Today vdso_data structure has:
- syscall_map_32[] and syscall_map_64[] on PPC64
- syscall_map_32[] on PPC32
On PPC32, syscall_map_32[] is populated using sys_call_table[].
On PPC64, syscall_map_64[] is populated using sys_call_table[]
and syscal_map_32[] is populated using compat_sys_call_table[].
To simplify vdso_setup_syscall_map(),
- On PPC32 rename syscall_map_32[] into syscall_map[],
- On PPC64 rename syscall_map_64[] into syscall_map[],
- On PPC64 rename syscall_map_32[] into compat_syscall_map[].
That way, syscall_map[] gets populated using sys_call_table[] and
compat_syscall_map[] gets population using compat_sys_call_table[].
Also define an empty compat_syscall_map[] on PPC32 to avoid ifdefs.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/472734be0d9991eee320a06824219a5b2663736b.1601197618.git.christophe.leroy@csgroup.eu
get_clean_sp() is only used once in kernel/signal.c .
GCC is smart enough to see that x & 0xffffffff is a nop
calculation on PPC32, no need of a special PPC32 trivial version.
Include the logic from the PPC64 version of get_clean_sp() directly
in get_sigframe().
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/13ef6510ce30a4867e043157b93af5bb8c67fb3b.1597770847.git.christophe.leroy@csgroup.eu
There is no point in copying floating point regs when there
is no FPU and MATH_EMULATION is not selected.
Create a new CONFIG_PPC_FPU_REGS bool that is selected by
CONFIG_MATH_EMULATION and CONFIG_PPC_FPU, and use it to
opt out everything related to fp_state in thread_struct.
The asm const used only by fpu.S are opted out with CONFIG_PPC_FPU
as fpu.S build is conditionnal to CONFIG_PPC_FPU.
The following app spends approx 8.1 seconds system time on an 8xx
without the patch, and 7.0 seconds with the patch (13.5% reduction).
On an 832x, it spends approx 2.6 seconds system time without
the patch and 2.1 seconds with the patch (19% reduction).
void sigusr1(int sig) { }
int main(int argc, char **argv)
{
int i = 100000;
signal(SIGUSR1, sigusr1);
for (;i--;)
raise(SIGUSR1);
exit(0);
}
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/7569070083e6cd5b279bb5023da601aba3c06f3c.1597770847.git.christophe.leroy@csgroup.eu
Provides __kernel_clock_gettime64() on vdso32. This is the
64 bits version of __kernel_clock_gettime() which is
y2038 compliant.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-9-mpe@ellerman.id.au
On PPC64, the TOC pointer needs to be saved and restored.
Suggested-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-7-mpe@ellerman.id.au
Prepare for switching VDSO to generic C implementation in following
patch. Here, we:
- Prepare the helpers to call the C VDSO functions
- Prepare the required callbacks for the C VDSO functions
- Prepare the clocksource.h files to define VDSO_ARCH_CLOCKMODES
- Add the C trampolines to the generic C VDSO functions
powerpc is a bit special for VDSO as well as system calls in the
way that it requires setting CR SO bit which cannot be done in C.
Therefore, entry/exit needs to be performed in ASM.
Implementing __arch_get_vdso_data() would clobber the link register,
requiring the caller to save it. As the ASM calling function already
has to set a stack frame and saves the link register before calling
the C vdso function, retriving the vdso data pointer there is lighter.
Implement __arch_vdso_capable() and always return true.
Provide vdso_shift_ns(), as the generic x >> s gives the following
bad result:
18: 35 25 ff e0 addic. r9,r5,-32
1c: 41 80 00 10 blt 2c <shift+0x14>
20: 7c 64 4c 30 srw r4,r3,r9
24: 38 60 00 00 li r3,0
...
