c56d (cpufreq: x86: Make scaling_cur_freq behave more as expected)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 cache resource updates from Thomas Gleixner:
"This update provides updates to RDT:
- A diagnostic framework for the Resource Director Technology (RDT)
user interface (sysfs). The failure modes of the user interface are
hard to diagnose from the error codes. An extra last command status
file provides now sensible textual information about the failure so
its simpler to use.
- A few minor cleanups and updates in the RDT code"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt: Fix a silent failure when writing zero value schemata
x86/intel_rdt: Fix potential deadlock during resctrl mount
x86/intel_rdt: Fix potential deadlock during resctrl unmount
x86/intel_rdt: Initialize bitmask of shareable resource if CDP enabled
x86/intel_rdt: Remove redundant assignment
x86/intel_rdt/cqm: Make integer rmid_limbo_count static
x86/intel_rdt: Add documentation for "info/last_cmd_status"
x86/intel_rdt: Add diagnostics when making directories
x86/intel_rdt: Add diagnostics when writing the cpus file
x86/intel_rdt: Add diagnostics when writing the tasks file
x86/intel_rdt: Add diagnostics when writing the schemata file
x86/intel_rdt: Add framework for better RDT UI diagnostics
Pull x86 platform updates from Ingo Molnar:
"The main changes in this cycle were:
- a refactoring of the early virt init code by merging 'struct
x86_hyper' into 'struct x86_platform' and 'struct x86_init', which
allows simplifications and also the addition of a new
->guest_late_init() callback. (Juergen Gross)
- timer_setup() conversion of the UV code (Kees Cook)"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/virt/xen: Use guest_late_init to detect Xen PVH guest
x86/virt, x86/platform: Add ->guest_late_init() callback to hypervisor_x86 structure
x86/virt, x86/acpi: Add test for ACPI_FADT_NO_VGA
x86/virt: Add enum for hypervisors to replace x86_hyper
x86/virt, x86/platform: Merge 'struct x86_hyper' into 'struct x86_platform' and 'struct x86_init'
x86/platform/UV: Convert timers to use timer_setup()
Pull x86 core updates from Ingo Molnar:
"Note that in this cycle most of the x86 topics interacted at a level
that caused them to be merged into tip:x86/asm - but this should be a
temporary phenomenon, hopefully we'll back to the usual patterns in
the next merge window.
The main changes in this cycle were:
Hardware enablement:
- Add support for the Intel UMIP (User Mode Instruction Prevention)
CPU feature. This is a security feature that disables certain
instructions such as SGDT, SLDT, SIDT, SMSW and STR. (Ricardo Neri)
[ Note that this is disabled by default for now, there are some
smaller enhancements in the pipeline that I'll follow up with in
the next 1-2 days, which allows this to be enabled by default.]
- Add support for the AMD SEV (Secure Encrypted Virtualization) CPU
feature, on top of SME (Secure Memory Encryption) support that was
added in v4.14. (Tom Lendacky, Brijesh Singh)
- Enable new SSE/AVX/AVX512 CPU features: AVX512_VBMI2, GFNI, VAES,
VPCLMULQDQ, AVX512_VNNI, AVX512_BITALG. (Gayatri Kammela)
Other changes:
- A big series of entry code simplifications and enhancements (Andy
Lutomirski)
- Make the ORC unwinder default on x86 and various objtool
enhancements. (Josh Poimboeuf)
- 5-level paging enhancements (Kirill A. Shutemov)
- Micro-optimize the entry code a bit (Borislav Petkov)
- Improve the handling of interdependent CPU features in the early
FPU init code (Andi Kleen)
- Build system enhancements (Changbin Du, Masahiro Yamada)
- ... plus misc enhancements, fixes and cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (118 commits)
x86/build: Make the boot image generation less verbose
selftests/x86: Add tests for the STR and SLDT instructions
selftests/x86: Add tests for User-Mode Instruction Prevention
x86/traps: Fix up general protection faults caused by UMIP
x86/umip: Enable User-Mode Instruction Prevention at runtime
x86/umip: Force a page fault when unable to copy emulated result to user
x86/umip: Add emulation code for UMIP instructions
x86/cpufeature: Add User-Mode Instruction Prevention definitions
x86/insn-eval: Add support to resolve 16-bit address encodings
x86/insn-eval: Handle 32-bit address encodings in virtual-8086 mode
x86/insn-eval: Add wrapper function for 32 and 64-bit addresses
x86/insn-eval: Add support to resolve 32-bit address encodings
x86/insn-eval: Compute linear address in several utility functions
resource: Fix resource_size.cocci warnings
X86/KVM: Clear encryption attribute when SEV is active
X86/KVM: Decrypt shared per-cpu variables when SEV is active
percpu: Introduce DEFINE_PER_CPU_DECRYPTED
x86: Add support for changing memory encryption attribute in early boot
x86/io: Unroll string I/O when SEV is active
x86/boot: Add early boot support when running with SEV active
...
Pull RAS updates from Ingo Molnar:
"Two minor updates to AMD SMCA support, plus a timer_setup() conversion"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE/AMD: Fix mce_severity_amd_smca() signature
x86/MCE/AMD: Always give panic severity for UC errors in kernel context
x86/mce: Convert timers to use timer_setup()
Writing an invalid schemata with no domain values (e.g., "(L3|MB):"),
results in a silent failure, i.e. the last_cmd_status returns OK,
Check for an empty value and set the result string with a proper error
message and return -EINVAL.
Before the fix:
# mkdir /sys/fs/resctrl/p1
# echo "L3:" > /sys/fs/resctrl/p1/schemata
(silent failure)
# cat /sys/fs/resctrl/info/last_cmd_status
ok
# echo "MB:" > /sys/fs/resctrl/p1/schemata
(silent failure)
# cat /sys/fs/resctrl/info/last_cmd_status
ok
After the fix:
# mkdir /sys/fs/resctrl/p1
# echo "L3:" > /sys/fs/resctrl/p1/schemata
-bash: echo: write error: Invalid argument
# cat /sys/fs/resctrl/info/last_cmd_status
Missing 'L3' value
# echo "MB:" > /sys/fs/resctrl/p1/schemata
-bash: echo: write error: Invalid argument
# cat /sys/fs/resctrl/info/last_cmd_status
Missing 'MB' value
[ Tony: This is an unintended side effect of the patch earlier to allow the
user to just write the value they want to change. While allowing
user to specify less than all of the values, it also allows an
empty value. ]
Fixes: c4026b7b95 ("x86/intel_rdt: Implement "update" mode when writing schemata file")
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Link: https://lkml.kernel.org/r/20171110191624.20280-1-tony.luck@intel.com
This reverts commit 941f5f0f6e.
Sadly, it turns out that we really can't just do the cross-CPU IPI to
all CPU's to get their proper frequencies, because it's much too
expensive on systems with lots of cores.
So we'll have to revert this for now, and revisit it using a smarter
model (probably doing one system-wide IPI at open time, and doing all
the frequency calculations in parallel).
Reported-by: WANG Chao <chao.wang@ucloud.cn>
Reported-by: Ingo Molnar <mingo@kernel.org>
Cc: Rafael J Wysocki <rafael.j.wysocki@intel.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
User-Mode Instruction Prevention (UMIP) is enabled by setting/clearing a
bit in %cr4.
It makes sense to enable UMIP at some point while booting, before user
spaces come up. Like SMAP and SMEP, is not critical to have it enabled
very early during boot. This is because UMIP is relevant only when there is
a user space to be protected from. Given these similarities, UMIP can be
enabled along with SMAP and SMEP.
At the moment, UMIP is disabled by default at build time. It can be enabled
at build time by selecting CONFIG_X86_INTEL_UMIP. If enabled at build time,
it can be disabled at run time by adding clearcpuid=514 to the kernel
parameters.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V. Shankar <ravi.v.shankar@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: ricardo.neri@intel.com
Link: http://lkml.kernel.org/r/1509935277-22138-10-git-send-email-ricardo.neri-calderon@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the err_ctx type to "enum context" to match the type passed in.
No functionality change.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20171106174633.13576-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The AMD severity grading function was introduced in kernel 4.1. The
current logic can possibly give MCE_AR_SEVERITY for uncorrectable
errors in kernel context. The system may then get stuck in a loop as
memory_failure() will try to handle the bad kernel memory and find it
busy.
Return MCE_PANIC_SEVERITY for all UC errors IN_KERNEL context on AMD
systems.
After:
b2f9d678e2 ("x86/mce: Check for faults tagged in EXTABLE_CLASS_FAULT exception table entries")
was accepted in v4.6, this issue was masked because of the tail-end attempt
at kernel mode recovery in the #MC handler.
However, uncorrectable errors IN_KERNEL context should always be considered
unrecoverable and cause a panic.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.9.x
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Fixes: bf80bbd7dc (x86/mce: Add an AMD severities-grading function)
Link: http://lkml.kernel.org/r/20171106174633.13576-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull RAS fix from Ingo Molnar:
"Fix an RCU warning that triggers when /dev/mcelog is used"
* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mcelog: Get rid of RCU remnants
Commit 890da9cf09 (Revert "x86: do not use cpufreq_quick_get() for
/proc/cpuinfo "cpu MHz"") is not sufficient to restore the previous
behavior of "cpu MHz" in /proc/cpuinfo on x86 due to some changes
made after the commit it has reverted.
To address this, make the code in question use arch_freq_get_on_cpu()
which also is used by cpufreq for reporting the current frequency of
CPUs and since that function doesn't really depend on cpufreq in any
way, drop the CONFIG_CPU_FREQ dependency for the object file
containing it.
Also refactor arch_freq_get_on_cpu() somewhat to avoid IPIs and
return cached values right away if it is called very often over a
short time (to prevent user space from triggering IPI storms through
it).
Fixes: 890da9cf09 (Revert "x86: do not use cpufreq_quick_get() for /proc/cpuinfo "cpu MHz"")
Cc: stable@kernel.org # 4.13 - together with 890da9cf09
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 51204e0639.
There wasn't really any good reason for it, and people are complaining
(rightly) that it broke existing practice.
Cc: Len Brown <len.brown@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Peter pointed out that the set/clear_bit32() variants are broken in various
aspects.
Replace them with open coded set/clear_bit() and type cast
cpu_info::x86_capability as it's done in all other places throughout x86.
Fixes: 0b00de857a ("x86/cpuid: Add generic table for CPUID dependencies")
Reported-by: Peter Ziljstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In my quest to get rid of thread_struct::sp0, I want to clean up or
remove all of its readers. Two of them are in cpu_init() (32-bit and
64-bit), and they aren't needed. This is because we never enter
userspace at all on the threads that CPUs are initialized in.
Poison the initial TSS.sp0 and stop initializing it on CPU init.
The comment text mostly comes from Dave Hansen. Thanks!
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/ee4a00540ad28c6cff475fbcc7769a4460acc861.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
load_sp0() had an odd signature:
void load_sp0(struct tss_struct *tss, struct thread_struct *thread);
Simplify it to:
void load_sp0(unsigned long sp0);
Also simplify a few get_cpu()/put_cpu() sequences to
preempt_disable()/preempt_enable().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2655d8b42ed940aa384fe18ee1129bbbcf730a08.1509609304.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are about to commit complex rework of various x86 entry code details - create
a unified base tree (with FPU commits included) before doing that.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Jeremy reported a suspicious RCU usage warning in mcelog.
/dev/mcelog is called in process context now as part of the notifier
chain and doesn't need any of the fancy RCU and lockless accesses which
it did in atomic context.
Axe it all in favor of a simple mutex synchronization which cures the
problem reported.
Fixes: 5de97c9f6d ("x86/mce: Factor out and deprecate the /dev/mcelog driver")
Reported-by: Jeremy Cline <jcline@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-and-tested-by: Tony Luck <tony.luck@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: linux-edac@vger.kernel.org
Cc: Laura Abbott <labbott@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20171101164754.xzzmskl4ngrqc5br@pd.tnic
Link: https://bugzilla.redhat.com/show_bug.cgi?id=1498969
Add a few new SSE/AVX/AVX512 instruction groups/features for enumeration
in /proc/cpuinfo: AVX512_VBMI2, GFNI, VAES, VPCLMULQDQ, AVX512_VNNI,
AVX512_BITALG.
CPUID.(EAX=7,ECX=0):ECX[bit 6] AVX512_VBMI2
CPUID.(EAX=7,ECX=0):ECX[bit 8] GFNI
CPUID.(EAX=7,ECX=0):ECX[bit 9] VAES
CPUID.(EAX=7,ECX=0):ECX[bit 10] VPCLMULQDQ
CPUID.(EAX=7,ECX=0):ECX[bit 11] AVX512_VNNI
CPUID.(EAX=7,ECX=0):ECX[bit 12] AVX512_BITALG
Detailed information of CPUID bits for these features can be found
in the Intel Architecture Instruction Set Extensions and Future Features
Programming Interface document (refer to Table 1-1. and Table 1-2.).
A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=197239
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Yang Zhong <yang.zhong@intel.com>
Cc: bp@alien8.de
Link: http://lkml.kernel.org/r/1509412829-23380-1-git-send-email-gayatri.kammela@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The platform informs via CPUID.(EAX=0x10, ECX=res#):EBX[31:0] (valid res#
are only 1 for L3 and 2 for L2) which unit of the allocation may be used by
other entities in the platform. This information is valid whether CDP (Code
and Data Prioritization) is enabled or not.
Ensure that the bitmask of shareable resource is initialized when CDP is
enabled.
Fixes: 0dd2d7494c ("x86/intel_rdt: Show bitmask of shareable resource with other executing units"
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/815747bddc820ca221a8924edaf4d1a7324547e4.1508490116.git.reinette.chatre@intel.com
do_clear_cpu_cap() allocates a bitmap to keep track of disabled feature
dependencies. That bitmap is sized NCAPINTS * BITS_PER_INIT. The possible
'features' which can be handed in are larger than this, because after the
capabilities the bug 'feature' bits occupy another 32bit. Not really
obvious...
So clearing any of the misfeature bits, as 32bit does for the F00F bug,
accesses that bitmap out of bounds thereby corrupting the stack.
Size the bitmap proper and add a sanity check to catch accidental out of
bound access.
Fixes: 0b00de857a ("x86/cpuid: Add generic table for CPUID dependencies")
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lkml.kernel.org/r/20171018022023.GA12058@yexl-desktop
Blacklist Broadwell X model 79 for late loading due to an erratum.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20171018111225.25635-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With a followon patch we want to make clearcpuid affect the XSAVE
configuration. But xsave is currently initialized before arguments
are parsed. Move the clearcpuid= parsing into the special
early xsave argument parsing code.
Since clearcpuid= contains a = we need to keep the old __setup
around as a dummy, otherwise it would end up as a environment
variable in init's environment.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171013215645.23166-4-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some CPUID features depend on other features. Currently it's
possible to to clear dependent features, but not clear the base features,
which can cause various interesting problems.
This patch implements a generic table to describe dependencies
between CPUID features, to be used by all code that clears
CPUID.
Some subsystems (like XSAVE) had an own implementation of this,
but it's better to do it all in a single place for everyone.
Then clear_cpu_cap and setup_clear_cpu_cap always look up
this table and clear all dependencies too.
This is intended to be a practical table: only for features
that make sense to clear. If someone for example clears FPU,
or other features that are essentially part of the required
base feature set, not much is going to work. Handling
that is right now out of scope. We're only handling
features which can be usefully cleared.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jonathan McDowell <noodles@earth.li>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171013215645.23166-3-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The 'this_leaf' variable is assigned a value that is never
read and it is updated a little later with a newer value,
hence we can remove the redundant assignment.
Cleans up the following Clang warning:
Value stored to 'this_leaf' is never read
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Link: http://lkml.kernel.org/r/20171015160203.12332-1-colin.king@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"A landry list of fixes:
- fix reboot breakage on some PCID-enabled system
- fix crashes/hangs on some PCID-enabled systems
- fix microcode loading on certain older CPUs
- various unwinder fixes
- extend an APIC quirk to more hardware systems and disable APIC
related warning on virtualized systems
- various Hyper-V fixes
- a macro definition robustness fix
- remove jprobes IRQ disabling
- various mem-encryption fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Do the family check first
x86/mm: Flush more aggressively in lazy TLB mode
x86/apic: Update TSC_DEADLINE quirk with additional SKX stepping
x86/apic: Silence "FW_BUG TSC_DEADLINE disabled due to Errata" on hypervisors
x86/mm: Disable various instrumentations of mm/mem_encrypt.c and mm/tlb.c
x86/hyperv: Fix hypercalls with extended CPU ranges for TLB flushing
x86/hyperv: Don't use percpu areas for pcpu_flush/pcpu_flush_ex structures
x86/hyperv: Clear vCPU banks between calls to avoid flushing unneeded vCPUs
x86/unwind: Disable unwinder warnings on 32-bit
x86/unwind: Align stack pointer in unwinder dump
x86/unwind: Use MSB for frame pointer encoding on 32-bit
x86/unwind: Fix dereference of untrusted pointer
x86/alternatives: Fix alt_max_short macro to really be a max()
x86/mm/64: Fix reboot interaction with CR4.PCIDE
kprobes/x86: Remove IRQ disabling from jprobe handlers
kprobes/x86: Set up frame pointer in kprobe trampoline
On CPUs like AMD's Geode, for example, we shouldn't even try to load
microcode because they do not support the modern microcode loading
interface.
However, we do the family check *after* the other checks whether the
loader has been disabled on the command line or whether we're running in
a guest.
So move the family checks first in order to exit early if we're being
loaded on an unsupported family.
Reported-and-tested-by: Sven Glodowski <glodi1@arcor.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.11..
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://bugzilla.suse.com/show_bug.cgi?id=1061396
Link: http://lkml.kernel.org/r/20171012112316.977-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly. Adjust sanity-check WARN to make sure
the triggering timer matches the current CPU timer.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac@vger.kernel.org
Link: https://lkml.kernel.org/r/20171005005425.GA23950@beast
Now that lguest is gone, put it in the internal header which should be
used only by MCA/RAS code.
Add missing header guards while at it.
No functional change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20171002092836.22971-3-bp@alien8.de
The assignment to the 'files' variable is immediately overwritten
in the following line. Remove the older assignment, which was meant
specifially for creating control groups files.
Fixes: c7d9aac613 ("x86/intel_rdt/cqm: Add mkdir support for RDT monitoring")
Reported-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: vikas.shivappa@intel.com
Link: https://lkml.kernel.org/r/1507157337-18118-1-git-send-email-jithu.joseph@intel.com
rmid_limbo_count is local to the source and does not need to be in global
scope, so make it static.
Cleans up sparse warning:
symbol 'rmid_limbo_count' was not declared. Should it be static?
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: kernel-janitors@vger.kernel.org
Link: https://lkml.kernel.org/r/20171002145931.27479-1-colin.king@canonical.com
It's not obvious to everybody that BP stands for boot processor. At
least it was not for me. And BP is also a CPU register on x86, so it
is ambiguous. Spell out "boot CPU" everywhere instead.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Mostly this is about running out of RMIDs or CLOSIDs. Other
errors are various internal errors.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Boris Petkov <bp@suse.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/027cf1ffb3a3695f2d54525813a1d644887353cf.1506382469.git.tony.luck@intel.com
Can't add a cpu to a monitor group unless it belongs to parent
group. Can't delete cpus from the default group.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Boris Petkov <bp@suse.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/757a869a25e9fc1b7a2e9bc43e1159455c1964a0.1506382469.git.tony.luck@intel.com
About the only tricky case is trying to move a task into a monitor
group that is a subdirectory of a different control group. But cover
the simple cases too.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Boris Petkov <bp@suse.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/f1841cce6a242aed37cb926dee8942727331bf78.1506382469.git.tony.luck@intel.com
Save helpful descriptions of what went wrong when writing a
schemata file.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Boris Petkov <bp@suse.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/9d6cef757dc88639c8ab47f1e7bc1b081a84bb88.1506382469.git.tony.luck@intel.com
Commands are given to the resctrl file system by making/removing
directories, or by writing to files. When something goes wrong
the user is generally left wondering why they got:
bash: echo: write error: Invalid argument
Add a new file "last_cmd_status" to the "info" directory that
will give the user some better clues on what went wrong.
Provide functions to clear and update last_cmd_status which
check that we hold the rdtgroup_mutex.
[ tglx: Made last_cmd_status static and folded back the hunk from patch 3
which replaces the open coded access to last_cmd_status with the
accessor function ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vikas Shivappa <vikas.shivappa@intel.com>
Cc: Boris Petkov <bp@suse.de>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/edc4e0e9741eee89bba569f0021b1b2662fd9508.1506382469.git.tony.luck@intel.com
Otherwise we might have the PCID feature bit set during cpu_init().
This is just for robustness. I haven't seen any actual bugs here.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: cba4671af7 ("x86/mm: Disable PCID on 32-bit kernels")
Link: http://lkml.kernel.org/r/b16dae9d6b0db5d9801ddbebbfd83384097c61f3.1505663533.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CPUID Fn8000_0007_EDX[CPB] is wrongly 0 on models up to B1. But they do
support CPB (AMD's Core Performance Boosting cpufreq CPU feature), so fix that.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170907170821.16021-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
cpu_init() is weird: it's called rather late (after early
identification and after most MMU state is initialized) on the boot
CPU but is called extremely early (before identification) on secondary
CPUs. It's called just late enough on the boot CPU that its CR4 value
isn't propagated to mmu_cr4_features.
Even if we put CR4.PCIDE into mmu_cr4_features, we'd hit two
problems. First, we'd crash in the trampoline code. That's
fixable, and I tried that. It turns out that mmu_cr4_features is
totally ignored by secondary_start_64(), though, so even with the
trampoline code fixed, it wouldn't help.
