Commit Graph

15 Commits

Author SHA1 Message Date
Jarkko Sakkinen
a4b9c48b96 x86/sgx: Return -EINVAL on a zero length buffer in sgx_ioc_enclave_add_pages()
The sgx_enclave_add_pages.length field is documented as

 * @length:     length of the data (multiple of the page size)

Fail with -EINVAL, when the caller gives a zero length buffer of data
to be added as pages to an enclave. Right now 'ret' is returned as
uninitialized in that case.

 [ bp: Flesh out commit message. ]

Fixes: c6d26d3707 ("x86/sgx: Add SGX_IOC_ENCLAVE_ADD_PAGES")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/linux-sgx/X8ehQssnslm194ld@mwanda/
Link: https://lkml.kernel.org/r/20201203183527.139317-1-jarkko@kernel.org
2020-12-03 19:54:40 +01:00
Borislav Petkov
afe76eca86 x86/sgx: Fix sgx_ioc_enclave_provision() kernel-doc comment
Fix

  ./arch/x86/kernel/cpu/sgx/ioctl.c:666: warning: Function parameter or member \
	  'encl' not described in 'sgx_ioc_enclave_provision'
  ./arch/x86/kernel/cpu/sgx/ioctl.c:666: warning: Excess function parameter \
	  'enclave' description in 'sgx_ioc_enclave_provision'

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201123181922.0c009406@canb.auug.org.au
2020-11-24 10:46:01 +01:00
Jarkko Sakkinen
14132a5b80 x86/sgx: Return -ERESTARTSYS in sgx_ioc_enclave_add_pages()
Return -ERESTARTSYS instead of -EINTR in sgx_ioc_enclave_add_pages()
when interrupted before any pages have been processed. At this point
ioctl can be obviously safely restarted.

Reported-by: Haitao Huang <haitao.huang@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201118213932.63341-1-jarkko@kernel.org
2020-11-19 10:51:24 +01:00
Dave Hansen
67655b57f8 x86/sgx: Clarify 'laundry_list' locking
Short Version:

The SGX section->laundry_list structure is effectively thread-local, but
declared next to some shared structures. Its semantics are clear as mud.
Fix that. No functional changes. Compile tested only.

Long Version:

The SGX hardware keeps per-page metadata. This can provide things like
permissions, integrity and replay protection. It also prevents things
like having an enclave page mapped multiple times or shared between
enclaves.

But, that presents a problem for kexec()'d kernels (or any other kernel
that does not run immediately after a hardware reset). This is because
the last kernel may have been rude and forgotten to reset pages, which
would trigger the "shared page" sanity check.

To fix this, the SGX code "launders" the pages by running the EREMOVE
instruction on all pages at boot. This is slow and can take a long
time, so it is performed off in the SGX-specific ksgxd instead of being
synchronous at boot. The init code hands the list of pages to launder in
a per-SGX-section list: ->laundry_list. The only code to touch this list
is the init code and ksgxd. This means that no locking is necessary for
->laundry_list.

However, a lock is required for section->page_list, which is accessed
while creating enclaves and by ksgxd. This lock (section->lock) is
acquired by ksgxd while also processing ->laundry_list. It is easy to
confuse the purpose of the locking as being for ->laundry_list and
->page_list.

Rename ->laundry_list to ->init_laundry_list to make it clear that this
is not normally used at runtime. Also add some comments clarifying the
locking, and reorganize 'sgx_epc_section' to put 'lock' near the things
it protects.

Note: init_laundry_list is 128 bytes of wasted space at runtime. It
could theoretically be dynamically allocated and then freed after
the laundering process. But it would take nearly 128 bytes of extra
instructions to do that.

Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201116222531.4834-1-dave.hansen@intel.com
2020-11-18 18:16:28 +01:00
Jarkko Sakkinen
947c6e11fa x86/sgx: Add ptrace() support for the SGX driver
Enclave memory is normally inaccessible from outside the enclave. This
makes enclaves hard to debug. However, enclaves can be put in a debug
mode when they are being built. In that mode, enclave data *can* be read
and/or written by using the ENCLS[EDBGRD] and ENCLS[EDBGWR] functions.

This is obviously only for debugging and destroys all the protections
present with normal enclaves. But, enclaves know their own debug status
and can adjust their behavior appropriately.