2c: 54 69 08 3c rlwinm r9,r3,1,0,30
30: 21 45 00 1f subfic r10,r5,31
34: 7c 84 2c 30 srw r4,r4,r5
38: 7d 29 50 30 slw r9,r9,r10
3c: 7c 63 2c 30 srw r3,r3,r5
40: 7d 24 23 78 or r4,r9,r4
In our case the shift is always <= 32. In addition, the upper 32 bits
of the result are likely nul. Lets GCC know it, it also optimises the
following calculations.
With the patch, we get:
0: 21 25 00 20 subfic r9,r5,32
4: 7c 69 48 30 slw r9,r3,r9
8: 7c 84 2c 30 srw r4,r4,r5
c: 7d 24 23 78 or r4,r9,r4
10: 7c 63 2c 30 srw r3,r3,r5
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-6-mpe@ellerman.id.au
Currently we use ifdef __powerpc64__ in barrier.h to decide if we
should use lwsync or eieio for SMPWMB which is then used by
__smp_wmb().
That means when we are building the compat VDSO we will use eieio,
because it's 32-bit code, even though we're building a 64-bit kernel
for a 64-bit CPU.
Although eieio should work, it would be cleaner if we always used the
same barrier, even for the 32-bit VDSO.
So change the ifdef to CONFIG_PPC64, so that the selection is made
based on the bitness of the kernel we're building for, not the current
compilation unit.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-5-mpe@ellerman.id.au
When we're building the compat VDSO we are building 32-bit code but in
the context of a 64-bit kernel configuration.
To make this work we need to be careful in some places when using
ifdefs to differentiate between CONFIG_PPC64 and __powerpc64__.
CONFIG_PPC64 indicates the kernel we're building is 64-bit, but it
doesn't tell us that we're currently building 64-bit code - we could
be building 32-bit code for the compat VDSO.
On the other hand __powerpc64__ tells us that we are currently
building 64-bit code (and therefore we must also be building a 64-bit
kernel).
In the case of get_tb() we want to use the 32-bit code sequence
regardless of whether the kernel we're building for is 64-bit or
32-bit, what matters is the word size of the current object. So we
need to check __powerpc64__ to decide if we use mftb() or the
mftbu()/mftb() sequence.
For mftb() the logic for CPU_FTR_CELL_TB_BUG only makes sense if we're
building 64-bit code, so guard that with a __powerpc64__ check.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-4-mpe@ellerman.id.au
In order to easily use get_tb() from C VDSO, move timebase
functions into a new header named asm/vdso/timebase.h
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-3-mpe@ellerman.id.au
cpu_relax() need to be in asm/vdso/processor.h to be used by
the C VDSO generic library.
Move it there.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-2-mpe@ellerman.id.au
In order to build VDSO32 for PPC64, we need to have CPU_FTRS_POSSIBLE
and CPU_FTRS_ALWAYS independant of whether we are building the
32 bits VDSO or the 64 bits VDSO.
Use #ifdef CONFIG_PPC64 instead of #ifdef __powerpc64__
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126131006.2431205-1-mpe@ellerman.id.au
This is a single bugfix for a bug that Stefan Agner found on 32-bit
Arm, but that exists on several other architectures.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAl/BZx4ACgkQmmx57+YA
GNnSPA/9HK0dwaGuXHRxKpt2ShHt5kOmixlmRJszYmuSIJde945EJNTP/+2l2Qs2
TDXmOU8pdZSAZX2EHLLEksNsnhUoTBWzsn4WxHRTNVc2cYuHHA6PKMdAPV136ag/
U0gnC7eCYKCDM3A1A/G4437PDI3vfm0Wzo6Biikxwhi861bshxjVs3DapDQw5+Zn
bOS8CCNpmwpDC26ZAfIY8es32Hg063GhdJXQ01uqkaZLJdRn7ui6bkv18vi+b3gM
QLeaubDT4+oH+HpJJpFZ01iugBFah5iJtg/JtWyap/LJSkelyjU9Gr7qrrpI7M3t
hfDzk7fRjHO1XPn2bDc4InWJEoekE9vde5M0QKn3ID8dFO1M5tNqov2uH40m4fQD
UM7irWe0BmP9Nms5LV7dMWChPn8FUEr34ZYAwF9B+YPL1Ec6GGn8mA/E0Iz8pre0
MUgv5LZ8LYdeYvSSpXrgBkgv2pwni5rTc7/K9KtvGdkLQ3rOuihPBbPyR0YTYa8f
UkboIky80lcx/uyhhu+OxWxe0q+Ug8WF87UkPIDDhsaF9W2DoErIwiCQhqS+AKs4
9DiCBzLgF6mZ11ijK73DtLNBmQnKdssV9Bs5lnOO0XqYdoqiQ5gRJWrixvI0OWSa
WGt66UV481rV/Oxlt1A/1lynYkZU0b121fFFB/EPbuFuUwZu9So=
=xgYa
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-fixes-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic fix from Arnd Bergmann:
"Add correct MAX_POSSIBLE_PHYSMEM_BITS setting to asm-generic.