This means that we don't currently have CR4.PCIDE reliably initialized
before we start playing with cpu_tlbstate. This is very fragile and
tends to cause boot failures if I make even small changes to the TLB
handling code.
Make it more robust: initialize CR4.PCIDE earlier on the boot CPU
and propagate it to secondary CPUs in start_secondary().
( Yes, this is ugly. I think we should have improved mmu_cr4_features
to actually control CR4 during secondary bootup, but that would be
fairly intrusive at this stage. )
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reported-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Tested-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: 660da7c922 ("x86/mm: Enable CR4.PCIDE on supported systems")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 platform updates from Ingo Molnar:
"The main changes include various Hyper-V optimizations such as faster
hypercalls and faster/better TLB flushes - and there's also some
Intel-MID cleanups"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tracing/hyper-v: Trace hyperv_mmu_flush_tlb_others()
x86/hyper-v: Support extended CPU ranges for TLB flush hypercalls
x86/platform/intel-mid: Make several arrays static, to make code smaller
MAINTAINERS: Add missed file for Hyper-V
x86/hyper-v: Use hypercall for remote TLB flush
hyper-v: Globalize vp_index
x86/hyper-v: Implement rep hypercalls
hyper-v: Use fast hypercall for HVCALL_SIGNAL_EVENT
x86/hyper-v: Introduce fast hypercall implementation
x86/hyper-v: Make hv_do_hypercall() inline
x86/hyper-v: Include hyperv/ only when CONFIG_HYPERV is set
x86/platform/intel-mid: Make 'bt_sfi_data' const
x86/platform/intel-mid: Make IRQ allocation a bit more flexible
x86/platform/intel-mid: Group timers callbacks together
While debugging a problem, I thought that using
cr4_set_bits_and_update_boot() to restore CR4.PCIDE would be
helpful. It turns out to be counterproductive.
Add a comment documenting how this works.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When Linux brings a CPU down and back up, it switches to init_mm and then
loads swapper_pg_dir into CR3. With PCID enabled, this has the side effect
of masking off the ASID bits in CR3.
This can result in some confusion in the TLB handling code. If we
bring a CPU down and back up with any ASID other than 0, we end up
with the wrong ASID active on the CPU after resume. This could
cause our internal state to become corrupt, although major
corruption is unlikely because init_mm doesn't have any user pages.
More obviously, if CONFIG_DEBUG_VM=y, we'll trip over an assertion
in the next context switch. The result of *that* is a failure to
resume from suspend with probability 1 - 1/6^(cpus-1).
Fix it by reinitializing cpu_tlbstate on resume and CPU bringup.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Jiri Kosina <jikos@kernel.org>
Fixes: 10af6235e0 ("x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is the big char/misc driver update for 4.14-rc1.
Lots of different stuff in here, it's been an active development cycle
for some reason. Highlights are:
- updated binder driver, this brings binder up to date with what
shipped in the Android O release, plus some more changes that
happened since then that are in the Android development trees.
- coresight updates and fixes
- mux driver file renames to be a bit "nicer"
- intel_th driver updates
- normal set of hyper-v updates and changes
- small fpga subsystem and driver updates
- lots of const code changes all over the driver trees
- extcon driver updates
- fmc driver subsystem upadates
- w1 subsystem minor reworks and new features and drivers added
- spmi driver updates
Plus a smattering of other minor driver updates and fixes.
All of these have been in linux-next with no reported issues for a
while.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWa1+Ew8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yl26wCgquufNylfhxr65NbJrovduJYzRnUAniCivXg8
bePIh/JI5WxWoHK+wEbY
=hYWx
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the big char/misc driver update for 4.14-rc1.
Lots of different stuff in here, it's been an active development cycle
for some reason. Highlights are:
- updated binder driver, this brings binder up to date with what
shipped in the Android O release, plus some more changes that
happened since then that are in the Android development trees.
- coresight updates and fixes
- mux driver file renames to be a bit "nicer"
- intel_th driver updates
- normal set of hyper-v updates and changes
- small fpga subsystem and driver updates
- lots of const code changes all over the driver trees
- extcon driver updates
- fmc driver subsystem upadates
- w1 subsystem minor reworks and new features and drivers added
- spmi driver updates
Plus a smattering of other minor driver updates and fixes.
All of these have been in linux-next with no reported issues for a
while"
* tag 'char-misc-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (244 commits)
ANDROID: binder: don't queue async transactions to thread.
ANDROID: binder: don't enqueue death notifications to thread todo.
ANDROID: binder: Don't BUG_ON(!spin_is_locked()).
ANDROID: binder: Add BINDER_GET_NODE_DEBUG_INFO ioctl
ANDROID: binder: push new transactions to waiting threads.
ANDROID: binder: remove proc waitqueue
android: binder: Add page usage in binder stats
android: binder: fixup crash introduced by moving buffer hdr
drivers: w1: add hwmon temp support for w1_therm
drivers: w1: refactor w1_slave_show to make the temp reading functionality separate
drivers: w1: add hwmon support structures
eeprom: idt_89hpesx: Support both ACPI and OF probing
mcb: Fix an error handling path in 'chameleon_parse_cells()'
MCB: add support for SC31 to mcb-lpc
mux: make device_type const
char: virtio: constify attribute_group structures.
Documentation/ABI: document the nvmem sysfs files
lkdtm: fix spelling mistake: "incremeted" -> "incremented"
perf: cs-etm: Fix ETMv4 CONFIGR entry in perf.data file
nvmem: include linux/err.h from header
...
Pull x86 apic updates from Thomas Gleixner:
"This update provides:
- Cleanup of the IDT management including the removal of the extra
tracing IDT. A first step to cleanup the vector management code.
- The removal of the paravirt op adjust_exception_frame. This is a
XEN specific issue, but merged through this branch to avoid nasty
merge collisions
- Prevent dmesg spam about the TSC DEADLINE bug, when the CPU has
disabled the TSC DEADLINE timer in CPUID.
- Adjust a debug message in the ioapic code to print out the
information correctly"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
x86/idt: Fix the X86_TRAP_BP gate
x86/xen: Get rid of paravirt op adjust_exception_frame
x86/eisa: Add missing include
x86/idt: Remove superfluous ALIGNment
x86/apic: Silence "FW_BUG TSC_DEADLINE disabled due to Errata" on CPUs without the feature
x86/idt: Remove the tracing IDT leftovers
x86/idt: Hide set_intr_gate()
x86/idt: Simplify alloc_intr_gate()
x86/idt: Deinline setup functions
x86/idt: Remove unused functions/inlines
x86/idt: Move interrupt gate initialization to IDT code
x86/idt: Move APIC gate initialization to tables
x86/idt: Move regular trap init to tables
x86/idt: Move IST stack based traps to table init
x86/idt: Move debug stack init to table based
x86/idt: Switch early trap init to IDT tables
x86/idt: Prepare for table based init
x86/idt: Move early IDT setup out of 32-bit asm
x86/idt: Move early IDT handler setup to IDT code
x86/idt: Consolidate IDT invalidation
...
Pull x86 cache quality monitoring update from Thomas Gleixner:
"This update provides a complete rewrite of the Cache Quality
Monitoring (CQM) facility.
The existing CQM support was duct taped into perf with a lot of issues
and the attempts to fix those turned out to be incomplete and
horrible.
After lengthy discussions it was decided to integrate the CQM support
into the Resource Director Technology (RDT) facility, which is the
obvious choise as in hardware CQM is part of RDT. This allowed to add
Memory Bandwidth Monitoring support on top.
As a result the mechanisms for allocating cache/memory bandwidth and
the corresponding monitoring mechanisms are integrated into a single
management facility with a consistent user interface"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/intel_rdt: Turn off most RDT features on Skylake
x86/intel_rdt: Add command line options for resource director technology
x86/intel_rdt: Move special case code for Haswell to a quirk function
x86/intel_rdt: Remove redundant ternary operator on return
x86/intel_rdt/cqm: Improve limbo list processing
x86/intel_rdt/mbm: Fix MBM overflow handler during CPU hotplug
x86/intel_rdt: Modify the intel_pqr_state for better performance
x86/intel_rdt/cqm: Clear the default RMID during hotcpu
x86/intel_rdt: Show bitmask of shareable resource with other executing units
x86/intel_rdt/mbm: Handle counter overflow
x86/intel_rdt/mbm: Add mbm counter initialization
x86/intel_rdt/mbm: Basic counting of MBM events (total and local)
x86/intel_rdt/cqm: Add CPU hotplug support
x86/intel_rdt/cqm: Add sched_in support
x86/intel_rdt: Introduce rdt_enable_key for scheduling
x86/intel_rdt/cqm: Add mount,umount support
x86/intel_rdt/cqm: Add rmdir support
x86/intel_rdt: Separate the ctrl bits from rmdir
x86/intel_rdt/cqm: Add mon_data
x86/intel_rdt: Prepare for RDT monitor data support
...
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
Pull x86 microcode loading updates from Ingo Molnar:
"Update documentation, improve robustness and fix a memory leak"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/intel: Improve microcode patches saving flow
x86/microcode: Document the three loading methods
x86/microcode/AMD: Free unneeded patch before exit from update_cache()
Pull x86 cpuid updates from Ingo Molnar:
"AMD F17h related updates"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Hide unused legacy_fixup_core_id() function
x86/cpu/amd: Derive L3 shared_cpu_map from cpu_llc_shared_mask
x86/cpu/amd: Limit cpu_core_id fixup to families older than F17h
Pull RAS fix from Ingo Molnar:
"A single change fixing SMCA bank initialization on systems that don't
have CPU0 enabled"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce/AMD: Allow any CPU to initialize the smca_banks array
The only users of alloc_intr_gate() are hypervisors, which both check the
used_vectors bitmap whether they have allocated the gate already. Move that
check into alloc_intr_gate() and simplify the users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Reviewed-by: K. Y. Srinivasan <kys@microsoft.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064959.580830286@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
IDT related code lives scattered around in various places. Create a new
source file in arch/x86/kernel/idt.c to hold it.
Move the idt_tables and descriptors to it for a start. Follow up patches
will gradually move more code over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064958.367081121@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Machine checks are not really high frequency events. The extra two NOP5s for
the disabled tracepoints are noise vs. the heavy lifting which needs to be
done in the MCE handler.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064957.144301907@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Avoid potentially dereferencing a NULL pointer when saving a microcode
patch for early loading on the application processors.
While at it, drop the IS_ERR() checking in favor of simpler, NULL-ptr
checks which are sufficient and rename __alloc_microcode_buf() to
memdup_patch() to more precisely denote what it does.
No functionality change.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Link: http://lkml.kernel.org/r/20170825100456.n236w3jebteokfd6@pd.tnic
Command line options allow us to ignore features that we don't want.
Also we can re-enable options that have been disabled on a platform
(so long as the underlying h/w actually supports the option).
[ tglx: Marked the option array __initdata and the helper function __init ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Fenghua" <fenghua.yu@intel.com>
Cc: Ravi V" <ravi.v.shankar@intel.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Stephane Eranian" <eranian@google.com>
Cc: "Andi Kleen" <ak@linux.intel.com>
Cc: "David Carrillo-Cisneros" <davidcc@google.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Link: http://lkml.kernel.org/r/0c37b0d4dbc30977a3c1cee08b66420f83662694.1503512900.git.tony.luck@intel.com
Pull x86 fixes from Thomas Gleixner:
"Another pile of small fixes and updates for x86:
- Plug a hole in the SMAP implementation which misses to clear AC on
NMI entry
- Fix the norandmaps/ADDR_NO_RANDOMIZE logic so the command line
parameter works correctly again
- Use the proper accessor in the startup64 code for next_early_pgt to
prevent accessing of invalid addresses and faulting in the early
boot code.
- Prevent CPU hotplug lock recursion in the MTRR code
- Unbreak CPU0 hotplugging
- Rename overly long CPUID bits which got introduced in this cycle
- Two commits which mark data 'const' and restrict the scope of data
and functions to file scope by making them 'static'"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Constify attribute_group structures
x86/boot/64/clang: Use fixup_pointer() to access 'next_early_pgt'
x86/elf: Remove the unnecessary ADDR_NO_RANDOMIZE checks
x86: Fix norandmaps/ADDR_NO_RANDOMIZE
x86/mtrr: Prevent CPU hotplug lock recursion
x86: Mark various structures and functions as 'static'
x86/cpufeature, kvm/svm: Rename (shorten) the new "virtualized VMSAVE/VMLOAD" CPUID flag
x86/smpboot: Unbreak CPU0 hotplug
x86/asm/64: Clear AC on NMI entries
Speculative processor accesses may reference any memory that has a
valid page table entry. While a speculative access won't generate
a machine check, it will log the error in a machine check bank. That
could cause escalation of a subsequent error since the overflow bit
will be then set in the machine check bank status register.
Code has to be double-plus-tricky to avoid mentioning the 1:1 virtual
address of the page we want to map out otherwise we may trigger the
very problem we are trying to avoid. We use a non-canonical address
that passes through the usual Linux table walking code to get to the
same "pte".
Thanks to Dave Hansen for reviewing several iterations of this.
Also see:
http://marc.info/?l=linux-mm&m=149860136413338&w=2
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Elliott, Robert (Persistent Memory) <elliott@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170816171803.28342-1-tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The use of the ternary operator is redundant as ret can never be
non-zero at that point. Instead, just return nbytes.
Detected by CoverityScan, CID#1452658 ("Logically dead code")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: kernel-janitors@vger.kernel.org
Link: http://lkml.kernel.org/r/20170808092859.13021-1-colin.king@canonical.com
During a mkdir, the entire limbo list is synchronously checked on each
package for free RMIDs by sending IPIs. With a large number of RMIDs (SKL
has 192) this creates a intolerable amount of work in IPIs.
Replace the IPI based checking of the limbo list with asynchronous worker
threads on each package which periodically scan the limbo list and move the
RMIDs that have:
llc_occupancy < threshold_occupancy
on all packages to the free list.
mkdir now returns -ENOSPC if the free list and the limbo list ere empty or
returns -EBUSY if there are RMIDs on the limbo list and the free list is
empty.
Getting rid of the IPIs also simplifies the data structures and the
serialization required for handling the lists.
[ tglx: Rewrote changelog ... ]
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Link: http://lkml.kernel.org/r/1502845243-20454-3-git-send-email-vikas.shivappa@linux.intel.com
Larry reported a CPU hotplug lock recursion in the MTRR code.
============================================
WARNING: possible recursive locking detected
systemd-udevd/153 is trying to acquire lock:
(cpu_hotplug_lock.rw_sem){.+.+.+}, at: [<c030fc26>] stop_machine+0x16/0x30
but task is already holding lock:
(cpu_hotplug_lock.rw_sem){.+.+.+}, at: [<c0234353>] mtrr_add_page+0x83/0x470
....
cpus_read_lock+0x48/0x90
stop_machine+0x16/0x30
mtrr_add_page+0x18b/0x470
mtrr_add+0x3e/0x70
mtrr_add_page() holds the hotplug rwsem already and calls stop_machine()
which acquires it again.
Call stop_machine_cpuslocked() instead.
Reported-and-tested-by: Larry Finger <Larry.Finger@lwfinger.net>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1708140920250.1865@nanos
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@suse.de>
The newly introduced function is only used when CONFIG_SMP is set:
arch/x86/kernel/cpu/amd.c:305:13: warning: 'legacy_fixup_core_id' defined but not used
This moves the existing #ifdef around the caller so it covers
legacy_fixup_core_id() as well.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Emanuel Czirai <icanrealizeum@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Fixes: b89b41d0b8 ("x86/cpu/amd: Limit cpu_core_id fixup to families older than F17h")
Link: http://lkml.kernel.org/r/20170811111937.2006128-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
According to Intel 64 and IA-32 Architectures SDM, Volume 3,
Chapter 14.2, "Software needs to exercise care to avoid delays
between the two RDMSRs (for example interrupts)".
So, disable interrupts during reading MSRs IA32_APERF and IA32_MPERF.
See also: commit 4ab60c3f32 (cpufreq: intel_pstate: Disable
interrupts during MSRs reading).
Signed-off-by: Doug Smythies <dsmythies@telus.net>
Reviewed-by: Len Brown <len.brown@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Hyper-V host can suggest us to use hypercall for doing remote TLB flush,
this is supposed to work faster than IPIs.
Implementation details: to do HvFlushVirtualAddress{Space,List} hypercalls
we need to put the input somewhere in memory and we don't really want to
have memory allocation on each call so we pre-allocate per cpu memory areas
on boot.
pv_ops patching is happening very early so we need to separate
hyperv_setup_mmu_ops() and hyper_alloc_mmu().
It is possible and easy to implement local TLB flushing too and there is
even a hint for that. However, I don't see a room for optimization on the
host side as both hypercall and native tlb flush will result in vmexit. The
hint is also not set on modern Hyper-V versions.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Reviewed-by: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jork Loeser <Jork.Loeser@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Simon Xiao <sixiao@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: devel@linuxdriverproject.org
Link: http://lkml.kernel.org/r/20170802160921.21791-8-vkuznets@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For systems with X86_FEATURE_TOPOEXT, current logic uses the APIC ID
to calculate shared_cpu_map. However, APIC IDs are not guaranteed to
be contiguous for cores across different L3s (e.g. family17h system
w/ downcore configuration). This breaks the logic, and results in an
incorrect L3 shared_cpu_map.
Instead, always use the previously calculated cpu_llc_shared_mask of
each CPU to derive the L3 shared_cpu_map.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170731085159.9455-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Current cpu_core_id fixup causes downcored F17h configurations to be
incorrect:
NODE: 0
processor 0 core id : 0
processor 1 core id : 1
processor 2 core id : 2
processor 3 core id : 4
processor 4 core id : 5
processor 5 core id : 0
NODE: 1
processor 6 core id : 2
processor 7 core id : 3
processor 8 core id : 4
processor 9 core id : 0
processor 10 core id : 1
processor 11 core id : 2
Code that relies on the cpu_core_id, like match_smt(), for example,
which builds the thread siblings masks used by the scheduler, is
mislead.
So, limit the fixup to pre-F17h machines. The new value for cpu_core_id
for F17h and later will represent the CPUID_Fn8000001E_EBX[CoreId],
which is guaranteed to be unique for each core within a socket.
This way we have:
NODE: 0
processor 0 core id : 0
processor 1 core id : 1
processor 2 core id : 2
processor 3 core id : 4
processor 4 core id : 5
processor 5 core id : 6
NODE: 1
processor 6 core id : 8
processor 7 core id : 9
processor 8 core id : 10
processor 9 core id : 12
processor 10 core id : 13
processor 11 core id : 14
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
[ Heavily massaged. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: http://lkml.kernel.org/r/20170731085159.9455-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CPUID.(EAX=0x10, ECX=res#):EBX[31:0] reports a bit mask for a resource.
Each set bit within the length of the CBM indicates the corresponding
unit of the resource allocation may be used by other entities in the
platform (e.g. an integrated graphics engine or hardware units outside
the processor core and have direct access to the resource). Each
cleared bit within the length of the CBM indicates the corresponding
allocation unit can be configured to implement a priority-based
allocation scheme without interference with other hardware agents in
the system. Bits outside the length of the CBM are reserved.
More details on the bit mask are described in x86 Software Developer's
Manual.
The bitmask is shown in "info" directory for each resource. It's
up to user to decide how to use the bitmask within a CBM in a partition
to share or isolate a resource with other executing units.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: vikas.shivappa@linux.intel.com
Link: http://lkml.kernel.org/r/20170725223904.12996-1-tony.luck@intel.com
Add a mon_data directory for the root rdtgroup and all other rdtgroups.
The directory holds all of the monitored data for all domains and events
of all resources being monitored.
The mon_data itself has a list of directories in the format
mon_<domain_name>_<domain_id>. Each of these subdirectories contain one
file per event in the mode "0444". Reading the file displays a snapshot
of the monitored data for the event the file represents.
For ex, on a 2 socket Broadwell with llc_occupancy being
monitored the mon_data contents look as below:
$ ls /sys/fs/resctrl/p1/mon_data/
mon_L3_00
mon_L3_01
Each domain directory has one file per event:
$ ls /sys/fs/resctrl/p1/mon_data/mon_L3_00/
llc_occupancy
To read current llc_occupancy of ctrl_mon group p1
$ cat /sys/fs/resctrl/p1/mon_data/mon_L3_00/llc_occupancy
33789096
[This patch idea is based on Tony's sample patches to organise data in a
per domain directory and have one file per event (and use the fp->priv to
store mon data bits)]
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-20-git-send-email-vikas.shivappa@linux.intel.com
The cpus file is extended to support resource monitoring. This is used
to over-ride the RMID of the default group when running on specific
CPUs. It works similar to the resource control. The "cpus" and
"cpus_list" file is present in default group, ctrl_mon groups and
monitor groups.
Each "cpus" file or cpu_list file reads a cpumask or list showing which
CPUs belong to the resource group. By default all online cpus belong to
the default root group. A CPU can be present in one "ctrl_mon" and one
"monitor" group simultaneously. They can be added to a resource group by
writing the CPU to the file. When a CPU is added to a ctrl_mon group it
is automatically removed from the previous ctrl_mon group. A CPU can be
added to a monitor group only if it is present in the parent ctrl_mon
group and when a CPU is added to a monitor group, it is automatically
removed from the previous monitor group. When CPUs go offline, they are
automatically removed from the ctrl_mon and monitor groups.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-18-git-send-email-vikas.shivappa@linux.intel.com
The root directory, ctrl_mon and monitor groups are populated
with a read/write file named "tasks". When read, it shows all the task
IDs assigned to the resource group.