Add a vm_ops->access() implementation which can be used to read and write
memory inside debug enclaves.  This is typically used via ptrace() APIs.

 [ bp: Massage. ]

Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-23-jarkko@kernel.org
2020-11-18 18:04:11 +01:00
Jarkko Sakkinen
1728ab54b4 x86/sgx: Add a page reclaimer
Just like normal RAM, there is a limited amount of enclave memory available
and overcommitting it is a very valuable tool to reduce resource use.
Introduce a simple reclaim mechanism for enclave pages.

In contrast to normal page reclaim, the kernel cannot directly access
enclave memory.  To get around this, the SGX architecture provides a set of
functions to help.  Among other things, these functions copy enclave memory
to and from normal memory, encrypting it and protecting its integrity in
the process.

Implement a page reclaimer by using these functions. Picks victim pages in
LRU fashion from all the enclaves running in the system.  A new kernel
thread (ksgxswapd) reclaims pages in the background based on watermarks,
similar to normal kswapd.

All enclave pages can be reclaimed, architecturally.  But, there are some
limits to this, such as the special SECS metadata page which must be
reclaimed last.  The page version array (used to mitigate replaying old
reclaimed pages) is also architecturally reclaimable, but not yet
implemented.  The end result is that the vast majority of enclave pages are
currently reclaimable.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-22-jarkko@kernel.org
2020-11-18 18:04:11 +01:00
Jarkko Sakkinen
c82c618650 x86/sgx: Add SGX_IOC_ENCLAVE_PROVISION
The whole point of SGX is to create a hardware protected place to do
“stuff”. But, before someone is willing to hand over the keys to
the castle , an enclave must often prove that it is running on an
SGX-protected processor. Provisioning enclaves play a key role in
providing proof.

There are actually three different enclaves in play in order to make this
happen:

1. The application enclave.  The familiar one we know and love that runs
   the actual code that’s doing real work.  There can be many of these on
   a single system, or even in a single application.
2. The quoting enclave  (QE).  The QE is mentioned in lots of silly
   whitepapers, but, for the purposes of kernel enabling, just pretend they
   do not exist.
3. The provisioning enclave.  There is typically only one of these
   enclaves per system.  Provisioning enclaves have access to a special
   hardware key.

   They can use this key to help to generate certificates which serve as
   proof that enclaves are running on trusted SGX hardware.  These
   certificates can be passed around without revealing the special key.

Any user who can create a provisioning enclave can access the
processor-unique Provisioning Certificate Key which has privacy and
fingerprinting implications. Even if a user is permitted to create
normal application enclaves (via /dev/sgx_enclave), they should not be
able to create provisioning enclaves. That means a separate permissions
scheme is needed to control provisioning enclave privileges.

Implement a separate device file (/dev/sgx_provision) which allows
creating provisioning enclaves. This device will typically have more
strict permissions than the plain enclave device.

The actual device “driver” is an empty stub.  Open file descriptors for
this device will represent a token which allows provisioning enclave duty.
This file descriptor can be passed around and ultimately given as an
argument to the /dev/sgx_enclave driver ioctl().

 [ bp: Touchups. ]

Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: linux-security-module@vger.kernel.org
Link: https://lkml.kernel.org/r/20201112220135.165028-16-jarkko@kernel.org
2020-11-18 18:02:50 +01:00
Jarkko Sakkinen
9d0c151b41 x86/sgx: Add SGX_IOC_ENCLAVE_INIT
Enclaves have two basic states. They are either being built and are
malleable and can be modified by doing things like adding pages. Or,
they are locked down and not accepting changes. They can only be run
after they have been locked down. The ENCLS[EINIT] function induces the
transition from being malleable to locked-down.

Add an ioctl() that performs ENCLS[EINIT]. After this, new pages can
no longer be added with ENCLS[EADD]. This is also the time where the
enclave can be measured to verify its integrity.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-15-jarkko@kernel.org
2020-11-18 18:02:49 +01:00
Jarkko Sakkinen
c6d26d3707 x86/sgx: Add SGX_IOC_ENCLAVE_ADD_PAGES
SGX enclave pages are inaccessible to normal software. They must be
populated with data by copying from normal memory with the help of the
EADD and EEXTEND functions of the ENCLS instruction.

Add an ioctl() which performs EADD that adds new data to an enclave, and
optionally EEXTEND functions that hash the page contents and use the
hash as part of enclave “measurement” to ensure enclave integrity.