This is a single bugfix for a bug that Stefan Agner found on 32-bit
Arm, but that exists on several other architectures"
* tag 'asm-generic-fixes-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
arch: pgtable: define MAX_POSSIBLE_PHYSMEM_BITS where needed
A regression fix for a boot failure on some 32-bit machines.
A fix for host crashes in the KVM system reset handling.
A fix for a possible oops in the KVM XIVE interrupt handling on Power9.
A fix for host crashes triggerable via the KVM emulated MMIO handling when
running HPT guests.
A couple of small build fixes.
Thanks to:
Andreas Schwab, Cédric Le Goater, Christophe Leroy, Erhard Furtner, Greg Kurz,
Greg Kurz, Németh Márton, Nicholas Piggin, Nick Desaulniers, Serge Belyshev,
Stephen Rothwell.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl/A678THG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgPtjEACp9aSAjvkRhpVQN1NwwAoYgdsjhgEY
4uh3HJXqTHLxWFob1/Jh4x0to+GWduB4t1zRRw77waXrtTI1dZ74vniPjZbapa4C
s2JC2TEq4+0hQITUvsg74YiS6//+BRmFs0xDZ54JxUerQ14Tq8TNxOjBW7625ave
GzFjwRG+xESh7KhXUCqaaCR/vfWHvUATtcHLeTWBXXzsY7hLvBDsl6UI3cEIgLPb
65Hwf1WGb2T9WUgScBPW+rw3WFTNW/QWRqrKDdUVguD+7txRW5luWJsikD9jUmoz
IVz9EDcg1sMZw9g5PZy7sFaLuwCTrZxR7vY7xE1CZovUzsvn62FaND6CD7BDddbp
8KwOHPGRvYU6x4C6FPLaVoS4ilLAl6mIPouA4coNKGVWLlLUW/zDhumsLSGwZRe6
onTJo5cq9F5OB3nVJSQ42MRhWoDQJ6Q/c9yZC7LAof1yb1c/z0Boey2GxWpdLFCc
uDIS0SzDDPPiaC7NdMMTLCUhYnId4RbglXbwmLuxmTrMUhXiBSfsErB3gPAQ8CjI
39wmWGUbkYSIIjp+lqDFq4RQAGneBnc2cQIiz7vyWqWIP0Srdnh1RgJN/9QJaUXW
RPSb31vi/FSlNAOZ0AfMip3ZSDQSO6AvM5hhh9nNlcgehC0XSQmWCY0+YCOA856a
d4PchidJ31B4nA==
=j0M7
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.10-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Some more powerpc fixes for 5.10:
- regression fix for a boot failure on some 32-bit machines.
- fix for host crashes in the KVM system reset handling.
- fix for a possible oops in the KVM XIVE interrupt handling on
Power9.
- fix for host crashes triggerable via the KVM emulated MMIO handling
when running HPT guests.
- a couple of small build fixes.