Tasks can be added to groups by writing the PID to the file. A task can
be present in one "ctrl_mon" group "and" one "monitor" group. IOW a
PID_x can be seen in a ctrl_mon group and a monitor group at the same
time. When a task is added to a ctrl_mon group, it is automatically
removed from the previous ctrl_mon group where it belonged. Similarly if
a task is moved to a monitor group it is removed from the previous
monitor group . Also since the monitor groups can only have subset of
tasks of parent ctrl_mon group, a task can be moved to a monitor group
only if its already present in the parent ctrl_mon group.
Task membership is indicated by a new field in the task_struct "u32
rmid" which holds the RMID for the task. RMID=0 is reserved for the
default root group where the tasks belong to at mount.
[tony: zero the rmid if rdtgroup was deleted when task was being moved]
Signed-off-by: Tony Luck <tony.luck@linux.intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-16-git-send-email-vikas.shivappa@linux.intel.com
Resource control groups can be created using mkdir in resctrl
fs(rdtgroup). In order to extend the resctrl interface to support
monitoring the control groups, extend the current mkdir to support
resource monitoring also.
This allows the rdtgroup created under the root directory to be able to
both control and monitor resources (ctrl_mon group). The ctrl_mon groups
are associated with one CLOSID like the legacy rdtgroups and one
RMID(Resource monitoring ID) as well. Hardware uses RMID to track the
resource usage. Once either of the CLOSID or RMID are exhausted, the
mkdir fails with -ENOSPC. If there are RMIDs in limbo list but not free
an -EBUSY is returned. User can also monitor a subset of the ctrl_mon
rdtgroup's tasks/cpus using the monitor groups. The monitor groups are
created using mkdir under the "mon_groups" directory in every ctrl_mon
group.
[Merged Tony's code: Removed a lot of common mkdir code, a fix to handling
of the list of the child rdtgroups and some cleanups in list
traversal. Also the changes to have similar alloc and free for CLOS/RMID
and return -EBUSY when RMIDs are in limbo and not free]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-14-git-send-email-vikas.shivappa@linux.intel.com
The info directory files and base files need to be different for each
resource like cache and Memory bandwidth. With in each resource, the
files would be further different for monitoring and ctrl. This leads to
a lot of different static array declarations given that we are adding
resctrl monitoring.
Simplify this to one common list of files and then declare a set of
flags to choose the files based on the resource, whether it is info or
base and if it is control type file. This is as a preparation to include
monitoring based info and base files.
No functional change.
[Vikas: Extended the flags to have few bits per category like resource,
info/base etc]
Signed-off-by: Tony luck <tony.luck@intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-11-git-send-email-vikas.shivappa@linux.intel.com
Hardware uses RMID(Resource monitoring ID) to keep track of each of the
RDT events associated with tasks. The number of RMIDs is dependent on
the SKU and is enumerated via CPUID. We add support to manage the RMIDs
which include managing the RMID allocation and reading LLC occupancy
for an RMID.
RMID allocation is managed by keeping a free list which is initialized
to all available RMIDs except for RMID 0 which is always reserved for
root group. RMIDs goto a limbo list once they are
freed since the RMIDs are still tagged to cache lines of the tasks which
were using them - thereby still having some occupancy. They continue to
be in limbo list until the occupancy < threshold_occupancy. The
threshold_occupancy is a user configurable value.
OS uses IA32_QM_CTR MSR to read the occupancy associated with an RMID
after programming the IA32_EVENTSEL MSR with the RMID.
[Tony: Improved limbo search]
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-10-git-send-email-vikas.shivappa@linux.intel.com
'perf cqm' never worked due to the incompatibility between perf
infrastructure and cqm hardware support. The hardware uses RMIDs to
track the llc occupancy of tasks and these RMIDs are per package. This
makes monitoring a hierarchy like cgroup along with monitoring of tasks
separately difficult and several patches sent to lkml to fix them were
NACKed. Further more, the following issues in the current perf cqm make
it almost unusable:
1. No support to monitor the same group of tasks for which we do
allocation using resctrl.
2. It gives random and inaccurate data (mostly 0s) once we run out
of RMIDs due to issues in Recycling.
3. Recycling results in inaccuracy of data because we cannot
guarantee that the RMID was stolen from a task when it was not
pulling data into cache or even when it pulled the least data. Also
for monitoring llc_occupancy, if we stop using an RMID_x and then
start using an RMID_y after we reclaim an RMID from an other event,
we miss accounting all the occupancy that was tagged to RMID_x at a
later perf_count.
2. Recycling code makes the monitoring code complex including
scheduling because the event can lose RMID any time. Since MBM
counters count bandwidth for a period of time by taking snap shot of
total bytes at two different times, recycling complicates the way we
count MBM in a hierarchy. Also we need a spin lock while we do the
processing to account for MBM counter overflow. We also currently
use a spin lock in scheduling to prevent the RMID from being taken
away.
4. Lack of support when we run different kind of event like task,
system-wide and cgroup events together. Data mostly prints 0s. This
is also because we can have only one RMID tied to a cpu as defined
by the cqm hardware but a perf can at the same time tie multiple
events during one sched_in.
5. No support of monitoring a group of tasks. There is partial support
for cgroup but it does not work once there is a hierarchy of cgroups
or if we want to monitor a task in a cgroup and the cgroup itself.
6. No support for monitoring tasks for the lifetime without perf
overhead.
7. It reported the aggregate cache occupancy or memory bandwidth over
all sockets. But most cloud and VMM based use cases want to know the
individual per-socket usage.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: eranian@google.com
Cc: vikas.shivappa@intel.com
Cc: ak@linux.intel.com
Cc: davidcc@google.com
Cc: reinette.chatre@intel.com
Link: http://lkml.kernel.org/r/1501017287-28083-2-git-send-email-vikas.shivappa@linux.intel.com
After commit f8475cef90 "x86: use common aperfmperf_khz_on_cpu() to
calculate KHz using APERF/MPERF" the scaling_cur_freq policy attribute
in sysfs only behaves as expected on x86 with APERF/MPERF registers
available when it is read from at least twice in a row. The value
returned by the first read may not be meaningful, because the
computations in there use cached values from the previous iteration
of aperfmperf_snapshot_khz() which may be stale.
To prevent that from happening, modify arch_freq_get_on_cpu() to
call aperfmperf_snapshot_khz() twice, with a short delay between
these calls, if the previous invocation of aperfmperf_snapshot_khz()
was too far back in the past (specifically, more that 1s ago).
Also, as pointed out by Doug Smythies, aperf_delta is limited now
and the multiplication of it by cpu_khz won't overflow, so simplify
the s->khz computations too.
Fixes: f8475cef90 "x86: use common aperfmperf_khz_on_cpu() to calculate KHz using APERF/MPERF"
Reported-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Current SMCA implementations have the same banks on each CPU with the
non-core banks only visible to a "master thread" on each die. Practically,
this means the smca_banks array, which describes the banks, only needs to
be populated once by a single master thread.
CPU 0 seemed like a good candidate to do the populating. However, it's
possible that CPU 0 is not enabled in which case the smca_banks array won't
be populated.
Rather than try to figure out another master thread to do the populating,
we should just allow any CPU to populate the array.
Drop the CPU 0 check and return early if the bank was already initialized.
Also, drop the WARNing about an already initialized bank, since this will
be a common, expected occurrence.
The smca_banks array is only populated at boot time and CPUs are brought
online sequentially. So there's no need for locking around the array.
If the first CPU up is a master thread, then it will populate the array
with all banks, core and non-core. Every CPU afterwards will return
early. If the first CPU up is not a master thread, then it will populate
the array with all core banks. The first CPU afterwards that is a master
thread will skip populating the core banks and continue populating the
non-core banks.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jack Miller <jack@codezen.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170724101228.17326-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
verify_and_add_patch() allocates memory for a microcode patch and hands
it down to be added to the cache of patches. However, if the cache
already has the latest patch, the newly allocated one needs to be freed
before returning. Do that.
This issue has been found by kmemleak:
unreferenced object 0xffff88010e780b40 (size 32):
comm "bash", pid 860, jiffies 4294690939 (age 29.297s)
backtrace:
kmemleak_alloc
kmem_cache_alloc_trace
load_microcode_amd.isra.0
request_microcode_amd
reload_store
dev_attr_store
sysfs_kf_write
kernfs_fop_write
__vfs_write
vfs_write
SyS_write
do_syscall_64
return_from_SYSCALL_64
0xffffffffffffffff
(gdb) list *0xffffffff81050d60
0xffffffff81050d60 is in load_microcode_amd
(arch/x86/kernel/cpu/microcode/amd.c:616).
which is this:
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
--> if (!patch) {
pr_err("Patch allocation failure.\n");
return -EINVAL;
}
Signed-off-by: Shu Wang <shuwang@redhat.com>
[ Rewrite commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: chuhu@redhat.com
Cc: liwang@redhat.com
Link: http://lkml.kernel.org/r/20170724101228.17326-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the setting of the cpuinfo_x86.microcode field from amd_init() to
early_amd_init() so that it is available earlier in the boot process. This
avoids having to read MSR_AMD64_PATCH_LEVEL directly during early boot.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/7b7525fa12593dac5f4b01fcc25c95f97e93862f.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Update the CPU features to include identifying and reporting on the
Secure Memory Encryption (SME) feature. SME is identified by CPUID
0x8000001f, but requires BIOS support to enable it (set bit 23 of
MSR_K8_SYSCFG). Only show the SME feature as available if reported by
CPUID, enabled by BIOS and not configured as CONFIG_X86_32=y.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/85c17ff450721abccddc95e611ae8df3f4d9718b.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The SME patches we are about to apply add some E820 logic, so merge in
pending E820 code changes first, to have a single code base.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Max virtual processor will be needed for 'extended' hypercalls supporting
more than 64 vCPUs. While on it, unify on 'Hyper-V' in mshyperv.c as we
currently have a mix, report acquired misc features as well.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This old piece of code is supposed to measure the performance of indirect
calls to determine if the processor is buggy or not, however the compiler
optimizer turns it into a direct call.
Use the OPTIMIZER_HIDE_VAR() macro to thwart the optimization, so that a real
indirect call is generated.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1707110737530.8746@file01.intranet.prod.int.rdu2.redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We can use PCID if the CPU has PCID and PGE and we're not on Xen.
By itself, this has no effect. A followup patch will start using PCID.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Nadav Amit <nadav.amit@gmail.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/6327ecd907b32f79d5aa0d466f04503bbec5df88.1498751203.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The parameter is only present on x86_64 systems to save a few bytes,
as PCID is always disabled on x86_32.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Nadav Amit <nadav.amit@gmail.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/8bbb2e65bcd249a5f18bfb8128b4689f08ac2b60.1498751203.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
32-bit kernels on new hardware will see PCID in CPUID, but PCID can
only be used in 64-bit mode. Rather than making all PCID code
conditional, just disable the feature on 32-bit builds.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Nadav Amit <nadav.amit@gmail.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/2e391769192a4d31b808410c383c6bf0734bc6ea.1498751203.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Rework suspend-to-idle to allow it to take wakeup events signaled
by the EC into account on ACPI-based platforms in order to properly
support power button wakeup from suspend-to-idle on recent Dell
laptops (Rafael Wysocki).
That includes the core suspend-to-idle code rework, support for
the Low Power S0 _DSM interface, and support for the ACPI INT0002
Virtual GPIO device from Hans de Goede (required for USB keyboard
wakeup from suspend-to-idle to work on some machines).
- Stop trying to export the current CPU frequency via /proc/cpuinfo
on x86 as that is inaccurate and confusing (Len Brown).
- Rework the way in which the current CPU frequency is exported by
the kernel (over the cpufreq sysfs interface) on x86 systems with
the APERF and MPERF registers by always using values read from
these registers, when available, to compute the current frequency
regardless of which cpufreq driver is in use (Len Brown).
- Rework the PCI/ACPI device wakeup infrastructure to remove the
questionable and artificial distinction between "devices that
can wake up the system from sleep states" and "devices that can
generate wakeup signals in the working state" from it, which
allows the code to be simplified quite a bit (Rafael Wysocki).
- Fix the wakeup IRQ framework by making it use SRCU instead of
RCU which doesn't allow sleeping in the read-side critical
sections, but which in turn is expected to be allowed by the
IRQ bus locking infrastructure (Thomas Gleixner).
- Modify some computations in the intel_pstate driver to avoid
rounding errors resulting from them (Srinivas Pandruvada).
- Reduce the overhead of the intel_pstate driver in the HWP
(hardware-managed P-states) mode and when the "performance"
P-state selection algorithm is in use by making it avoid
registering scheduler callbacks in those cases (Len Brown).
- Rework the energy_performance_preference sysfs knob in
intel_pstate by changing the values that correspond to
different symbolic hint names used by it (Len Brown).
- Make it possible to use more than one cpuidle driver at the same
time on ARM (Daniel Lezcano).
- Make it possible to prevent the cpuidle menu governor from using
the 0 state by disabling it via sysfs (Nicholas Piggin).
- Add support for FFH (Fixed Functional Hardware) MWAIT in ACPI C1
on AMD systems (Yazen Ghannam).
- Make the CPPC cpufreq driver take the lowest nonlinear performance
information into account (Prashanth Prakash).
- Add support for hi3660 to the cpufreq-dt driver, fix the
imx6q driver and clean up the sfi, exynos5440 and intel_pstate
drivers (Colin Ian King, Krzysztof Kozlowski, Octavian Purdila,
Rafael Wysocki, Tao Wang).
- Fix a few minor issues in the generic power domains (genpd)
framework and clean it up somewhat (Krzysztof Kozlowski,
Mikko Perttunen, Viresh Kumar).
- Fix a couple of minor issues in the operating performance points
(OPP) framework and clean it up somewhat (Viresh Kumar).
- Fix a CONFIG dependency in the hibernation core and clean it up
slightly (Balbir Singh, Arvind Yadav, BaoJun Luo).
- Add rk3228 support to the rockchip-io adaptive voltage scaling
(AVS) driver (David Wu).
- Fix an incorrect bit shift operation in the RAPL power capping
driver (Adam Lessnau).
- Add support for the EPP field in the HWP (hardware managed
P-states) control register, HWP.EPP, to the x86_energy_perf_policy
tool and update msr-index.h with HWP.EPP values (Len Brown).
- Fix some minor issues in the turbostat tool (Len Brown).
- Add support for AMD family 0x17 CPUs to the cpupower tool and fix
a minor issue in it (Sherry Hurwitz).
- Assorted cleanups, mostly related to the constification of some
data structures (Arvind Yadav, Joe Perches, Kees Cook, Krzysztof
Kozlowski).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJZWrICAAoJEILEb/54YlRxZYMQAIRhfbyDxKq+ByvSilUS8kTA
AItwJ8FFzykhiwN75Cqabg4rAGyWma7IRs1vzU7zeC1aEQIn+bTQtvk+utZNI+g2
ANFlDha20q/sXsP/CDMMTIAdW9tSOC0TOvFI9s2V2Y8dJZhoekO4ctx34FAfUS5d
Ao6rwSAWCMsCXcGaTAlqTA+TEJmBG7u6Iq6hq6ngltoFwOv3mWWBVn52VVaJ7SMp
9/IPbbLGMFAedrgEBRGCR+MME1xZZpvcZIJaTt1Mgn7Cx3cJaysIUAvqY/SsvFGq
5FcUTcF2qpK3+AGawiAxZIjvOBsGRtIwqKinNIzYWs/NjiIdzmgVAmTeuPtTqp+5
HFehUdtkFcnuDnLqSNzAaZUa7tw84cJkwnbVMnesx0MkG6rZ1SeL22E2Sabpcdsh
3Yo1ThzJSxi59DhiiE92EQnNCEjmCldRy+8q5Ag035muxl6EJYvuNBMnZv/BMCUn
ltSNOrmps1DlN+Col8ORIeNzQ1YjYzWMqKAYzSbyccm4ug/iSHx0/DuESmQ4GTlF
YCwkmqyWiHrBwpl51jc+4a7SGlMmKRqU+MJes0CjagaaqoUAb8qeBOpzEJ0yNwjZ
wtI41l6blE6kbMD3yqGdCfiB2S7GlPVoxa15eX1wRyLH3fLjwwrzJirEaiBS86tI
1PzHZEOmBlh3DYC6DBKA
=Wsph
-----END PGP SIGNATURE-----
Merge tag 'pm-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"The big ticket items here are the rework of suspend-to-idle in order
to add proper support for power button wakeup from it on recent Dell
laptops and the rework of interfaces exporting the current CPU
frequency on x86.
In addition to that, support for a few new pieces of hardware is
added, the PCI/ACPI device wakeup infrastructure is simplified
significantly and the wakeup IRQ framework is fixed to unbreak the IRQ
bus locking infrastructure.
Also, there are some functional improvements for intel_pstate, tools
updates and small fixes and cleanups all over.
Specifics:
- Rework suspend-to-idle to allow it to take wakeup events signaled
by the EC into account on ACPI-based platforms in order to properly
support power button wakeup from suspend-to-idle on recent Dell
laptops (Rafael Wysocki).
That includes the core suspend-to-idle code rework, support for the
Low Power S0 _DSM interface, and support for the ACPI INT0002
Virtual GPIO device from Hans de Goede (required for USB keyboard
wakeup from suspend-to-idle to work on some machines).
- Stop trying to export the current CPU frequency via /proc/cpuinfo
on x86 as that is inaccurate and confusing (Len Brown).
- Rework the way in which the current CPU frequency is exported by
the kernel (over the cpufreq sysfs interface) on x86 systems with
the APERF and MPERF registers by always using values read from
these registers, when available, to compute the current frequency
regardless of which cpufreq driver is in use (Len Brown).
- Rework the PCI/ACPI device wakeup infrastructure to remove the
questionable and artificial distinction between "devices that can
wake up the system from sleep states" and "devices that can
generate wakeup signals in the working state" from it, which allows
the code to be simplified quite a bit (Rafael Wysocki).
- Fix the wakeup IRQ framework by making it use SRCU instead of RCU
which doesn't allow sleeping in the read-side critical sections,
but which in turn is expected to be allowed by the IRQ bus locking
infrastructure (Thomas Gleixner).
- Modify some computations in the intel_pstate driver to avoid
rounding errors resulting from them (Srinivas Pandruvada).
- Reduce the overhead of the intel_pstate driver in the HWP
(hardware-managed P-states) mode and when the "performance" P-state
selection algorithm is in use by making it avoid registering
scheduler callbacks in those cases (Len Brown).
- Rework the energy_performance_preference sysfs knob in intel_pstate
by changing the values that correspond to different symbolic hint
names used by it (Len Brown).
- Make it possible to use more than one cpuidle driver at the same
time on ARM (Daniel Lezcano).
- Make it possible to prevent the cpuidle menu governor from using
the 0 state by disabling it via sysfs (Nicholas Piggin).
- Add support for FFH (Fixed Functional Hardware) MWAIT in ACPI C1 on
AMD systems (Yazen Ghannam).
- Make the CPPC cpufreq driver take the lowest nonlinear performance
information into account (Prashanth Prakash).
- Add support for hi3660 to the cpufreq-dt driver, fix the imx6q
driver and clean up the sfi, exynos5440 and intel_pstate drivers
(Colin Ian King, Krzysztof Kozlowski, Octavian Purdila, Rafael
Wysocki, Tao Wang).
- Fix a few minor issues in the generic power domains (genpd)
framework and clean it up somewhat (Krzysztof Kozlowski, Mikko
Perttunen, Viresh Kumar).
- Fix a couple of minor issues in the operating performance points
(OPP) framework and clean it up somewhat (Viresh Kumar).
- Fix a CONFIG dependency in the hibernation core and clean it up
slightly (Balbir Singh, Arvind Yadav, BaoJun Luo).
- Add rk3228 support to the rockchip-io adaptive voltage scaling
(AVS) driver (David Wu).
- Fix an incorrect bit shift operation in the RAPL power capping
driver (Adam Lessnau).
- Add support for the EPP field in the HWP (hardware managed
P-states) control register, HWP.EPP, to the x86_energy_perf_policy
tool and update msr-index.h with HWP.EPP values (Len Brown).
- Fix some minor issues in the turbostat tool (Len Brown).
- Add support for AMD family 0x17 CPUs to the cpupower tool and fix a
minor issue in it (Sherry Hurwitz).
- Assorted cleanups, mostly related to the constification of some
data structures (Arvind Yadav, Joe Perches, Kees Cook, Krzysztof
Kozlowski)"
* tag 'pm-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (69 commits)
cpufreq: Update scaling_cur_freq documentation
cpufreq: intel_pstate: Clean up after performance governor changes
PM: hibernate: constify attribute_group structures.
cpuidle: menu: allow state 0 to be disabled
intel_idle: Use more common logging style
PM / Domains: Fix missing default_power_down_ok comment
PM / Domains: Fix unsafe iteration over modified list of domains
PM / Domains: Fix unsafe iteration over modified list of domain providers
PM / Domains: Fix unsafe iteration over modified list of device links
PM / Domains: Handle safely genpd_syscore_switch() call on non-genpd device
PM / Domains: Call driver's noirq callbacks
PM / core: Drop run_wake flag from struct dev_pm_info
PCI / PM: Simplify device wakeup settings code
PCI / PM: Drop pme_interrupt flag from struct pci_dev
ACPI / PM: Consolidate device wakeup settings code
ACPI / PM: Drop run_wake from struct acpi_device_wakeup_flags
PM / QoS: constify *_attribute_group.
PM / AVS: rockchip-io: add io selectors and supplies for rk3228
powercap/RAPL: prevent overridding bits outside of the mask
PM / sysfs: Constify attribute groups
...