The enclave author gets to decide which pages will be included in the
enclave measurement with EEXTEND. Measurement is very slow and has
sometimes has very little value. For instance, an enclave _could_
measure every page of data and code, but would be slow to initialize.
Or, it might just measure its code and then trust that code to
initialize the bulk of its data after it starts running.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-14-jarkko@kernel.org
2020-11-18 18:02:49 +01:00
Jarkko Sakkinen
888d249117 x86/sgx: Add SGX_IOC_ENCLAVE_CREATE
Add an ioctl() that performs the ECREATE function of the ENCLS
instruction, which creates an SGX Enclave Control Structure (SECS).

Although the SECS is an in-memory data structure, it is present in
enclave memory and is not directly accessible by software.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-13-jarkko@kernel.org
2020-11-18 18:02:49 +01:00
Jarkko Sakkinen
3fe0778eda x86/sgx: Add an SGX misc driver interface
Intel(R) SGX is a new hardware functionality that can be used by
applications to set aside private regions of code and data called
enclaves. New hardware protects enclave code and data from outside
access and modification.

Add a driver that presents a device file and ioctl API to build and
manage enclaves.

 [ bp: Small touchups, remove unused encl variable in sgx_encl_find() as
   Reported-by: kernel test robot <lkp@intel.com> ]

Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-12-jarkko@kernel.org
2020-11-18 18:01:16 +01:00
Jarkko Sakkinen
d2285493be x86/sgx: Add SGX page allocator functions
Add functions for runtime allocation and free.

This allocator and its algorithms are as simple as it gets.  They do a
linear search across all EPC sections and find the first free page.  They
are not NUMA-aware and only hand out individual pages.  The SGX hardware
does not support large pages, so something more complicated like a buddy
allocator is unwarranted.

The free function (sgx_free_epc_page()) implicitly calls ENCLS[EREMOVE],
which returns the page to the uninitialized state.  This ensures that the
page is ready for use at the next allocation.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-10-jarkko@kernel.org
2020-11-17 14:36:13 +01:00
Sean Christopherson
e7e0545299 x86/sgx: Initialize metadata for Enclave Page Cache (EPC) sections
Although carved out of normal DRAM, enclave memory is marked in the
system memory map as reserved and is not managed by the core mm.  There
may be several regions spread across the system.  Each contiguous region
is called an Enclave Page Cache (EPC) section.  EPC sections are
enumerated via CPUID

Enclave pages can only be accessed when they are mapped as part of an
enclave, by a hardware thread running inside the enclave.

Parse CPUID data, create metadata for EPC pages and populate a simple
EPC page allocator.  Although much smaller, ‘struct sgx_epc_page’
metadata is the SGX analog of the core mm ‘struct page’.

Similar to how the core mm’s page->flags encode zone and NUMA
information, embed the EPC section index to the first eight bits of
sgx_epc_page->desc.  This allows a quick reverse lookup from EPC page to
EPC section.  Existing client hardware supports only a single section,
while upcoming server hardware will support at most eight sections.
Thus, eight bits should be enough for long term needs.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Serge Ayoun <serge.ayoun@intel.com>
Signed-off-by: Serge Ayoun <serge.ayoun@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-6-jarkko@kernel.org
2020-11-17 14:36:13 +01:00
Jarkko Sakkinen
2c273671d0 x86/sgx: Add wrappers for ENCLS functions
ENCLS is the userspace instruction which wraps virtually all
unprivileged SGX functionality for managing enclaves.  It is essentially
the ioctl() of instructions with each function implementing different
SGX-related functionality.

Add macros to wrap the ENCLS functionality. There are two main groups,
one for functions which do not return error codes and a “ret_” set for
those that do.

ENCLS functions are documented in Intel SDM section 36.6.

Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-3-jarkko@kernel.org
2020-11-17 14:36:12 +01:00
Jarkko Sakkinen
70d3b8ddcd x86/sgx: Add SGX architectural data structures
Define the SGX architectural data structures used by various SGX
functions. This is not an exhaustive representation of all SGX data
structures but only those needed by the kernel.

The goal is to sequester hardware structures in "sgx/arch.h" and keep
them separate from kernel-internal or uapi structures.

The data structures are described in Intel SDM section 37.6.

Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-2-jarkko@kernel.org
2020-11-17 14:36:12 +01:00