Thanks to Andreas Schwab, Cédric Le Goater, Christophe Leroy, Erhard
Furtner, Greg Kurz, Greg Kurz, Németh Márton, Nicholas Piggin, Nick
Desaulniers, Serge Belyshev, and Stephen Rothwell"
* tag 'powerpc-5.10-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/64s: Fix allnoconfig build since uaccess flush
powerpc/64s/exception: KVM Fix for host DSI being taken in HPT guest MMU context
powerpc: Drop -me200 addition to build flags
KVM: PPC: Book3S HV: XIVE: Fix possible oops when accessing ESB page
powerpc/64s: Fix KVM system reset handling when CONFIG_PPC_PSERIES=y
powerpc/32s: Use relocation offset when setting early hash table
When offlining a CPU, powerpc/64s does not flush TLBs, rather it just
leaves the CPU set in mm_cpumasks, so it continues to receive TLBIEs
to manage its TLBs.
However the exit_flush_lazy_tlbs() function expects that after
returning, all CPUs (except self) have flushed TLBs for that mm, in
which case TLBIEL can be used for this flush. This breaks for offline
CPUs because they don't get the IPI to flush their TLB. This can lead
to stale translations.
Fix this by clearing the CPU from mm_cpumasks, then flushing all TLBs
before going offline.
These offlined CPU bits stuck in the cpumask also prevents the cpumask
from being trimmed back to local mode, which means continual broadcast
IPIs or TLBIEs are needed for TLB flushing. This patch prevents that
situation too.
A cast of many were involved in working this out, but in particular
Milton, Aneesh, Paul made key discoveries.
Fixes: 0cef77c779 ("powerpc/64s/radix: flush remote CPUs out of single-threaded mm_cpumask")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Debugged-by: Milton Miller <miltonm@us.ibm.com>
Debugged-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Debugged-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201126102530.691335-5-npiggin@gmail.com
The clang toolchain treats inline assembly a bit differently than
straight assembly code. In particular, inline assembly doesn't have
the complete context available to resolve expressions. This is
intentional to avoid divergence in the resulting assembly code.
We can work around this issue by borrowing a workaround done for ARM,
i.e. not directly testing the labels themselves, but by moving the
current output pointer by a value that should always be zero. If this
value is not null, then we will trigger a backward move, which is
explicitly forbidden.
Signed-off-by: Bill Wendling <morbo@google.com>
[mpe: Put it in a macro and only do the workaround for clang]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201120224034.191382-4-morbo@google.com
Most architectures with the exception of alpha, mips, parisc and
sparc use the same values for these flags. Move their definitions into
asm-generic/signal-defs.h and allow the architectures with non-standard
values to override them. Also, document the non-standard flag values
in order to make it easier to add new generic flags in the future.
A consequence of this change is that on powerpc and x86, the constants'
values aside from SA_RESETHAND change signedness from unsigned
to signed. This is not expected to impact realistic use of these
constants. In particular the typical use of the constants where they
are or'ed together and assigned to sa_flags (or another int variable)
would not be affected.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ia3849f18b8009bf41faca374e701cdca36974528
Link: https://lkml.kernel.org/r/b6d0d1ec34f9ee93e1105f14f288fba5f89d1f24.1605235762.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Using DECLARE_STATIC_KEY_FALSE needs linux/jump_table.h.
Otherwise the build fails with eg:
arch/powerpc/include/asm/book3s/64/kup-radix.h:66:1: warning: data definition has no type or storage class
66 | DECLARE_STATIC_KEY_FALSE(uaccess_flush_key);
Fixes: 9a32a7e78b ("powerpc/64s: flush L1D after user accesses")
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
[mpe: Massage change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201123184016.693fe464@canb.auug.org.au
From Daniel's cover letter:
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern.