Pull RAS updates from Thomas Gleixner:
"The RAS updates for the 4.13 merge window:
- Cleanup of the MCE injection facility (Borsilav Petkov)
- Rework of the AMD/SMCA handling (Yazen Ghannam)
- Enhancements for ACPI/APEI to handle new notitication types (Shiju
Jose)
- atomic_t to refcount_t conversion (Elena Reshetova)
- A few fixes and enhancements all over the place"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
RAS/CEC: Check the correct variable in the debugfs error handling
x86/mce: Always save severity in machine_check_poll()
x86/MCE, xen/mcelog: Make /dev/mcelog registration messages more precise
x86/mce: Update bootlog description to reflect behavior on AMD
x86/mce: Don't disable MCA banks when offlining a CPU on AMD
x86/mce/mce-inject: Preset the MCE injection struct
x86/mce: Clean up include files
x86/mce: Get rid of register_mce_write_callback()
x86/mce: Merge mce_amd_inj into mce-inject
x86/mce/AMD: Use saved threshold block info in interrupt handler
x86/mce/AMD: Use msr_stat when clearing MCA_STATUS
x86/mce/AMD: Carve out SMCA bank configuration
x86/mce/AMD: Redo error logging from APIC LVT interrupt handlers
x86/mce: Convert threshold_bank.cpus from atomic_t to refcount_t
RAS: Make local function parse_ras_param() static
ACPI/APEI: Handle GSIV and GPIO notification types
Pull SMP hotplug updates from Thomas Gleixner:
"This update is primarily a cleanup of the CPU hotplug locking code.
The hotplug locking mechanism is an open coded RWSEM, which allows
recursive locking. The main problem with that is the recursive nature
as it evades the full lockdep coverage and hides potential deadlocks.
The rework replaces the open coded RWSEM with a percpu RWSEM and
establishes full lockdep coverage that way.
The bulk of the changes fix up recursive locking issues and address
the now fully reported potential deadlocks all over the place. Some of
these deadlocks have been observed in the RT tree, but on mainline the
probability was low enough to hide them away."
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
cpu/hotplug: Constify attribute_group structures
powerpc: Only obtain cpu_hotplug_lock if called by rtasd
ARM/hw_breakpoint: Fix possible recursive locking for arch_hw_breakpoint_init
cpu/hotplug: Remove unused check_for_tasks() function
perf/core: Don't release cred_guard_mutex if not taken
cpuhotplug: Link lock stacks for hotplug callbacks
acpi/processor: Prevent cpu hotplug deadlock
sched: Provide is_percpu_thread() helper
cpu/hotplug: Convert hotplug locking to percpu rwsem
s390: Prevent hotplug rwsem recursion
arm: Prevent hotplug rwsem recursion
arm64: Prevent cpu hotplug rwsem recursion
kprobes: Cure hotplug lock ordering issues
jump_label: Reorder hotplug lock and jump_label_lock
perf/tracing/cpuhotplug: Fix locking order
ACPI/processor: Use cpu_hotplug_disable() instead of get_online_cpus()
PCI: Replace the racy recursion prevention
PCI: Use cpu_hotplug_disable() instead of get_online_cpus()
perf/x86/intel: Drop get_online_cpus() in intel_snb_check_microcode()
x86/perf: Drop EXPORT of perf_check_microcode
...
Pull x86 microcode updates from Ingo Molnar:
"The main changes are a fix early microcode application for
resume-from-RAM, plus a 32-bit initrd placement fix - by Borislav
Petkov"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Make a couple of symbols static
x86/microcode/intel: Save pointer to ucode patch for early AP loading
x86/microcode: Look for the initrd at the correct address on 32-bit
Pull x86 hyperv updates from Ingo Molnar:
"Avoid boot time TSC calibration on Hyper-V hosts, to improve
calibration robustness. (Vitaly Kuznetsov)"
* 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyperv: Read TSC frequency from a synthetic MSR
x86/hyperv: Check frequency MSRs presence according to the specification
The goal of this change is to give users a uniform and meaningful
result when they read /sys/...cpufreq/scaling_cur_freq
on modern x86 hardware, as compared to what they get today.
Modern x86 processors include the hardware needed
to accurately calculate frequency over an interval --
APERF, MPERF, and the TSC.
Here we provide an x86 routine to make this calculation
on supported hardware, and use it in preference to any
driver driver-specific cpufreq_driver.get() routine.
MHz is computed like so:
MHz = base_MHz * delta_APERF / delta_MPERF
MHz is the average frequency of the busy processor
over a measurement interval. The interval is
defined to be the time between successive invocations
of aperfmperf_khz_on_cpu(), which are expected to to
happen on-demand when users read sysfs attribute
cpufreq/scaling_cur_freq.
As with previous methods of calculating MHz,
idle time is excluded.
base_MHz above is from TSC calibration global "cpu_khz".
This x86 native method to calculate MHz returns a meaningful result
no matter if P-states are controlled by hardware or firmware
and/or if the Linux cpufreq sub-system is or is-not installed.
When this routine is invoked more frequently, the measurement
interval becomes shorter. However, the code limits re-computation
to 10ms intervals so that average frequency remains meaningful.
Discerning users are encouraged to take advantage of
the turbostat(8) utility, which can gracefully handle
concurrent measurement intervals of arbitrary length.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The MCE severity gives a hint as to how to handle the error. The
notifier blocks can then use the severity to decide on an action.
It's not necessary for machine_check_poll() to filter errors for
the notifier chain, since each block will check its own set of
conditions before handling an error.
Also, there isn't any urgency for machine_check_poll() to make decisions
based on severity like in do_machine_check().
If we can assume that a severity is set then we can use it in more
notifier blocks. For example, the CEC block could check for a "KEEP"
severity rather than checking bits in the status. This isn't possible
now since the severity is not set except for "DEFFRRED/UCNA" errors with
a valid address.
Save the severity since we have it, and let the notifier blocks decide
if they want to do anything.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1498074402-98633-1-git-send-email-Yazen.Ghannam@amd.com
The helper function __load_ucode_amd() and pointer intel_ucode_patch do
not need to be in global scope, so make them static.
Fixes those sparse warnings:
"symbol '__load_ucode_amd' was not declared. Should it be static?"
"symbol 'intel_ucode_patch' was not declared. Should it be static?"
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170622095736.11937-1-colin.king@canonical.com
cpufreq_quick_get() allows cpufreq drivers to over-ride cpu_khz
that is otherwise reported in x86 /proc/cpuinfo "cpu MHz".
There are four problems with this scheme,
any of them is sufficient justification to delete it.
1. Depending on which cpufreq driver is loaded, the behavior
of this field is different.
2. Distros complain that they have to explain to users
why and how this field changes. Distros have requested a constant.
3. The two major providers of this information, acpi_cpufreq
and intel_pstate, both "get it wrong" in different ways.
acpi_cpufreq lies to the user by telling them that
they are running at whatever frequency was last
requested by software.
intel_pstate lies to the user by telling them that
they are running at the average frequency computed
over an undefined measurement. But an average computed
over an undefined interval, is itself, undefined...
4. On modern processors, user space utilities, such as
turbostat(1), are more accurate and more precise, while
supporing concurrent measurement over arbitrary intervals.
Users who have been consulting /proc/cpuinfo to
track changing CPU frequency will be dissapointed that
it no longer wiggles -- perhaps being unaware of the
limitations of the information they have been consuming.
Yes, they can change their scripts to look in sysfs
cpufreq/scaling_cur_frequency. Here they will find the same
data of dubious quality here removed from /proc/cpuinfo.
The value in sysfs will be addressed in a subsequent patch
to address issues 1-3, above.
Issue 4 will remain -- users that really care about
accurate frequency information should not be using either
proc or sysfs kernel interfaces.
They should be using using turbostat(8), or a similar
purpose-built analysis tool.
Signed-off-by: Len Brown <len.brown@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
It was found that SMI_TRESHOLD of 50000 is not enough for Hyper-V
guests in nested environment and falling back to counting jiffies
is not an option for Gen2 guests as they don't have PIT. As Hyper-V
provides TSC frequency in a synthetic MSR we can just use this information
instead of doing a error prone calibration.
Reported-and-tested-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jork Loeser <jloeser@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Link: http://lkml.kernel.org/r/20170622100730.18112-3-vkuznets@redhat.com
Hyper-V TLFS specifies two bits which should be checked before accessing
frequency MSRs:
- AccessFrequencyMsrs (BIT(11) in EAX) which indicates if we have access to
frequency MSRs.
- FrequencyMsrsAvailable (BIT(8) in EDX) which indicates is these MSRs are
present.
Rename and specify these bits accordingly.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Ladi Prosek <lprosek@redhat.com>
Cc: Jork Loeser <jloeser@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Link: http://lkml.kernel.org/r/20170622100730.18112-2-vkuznets@redhat.com
When running under Xen as dom0, /dev/mcelog is being provided by Xen
instead of the normal mcelog character device of the MCE core. Convert
an error message being issued by the MCE core in this case to an
informative message that Xen has registered the device.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: xen-devel@lists.xenproject.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170614084059.19294-1-jgross@suse.com
Normally, when the initrd is gone, we can't search it for microcode
blobs to apply anymore. For that we need to stash away the patch in our
own storage.
And save_microcode_in_initrd_intel() looks like the proper place to
do that from. So in order for early loading to work, invalidate the
intel_ucode_patch pointer to the patch *before* scanning the initrd one
last time.
If the scanning code finds a microcode patch, it will assign that
pointer again, this time with our own storage's address.
This way, early microcode application during resume-from-RAM works too,
even after the initrd is long gone.
Tested-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170614140626.4462-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Early during boot, the BSP finds the ramdisk's position from boot_params
but by the time the APs get to boot, the BSP has continued in the mean
time and has potentially managed to relocate that ramdisk.
And in that case, the APs need to find the ramdisk at its new position,
in *physical* memory as they're running before paging has been enabled.
Thus, get the updated physical location of the ramdisk which is in the
relocated_ramdisk variable.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170614140626.4462-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The bootlog option is only disabled by default on AMD Fam10h and older
systems.
Update bootlog description to say this. Change the family value to hex
to avoid confusion.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-9-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
AMD systems have non-core, shared MCA banks within a die. These banks
are controlled by a master CPU per die. If this CPU is offlined then all
the shared banks are disabled in addition to the CPU's core banks.
Also, Fam17h systems may have SMT enabled. The MCA_CTL register is shared
between SMT thread siblings. If a CPU is offlined then all its sibling's
MCA banks are also disabled.
Extend the existing vendor check to AMD too.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
[ Fix up comment. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-8-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make the mcelog call a notifier which lands in the injector module and
does the injection. This allows for mce-inject to be a normal kernel
module now.
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20170613162835.30750-5-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reuse mce_amd_inj's debugfs interface so that mce-inject can
benefit from it too. The old functionality is still preserved under
CONFIG_X86_MCELOG_LEGACY.
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/20170613162835.30750-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the amd_threshold_interrupt() handler, we loop through every possible
block in each bank and rediscover the block's address and if it's valid,
e.g. valid, counter present and not locked.
However, we already have the address saved in the threshold blocks list
for each CPU and bank. The list only contains blocks that have passed
all the valid checks.
Besides the redundancy, there's also a smp_call_function* in
get_block_address() which causes a warning when servicing the interrupt:
WARNING: CPU: 0 PID: 0 at kernel/smp.c:281 smp_call_function_single+0xdd/0xf0
...
Call Trace:
<IRQ>
rdmsr_safe_on_cpu()
get_block_address.isra.2()
amd_threshold_interrupt()
smp_threshold_interrupt()
threshold_interrupt()
because we do get called in an interrupt handler *with* interrupts
disabled, which can result in a deadlock.
Drop the redundant valid checks and move the overflow check, logging and
block reset into a separate function.
Check the first block then iterate over the rest. This procedure is
needed since the first block is used as the head of the list.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170613162835.30750-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The value of MCA_STATUS is used as the MSR when clearing MCA_STATUS.
This may cause the following warning:
unchecked MSR access error: WRMSR to 0x11b (tried to write 0x0000000000000000)
Call Trace:
<IRQ>
smp_threshold_interrupt()
threshold_interrupt()
Use msr_stat instead which has the MSR address.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Fixes: 37d43acfd7 ("x86/mce/AMD: Redo error logging from APIC LVT interrupt handlers")
Link: http://lkml.kernel.org/r/20170613162835.30750-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
During early boot, load_ucode_intel_ap() uses __load_ucode_intel()
to obtain a pointer to the relevant microcode patch (embedded in the
initrd), and stores this value in 'intel_ucode_patch' to speed up the
microcode patch application for subsequent CPUs.
On resuming from suspend-to-RAM, however, load_ucode_ap() calls
load_ucode_intel_ap() for each non-boot-CPU. By then the initramfs is
long gone so the pointer stored in 'intel_ucode_patch' no longer points to
a valid microcode patch.
Clear that pointer so that we effectively fall back to the CPU hotplug
notifier callbacks to update the microcode.
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
[ Edit and massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.10..
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170607095819.9754-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A SoC variant of Geode GX1, notably NSC branded SC1100, seems to
report an inverted Device ID in its DIR0 configuration register,
specifically 0xb instead of the expected 0x4.
Catch this presumably quirky version so it's properly recognized
as GX1 and has its cache switched to write-back mode, which provides
a significant performance boost in most workloads.
SC1100's datasheet "Geode™ SC1100 Information Appliance On a Chip",
states in section 1.1.7.1 "Device ID" that device identification
values are specified in SC1100's device errata. These, however,
seem to not have been publicly released.
Wading through a number of boot logs and /proc/cpuinfo dumps found on
pastebin and blogs, this patch should mostly be relevant for a number
of now admittedly aging Soekris NET4801 and PC Engines WRAP devices,
the latter being the platform this issue was discovered on.
Performance impact was verified using "openssl speed", with
write-back caching scaling throughput between -3% and +41%.
Signed-off-by: Christian Sünkenberg <christian.suenkenberg@student.kit.edu>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1496596719.26725.14.camel@student.kit.edu
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With CONFIG_DEBUG_PREEMPT enabled, I get:
BUG: using smp_processor_id() in preemptible [00000000] code: swapper/0/1
caller is debug_smp_processor_id
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc2+ #2
Call Trace:
dump_stack
check_preemption_disabled
debug_smp_processor_id
save_microcode_in_initrd_amd
? microcode_init
save_microcode_in_initrd
...
because, well, it says it above, we're using smp_processor_id() in
preemptible code.
But passing the CPU number is not really needed. It is only used to
determine whether we're on the BSP, and, if so, to save the microcode
patch for early loading.
[ We don't absolutely need to do it on the BSP but we do that
customarily there. ]
Instead, convert that function parameter to a boolean which denotes
whether the patch should be saved or not, thereby avoiding the use of
smp_processor_id() in preemptible code.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170528200414.31305-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
mtrr_save_state() is invoked from native_cpu_up() which is in the context
of a CPU hotplug operation and therefor calling get_online_cpus() is
pointless.
While this works in the current get_online_cpus() implementation it
prevents from converting the hotplug locking to percpu rwsems.
Remove it.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170524081547.651378834@linutronix.de
Scalable MCA systems have a new MCA_CONFIG register that we use to
configure each bank. We currently use this when we set up thresholding.
However, this is logically separate.
Group all SMCA-related initialization into a single function.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1493147772-2721-2-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We have support for the new SMCA MCA_DE{STAT,ADDR} registers in Linux.
So we've used these registers in place of MCA_{STATUS,ADDR} on SMCA
systems.
However, the guidance for current SMCA implementations of is to continue
using MCA_{STATUS,ADDR} and to use MCA_DE{STAT,ADDR} only if a Deferred
error was not found in the former registers. If we logged a Deferred
error in MCA_STATUS then we should also clear MCA_DESTAT. This also
means we shouldn't clear MCA_CONFIG[LogDeferredInMcaStat].
Rework __log_error() to only log an error and add helpers for the
different error types being logged from the corresponding interrupt
handlers.
Boris: carve out common functionality into a _log_error_bank(). Cleanup
comments, check MCi_STATUS bits before reading MSRs. Streamline flow.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1493147772-2721-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The refcount_t type and corresponding API should be used instead
of atomic_t when the variable is used as a reference counter. This
allows to avoid accidental refcounter overflows that might lead to
use-after-free situations.
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1492695536-5947-1-git-send-email-elena.reshetova@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Export the function which checks whether an MCE is a memory error to
other users so that we can reuse the logic. Drop the boot_cpu_data use,
while at it, as mce.cpuvendor already has the CPU vendor in there.
Integrate a piece from a patch from Vishal Verma
<vishal.l.verma@intel.com> to export it for modules (nfit).
The main reason we're exporting it is that the nfit handler
nfit_handle_mce() needs to detect a memory error properly before doing
its recovery actions.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170519093915.15413-2-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- two boot crash fixes
- unwinder fixes
- kexec related kernel direct mappings enhancements/fixes
- more Clang support quirks
- minor cleanups
- Documentation fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel_rdt: Fix a typo in Documentation
x86/build: Don't add -maccumulate-outgoing-args w/o compiler support
x86/boot/32: Fix UP boot on Quark and possibly other platforms
x86/mm/32: Set the '__vmalloc_start_set' flag in initmem_init()
x86/kexec/64: Use gbpages for identity mappings if available
x86/mm: Add support for gbpages to kernel_ident_mapping_init()
x86/boot: Declare error() as noreturn
x86/mm/kaslr: Use the _ASM_MUL macro for multiplication to work around Clang incompatibility
x86/mm: Fix boot crash caused by incorrect loop count calculation in sync_global_pgds()
x86/asm: Don't use RBP as a temporary register in csum_partial_copy_generic()
x86/microcode/AMD: Remove redundant NULL check on mc
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQEcBAABAgAGBQJZFWTzAAoJELDendYovxMv24cIAJ3U2OZ64d7WTKD37AT2O6nF
6R3j+zJ6apoKX4zHvhWUOHZ6jpTASTnaisiIskVc52JcgAK0f8ZYTg5nhyWPceAD
Icf+JuXrI6uplD97qsjt7X9FbxUsRZninfsznoBkK6P8Cw8ZWlWIWIl6e3CrVwBD
geyKcbsKkVG8+bMjWvmQd94CFq5r8Ivup0sCECumx0lqw3RhxdhQvUix9eBULEoG
h/XAuPbMupdjU6phgqG4rvUjWd/R+9mIIDG1oY9Kpx4Kpn/7bHtoYZ//Qzs8bmuP
5ORujOedshdyAZqLGxQuQzo+/4E9gX3qVbaS6fPf1Ab+ra0k/iWtetUITZ0v2AQ=
=gWpG
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.12b-rc0c-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"This contains two fixes for booting under Xen introduced during this
merge window and two fixes for older problems, where one is just much
more probable due to another merge window change"
* tag 'for-linus-4.12b-rc0c-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: adjust early dom0 p2m handling to xen hypervisor behavior
x86/amd: don't set X86_BUG_SYSRET_SS_ATTRS when running under Xen
xen/x86: Do not call xen_init_time_ops() until shared_info is initialized
x86/xen: fix xsave capability setting
When running as Xen pv guest X86_BUG_SYSRET_SS_ATTRS must not be set
on AMD cpus.
This bug/feature bit is kind of special as it will be used very early
when switching threads. Setting the bit and clearing it a little bit
later leaves a critical window where things can go wrong. This time
window has enlarged a little bit by using setup_clear_cpu_cap() instead
of the hypervisor's set_cpu_features callback. It seems this larger
window now makes it rather easy to hit the problem.
The proper solution is to never set the bit in case of Xen.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
set_memory_* functions have moved to set_memory.h. Switch to this
explicitly.
Link: http://lkml.kernel.org/r/1488920133-27229-6-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is the big set of new char/misc driver drivers and features for
4.12-rc1.
There's lots of new drivers added this time around, new firmware drivers
from Google, more auxdisplay drivers, extcon drivers, fpga drivers, and
a bunch of other driver updates. Nothing major, except if you happen to
have the hardware for these drivers, and then you will be happy :)
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWQvAgg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yknsACgzkAeyz16Z97J3UTaeejbR7nKUCAAoKY4WEHY
8O9f9pr9gj8GMBwxeZQa
=OIfB
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the big set of new char/misc driver drivers and features for
4.12-rc1.
There's lots of new drivers added this time around, new firmware
drivers from Google, more auxdisplay drivers, extcon drivers, fpga
drivers, and a bunch of other driver updates. Nothing major, except if
you happen to have the hardware for these drivers, and then you will
be happy :)
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (136 commits)
firmware: google memconsole: Fix return value check in platform_memconsole_init()
firmware: Google VPD: Fix return value check in vpd_platform_init()
goldfish_pipe: fix build warning about using too much stack.
goldfish_pipe: An implementation of more parallel pipe
fpga fr br: update supported version numbers
fpga: region: release FPGA region reference in error path
fpga altera-hps2fpga: disable/unprepare clock on error in alt_fpga_bridge_probe()
mei: drop the TODO from samples
firmware: Google VPD sysfs driver
firmware: Google VPD: import lib_vpd source files
misc: lkdtm: Add volatile to intentional NULL pointer reference
eeprom: idt_89hpesx: Add OF device ID table
misc: ds1682: Add OF device ID table
misc: tsl2550: Add OF device ID table
w1: Remove unneeded use of assert() and remove w1_log.h
w1: Use kernel common min() implementation
uio_mf624: Align memory regions to page size and set correct offsets
uio_mf624: Refactor memory info initialization
uio: Allow handling of non page-aligned memory regions
hangcheck-timer: Fix typo in comment
...
There is no user of x86_hyper->set_cpu_features() any more. Remove it.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
There is no need to set the same capabilities for each cpu
individually. This can be done for all cpus in platform initialization.
Cc: Alok Kataria <akataria@vmware.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: virtualization@lists.linux-foundation.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Alok Kataria <akataria@vmware.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
All code to support Xen PV will get under this new option. For the
beginning, check for it in the common code.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
As a preparation to splitting the code we need to untangle it:
x86_hyper_xen -> x86_hyper_xen_hvm and x86_hyper_xen_pv
xen_platform() -> xen_platform_hvm() and xen_platform_pv()
xen_cpu_up_prepare() -> xen_cpu_up_prepare_pv() and xen_cpu_up_prepare_hvm()
xen_cpu_dead() -> xen_cpu_dead_pv() and xen_cpu_dead_pv_hvm()
Add two parameters to xen_cpuhp_setup() to pass proper cpu_up_prepare and
cpu_dead hooks. xen_set_cpu_features() is now PV-only so the redundant
xen_pv_domain() check can be dropped.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Pull x86 mm updates from Ingo Molnar:
"The main x86 MM changes in this cycle were:
- continued native kernel PCID support preparation patches to the TLB
flushing code (Andy Lutomirski)
- various fixes related to 32-bit compat syscall returning address
over 4Gb in applications, launched from 64-bit binaries - motivated
by C/R frameworks such as Virtuozzo. (Dmitry Safonov)
- continued Intel 5-level paging enablement: in particular the
conversion of x86 GUP to the generic GUP code. (Kirill A. Shutemov)
- x86/mpx ABI corner case fixes/enhancements (Joerg Roedel)
- ... plus misc updates, fixes and cleanups"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
mm, zone_device: Replace {get, put}_zone_device_page() with a single reference to fix pmem crash
x86/mm: Fix flush_tlb_page() on Xen
x86/mm: Make flush_tlb_mm_range() more predictable
x86/mm: Remove flush_tlb() and flush_tlb_current_task()
x86/vm86/32: Switch to flush_tlb_mm_range() in mark_screen_rdonly()
x86/mm/64: Fix crash in remove_pagetable()
Revert "x86/mm/gup: Switch GUP to the generic get_user_page_fast() implementation"
x86/boot/e820: Remove a redundant self assignment
x86/mm: Fix dump pagetables for 4 levels of page tables
x86/mpx, selftests: Only check bounds-vs-shadow when we keep shadow
x86/mpx: Correctly report do_mpx_bt_fault() failures to user-space
Revert "x86/mm/numa: Remove numa_nodemask_from_meminfo()"
x86/espfix: Add support for 5-level paging
x86/kasan: Extend KASAN to support 5-level paging
x86/mm: Add basic defines/helpers for CONFIG_X86_5LEVEL=y
x86/paravirt: Add 5-level support to the paravirt code
x86/mm: Define virtual memory map for 5-level paging
x86/asm: Remove __VIRTUAL_MASK_SHIFT==47 assert
x86/boot: Detect 5-level paging support
x86/mm/numa: Remove numa_nodemask_from_meminfo()
...
Pull x86 cpu updates from Ingo Molnar:
"The biggest changes are an extension of the Intel RDT code to extend
it with Intel Memory Bandwidth Allocation CPU support: MBA allows
bandwidth allocation between cores, while CBM (already upstream)
allows CPU cache partitioning.
There's also misc smaller fixes and updates"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/intel_rdt: Return error for incorrect resource names in schemata
x86/intel_rdt: Trim whitespace while parsing schemata input
x86/intel_rdt: Fix padding when resource is enabled via mount
x86/intel_rdt: Get rid of anon union
x86/cpu: Keep model defines sorted by model number
x86/intel_rdt/mba: Add schemata file support for MBA
x86/intel_rdt: Make schemata file parsers resource specific
x86/intel_rdt/mba: Add info directory files for Memory Bandwidth Allocation
x86/intel_rdt: Make information files resource specific
x86/intel_rdt/mba: Add primary support for Memory Bandwidth Allocation (MBA)
x86/intel_rdt/mba: Memory bandwith allocation feature detect
x86/intel_rdt: Add resource specific msr update function
x86/intel_rdt: Move CBM specific data into a struct
x86/intel_rdt: Cleanup namespace to support multiple resource types
Documentation, x86: Intel Memory bandwidth allocation
x86/intel_rdt: Organize code properly
x86/intel_rdt: Init padding only if a device exists
x86/intel_rdt: Add cpus_list rdtgroup file
x86/intel_rdt: Cleanup kernel-doc
x86/intel_rdt: Update schemata read to show data in tabular format
...
Pull x86 boot updates from Ingo Molnar:
"The biggest changes in this cycle were:
- reworking of the e820 code: separate in-kernel and boot-ABI data
structures and apply a whole range of cleanups to the kernel side.
No change in functionality.
- enable KASLR by default: it's used by all major distros and it's
out of the experimental stage as well.
- ... misc fixes and cleanups"
* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits)
x86/KASLR: Fix kexec kernel boot crash when KASLR randomization fails
x86/reboot: Turn off KVM when halting a CPU
x86/boot: Fix BSS corruption/overwrite bug in early x86 kernel startup
x86: Enable KASLR by default
boot/param: Move next_arg() function to lib/cmdline.c for later reuse
x86/boot: Fix Sparse warning by including required header file
x86/boot/64: Rename start_cpu()
x86/xen: Update e820 table handling to the new core x86 E820 code
x86/boot: Fix pr_debug() API braindamage
xen, x86/headers: Add <linux/device.h> dependency to <asm/xen/page.h>
x86/boot/e820: Simplify e820__update_table()
x86/boot/e820: Separate the E820 ABI structures from the in-kernel structures
x86/boot/e820: Fix and clean up e820_type switch() statements
x86/boot/e820: Rename the remaining E820 APIs to the e820__*() prefix
x86/boot/e820: Remove unnecessary #include's
x86/boot/e820: Rename e820_mark_nosave_regions() to e820__register_nosave_regions()
x86/boot/e820: Rename e820_reserve_resources*() to e820__reserve_resources*()
x86/boot/e820: Use bool in query APIs
x86/boot/e820: Document e820__reserve_setup_data()
x86/boot/e820: Clean up __e820__update_table() et al
...
Pull RAS updates from Ingo Molnar:
"The main changes in this cycle were:
- add the 'Corrected Errors Collector' kernel feature which collect
and monitor correctable errors statistics and will preemptively
(soft-)offline physical pages that have a suspiciously high error
count.
- handle MCE errors during kexec() more gracefully
- factor out and deprecate the /dev/mcelog driver
- ... plus misc fixes and cleanpus"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Check MCi_STATUS[MISCV] for usable addr on Intel only
ACPI/APEI: Use setup_deferrable_timer()
x86/mce: Update notifier priority check
x86/mce: Enable PPIN for Knights Landing/Mill
x86/mce: Do not register notifiers with invalid prio
x86/mce: Factor out and deprecate the /dev/mcelog driver
RAS: Add a Corrected Errors Collector
x86/mce: Rename mce_log to mce_log_buffer
x86/mce: Rename mce_log()'s argument
x86/mce: Init some CPU features early
x86/mce: Handle broadcasted MCE gracefully with kexec
Pul x86/process updates from Ingo Molnar:
"The main change in this cycle was to add the ARCH_[GET|SET]_CPUID
prctl() ABI extension to control the availability of the CPUID
instruction, analogously to the existing PR_GET|SET_TSC ABI that
controls RDTSC.
Motivation: the 'rr' user-space record-and-replay execution debugger
would like to trap and emulate the CPUID instruction - which
instruction is normally unprivileged.
Trapping CPUID is possible on IvyBridge and later Intel CPUs - expose
this hardware capability"
* 'x86-process-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/syscalls/32: Ignore arch_prctl for other architectures
um/arch_prctl: Fix fallout from x86 arch_prctl() rework
x86/arch_prctl: Add ARCH_[GET|SET]_CPUID
x86/cpufeature: Detect CPUID faulting support
x86/syscalls/32: Wire up arch_prctl on x86-32
x86/arch_prctl: Add do_arch_prctl_common()
x86/arch_prctl/64: Rename do_arch_prctl() to do_arch_prctl_64()
x86/arch_prctl/64: Use SYSCALL_DEFINE2 to define sys_arch_prctl()
x86/arch_prctl: Rename 'code' argument to 'option'
x86/msr: Rename MISC_FEATURE_ENABLES to MISC_FEATURES_ENABLES
x86/process: Optimize TIF_NOTSC switch
x86/process: Correct and optimize TIF_BLOCKSTEP switch
x86/process: Optimize TIF checks in __switch_to_xtra()
When schemata parses the resource names it does not return an error if it
detects incorrect resource names and fails quietly.
This happens because for_each_enabled_rdt_resource(r) leaves "r" pointing
beyond the end of the rdt_resources_all[] array, and the check for !r->name
results in an out of bounds access.
Split the resource parsing part into a helper function to avoid the issue.
[ tglx: Made it readable by splitting the parser loop out into a function ]
Reported-by: Prakhya, Sai Praneeth <sai.praneeth.prakhya@intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Tested-by: Prakhya, Sai Praneeth <sai.praneeth.prakhya@intel.com>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: ravi.v.shankar@intel.com
Cc: vikas.shivappa@intel.com
Link: http://lkml.kernel.org/r/1492645804-17465-4-git-send-email-vikas.shivappa@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
mce_usable_address() does a bunch of basic sanity checks to verify
whether the address reported with the error is usable for further
processing. However, we do check MCi_STATUS[MISCV] and that is not
needed on AMD as that bit says that there's additional information about
the logged error in the MCi_MISCj banks.
But we don't need that to know whether the address is usable - we only
need to know whether the physical address is valid - i.e., ADDRV.
On Intel the MISCV bit is needed to perform additional checks to determine
whether the reported address is a physical one, etc.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170418183924.6agjkebilwqj26or@pd.tnic
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The NFIT MCE handler callback (for handling media errors on NVDIMMs)
takes a mutex to add the location of a memory error to a list. But since
the notifier call chain for machine checks (x86_mce_decoder_chain) is
atomic, we get a lockdep splat like:
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:620
in_atomic(): 1, irqs_disabled(): 0, pid: 4, name: kworker/0:0
[..]
Call Trace:
dump_stack
___might_sleep
__might_sleep
mutex_lock_nested
? __lock_acquire
nfit_handle_mce
notifier_call_chain
atomic_notifier_call_chain
? atomic_notifier_call_chain
mce_gen_pool_process
Convert the notifier to a blocking one which gets to run only in process
context.
Boris: remove the notifier call in atomic context in print_mce(). For
now, let's print the MCE on the atomic path so that we can make sure
they go out and get logged at least.
Fixes: 6839a6d96f ("nfit: do an ARS scrub on hitting a latent media error")
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170411224457.24777-1-vishal.l.verma@intel.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Update the check which enforces the registration of MCE decoder notifier
callbacks with valid priority only, to include mcelog's priority.
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: lkp@01.org
Link: http://lkml.kernel.org/r/20170418073820.i6kl5tggcntwlisa@pd.tnic
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The files in the info directory for MBA are as follows:
num_closids
The maximum number of CLOSids available for MBA
min_bandwidth
The minimum memory bandwidth percentage value
bandwidth_gran
The granularity of the bandwidth control in percent for the
particular CPU SKU. Intermediate values entered are rounded off
to the previous control step available. Available bandwidth
control steps are minimum_bandwidth + N * bandwidth_gran.
delay_linear
When set, the OS writes a linear percentage based value to the
control MSRs ranging from minimum_bandwidth to 100 percent.
This value is informational and has no influence on the values
written to the schemata files. The values written to the
schemata are always bandwidth percentage that is requested.
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
Link: http://lkml.kernel.org/r/1491611637-20417-7-git-send-email-vikas.shivappa@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Memory bandwidth allocation requires different information than cache
allocation.
To avoid a lump of data in struct rdt_resource, move all cache related
information into a seperate structure and add that to struct rdt_resource.
Sanitize the data types while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ravi.v.shankar@intel.com
Cc: tony.luck@intel.com
Cc: fenghua.yu@intel.com
Cc: vikas.shivappa@intel.com
The schemata lock is released before freeing the resource's temporary
tmp_cbms allocation. That's racy versus another write which allocates and
uses new temporary storage, resulting in memory leaks, freeing in use
memory, double a free or any combination of those.
Move the unlock after the release code.
Fixes: 60ec2440c6 ("x86/intel_rdt: Add schemata file")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Shaohua Li <shli@fb.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20170411071446.15241-1-jolsa@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There's a conflict between ongoing level-5 paging support and
the E820 rewrite. Since the E820 rewrite is essentially ready,
merge it into x86/mm to reduce tree conflicts.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The E820 rework in WIP.x86/boot has gone through a couple of weeks
of exposure in -tip, merge it in a wider fashion.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The resource control filesystem provides only a bitmask based cpus file for
assigning CPUs to a resource group. That's cumbersome with large cpumasks
and non-intuitive when modifying the file from the command line.
Range based cpu lists are commonly used along with bitmask based cpu files
in various subsystems throughout the kernel.
Add 'cpus_list' file which is CPU range based.
# cd /sys/fs/resctrl/
# echo 1-10 > krava/cpus_list
# cat krava/cpus_list
1-10
# cat krava/cpus
0007fe
# cat cpus
fffff9
# cat cpus_list
0,3-23
[ tglx: Massaged changelog and replaced "bitmask lists" by "CPU ranges" ]
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Shaohua Li <shli@fb.com>
Link: http://lkml.kernel.org/r/20170410145232.GF25354@krava
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When auto EOI is not enabled; issue an explicit EOI for hyper-v
interrupts.
Fixes: 6c248aad81 ("Drivers: hv: Base autoeoi enablement based on hypervisor hints")
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The schemata file can have multiple lines and it is cumbersome to update
all lines.
Remove code that requires that the user provides values for every resource
(in the right order). If the user provides values for just a few
resources, update them and leave the rest unchanged.
Side benefit: we now check which values were updated and only send IPIs to
cpus that actually have updates.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Tested-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: ravi.v.shankar@intel.com
Cc: fenghua.yu@intel.com
Cc: peterz@infradead.org
Cc: vikas.shivappa@intel.com
Cc: h.peter.anvin@intel.com
Link: http://lkml.kernel.org/r/1491255857-17213-3-git-send-email-vikas.shivappa@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull RAS fix from Thomas Gleixner:
"Prevent dmesg from being spammed when MCE logging is active"
* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Don't print MCEs when mcelog is active
MCA bank 3 is reserved on systems pre-Fam17h, so it didn't have a name.
However, MCA bank 3 is defined on Fam17h systems and can be accessed
using legacy MSRs. Without a name we get a stack trace on Fam17h systems
when trying to register sysfs files for bank 3 on kernels that don't
recognize Scalable MCA.
Call MCA bank 3 "decode_unit" since this is what it represents on
Fam17h. This will allow kernels without SMCA support to see this bank on
Fam17h+ and prevent the stack trace. This will not affect older systems
since this bank is reserved on them, i.e. it'll be ignored.
Tested on AMD Fam15h and Fam17h systems.
WARNING: CPU: 26 PID: 1 at lib/kobject.c:210 kobject_add_internal
kobject: (ffff88085bb256c0): attempted to be registered with empty name!
...
Call Trace:
kobject_add_internal
kobject_add
kobject_create_and_add
threshold_create_device
threshold_init_device
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1490102285-3659-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is just a defensive precaution: do not register notifiers with a
priority which would disrupt the error handling in the notifiers with
prio higher than MCE_PRIO_EDAC.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170327093304.10683-7-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move all code relating to /dev/mcelog to a separate source file.
/dev/mcelog driver can now operate from the machine check notifier with
lowest prio.
Signed-off-by: Tony Luck <tony.luck@intel.com>
[ Move the mce_helper and trigger functionality behind CONFIG_X86_MCELOG_LEGACY. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170327093304.10683-6-bp@alien8.de
[ Renamed CONFIG_X86_MCELOG to CONFIG_X86_MCELOG_LEGACY. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a simple data structure for collecting correctable errors
along with accessors. More detailed description in the code itself.
The error decoding is done with the decoding chain now and
mce_first_notifier() gets to see the error first and the CEC decides
whether to log it and then the rest of the chain doesn't hear about it -
basically the main reason for the CE collector - or to continue running
the notifiers.
When the CEC hits the action threshold, it will try to soft-offine the
page containing the ECC and then the whole decoding chain gets to see
the error.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170327093304.10683-5-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is confusing when staring at "struct mce_log mcelog" and then there's
also a function called mce_log(). So call the buffer what it is.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170327093304.10683-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We call it everywhere "struct mce *m". Adjust that here too to avoid
confusion.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170327093304.10683-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since:
cd9c57cad3 ("x86/MCE: Dump MCE to dmesg if no consumers")
all MCEs are printed even when mcelog is running. Fix the regression to
not print to dmesg when mcelog is running as it is a consumer too.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
[ Massage commit message. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org # 4.10..
Fixes: cd9c57cad3 ("x86/MCE: Dump MCE to dmesg if no consumers")
Link: http://lkml.kernel.org/r/20170327093304.10683-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Xen imposes special requirements on the GDT. Rather than using a
global variable for the pgprot, just use an explicit special case
for Xen -- this makes it clearer what's going on. It also debloats
64-bit kernels very slightly.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e9ea96abbfd6a8c87753849171bb5987ecfeb523.1490218061.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__pa() cannot be used on percpu pointers because they may be
virtually mapped. Use per_cpu_ptr_to_phys() instead.
This fixes a boot crash on a some 32-bit configurations. I assume
this is related to which allocation strategy is chosen by the percpu
core.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Garnier <thgarnie@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 69218e4799 x86: ("Remap GDT tables in the fixmap section")
Link: http://lkml.kernel.org/r/22e0069c29fba31998f193201e359eebfdac4960.1490218061.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Intel supports faulting on the CPUID instruction beginning with Ivy Bridge.
When enabled, the processor will fault on attempts to execute the CPUID
instruction with CPL>0. Exposing this feature to userspace will allow a
ptracer to trap and emulate the CPUID instruction.
When supported, this feature is controlled by toggling bit 0 of
MSR_MISC_FEATURES_ENABLES. It is documented in detail in Section 2.3.2 of
https://bugzilla.kernel.org/attachment.cgi?id=243991
Implement a new pair of arch_prctls, available on both x86-32 and x86-64.
ARCH_GET_CPUID: Returns the current CPUID state, either 0 if CPUID faulting
is enabled (and thus the CPUID instruction is not available) or 1 if
CPUID faulting is not enabled.
ARCH_SET_CPUID: Set the CPUID state to the second argument. If
cpuid_enabled is 0 CPUID faulting will be activated, otherwise it will
be deactivated. Returns ENODEV if CPUID faulting is not supported on
this system.
The state of the CPUID faulting flag is propagated across forks, but reset
upon exec.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: linux-kselftest@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: David Matlack <dmatlack@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: linux-fsdevel@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170320081628.18952-9-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel supports faulting on the CPUID instruction beginning with Ivy Bridge.
When enabled, the processor will fault on attempts to execute the CPUID
instruction with CPL>0. This will allow a ptracer to emulate the CPUID
instruction.
Bit 31 of MSR_PLATFORM_INFO advertises support for this feature. It is
documented in detail in Section 2.3.2 of
https://bugzilla.kernel.org/attachment.cgi?id=243991
Detect support for this feature and expose it as X86_FEATURE_CPUID_FAULT.
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: linux-kselftest@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: David Matlack <dmatlack@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: linux-fsdevel@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170320081628.18952-8-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This matches the only public Intel documentation of this MSR, in the
"Virtualization Technology FlexMigration Application Note"
(preserved at https://bugzilla.kernel.org/attachment.cgi?id=243991)
Signed-off-by: Kyle Huey <khuey@kylehuey.com>
Cc: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: linux-kselftest@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Robert O'Callahan <robert@ocallahan.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: David Matlack <dmatlack@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dmitry Safonov <dsafonov@virtuozzo.com>
Cc: linux-fsdevel@vger.kernel.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/20170320081628.18952-2-khuey@kylehuey.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When the MCA banks in __mcheck_cpu_init_generic() are polled for leftover
errors logged during boot or from the previous boot, its required to have
CPU features detected sufficiently so that the reading out and handling of
those early errors is done correctly.
If those features are not available, the decoding may miss some information
and get incomplete errors logged. For example, on SMCA systems the MCA_IPID
and MCA_SYND registers are not logged and MCA_ADDR is not masked
appropriately.
To cure that, do a subset of the basic feature detection early while the
rest happens in its usual place in __mcheck_cpu_init_vendor().
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1489599055-20756-1-git-send-email-Yazen.Ghannam@amd.com
[ Massage commit message and simplify. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
mc is a pointer to the static u8 array amd_ucode_patch and
therefore can never be null, so the check is redundant. Remove it.
Detected by CoverityScan, CID#1372871 ("Logically Dead Code")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: kernel-janitors@vger.kernel.org
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20170315171010.17536-1-colin.king@canonical.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch makes the GDT remapped pages read-only, to prevent accidental
(or intentional) corruption of this key data structure.
This change is done only on 64-bit, because 32-bit needs it to be writable
for TSS switches.
The native_load_tr_desc function was adapted to correctly handle a
read-only GDT. The LTR instruction always writes to the GDT TSS entry.
This generates a page fault if the GDT is read-only. This change checks
if the current GDT is a remap and swap GDTs as needed. This function was
tested by booting multiple machines and checking hibernation works
properly.
KVM SVM and VMX were adapted to use the writeable GDT. On VMX, the
per-cpu variable was removed for functions to fetch the original GDT.