This patch series flushes the L1 cache on kernel entry (patch 2) and after the
kernel performs any user accesses (patch 3). It also adds a self-test and
performs some related cleanups.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl+2aqETHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgG+hD/4njSFct2amqWfqDYR9b2OykWmnMQXn
geookk5SbItQF7vh1q2SVA6r43s5ZAxgD5fezx4LgG6p3QU39+Tr0RhzUUHWMPDV
UNGZK6x/N/GSYeq0bqvMHmVwS0FDjPE8nOtA8Hn2T9mUUsu9G0okpgYPLnEu6rb1
gIyS35zlLBh9obi3MfJzyln/AmCE7hdonKRtLAxvGiERJAyfAG757lrdjrwavyHy
mwz+XPl5PF88jfO5cbcZT9gNHmZZPzVsOVwNcstCh2FcwuePv9dWe1pxsBxxKqP5
UXceXPcKM7VlRNmehimq7q/hfbget4RJGGKYPNXeKHOo6yfy7lJPiQV4h+5z2pSs
SPP2fQQPq0aubmcO23CXFtZl4WRHQ4pax6opepnpIfC2vZ0HLXJtPrhMKcbFJNTo
qPis6HWQPpIuI6l4MJfs+YO9ETxCR31Yd28qFAfPFoHlnQZTfx6NPhw8HKxTbSh2
Svr4X6Y14j3UsQgLTCArCXWAG/hlfRwxDZJ4AvR9EU0HJGDyZ45Y+LTD1N8bbsny
zcYfPqWGPIanLcNPNFYIQwDZo7ff08KdmngUvf/Q9om60mP1hsPJMHf6VhPXj4fC
2TZ11fORssSlBSNtIkFkbjEG+aiWtWnz3fN3uSyT50rgGwtDHJzVzLiUWHlZKcxW
X73YdxuT8fqQwg==
=Yibq
-----END PGP SIGNATURE-----
Merge tag 'powerpc-cve-2020-4788' into fixes
From Daniel's cover letter:
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern.
This patch series flushes the L1 cache on kernel entry (patch 2) and after the
kernel performs any user accesses (patch 3). It also adds a self-test and
performs some related cleanups.
The core-mm has a default __weak implementation of phys_to_target_node()
to mirror the weak definition of memory_add_physaddr_to_nid(). That
symbol is exported for modules. However, while the export in
mm/memory_hotplug.c exported the symbol in the configuration cases of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=y
...and:
CONFIG_NUMA_KEEP_MEMINFO=n
CONFIG_MEMORY_HOTPLUG=y
...it failed to export the symbol in the case of:
CONFIG_NUMA_KEEP_MEMINFO=y
CONFIG_MEMORY_HOTPLUG=n
Not only is that broken, but Christoph points out that the kernel should
not be exporting any __weak symbol, which means that
memory_add_physaddr_to_nid() example that phys_to_target_node() copied
is broken too.
Rework the definition of phys_to_target_node() and
memory_add_physaddr_to_nid() to not require weak symbols. Move to the
common arch override design-pattern of an asm header defining a symbol
to replace the default implementation.
The only common header that all memory_add_physaddr_to_nid() producing
architectures implement is asm/sparsemem.h. In fact, powerpc already
defines its memory_add_physaddr_to_nid() helper in sparsemem.h.
Double-down on that observation and define phys_to_target_node() where
necessary in asm/sparsemem.h. An alternate consideration that was
discarded was to put this override in asm/numa.h, but that entangles
with the definition of MAX_NUMNODES relative to the inclusion of
linux/nodemask.h, and requires powerpc to grow a new header.
The dependency on NUMA_KEEP_MEMINFO for DEV_DAX_HMEM_DEVICES is invalid
now that the symbol is properly exported / stubbed in all combinations
of CONFIG_NUMA_KEEP_MEMINFO and CONFIG_MEMORY_HOTPLUG.