Instead of reloading the previous GDT, VMX will reload the fixmap GDT as
expected. For testing, VMs were started and restored on multiple
configurations.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Luis R . Rodriguez <mcgrof@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: kernel-hardening@lists.openwall.com
Cc: kvm@vger.kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Cc: zijun_hu <zijun_hu@htc.com>
Link: http://lkml.kernel.org/r/20170314170508.100882-3-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Each processor holds a GDT in its per-cpu structure. The sgdt
instruction gives the base address of the current GDT. This address can
be used to bypass KASLR memory randomization. With another bug, an
attacker could target other per-cpu structures or deduce the base of
the main memory section (PAGE_OFFSET).
This patch relocates the GDT table for each processor inside the
fixmap section. The space is reserved based on number of supported
processors.
For consistency, the remapping is done by default on 32 and 64-bit.
Each processor switches to its remapped GDT at the end of
initialization. For hibernation, the main processor returns with the
original GDT and switches back to the remapping at completion.
This patch was tested on both architectures. Hibernation and KVM were
both tested specially for their usage of the GDT.
Thanks to Boris Ostrovsky <boris.ostrovsky@oracle.com> for testing and
recommending changes for Xen support.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Luis R . Rodriguez <mcgrof@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: kernel-hardening@lists.openwall.com
Cc: kvm@vger.kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Cc: zijun_hu <zijun_hu@htc.com>
Link: http://lkml.kernel.org/r/20170314170508.100882-2-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The rdtgroup_kn_unlock waits for the last user to release and put its
node. But it's calling kernfs_put on the node which calls the
rdtgroup_kn_unlock, which might not be the group's directory node, but
another group's file node.
This race could be easily reproduced by running 2 instances
of following script:
mount -t resctrl resctrl /sys/fs/resctrl/
pushd /sys/fs/resctrl/
mkdir krava
echo "krava" > krava/schemata
rmdir krava
popd
umount /sys/fs/resctrl
It triggers the slub debug error message with following command
line config: slub_debug=,kernfs_node_cache.
Call kernfs_put on the group's node to fix it.
Fixes: 60cf5e101f ("x86/intel_rdt: Add mkdir to resctrl file system")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Shaohua Li <shli@fb.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/1489501253-20248-1-git-send-email-jolsa@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When we are about to kexec a crash kernel and right then and there a
broadcasted MCE fires while we're still in the first kernel and while
the other CPUs remain in a holding pattern, the #MC handler of the
first kernel will timeout and then panic due to never completing MCE
synchronization.
Handle this in a similar way as to when the CPUs are offlined when that
broadcasted MCE happens.
[ Boris: rewrote commit message and comments. ]
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: kexec@lists.infradead.org
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1487857012-9059-1-git-send-email-xlpang@redhat.com
Link: http://lkml.kernel.org/r/20170313095019.19351-1-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Remove the wp_works_ok member of struct cpuinfo_x86. It's an
optimization back from Linux v0.99 times where we had no fixup support
yet and did the CR0.WP test via special code in the page fault handler.
The < 0 test was an optimization to not do the special casing for each
NULL ptr access violation but just for the first one doing the WP test.
Today it serves no real purpose as the test no longer needs special code
in the page fault handler and the only call side -- mem_init() -- calls
it just once, anyway. However, Xen pre-initializes it to 1, to skip the
test.
Doing the test again for Xen should be no issue at all, as even the
commit introducing skipping the test (commit d560bc6157 ("x86, xen:
Suppress WP test on Xen")) mentioned it being ban aid only. And, in
fact, testing the patch on Xen showed nothing breaks.
The pre-fixup times are long gone and with the removal of the fallback
handling code in commit a5c2a893db ("x86, 386 removal: Remove
CONFIG_X86_WP_WORKS_OK") the kernel requires a working CR0.WP anyway.
So just get rid of the "optimization" and do the test unconditionally.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Arnd Hannemann <hannemann@nets.rwth-aachen.de>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "David S. Miller" <davem@davemloft.net>
Link: http://lkml.kernel.org/r/1486933932-585-3-git-send-email-minipli@googlemail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 fixes from Ingo Molnar:
"Misc fixes and minor updates all over the place:
- an SGI/UV fix
- a defconfig update
- a build warning fix
- move the boot_params file to the arch location in debugfs
- a pkeys fix
- selftests fix
- boot message fixes
- sparse fixes
- a resume warning fix
- ioapic hotplug fixes
- reboot quirks
... plus various minor cleanups"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/build/x86_64_defconfig: Enable CONFIG_R8169
x86/reboot/quirks: Add ASUS EeeBook X205TA/W reboot quirk
x86/hpet: Prevent might sleep splat on resume
x86/boot: Correct setup_header.start_sys name
x86/purgatory: Fix sparse warning, symbol not declared
x86/purgatory: Make functions and variables static
x86/events: Remove last remnants of old filenames
x86/pkeys: Check against max pkey to avoid overflows
x86/ioapic: Split IOAPIC hot-removal into two steps
x86/PCI: Implement pcibios_release_device to release IRQ from IOAPIC
x86/intel_rdt: Remove duplicate inclusion of linux/cpu.h
x86/vmware: Remove duplicate inclusion of asm/timer.h
x86/hyperv: Hide unused label
x86/reboot/quirks: Add ASUS EeeBook X205TA reboot quirk
x86/platform/uv/BAU: Fix HUB errors by remove initial write to sw-ack register
x86/selftests: Add clobbers for int80 on x86_64
x86/apic: Simplify enable_IR_x2apic(), remove try_to_enable_IR()
x86/apic: Fix a warning message in logical CPU IDs allocation
x86/kdebugfs: Move boot params hierarchy under (debugfs)/x86/
Pull scheduler fixes from Ingo Molnar:
"A fix for KVM's scheduler clock which (erroneously) was always marked
unstable, a fix for RT/DL load balancing, plus latency fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock, x86/tsc: Rework the x86 'unstable' sched_clock() interface
sched/core: Fix pick_next_task() for RT,DL
sched/fair: Make select_idle_cpu() more aggressive
Wanpeng Li reported that since the following commit:
acb04058de ("sched/clock: Fix hotplug crash")
... KVM always runs with unstable sched-clock even though KVM's
kvm_clock _is_ stable.
The problem is that we've tied clear_sched_clock_stable() to the TSC
state, and overlooked that sched_clock() is a paravirt function.
Solve this by doing two things:
- tie the sched_clock() stable state more clearly to the TSC stable
state for the normal (!paravirt) case.
- only call clear_sched_clock_stable() when we mark TSC unstable
when we use native_sched_clock().
The first means we can actually run with stable sched_clock in more
situations then before, which is good. And since commit:
12907fbb1a ("sched/clock, clocksource: Add optional cs::mark_unstable() method")
... this should be reliable. Since any detection of TSC fail now results
in marking the TSC unstable.
Reported-by: Wanpeng Li <kernellwp@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: acb04058de ("sched/clock: Fix hotplug crash")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add #include <linux/cred.h> dependencies to all .c files rely on sched.h
doing that for them.
Note that even if the count where we need to add extra headers seems high,
it's still a net win, because <linux/sched.h> is included in over
2,200 files ...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.
Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Two documentation updates, plus a debugging annotation fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/crash: Update the stale comment in reserve_crashkernel()
x86/irq, trace: Add __irq_entry annotation to x86's platform IRQ handlers
Documentation, x86, resctrl: Recommend locking for resctrlfs
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_count);/mmgrab\(\1\);/'
git grep -l 'atomic_inc.*mm_count' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_count);/mmgrab\(\&\1\);/'
This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.
(Michal Hocko provided most of the kerneldoc comment.)
Link: http://lkml.kernel.org/r/20161218123229.22952-1-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here is the big char/misc driver patchset for 4.11-rc1.
Lots of different driver subsystems updated here. Rework for the hyperv
subsystem to handle new platforms better, mei and w1 and extcon driver
updates, as well as a number of other "minor" driver updates. Full
details are in the shortlog below.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWK2iRQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynhFACguVE+/ixj5u5bT5DXQaZNai/6zIAAmgMWwd/t
YTD2cwsJsGbTT1fY3SUe
=CiSI
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the big char/misc driver patchset for 4.11-rc1.
Lots of different driver subsystems updated here: rework for the
hyperv subsystem to handle new platforms better, mei and w1 and extcon
driver updates, as well as a number of other "minor" driver updates.
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (169 commits)
goldfish: Sanitize the broken interrupt handler
x86/platform/goldfish: Prevent unconditional loading
vmbus: replace modulus operation with subtraction
vmbus: constify parameters where possible
vmbus: expose hv_begin/end_read
vmbus: remove conditional locking of vmbus_write
vmbus: add direct isr callback mode
vmbus: change to per channel tasklet
vmbus: put related per-cpu variable together
vmbus: callback is in softirq not workqueue
binder: Add support for file-descriptor arrays
binder: Add support for scatter-gather
binder: Add extra size to allocator
binder: Refactor binder_transact()
binder: Support multiple /dev instances
binder: Deal with contexts in debugfs
binder: Support multiple context managers
binder: Split flat_binder_object
auxdisplay: ht16k33: remove private workqueue
auxdisplay: ht16k33: rework input device initialization
...
Pull x86 microcode updates from Ingo Molnar:
"The main changes are further simplification and unification of the
code between the AMD and Intel microcode loaders, plus other
simplifications - by Borislav Petkov"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/AMD: Remove struct cont_desc.eq_id
x86/microcode/AMD: Remove AP scanning optimization
x86/microcode/AMD: Simplify saving from initrd
x86/microcode/AMD: Unify load_ucode_amd_ap()
x86/microcode/AMD: Check patch level only on the BSP
x86/microcode: Remove local vendor variable
x86/microcode/AMD: Use find_microcode_in_initrd()
x86/microcode/AMD: Get rid of global this_equiv_id
x86/microcode: Decrease CPUID use
x86/microcode/AMD: Rework container parsing
x86/microcode/AMD: Extend the container struct
x86/microcode/AMD: Shorten function parameter's name
x86/microcode/AMD: Clean up find_equiv_id()
x86/microcode: Convert to bare minimum MSR accessors
x86/MSR: Carve out bare minimum accessors
Pull x86 fpu updates from Ingo Molnar:
"The main changes relate to fixes between (lack of) CPUID and FPU
detection that should only affect old or weird CPUs, by Andy
Lutomirski"
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Fix the "Giving up, no FPU found" test
x86/fpu: Fix CPUID-less FPU detection
x86/fpu: Fix "x86/fpu: Legacy x87 FPU detected" message
x86/cpu: Re-apply forced caps every time CPU caps are re-read
x86/cpu: Factor out application of forced CPU caps
x86/cpu: Add X86_FEATURE_CPUID
x86/fpu/xstate: Move XSAVES state init to a function
Pull x86 cpufeature updates from Ingo Molnar:
"The main changes in this cycle were related to enable ring-3
MONITOR/MWAIT instructions support on supported CPUs, by Grzegorz
Andrejczuk and Piotr Luc"
* 'x86-cpufeature-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpufeature: Move RING3MWAIT feature to avoid conflicts
x86/cpufeature: Enable RING3MWAIT for Knights Mill
x86/cpufeature: Enable RING3MWAIT for Knights Landing
x86/cpufeature: Add RING3MWAIT to CPU features
x86/elf: Add HWCAP2 to expose ring 3 MONITOR/MWAIT
x86/msr: Add MSR_MISC_FEATURE_ENABLES and RING3MWAIT bit
x86/cpufeature: Add AVX512_VPOPCNTDQ feature
Pull scheduler updates from Ingo Molnar:
"The main changes in this (fairly busy) cycle were:
- There was a class of scheduler bugs related to forgetting to update
the rq-clock timestamp which can cause weird and hard to debug
problems, so there's a new debug facility for this: which uncovered
a whole lot of bugs which convinced us that we want to keep the
debug facility.
(Peter Zijlstra, Matt Fleming)
- Various cputime related updates: eliminate cputime and use u64
nanoseconds directly, simplify and improve the arch interfaces,
implement delayed accounting more widely, etc. - (Frederic
Weisbecker)
- Move code around for better structure plus cleanups (Ingo Molnar)
- Move IO schedule accounting deeper into the scheduler plus related
changes to improve the situation (Tejun Heo)
- ... plus a round of sched/rt and sched/deadline fixes, plus other
fixes, updats and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (85 commits)
sched/core: Remove unlikely() annotation from sched_move_task()
sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
sched/topology: Split out scheduler topology code from core.c into topology.c
sched/core: Remove unnecessary #include headers
sched/rq_clock: Consolidate the ordering of the rq_clock methods
delayacct: Include <uapi/linux/taskstats.h>
sched/core: Clean up comments
sched/rt: Show the 'sched_rr_timeslice' SCHED_RR timeslice tuning knob in milliseconds
sched/clock: Add dummy clear_sched_clock_stable() stub function
sched/cputime: Remove generic asm headers
sched/cputime: Remove unused nsec_to_cputime()
s390, sched/cputime: Remove unused cputime definitions
powerpc, sched/cputime: Remove unused cputime definitions
s390, sched/cputime: Make arch_cpu_idle_time() to return nsecs
ia64, sched/cputime: Remove unused cputime definitions
ia64: Convert vtime to use nsec units directly
ia64, sched/cputime: Move the nsecs based cputime headers to the last arch using it
sched/cputime: Remove jiffies based cputime
sched/cputime, vtime: Return nsecs instead of cputime_t to account
sched/cputime: Complete nsec conversion of tick based accounting
...
Pull RAS updates from Ingo Molnar:
"The main changes in this cycle were:
- Assign notifier chain priorities for all RAS related handlers to
make the ordering explicit (Borislav Petkov)
- Improve the AMD MCA banks sysfs output (Yazen Ghannam)
- Various cleanups and restructuring of the x86 RAS code (Borislav
Petkov)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ras, EDAC, acpi: Assign MCE notifier handlers a priority
x86/ras: Get rid of mce_process_work()
EDAC/mce/amd: Dump TSC value
EDAC/mce/amd: Unexport amd_decode_mce()
x86/ras/amd/inj: Change dependency
x86/ras: Flip the TSC-adding logic
x86/ras/amd: Make sysfs names of banks more user-friendly
x86/ras/therm_throt: Do not log a fake MCE for thermal events
x86/ras/inject: Make it depend on X86_LOCAL_APIC=y
After:
a33d331761 ("x86/CPU/AMD: Fix Bulldozer topology")
our SMT scheduling topology for Fam17h systems is broken, because
the ThreadId is included in the ApicId when SMT is enabled.
So, without further decoding cpu_core_id is unique for each thread
rather than the same for threads on the same core. This didn't affect
systems with SMT disabled. Make cpu_core_id be what it is defined to be.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.9
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170205105022.8705-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit:
a33d331761 ("x86/CPU/AMD: Fix Bulldozer topology")
restored the initial approach we had with the Fam15h topology of
enumerating CU (Compute Unit) threads as cores. And this is still
correct - they're beefier than HT threads but still have some
shared functionality.
Our current approach has a problem with the Mad Max Steam game, for
example. Yves Dionne reported a certain "choppiness" while playing on
v4.9.5.
That problem stems most likely from the fact that the CU threads share
resources within one CU and when we schedule to a thread of a different
compute unit, this incurs latency due to migrating the working set to a
different CU through the caches.
When the thread siblings mask mirrors that aspect of the CUs and
threads, the scheduler pays attention to it and tries to schedule within
one CU first. Which takes care of the latency, of course.
Reported-by: Yves Dionne <yves.dionne@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.9
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20170205105022.8705-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Enable ring 3 MONITOR/MWAIT for Intel Xeon Phi codenamed Knights Mill. We
can't guarantee that this (KNM) will be the last CPU model that needs this
hack. But, we do recognize that this is far from optimal, and there is an
effort to ensure we don't keep doing extending this hack forever.
Signed-off-by: Piotr Luc <piotr.luc@intel.com>
Cc: Piotr.Luc@intel.com
Cc: dave.hansen@linux.intel.com
Link: http://lkml.kernel.org/r/1484918557-15481-6-git-send-email-grzegorz.andrejczuk@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Enable ring 3 MONITOR/MWAIT for Intel Xeon Phi x200 codenamed Knights
Landing.
Presence of this feature cannot be detected automatically (by reading any
other MSR) therefore it is required to explicitly check for the family and
model of the CPU before attempting to enable it.
Signed-off-by: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: Piotr.Luc@intel.com
Cc: dave.hansen@linux.intel.com
Link: http://lkml.kernel.org/r/1484918557-15481-5-git-send-email-grzegorz.andrejczuk@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Introduce ELF_HWCAP2 variable for x86 and reserve its bit 0 to expose the
ring 3 MONITOR/MWAIT.
HWCAP variables contain bitmasks which can be used by userspace
applications to detect which instruction sets are supported by CPU. On x86
architecture information about CPU capabilities can be checked via CPUID
instructions, unfortunately presence of ring 3 MONITOR/MWAIT feature cannot
be checked this way. ELF_HWCAP cannot be used as well, because on x86 it is
set to CPUID[1].EDX which means that all bits are reserved there.
HWCAP2 approach was chosen because it reuses existing solution present
in other architectures, so only minor modifications are required to the
kernel and userspace applications. When ELF_HWCAP2 is defined
kernel maps it to AT_HWCAP2 during the start of the application.
This way the ring 3 MONITOR/MWAIT feature can be detected using getauxval()
API in a simple and fast manner. ELF_HWCAP2 type is u32 to be consistent
with x86 ELF_HWCAP type.
Signed-off-by: Grzegorz Andrejczuk <grzegorz.andrejczuk@intel.com>
Cc: Piotr.Luc@intel.com
Cc: dave.hansen@linux.intel.com
Link: http://lkml.kernel.org/r/1484918557-15481-3-git-send-email-grzegorz.andrejczuk@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Erik reported that on a preproduction hardware a CMCI storm triggers the
BUG_ON in add_timer_on(). The reason is that the per CPU MCE timer is
started by the CMCI logic before the MCE CPU hotplug callback starts the
timer with add_timer_on(). So the timer is already queued which triggers
the BUG.
Using add_timer_on() is pretty pointless in this code because the timer is
strictlty per CPU, initialized as pinned and all operations which arm the
timer happen on the CPU to which the timer belongs.
Simplify the whole machinery by using mod_timer() instead of add_timer_on()
which avoids the problem because mod_timer() can handle already queued
timers. Use __start_timer() everywhere so the earliest armed expiry time is
preserved.
Reported-by: Erik Veijola <erik.veijola@intel.com>
Tested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1701310936080.3457@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
So there's a number of constants that start with "E820" but which
are not types - these create a confusing mixture when seen together
with 'enum e820_type' values:
E820MAP
E820NR
E820_X_MAX
E820MAX
To better differentiate the 'enum e820_type' values prefix them
with E820_TYPE_.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We have these three related functions:
extern void e820_add_region(u64 start, u64 size, int type);
extern u64 e820_update_range(u64 start, u64 size, unsigned old_type, unsigned new_type);
extern u64 e820_remove_range(u64 start, u64 size, unsigned old_type, int checktype);
But it's not clear from the naming that they are 3 operations based around the
same 'memory range' concept. Rename them to better signal this, and move
the prototypes next to each other:
extern void e820__range_add (u64 start, u64 size, int type);
extern u64 e820__range_update(u64 start, u64 size, unsigned old_type, unsigned new_type);
extern u64 e820__range_remove(u64 start, u64 size, unsigned old_type, int checktype);
Note that this improved organization of the functions shows another problem that was easy
to miss before: sometimes the E820 entry type is 'int', sometimes 'unsigned int' - but this
will be fixed in a separate patch.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
update_e820() should have 'e820' as a prefix as most of the other E820
functions have - but it's also a bit unclear about its purpose, as
it's unclear what is updated - the whole table, or an entry?
Also, the name does not express that it's a trivial wrapper
around sanitize_e820_table() that also prints out the resulting
table.
So rename it to e820__update_table_print(). This also makes it
harmonize with the e820__update_table_firmware() function which
has a very similar purpose.
No change in functionality.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In line with asm/e820/types.h, move the e820 API declarations to
asm/e820/api.h and update all usage sites.
This is just a mechanical, obviously correct move & replace patch,
there will be subsequent changes to clean up the code and to make
better use of the new header organization.
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Jackson <pj@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Calling get_cpu_cap() will reset a bunch of CPU features. This will
cause the system to lose track of force-set and force-cleared
features in the words that are reset until the end of CPU
initialization. This can cause X86_FEATURE_FPU, for example, to
change back and forth during boot and potentially confuse CPU setup.
To minimize the chance of confusion, re-apply forced caps every time
get_cpu_cap() is called.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Whitehead <tedheadster@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/c817eb373d2c67c2c81413a70fc9b845fa34a37e.1484705016.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are multiple call sites that apply forced CPU caps. Factor
them into a helper.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Whitehead <tedheadster@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/623ff7555488122143e4417de09b18be2085ad06.1484705016.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a synthetic CPUID flag denoting whether the CPU sports the CPUID
instruction or not. This will come useful later when accomodating
CPUID-less CPUs.
Signed-off-by: Borislav Petkov <bp@suse.de>
[ Slightly prettified. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Whitehead <tedheadster@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Link: http://lkml.kernel.org/r/dcb355adae3ab812c79397056a61c212f1a0c7cc.1484705016.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Assign all notifiers on the MCE decode chain a priority so that they get
called in the correct order.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170123183514.13356-10-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make mce_gen_pool_process() the workqueue function directly and save us
an indirection.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170123183514.13356-9-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the TSC value to the MCE record only when the MCE being logged is
precise, i.e., it is logged as an exception or an MCE-related interrupt.
So it doesn't look particularly easy to do without touching/changing a
bunch of places. That's why I'm trying tricks first.
For example, the mce-apei.c case I'm addressing by setting ->tsc only
for errors of panic severity. The idea there is, that, panic errors will
have raised an #MC and not polled.