[dan.j.williams@intel.com: v4]
Link: https://lkml.kernel.org/r/160461461867.1505359.5301571728749534585.stgit@dwillia2-desk3.amr.corp.intel.com
[dan.j.williams@intel.com: powerpc: fix create_section_mapping compile warning]
Link: https://lkml.kernel.org/r/160558386174.2948926.2740149041249041764.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: a035b6bf86 ("mm/memory_hotplug: introduce default phys_to_target_node() implementation")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: https://lkml.kernel.org/r/160447639846.1133764.7044090803980177548.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To enable seccomp constant action bitmaps, we need to have a static
mapping to the audit architecture and system call table size. Add these
for powerpc.
__LITTLE_ENDIAN__ is used here instead of CONFIG_CPU_LITTLE_ENDIAN
to keep it consistent with asm/syscall.h.
Signed-off-by: YiFei Zhu <yifeifz2@illinois.edu>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/0b64925362671cdaa26d01bfe50b3ba5e164adfd.1605101222.git.yifeifz2@illinois.edu
From Daniel's cover letter:
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern.
This patch series flushes the L1 cache on kernel entry (patch 2) and after the
kernel performs any user accesses (patch 3). It also adds a self-test and
performs some related cleanups.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl+2aqETHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgG+hD/4njSFct2amqWfqDYR9b2OykWmnMQXn
geookk5SbItQF7vh1q2SVA6r43s5ZAxgD5fezx4LgG6p3QU39+Tr0RhzUUHWMPDV
UNGZK6x/N/GSYeq0bqvMHmVwS0FDjPE8nOtA8Hn2T9mUUsu9G0okpgYPLnEu6rb1
gIyS35zlLBh9obi3MfJzyln/AmCE7hdonKRtLAxvGiERJAyfAG757lrdjrwavyHy
mwz+XPl5PF88jfO5cbcZT9gNHmZZPzVsOVwNcstCh2FcwuePv9dWe1pxsBxxKqP5
UXceXPcKM7VlRNmehimq7q/hfbget4RJGGKYPNXeKHOo6yfy7lJPiQV4h+5z2pSs
SPP2fQQPq0aubmcO23CXFtZl4WRHQ4pax6opepnpIfC2vZ0HLXJtPrhMKcbFJNTo
qPis6HWQPpIuI6l4MJfs+YO9ETxCR31Yd28qFAfPFoHlnQZTfx6NPhw8HKxTbSh2
Svr4X6Y14j3UsQgLTCArCXWAG/hlfRwxDZJ4AvR9EU0HJGDyZ45Y+LTD1N8bbsny
zcYfPqWGPIanLcNPNFYIQwDZo7ff08KdmngUvf/Q9om60mP1hsPJMHf6VhPXj4fC
2TZ11fORssSlBSNtIkFkbjEG+aiWtWnz3fN3uSyT50rgGwtDHJzVzLiUWHlZKcxW
X73YdxuT8fqQwg==
=Yibq
-----END PGP SIGNATURE-----
Merge tag 'powerpc-cve-2020-4788' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Fixes for CVE-2020-4788.
From Daniel's cover letter:
IBM Power9 processors can speculatively operate on data in the L1
cache before it has been completely validated, via a way-prediction
mechanism. It is not possible for an attacker to determine the
contents of impermissible memory using this method, since these
systems implement a combination of hardware and software security
measures to prevent scenarios where protected data could be leaked.
However these measures don't address the scenario where an attacker
induces the operating system to speculatively execute instructions
using data that the attacker controls. This can be used for example to
speculatively bypass "kernel user access prevention" techniques, as
discovered by Anthony Steinhauser of Google's Safeside Project. This
is not an attack by itself, but there is a possibility it could be
used in conjunction with side-channels or other weaknesses in the
privileged code to construct an attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern.
This patch series flushes the L1 cache on kernel entry (patch 2) and
after the kernel performs any user accesses (patch 3). It also adds a
self-test and performs some related cleanups"
* tag 'powerpc-cve-2020-4788' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/64s: rename pnv|pseries_setup_rfi_flush to _setup_security_mitigations
selftests/powerpc: refactor entry and rfi_flush tests
selftests/powerpc: entry flush test
powerpc: Only include kup-radix.h for 64-bit Book3S
powerpc/64s: flush L1D after user accesses
powerpc/64s: flush L1D on kernel entry
selftests/powerpc: rfi_flush: disable entry flush if present
In kup.h we currently include kup-radix.h for all 64-bit builds, which
includes Book3S and Book3E. The latter doesn't make sense, Book3E
never uses the Radix MMU.
This has worked up until now, but almost by accident, and the recent
uaccess flush changes introduced a build breakage on Book3E because of
the bad structure of the code.
So disentangle things so that we only use kup-radix.h for Book3S. This
requires some more stubs in kup.h and fixing an include in
syscall_64.c.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern. This patch flushes the L1 cache after user accesses.
This is part of the fix for CVE-2020-4788.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
IBM Power9 processors can speculatively operate on data in the L1 cache
before it has been completely validated, via a way-prediction mechanism. It
is not possible for an attacker to determine the contents of impermissible
memory using this method, since these systems implement a combination of
hardware and software security measures to prevent scenarios where
protected data could be leaked.
However these measures don't address the scenario where an attacker induces
the operating system to speculatively execute instructions using data that
the attacker controls. This can be used for example to speculatively bypass
"kernel user access prevention" techniques, as discovered by Anthony
Steinhauser of Google's Safeside Project. This is not an attack by itself,
but there is a possibility it could be used in conjunction with
side-channels or other weaknesses in the privileged code to construct an
attack.
This issue can be mitigated by flushing the L1 cache between privilege
boundaries of concern. This patch flushes the L1 cache on kernel entry.
This is part of the fix for CVE-2020-4788.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a new power PMU flag "PPMU_P10_DD1" which can be used to
conditionally add any code path for power10 DD1 processor version.
Also modify power10 PMU driver code to set this flag only for DD1,
based on the Processor Version Register (PVR) value.
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Signed-off-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201021085329.384535-1-maddy@linux.ibm.com
RFI macro is just there to add an infinite loop past
rfi in order to avoid prefetch on 40x in half a dozen
of places in entry_32 and head_32.
Those places are already full of #ifdefs, so just add a
few more to explicitely show those loops and remove RFI.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f7e9cb9e9240feec63cb330abf40b67d1aad852f.1604854583.git.christophe.leroy@csgroup.eu
In head_64.S, we have two places using RFI to return to
kernel. Use RFI_TO_KERNEL instead.
They are the two only places using RFI on book3s/64, so
the RFI macro can go away.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/7719261b0a0d2787772339484c33eb809723bca7.1604854583.git.christophe.leroy@csgroup.eu
On 8xx, we get the following features:
[ 0.000000] cpu_features = 0x0000000000000100
[ 0.000000] possible = 0x0000000000000120
[ 0.000000] always = 0x0000000000000000
This is not correct. As CONFIG_PPC_8xx is mutually exclusive with all
other configurations, the three lines should be equal.
The problem is due to CPU_FTRS_GENERIC_32 which is taken when
CONFIG_BOOK3S_32 is NOT selected. This CPU_FTRS_GENERIC_32 is
pointless because there is no generic configuration supporting
all 32 bits but book3s/32.
Remove this pointless generic features definition to unbreak the
calculation of 'possible' features and 'always' features.
Fixes: 76bc080ef5 ("[POWERPC] Make default cputable entries reflect selected CPU family")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/76a85f30bf981d1aeaae00df99321235494da254.1604426550.git.christophe.leroy@csgroup.eu
powerpc used to set the PTE specific flags in set_pte_at(). That is
different from other architectures. To be consistent with other
architectures powerpc updated pfn_pte() to set _PAGE_PTE in commit
379c926d63 ("powerpc/mm: move setting pte specific flags to
pfn_pte")
That commit didn't do the same for pfn_pmd() because we expect
pmd_mkhuge() to do that. But as per Linus that is a bad rule:
The rule that you must use "pmd_mkhuge()" seems _completely_ wrong.