And then instead of propagating a flag to mce_setup(), it seems
easier/less code to set ->tsc depending on the call sites, i.e.,
are we polling or are we preparing an MCE record in an exception
handler/thresholding interrupt.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170123183514.13356-5-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, we append the MCA_IPID[InstanceId] to the bank name to create
the sysfs filename. The InstanceId field uniquely identifies a bank
instance but it doesn't look very nice for most banks.
Replace the InstanceId with a simpler, ascending (0, 1, ..) value.
Only use this in the sysfs name when there is more than 1 instance.
Otherwise, just use the bank's name as the sysfs name.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/1484322741-41884-3-git-send-email-Yazen.Ghannam@amd.com
Link: http://lkml.kernel.org/r/20170123183514.13356-4-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We log a fake bank 128 MCE to note that we're handling a CPU thermal
event. However, this confuses people into thinking that their hardware
generates MCEs. Hijacking MCA for logging thermal events is a gross
misuse anyway and it shouldn't have been done in the first place. And
besides we have other means for dealing with thermal events which are
much more suitable.
So let's kill the MCE logging part.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Ashok Raj <ashok.raj@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170105213846.GA12024@gmail.com
Link: http://lkml.kernel.org/r/20170123183514.13356-3-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
... and get rid of the annoying:
arch/x86/kernel/cpu/mcheck/mce-inject.c:97:13: warning: ‘mce_irq_ipi’ defined but not used [-Wunused-function]
when doing randconfig builds.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170123183514.13356-2-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The equivalence ID was needed outside of the container scanning logic
but now, after this has been cleaned up, not anymore. Now, cont_desc.mc
is used to denote whether the container we're looking at has the proper
microcode patch for this CPU or not.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-17-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The idea was to not scan the microcode blob on each AP (Application
Processor) during boot and thus save us some milliseconds. However, on
architectures where the microcode engine is shared between threads, this
doesn't work. Here's why:
The microcode on CPU0, i.e., the first thread, gets updated. The second
thread, i.e., CPU1, i.e., the first AP walks into load_ucode_amd_ap(),
sees that there's no container cached and goes and scans for the proper
blob.
It finds it and as a last step of apply_microcode_early_amd(), it tries
to apply the patch but that core has already the updated microcode
revision which it has received through CPU0's update. So it returns
false and we do desc->size = -1 to prevent other APs from scanning.
However, the next AP, CPU2, has a different microcode engine which
hasn't been updated yet. The desc->size == -1 test prevents it from
scanning the blob anew and we fail to update it.
The fix is much more straight-forward than it looks: the BSP
(BootStrapping Processor), i.e., CPU0, caches the microcode patch
in amd_ucode_patch. We use that on the AP and try to apply it.
In the 99.9999% of cases where we have homogeneous cores - *not*
mixed-steppings - the application will be successful and we're good to
go.
In the remaining small set of systems, we will simply rescan the blob
and find (or not, if none present) the proper patch and apply it then.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-16-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No need to use the previously stashed info in the container - simply go
ahead and parse the initrd once more. It simplifies and streamlines the
code a whole lot.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-15-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use a version for both bitness by adding a helper which does the actual
container finding and parsing which can be used on any CPU - BSP or AP.
Streamlines the paths more.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-14-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Check final patch levels for AMD only on the BSP. This way, we decide
early and only once whether to continue loading or to leave the loader
disabled on such systems.
Simplify a lot.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-13-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use the generic helper instead of semi-open-coding the procedure.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-11-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We have a container which we update/prepare each time before applying a
microcode patch instead of using a global.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-10-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Get CPUID(1).EAX value once per CPU and propagate value into the callers
instead of conveniently calling it every time.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-9-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It was pretty clumsy before and the whole work of parsing the microcode
containers was spread around the functions wrongly.
Clean it up so that there's a main scan_containers() function which
iterates over the microcode blob and picks apart the containers glued
together. For each container, it calls a parse_container() helper which
concentrates on one container only: sanity-checking, parsing, counting
microcode patches in there, etc.
It makes much more sense now and it is actually very readable. Oh, and
we luvz a diffstat removing more crap than adding.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-8-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make it into a container descriptor which is being passed around and
stores important info like the matching container and the patch for the
current CPU. Make it static too.
Later patches will use this and thus get rid of a double container
parsing.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-7-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The whole driver calls this "mc", do that here too.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-6-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No need to have it marked "inline" - let gcc decide. Also, shorten the
argument name and simplify while-test.
While at it, make it into a proper for-loop and simplify it even more,
as tglx suggests.
No functionality change.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-5-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This was meant to save us the scanning of the microcode containter in
the initrd since the first AP had already done that but it can also hurt
us:
Imagine a single hyperthreaded CPU (Intel(R) Atom(TM) CPU N270, for
example) which updates the microcode on the BSP but since the microcode
engine is shared between the two threads, the update on CPU1 doesn't
happen because it has already happened on CPU0 and we don't find a newer
microcode revision on CPU1.
Which doesn't set the intel_ucode_patch pointer and at initrd
jettisoning time we don't save the microcode patch for later
application.
Now, when we suspend to RAM, the loaded microcode gets cleared so we
need to reload but there's no patch saved in the cache.
Removing the optimization fixes this issue and all is fine and dandy.
Fixes: 06b8534cb7 ("x86/microcode: Rework microcode loading")
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170120202955.4091-2-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
As part of the effort to separate out architecture specific code,
extract hypervisor version information in an architecture specific
file.
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As part of the effort to separate out architecture specific code,
consolidate all Hyper-V specific clocksource code to an architecture
specific code.
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Mike reported that he could trigger the WARN_ON_ONCE() in
set_sched_clock_stable() using hotplug.
This exposed a fundamental problem with the interface, we should never
mark the TSC stable if we ever find it to be unstable. Therefore
set_sched_clock_stable() is a broken interface.
The reason it existed is that not having it is a pain, it means all
relevant architecture code needs to call clear_sched_clock_stable()
where appropriate.
Of the three architectures that select HAVE_UNSTABLE_SCHED_CLOCK ia64
and parisc are trivial in that they never called
set_sched_clock_stable(), so add an unconditional call to
clear_sched_clock_stable() to them.
For x86 the story is a lot more involved, and what this patch tries to
do is ensure we preserve the status quo. So even is Cyrix or Transmeta
have usable TSC they never called set_sched_clock_stable() so they now
get an explicit mark unstable.
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 9881b024b7 ("sched/clock: Delay switching sched_clock to stable")
Link: http://lkml.kernel.org/r/20170119133633.GB6536@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As part of the effort to separate out architecture specific code, move the
hypercall page setup to an architecture specific file.
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In generic_load_microcode(), curr_mc_size is the size of the last
allocated buffer and since we have this performance "optimization"
there to vmalloc a new buffer only when the current one is bigger,
curr_mc_size ends up becoming the size of the biggest buffer we've seen
so far.
However, we end up saving the microcode patch which matches our CPU
and its size is not curr_mc_size but the respective mc_size during the
iteration while we're staring at it.
So save that mc_size into a separate variable and use it to store the
previously found microcode buffer.
Without this fix, we could get oops like this:
BUG: unable to handle kernel paging request at ffffc9000e30f000
IP: __memcpy+0x12/0x20
...
Call Trace:
? kmemdup+0x43/0x60
__alloc_microcode_buf+0x44/0x70
save_microcode_patch+0xd4/0x150
generic_load_microcode+0x1b8/0x260
request_microcode_user+0x15/0x20
microcode_write+0x91/0x100
__vfs_write+0x34/0x120
vfs_write+0xc1/0x130
SyS_write+0x56/0xc0
do_syscall_64+0x6c/0x160
entry_SYSCALL64_slow_path+0x25/0x25
Fixes: 06b8534cb7 ("x86/microcode: Rework microcode loading")
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/4f33cbfd-44f2-9bed-3b66-7446cd14256f@ce.jp.nec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We allocate struct ucode_patch here. @size is the size of microcode data
and used for kmemdup() later in this function.
Fixes: 06b8534cb7 ("x86/microcode: Rework microcode loading")
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/7a730dc9-ac17-35c4-fe76-dfc94e5ecd95@ce.jp.nec.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since on Intel we're required to do CPUID(1) first, before reading
the microcode revision MSR, let's add a special helper which does the
required steps so that we don't forget to do them next time, when we
want to read the microcode revision.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170109114147.5082-4-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel supplies the microcode revision value in MSR 0x8b
(IA32_BIOS_SIGN_ID) after CPUID(1) has been executed. Execute it each
time before reading that MSR.
It used to do sync_core() which did do CPUID but
c198b121b1 ("x86/asm: Rewrite sync_core() to use IRET-to-self")
changed the sync_core() implementation so we better make the microcode
loading case explicit, as the SDM documents it.
Reported-and-tested-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20170109114147.5082-3-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The following commit:
8196dab4fc ("x86/cpu: Get rid of compute_unit_id")
... broke the initial strategy for Bulldozer-based cores' topology,
where we consider each thread of a compute unit a standalone core
and not a HT or SMT thread.
Revert to the firmware-supplied core_id numbering and do not make
them thread siblings as we don't consider them for such even if they
technically are, more or less.
Reported-and-tested-by: Brice Goglin <Brice.Goglin@inria.fr>
Tested-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # v4.6+
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 8196dab4fc ("x86/cpu: Get rid of compute_unit_id")
Link: http://lkml.kernel.org/r/20170105092638.5247-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A negative number can be specified in the cmdline which will be used as
setup_clear_cpu_cap() argument. With that we can clear/set some bit in
memory predceeding boot_cpu_data/cpu_caps_cleared which may cause kernel
to misbehave. This patch adds lower bound check to setup_disablecpuid().
Boris Petkov reproduced a crash:
[ 1.234575] BUG: unable to handle kernel paging request at ffffffff858bd540
[ 1.236535] IP: memcpy_erms+0x6/0x10
Signed-off-by: Lukasz Odzioba <lukasz.odzioba@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: andi.kleen@intel.com
Cc: bp@alien8.de
Cc: dave.hansen@linux.intel.com
Cc: luto@kernel.org
Cc: slaoub@gmail.com
Fixes: ac72e7888a ("x86: add generic clearcpuid=... option")
Link: http://lkml.kernel.org/r/1482933340-11857-1-git-send-email-lukasz.odzioba@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If mce_device_init() fails then the mce device pointer is NULL and the
AMD mce code happily dereferences it.
Add a sanity check.
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Reported-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no point in having an extra type for extra confusion. u64 is
unambiguous.
Conversion was done with the following coccinelle script:
@rem@
@@
-typedef u64 cycle_t;
@fix@
typedef cycle_t;
@@
-cycle_t
+u64
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 fixes from Ingo Molnar:
"There's a number of fixes:
- a round of fixes for CPUID-less legacy CPUs
- a number of microcode loader fixes
- i8042 detection robustization fixes
- stack dump/unwinder fixes
- x86 SoC platform driver fixes
- a GCC 7 warning fix
- virtualization related fixes"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
Revert "x86/unwind: Detect bad stack return address"
x86/paravirt: Mark unused patch_default label
x86/microcode/AMD: Reload proper initrd start address
x86/platform/intel/quark: Add printf attribute to imr_self_test_result()
x86/platform/intel-mid: Switch MPU3050 driver to IIO
x86/alternatives: Do not use sync_core() to serialize I$
x86/topology: Document cpu_llc_id
x86/hyperv: Handle unknown NMIs on one CPU when unknown_nmi_panic
x86/asm: Rewrite sync_core() to use IRET-to-self
x86/microcode/intel: Replace sync_core() with native_cpuid()
Revert "x86/boot: Fail the boot if !M486 and CPUID is missing"
x86/asm/32: Make sync_core() handle missing CPUID on all 32-bit kernels
x86/cpu: Probe CPUID leaf 6 even when cpuid_level == 6
x86/tools: Fix gcc-7 warning in relocs.c
x86/unwind: Dump stack data on warnings
x86/unwind: Adjust last frame check for aligned function stacks
x86/init: Fix a couple of comment typos
x86/init: Remove i8042_detect() from platform ops
Input: i8042 - Trust firmware a bit more when probing on X86
x86/init: Add i8042 state to the platform data
...
Pull x86 cache allocation interface from Thomas Gleixner:
"This provides support for Intel's Cache Allocation Technology, a cache
partitioning mechanism.
The interface is odd, but the hardware interface of that CAT stuff is
odd as well.
We tried hard to come up with an abstraction, but that only allows
rather simple partitioning, but no way of sharing and dealing with the
per package nature of this mechanism.
In the end we decided to expose the allocation bitmaps directly so all
combinations of the hardware can be utilized.
There are two ways of associating a cache partition:
- Task
A task can be added to a resource group. It uses the cache
partition associated to the group.
- CPU
All tasks which are not member of a resource group use the group to
which the CPU they are running on is associated with.
That allows for simple CPU based partitioning schemes.
The main expected user sare:
- Virtualization so a VM can only trash only the associated part of
the cash w/o disturbing others
- Real-Time systems to seperate RT and general workloads.
- Latency sensitive enterprise workloads
- In theory this also can be used to protect against cache side
channel attacks"
[ Intel RDT is "Resource Director Technology". The interface really is
rather odd and very specific, which delayed this pull request while I
was thinking about it. The pull request itself came in early during
the merge window, I just delayed it until things had calmed down and I
had more time.
But people tell me they'll use this, and the good news is that it is
_so_ specific that it's rather independent of anything else, and no
user is going to depend on the interface since it's pretty rare. So if
push comes to shove, we can just remove the interface and nothing will
break ]
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
x86/intel_rdt: Implement show_options() for resctrlfs
x86/intel_rdt: Call intel_rdt_sched_in() with preemption disabled
x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount
x86/intel_rdt: Fix setting of closid when adding CPUs to a group
x86/intel_rdt: Update percpu closid immeditately on CPUs affected by changee
x86/intel_rdt: Reset per cpu closids on unmount
x86/intel_rdt: Select KERNFS when enabling INTEL_RDT_A
x86/intel_rdt: Prevent deadlock against hotplug lock
x86/intel_rdt: Protect info directory from removal
x86/intel_rdt: Add info files to Documentation
x86/intel_rdt: Export the minimum number of set mask bits in sysfs
x86/intel_rdt: Propagate error in rdt_mount() properly
x86/intel_rdt: Add a missing #include
MAINTAINERS: Add maintainer for Intel RDT resource allocation
x86/intel_rdt: Add scheduler hook
x86/intel_rdt: Add schemata file
x86/intel_rdt: Add tasks files
x86/intel_rdt: Add cpus file
x86/intel_rdt: Add mkdir to resctrl file system
x86/intel_rdt: Add "info" files to resctrl file system
...
When we switch to virtual addresses and, especially after
reserve_initrd()->relocate_initrd() have run, we have the updated initrd
address in initrd_start. Use initrd_start then instead of the address
which has been passed to us through boot params. (That still gets used
when we're running the very early routines on the BSP).
Reported-and-tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/20161220144012.lc4cwrg6dphqbyqu@pd.tnic
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There is a feature in Hyper-V ('Debug-VM --InjectNonMaskableInterrupt')
which injects NMI to the guest. We may want to crash the guest and do kdump
on this NMI by enabling unknown_nmi_panic. To make kdump succeed we need to
allow the kdump kernel to re-establish VMBus connection so it will see
VMBus devices (storage, network,..).
To properly unload VMBus making it possible to start over during kdump we
need to do the following:
- Send an 'unload' message to the hypervisor. This can be done on any CPU
so we do this the crashing CPU.
- Receive the 'unload finished' reply message. WS2012R2 delivers this
message to the CPU which was used to establish VMBus connection during
module load and this CPU may differ from the CPU sending 'unload'.
Receiving a VMBus message means the following:
- There is a per-CPU slot in memory for one message. This slot can in
theory be accessed by any CPU.
- We get an interrupt on the CPU when a message was placed into the slot.
- When we read the message we need to clear the slot and signal the fact
to the hypervisor. In case there are more messages to this CPU pending
the hypervisor will deliver the next message. The signaling is done by
writing to an MSR so this can only be done on the appropriate CPU.
To avoid doing cross-CPU work on crash we have vmbus_wait_for_unload()
function which checks message slots for all CPUs in a loop waiting for the
'unload finished' messages. However, there is an issue which arises when
these conditions are met:
- We're crashing on a CPU which is different from the one which was used
to initially contact the hypervisor.
- The CPU which was used for the initial contact is blocked with interrupts
disabled and there is a message pending in the message slot.
In this case we won't be able to read the 'unload finished' message on the
crashing CPU. This is reproducible when we receive unknown NMIs on all CPUs
simultaneously: the first CPU entering panic() will proceed to crash and
all other CPUs will stop themselves with interrupts disabled.
The suggested solution is to handle unknown NMIs for Hyper-V guests on the
first CPU which gets them only. This will allow us to rely on VMBus
interrupt handler being able to receive the 'unload finish' message in
case it is delivered to a different CPU.
The issue is not reproducible on WS2016 as Debug-VM delivers NMI to the
boot CPU only, WS2012R2 and earlier Hyper-V versions are affected.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Cc: devel@linuxdriverproject.org
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Link: http://lkml.kernel.org/r/20161202100720.28121-1-vkuznets@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Intel microcode driver is using sync_core() to mean "do CPUID
with EAX=1". I want to rework sync_core(), but first the Intel
microcode driver needs to stop depending on its current behavior.
Reported-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Matthew Whitehead <tedheadster@gmail.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: xen-devel <Xen-devel@lists.xen.org>
Link: http://lkml.kernel.org/r/535a025bb91fed1a019c5412b036337ad239e5bb.1481307769.git.luto@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
A typo (or mis-merge?) resulted in leaf 6 only being probed if
cpuid_level >= 7.
Fixes: 2ccd71f1b2 ("x86/cpufeature: Move some of the scattered feature bits to x86_capability")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Link: http://lkml.kernel.org/r/6ea30c0e9daec21e488b54761881a6dfcf3e04d0.1481825597.git.luto@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When CONFIG_PARAVIRT is selected, cpuid() becomes a call. Since
for 32-bit kernels load_ucode_amd_bsp() is executed before paging
is enabled the call cannot be completed (as kernel virtual addresses
are not reachable yet).
Use native_cpuid() instead which is an asm wrapper for the CPUID
instruction.
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jürgen Gross <jgross@suse.com>
Link: http://lkml.kernel.org/r/1481906392-3847-1-git-send-email-boris.ostrovsky@oracle.com
Link: http://lkml.kernel.org/r/20161218164414.9649-5-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Doing so is completely void of sense for multiple reasons so prevent
it. Set dis_ucode_ldr to true and thus disable the microcode loader by
default to address xen pv guests which execute the AP path but not the
BSP path.
By having it turned off by default, the APs won't run into the loader
either.
Also, check CPUID(1).ECX[31] which hypervisors set. Well almost, not the
xen pv one. That one gets the aforementioned "fix".
Also, improve the detection method by caching the final decision whether
to continue loading in dis_ucode_ldr and do it once on the BSP. The APs
then simply test that value.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Acked-by: Juergen Gross <jgross@suse.com>
Link: http://lkml.kernel.org/r/20161218164414.9649-4-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Make it simply return bool to denote whether it found a container or not
and return the pointer to the container and its size in the handed-in
container pointer instead, as returning a struct was just silly.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jürgen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/20161218164414.9649-3-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fixup signature and retvals, return the container struct through the
passed in pointer, not as a function return value.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jürgen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/20161218164414.9649-2-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull x86 fixes and cleanups from Thomas Gleixner:
"This set of updates contains:
- Robustification for the logical package managment. Cures the AMD
and virtualization issues.
- Put the correct start_cpu() return address on the stack of the idle
task.
- Fixups for the fallout of the nodeid <-> cpuid persistent mapping
modifciations
- Move the x86/MPX specific mm_struct member to the arch specific
mm_context where it belongs
- Cleanups for C89 struct initializers and useless function
arguments"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/floppy: Use designated initializers
x86/mpx: Move bd_addr to mm_context_t
x86/mm: Drop unused argument 'removed' from sync_global_pgds()
ACPI/NUMA: Do not map pxm to node when NUMA is turned off
x86/acpi: Use proper macro for invalid node
x86/smpboot: Prevent false positive out of bounds cpumask access warning
x86/boot/64: Push correct start_cpu() return address
x86/boot/64: Use 'push' instead of 'call' in start_cpu()
x86/smpboot: Make logical package management more robust
Pull workqueue updates from Tejun Heo:
"Mostly patches to initialize workqueue subsystem earlier and get rid
of keventd_up().
The patches were headed for the last merge cycle but got delayed due
to a bug found late minute, which is fixed now.
Also, to help debugging, destroy_workqueue() is more chatty now on a
sanity check failure."
* 'for-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: move wq_numa_init() to workqueue_init()
workqueue: remove keventd_up()
debugobj, workqueue: remove keventd_up() usage
slab, workqueue: remove keventd_up() usage
power, workqueue: remove keventd_up() usage
tty, workqueue: remove keventd_up() usage
mce, workqueue: remove keventd_up() usage
workqueue: make workqueue available early during boot
workqueue: dump workqueue state on sanity check failures in destroy_workqueue()
Here's the new driver core patches for 4.10-rc1.
Big thing here is the nice addition of "functional dependencies" to the
driver core. The idea has been talked about for a very long time, great
job to Rafael for stepping up and implementing it. It's been tested for
longer than the 4.9-rc1 date, we held off on merging it earlier in order
to feel more comfortable about it.
Other than that, it's just a handful of small other patches, some good
cleanups to the mess that is the firmware class code, and we have a test
driver for the deferred probe logic.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWFAvPQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ym3NgCgmhFeWEkp9SDt17YGGavmnzQUlBQAoJlUipJp
PHeQkq15ZWw3wWC9FEvM
=91M1
-----END PGP SIGNATURE-----
Merge tag 'driver-core-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here's the new driver core patches for 4.10-rc1.
Big thing here is the nice addition of "functional dependencies" to
the driver core. The idea has been talked about for a very long time,
great job to Rafael for stepping up and implementing it. It's been
tested for longer than the 4.9-rc1 date, we held off on merging it
earlier in order to feel more comfortable about it.
Other than that, it's just a handful of small other patches, some good
cleanups to the mess that is the firmware class code, and we have a
test driver for the deferred probe logic.
All of these have been in linux-next for a while with no reported
issues"
* tag 'driver-core-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (30 commits)
firmware: Correct handling of fw_state_wait() return value
driver core: Silence device links sphinx warning
firmware: remove warning at documentation generation time
drivers: base: dma-mapping: Fix typo in dmam_alloc_non_coherent comments
driver core: test_async: fix up typo found by 0-day
firmware: move fw_state_is_done() into UHM section
firmware: do not use fw_lock for fw_state protection
firmware: drop bit ops in favor of simple state machine
firmware: refactor loading status
firmware: fix usermode helper fallback loading
driver core: firmware_class: convert to use class_groups
driver core: devcoredump: convert to use class_groups
driver core: class: add class_groups support
kernfs: Declare two local data structures static
driver-core: fix platform_no_drv_owner.cocci warnings
drivers/base/memory.c: Remove unused 'first_page' variable
driver core: add CLASS_ATTR_WO()
drivers: base: cacheinfo: support DT overrides for cache properties
drivers: base: cacheinfo: add pr_fmt logging
drivers: base: cacheinfo: fix boot error message when acpi is enabled
...
The logical package management has several issues:
- The APIC ids provided by ACPI are not required to be the same as the
initial APIC id which can be retrieved by CPUID. The APIC ids provided
by ACPI are those which are written by the BIOS into the APIC. The
initial id is set by hardware and can not be changed. The hardware
provided ids contain the real hardware package information.
Especially AMD sets the effective APIC id different from the hardware id
as they need to reserve space for the IOAPIC ids starting at id 0.
As a consequence those machines trigger the currently active firmware
bug printouts in dmesg, These are obviously wrong.
- Virtual machines have their own interesting of enumerating APICs and
packages which are not reliably covered by the current implementation.
The sizing of the mapping array has been tweaked to be generously large to
handle systems which provide a wrong core count when HT is disabled so the
whole magic which checks for space in the physical hotplug case is not
needed anymore.
Simplify the whole machinery and do the mapping when the CPU starts and the
CPUID derived physical package information is available. This solves the
observed problems on AMD machines and works for the virtualization issues
as well.
Remove the extra call from XEN cpu bringup code as it is not longer
required.
Fixes: d49597fd3b ("x86/cpu: Deal with broken firmware (VMWare/XEN)")
Reported-and-tested-by: Borislav Petkov <bp@suse.de>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: M. Vefa Bicakci <m.v.b@runbox.com>
Cc: xen-devel <xen-devel@lists.xen.org>
Cc: Charles (Chas) Williams <ciwillia@brocade.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Alok Kataria <akataria@vmware.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1612121102260.3429@nanos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Pull smp hotplug updates from Thomas Gleixner:
"This is the final round of converting the notifier mess to the state
machine. The removal of the notifiers and the related infrastructure
will happen around rc1, as there are conversions outstanding in other
trees.
The whole exercise removed about 2000 lines of code in total and in
course of the conversion several dozen bugs got fixed. The new
mechanism allows to test almost every hotplug step standalone, so
usage sites can exercise all transitions extensively.
There is more room for improvement, like integrating all the
pointlessly different architecture mechanisms of synchronizing,
setting cpus online etc into the core code"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
tracing/rb: Init the CPU mask on allocation
soc/fsl/qbman: Convert to hotplug state machine
soc/fsl/qbman: Convert to hotplug state machine
zram: Convert to hotplug state machine
KVM/PPC/Book3S HV: Convert to hotplug state machine
arm64/cpuinfo: Convert to hotplug state machine
arm64/cpuinfo: Make hotplug notifier symmetric
mm/compaction: Convert to hotplug state machine
iommu/vt-d: Convert to hotplug state machine
mm/zswap: Convert pool to hotplug state machine
mm/zswap: Convert dst-mem to hotplug state machine
mm/zsmalloc: Convert to hotplug state machine
mm/vmstat: Convert to hotplug state machine
mm/vmstat: Avoid on each online CPU loops
mm/vmstat: Drop get_online_cpus() from init_cpu_node_state/vmstat_cpu_dead()
tracing/rb: Convert to hotplug state machine
oprofile/nmi timer: Convert to hotplug state machine
net/iucv: Use explicit clean up labels in iucv_init()
x86/pci/amd-bus: Convert to hotplug state machine
x86/oprofile/nmi: Convert to hotplug state machine
...
Pull x86 platform updates from Ingo Molnar:
"Two changes:
- implement various VMWare guest OS improvements/fixes (Alexey
Makhalov)
- unexport a spurious export from the intel-mid platform driver
(Lukas Wunner)"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vmware: Add paravirt sched clock
x86/vmware: Add basic paravirt ops support
x86/vmware: Use tsc_khz value for calibrate_cpu()
x86/platform/intel-mid: Unexport intel_mid_pci_set_power_state()
x86/vmware: Read tsc_khz only once at boot time
Pull x86 microcode update from Ingo Molnar:
"The biggest change (by Borislav Petkov) is a thorough rewrite of the
Intel microcode loader and its interactions with the core code.
The biggest conceptual change is the decoupling of the microcode
loading on boot and application processors (which load the microcode
in different scenarios), so that both parse the input patches with as
few assumptions as possible - this also fixes various kernel address
space randomization bugs. (The AP side then goes on and caches the
result to improve boot performance.)
Since the AMD side already did this, this change also opened up the
path towards more unification/simplification of the core microcode
loading infrastructure:
10 files changed, 647 insertions(+), 940 deletions(-)
which speaks for itself"
* 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Bump driver version, update copyrights
x86/microcode: Rework microcode loading
x86/microcode/intel: Remove intel_lib.c
x86/microcode/amd: Move private inlines to .c and mark local functions static
x86/microcode: Collect CPU info on resume
x86/microcode: Issue the debug printk on resume only on success
x86/microcode/amd: Hand down the CPU family
x86/microcode: Export the microcode cache linked list
x86/microcode: Remove one #ifdef clause
x86/microcode/intel: Simplify generic_load_microcode()
x86/microcode: Move driver authors to CREDITS
x86/microcode: Run the AP-loading routine only on the application processors
Pull x86 idle updates from Ingo Molnar:
"There were two bigger changes in this development cycle:
- remove idle notifiers:
32 files changed, 74 insertions(+), 803 deletions(-)
These notifiers were of questionable value and the main usecase,
the i7300 driver, was essentially unmaintained and can be removed,
plus modern power management concepts don't need the callback - so
use this golden opportunity and get rid of this opaque and fragile
callback from a latency sensitive code path.
(Len Brown, Thomas Gleixner)
- improve the AMD Erratum 400 workaround that used high overhead MSR
polling in the idle loop (Borisla Petkov, Thomas Gleixner)"
* 'x86-idle-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Remove empty idle.h header
x86/amd: Simplify AMD E400 aware idle routine
x86/amd: Check for the C1E bug post ACPI subsystem init
x86/bugs: Separate AMD E400 erratum and C1E bug
x86/cpufeature: Provide helper to set bugs bits
x86/idle: Remove enter_idle(), exit_idle()
x86: Remove x86_test_and_clear_bit_percpu()
x86/idle: Remove is_idle flag
x86/idle: Remove idle_notifier
i7300_idle: Remove this driver
Pull x86 CPU updates from Ingo Molnar:
"The changes in this development cycle were:
- AMD CPU topology enhancements that are cleanups on current CPUs but
which enable future Fam17 hardware. (Yazen Ghannam)
- unify bugs.c and bugs_64.c (Borislav Petkov)
- remove the show_msr= boot option (Borislav Petkov)
- simplify a boot message (Borislav Petkov)"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/AMD: Clean up cpu_llc_id assignment per topology feature
x86/cpu: Get rid of the show_msr= boot option
x86/cpu: Merge bugs.c and bugs_64.c
x86/cpu: Remove the printk format specifier in "CPU0: "
Pull x86 asm updates from Ingo Molnar:
"The main changes in this development cycle were:
- a large number of call stack dumping/printing improvements: higher
robustness, better cross-context dumping, improved output, etc.
(Josh Poimboeuf)
- vDSO getcpu() performance improvement for future Intel CPUs with
the RDPID instruction (Andy Lutomirski)
- add two new Intel AVX512 features and the CPUID support
infrastructure for it: AVX512IFMA and AVX512VBMI. (Gayatri Kammela,
He Chen)
- more copy-user unification (Borislav Petkov)
- entry code assembly macro simplifications (Alexander Kuleshov)
- vDSO C/R support improvements (Dmitry Safonov)
- misc fixes and cleanups (Borislav Petkov, Paul Bolle)"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
scripts/decode_stacktrace.sh: Fix address line detection on x86
x86/boot/64: Use defines for page size
x86/dumpstack: Make stack name tags more comprehensible
selftests/x86: Add test_vdso to test getcpu()
x86/vdso: Use RDPID in preference to LSL when available
x86/dumpstack: Handle NULL stack pointer in show_trace_log_lvl()
x86/cpufeatures: Enable new AVX512 cpu features
x86/cpuid: Provide get_scattered_cpuid_leaf()
x86/cpuid: Cleanup cpuid_regs definitions
x86/copy_user: Unify the code by removing the 64-bit asm _copy_*_user() variants
x86/unwind: Ensure stack grows down
x86/vdso: Set vDSO pointer only after success
x86/prctl/uapi: Remove #ifdef for CHECKPOINT_RESTORE
x86/unwind: Detect bad stack return address
x86/dumpstack: Warn on stack recursion
x86/unwind: Warn on bad frame pointer
x86/decoder: Use stderr if insn sanity test fails
x86/decoder: Use stdout if insn decoder test is successful
mm/page_alloc: Remove kernel address exposure in free_reserved_area()
x86/dumpstack: Remove raw stack dump
...
Pull x86 RAS updates from Ingo Molnar:
"The main changes in this development cycle were:
- more AMD northbridge support work, mostly in preparation for Fam17h
CPUs (Yazen Ghannam, Borislav Petkov)
- cleanups/refactorings and fixes (Borislav Petkov, Tony Luck,
Yinghai Lu)"
* 'ras-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Include the PPIN in MCE records when available
x86/mce/AMD: Add system physical address translation for AMD Fam17h
x86/amd_nb: Add SMN and Indirect Data Fabric access for AMD Fam17h
x86/amd_nb: Add Fam17h Data Fabric as "Northbridge"
x86/amd_nb: Make all exports EXPORT_SYMBOL_GPL
x86/amd_nb: Make amd_northbridges internal to amd_nb.c
x86/mce/AMD: Reset Threshold Limit after logging error
x86/mce/AMD: Fix HWID_MCATYPE calculation by grouping arguments
x86/MCE: Correct TSC timestamping of error records
x86/RAS: Hide SMCA bank names
x86/RAS: Rename smca_bank_names to smca_names
x86/RAS: Simplify SMCA HWID descriptor struct
x86/RAS: Simplify SMCA bank descriptor struct
x86/MCE: Dump MCE to dmesg if no consumers
x86/RAS: Add TSC timestamp to the injected MCE
x86/MCE: Do not look at panic_on_oops in the severity grading
One include less is always a good thing(tm). Good riddance.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-6-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reorganize the E400 detection now that we have everything in place:
switch the CPUs to broadcast mode after the LAPIC has been initialized
and remove the facilities that were used previously on the idle path.
Unfortunately static_cpu_has_bug() cannpt be used in the E400 idle routine
because alternatives have been applied when the actual detection happens,
so the static switching does not take effect and the test will stay
false. Use boot_cpu_has_bug() instead which is definitely an improvement
over the RDMSR and the cpumask handling.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-5-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The workaround for the AMD Erratum E400 (Local APIC timer stops in C1E
state) is a two step process:
- Selection of the E400 aware idle routine
- Detection whether the platform is affected
The idle routine selection happens for possibly affected CPUs depending on
family/model/stepping information. These range of CPUs is not necessarily
affected as the decision whether to enable the C1E feature is made by the
firmware. Unfortunately there is no way to query this at early boot.
The current implementation polls a MSR in the E400 aware idle routine to
detect whether the CPU is affected. This is inefficient on non affected
CPUs because every idle entry has to do the MSR read.
There is a better way to detect this before going idle for the first time
which requires to seperate the bug flags:
X86_BUG_AMD_E400 - Selects the E400 aware idle routine and
enables the detection
X86_BUG_AMD_APIC_C1E - Set when the platform is affected by E400
Replace the current X86_BUG_AMD_APIC_C1E usage by the new X86_BUG_AMD_E400
bug bit to select the idle routine which currently does an unconditional
detection poll. X86_BUG_AMD_APIC_C1E is going to be used in later patches
to remove the MSR polling and simplify the handling of this misfeature.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/20161209182912.2726-3-bp@alien8.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
intel_rdt_sched_in() must be called with preemption disabled because the
function accesses percpu variables (pqr_state and closid).
If a task moves itself via move_myself() preemption is enabled, which
violates the calling convention and can result in incorrect closid
selection when the task gets preempted or migrated.
Add the required protection and a comment about the calling convention.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Marcelo Tosatti" <mtosatti@redhat.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1480625714-54246-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When removing a sub directory/rdtgroup by rmdir or umount, closid in a
task in the sub directory is set to default rdtgroup's closid which is 0.
If the task is running on a CPU, the PQR_ASSOC MSR is only updated
when the task runs through a context switch. Up to the context switch,
the task runs with the wrong closid.
Make the change immediately effective by invoking a smp function call on
all CPUs which are running moved task. If one of the affected tasks was
moved or scheduled out before the function call is executed on the CPU the
only damage is the extra interruption of the CPU.
[ tglx: Reworked it to avoid blindly interrupting all CPUs and extra loops ]
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1479511084-59727-2-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
There was a cut & paste error when adding code to update the per-cpu
closid when changing the bitmask of CPUs to an rdt group.
The update erronously assigns the closid of the default group to the CPUs
which are moved to a group instead of assigning the closid of their new
group. Use the proper closid.
Fixes: f410770293 ("x86/intel_rdt: Update percpu closid immeditately on CPUs affected by change")
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Sai Prakhya" <sai.praneeth.prakhya@intel.com>
Cc: "Vikas Shivappa" <vikas.shivappa@linux.intel.com>
Cc: "H. Peter Anvin" <h.peter.anvin@intel.com>
Link: http://lkml.kernel.org/r/1479511084-59727-1-git-send-email-fenghua.yu@intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Intel Xeons from Ivy Bridge onwards support a processor identification
number set in the factory. To the user this is a handy unique number to
identify a particular CPU. Intel can decode this to the fab/production
run to track errors. On systems that have it, include it in the machine
check record. I'm told that this would be helpful for users that run
large data centers with multi-socket servers to keep track of which CPUs
are seeing errors.
Boris:
* Add some clarifying comments and spacing.
* Mask out [63:2] in the disabled-but-not-locked case
* Call the MSR variable "val" for more readability.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20161123114855.njguoaygp3qnbkia@pd.tnic
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
No point to have the sysfs files around before the cpu is online and no
point to have them around until the cpu is dead. Get rid of the explicit
state.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
The Unified Memory Controllers (UMCs) on Fam17h log a normalized address
in their MCA_ADDR registers. We need to convert that normalized address
to a system physical address in order to support a few facilities:
1) To offline poisoned pages in DRAM proactively in the deferred error
handler.
2) To print sysaddr and page info for DRAM ECC errors in EDAC.
[ Boris: fixes/cleanups ontop:
* hi_addr_offset = 0 - no need for that branch. Stick it all under the
HiAddrOffsetEn case. It confines hi_addr_offset's declaration too.
* Move variables to the innermost scope they're used at so that we save
on stack and not blow it up immediately on function entry.
* Do not modify *sys_addr prematurely - we want to not exit early and
have modified *sys_addr some, which callers get to see. We either
convert to a sys_addr or we don't do anything. And we signal that with
the retval of the function.
* Rename label out -> out_err - because it is the error path.
* No need to pr_err of the conversion failed case: imagine a
sparsely-populated machine with UMCs which don't have DIMMs. Callers
should look at the retval instead and issue a printk only when really
necessary. No need for useless info in dmesg.
* s/temp_reg/tmp/ and other variable names shortening => shorter code.
* Use BIT() everywhere.
* Make error messages more informative.
* Small build fix for the !CONFIG_X86_MCE_AMD case.
* ... and more minor cleanups.
]
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20161122111133.mjzpvzhf7o7yl2oa@pd.tnic
[ Typo fixes. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So adding thresholding_en et al was a good thing for removing the
per-CPU thresholding callback, i.e., threshold_cpu_callback.
But, in order for it to work and especially that test in
mce_threshold_create_device() so that all thresholding banks get
properly created and not the whole thing to fail with a NULL ptr
dereference at mce_cpu_pre_down() when we offline the CPUs, we need to
set the thresholding_en flag *before* we start creating the devices.
Yap, it failed because thresholding_en wasn't set at the time
we were creating the banks so we didn't create any and then at
mce_cpu_pre_down() -> mce_threshold_remove_device() time, we would blow
up.
And the fix is actually easy: we have thresholding on the system when we
have managed to set the thresholding vector to amd_threshold_interrupt()
earlier in mce_amd_feature_init() while we were picking apart the
thresholding banks and what is set and what not.
So let's do that.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Fixes: 4d7b02d58c ("x86/mcheck: Split threshold_cpu_callback into two callbacks")
Link: http://lkml.kernel.org/r/20161119103402.5227-1-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Sparse populated CPUID leafs are collected in a software provided leaf to
avoid bloat of the x86_capability array, but there is no way to rebuild the
real leafs (e.g. for KVM CPUID enumeration) other than rereading the CPUID
leaf from the CPU. While this is possible it is problematic as it does not
take software disabled features into account. If a feature is disabled on
the host it should not be exposed to a guest either.
Add get_scattered_cpuid_leaf() which rebuilds the leaf from the scattered
cpuid table information and the active CPU features.
[ tglx: Rewrote changelog ]
Signed-off-by: He Chen <he.chen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Piotr Luc <Piotr.Luc@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/1478856336-9388-3-git-send-email-he.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
cpuid_regs is defined multiple times as structure and enum. Rename the enum
and move all of it to processor.h so we don't end up with more instances.
Rename the misnomed register enumeration from CR_* to the obvious CPUID_*.
[ tglx: Rewrote changelog ]
Signed-off-by: He Chen <he.chen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Luwei Kang <luwei.kang@intel.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Piotr Luc <Piotr.Luc@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: http://lkml.kernel.org/r/1478856336-9388-2-git-send-email-he.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The error count field in MCA_MISC does not get reset by hardware when the
threshold has been reached. Software is expected to reset it. Currently,
the threshold limit only gets reset during init or when a user writes to
sysfs.
If the user is not monitoring threshold interrupts and resetting
the limit then the user will only see 1 interrupt when the limit is first
hit. So if, for example, the limit is set to 10 then only 1 interrupt will
be recorded after 10 errors even if 100 errors have occurred. The user may
then assume that only 10 errors have occurred.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/1479244433-69267-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The CPU_ONLINE and CPU_DOWN_PREPARE look fully symmetrical and could be move
to the hotplug state machine.
On a failure during registration we have the tear down callback invoked
(mce_cpu_pre_down()) so there should be no timer around and so no need to need
keep notifier installed (this was the reason according to the comment why the
notifier was registered despite of errors).
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-7-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Initially I wanted to remove mcheck_cpu_init() from identify_cpu() and let it
become an independent early hotplug callback. The main problem here was that
the init on the boot CPU may happen too late
(device_initcall_sync(mcheck_init_device)) and nobody wanted to risk receiving
and MCE event at boot time leading to a shutdown (if the MCE feature is not yet
enabled).
Here is attempt two: the timming stays as-is but the ordering of the functions
is changed:
- mcheck_cpu_init() (which is run from identify_cpu()) will setup the timer
struct but won't fire the timer. This is moved to CPU_ONLINE since its
cleanup part is in CPU_DOWN_PREPARE. So if it is okay to stop the timer early
in the shutdown phase, it should be okay to start it late in the bring up phase.
- CPU_DOWN_PREPARE disables the MCE feature flags for !INTEL CPUs in
mce_disable_cpu(). If a failure occures it would be re-enabled on all vendor
CPUs (including Intel where it was not disabled during shutdown). To keep this
working I am moving it to CPU_ONLINE. smp_call_function_single() is dropped
beause the notifier runs nowdays on the target CPU.
- CPU_ONLINE is invoking mce_device_create() + mce_threshold_create_device()
but its cleanup part is in CPU_DEAD (mce_threshold_remove_device() and
mce_device_remove()). In order to keep this symmetrical I am moving the clean
up from CPU_DEAD to CPU_DOWN_PREPARE.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-6-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The threshold_cpu_callback callbacks looks like one of the notifier and
its arguments are almost the same. Split this out and have one ONLINE
and one DEAD callback. This will come handy later once the main code
gets changed to use the callback mechanism.
Also, handle threshold_cpu_callback_online() return value so we don't
continue if the function fails.
Boris Petkov removed the callback pointer and replaced it with proper
functions.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: rt@linutronix.de
Cc: linux-edac@vger.kernel.org
Link: http://lkml.kernel.org/r/20161110174447.11848-5-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>