The only valid use to ever make a pmd out of a pfn is to make a
huge-page.
Hence update pfn_pmd() to set _PAGE_PTE.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201022091115.39568-1-aneesh.kumar@linux.ibm.com
fls() and fls64() are using __builtin_ctz() and _builtin_ctzll().
On powerpc, those builtins trivially use ctlzw and ctlzd power
instructions.
Allthough those instructions provide the expected result with
input argument 0, __builtin_ctz() and __builtin_ctzll() are
documented as undefined for value 0.
The easiest fix would be to use fls() and fls64() functions
defined in include/asm-generic/bitops/builtin-fls.h and
include/asm-generic/bitops/fls64.h, but GCC output is not optimal:
00000388 <testfls>:
388: 2c 03 00 00 cmpwi r3,0
38c: 41 82 00 10 beq 39c <testfls+0x14>
390: 7c 63 00 34 cntlzw r3,r3
394: 20 63 00 20 subfic r3,r3,32
398: 4e 80 00 20 blr
39c: 38 60 00 00 li r3,0
3a0: 4e 80 00 20 blr
000003b0 <testfls64>:
3b0: 2c 03 00 00 cmpwi r3,0
3b4: 40 82 00 1c bne 3d0 <testfls64+0x20>
3b8: 2f 84 00 00 cmpwi cr7,r4,0
3bc: 38 60 00 00 li r3,0
3c0: 4d 9e 00 20 beqlr cr7
3c4: 7c 83 00 34 cntlzw r3,r4
3c8: 20 63 00 20 subfic r3,r3,32
3cc: 4e 80 00 20 blr
3d0: 7c 63 00 34 cntlzw r3,r3
3d4: 20 63 00 40 subfic r3,r3,64
3d8: 4e 80 00 20 blr
When the input of fls(x) is a constant, just check x for nullity and
return either 0 or __builtin_clz(x). Otherwise, use cntlzw instruction
directly.
For fls64() on PPC64, do the same but with __builtin_clzll() and
cntlzd instruction. On PPC32, lets take the generic fls64() which
will use our fls(). The result is as expected:
00000388 <testfls>:
388: 7c 63 00 34 cntlzw r3,r3
38c: 20 63 00 20 subfic r3,r3,32
390: 4e 80 00 20 blr
000003a0 <testfls64>:
3a0: 2c 03 00 00 cmpwi r3,0
3a4: 40 82 00 10 bne 3b4 <testfls64+0x14>
3a8: 7c 83 00 34 cntlzw r3,r4
3ac: 20 63 00 20 subfic r3,r3,32
3b0: 4e 80 00 20 blr
3b4: 7c 63 00 34 cntlzw r3,r3
3b8: 20 63 00 40 subfic r3,r3,64
3bc: 4e 80 00 20 blr
Fixes: 2fcff790dc ("powerpc: Use builtin functions for fls()/__fls()/fls64()")
Cc: stable@vger.kernel.org
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/348c2d3f19ffcff8abe50d52513f989c4581d000.1603375524.git.christophe.leroy@csgroup.eu
The only thing keeping the cpu_setup() and cpu_restore() functions
used in the cputable entries for Power7, Power8, Power9 and Power10 in
assembly was cpu_restore() being called before there was a stack in
generic_secondary_smp_init(). Commit ("powerpc/64: Set up a kernel
stack for secondaries before cpu_restore()") means that it is now
possible to use C.
Rewrite the functions in C so they are a little bit easier to read.
This is not changing their functionality.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
[mpe: Tweak copyright and authorship notes]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201014072837.24539-2-jniethe5@gmail.com
Stefan Agner reported a bug when using zsram on 32-bit Arm machines
with RAM above the 4GB address boundary:
Unable to handle kernel NULL pointer dereference at virtual address 00000000
pgd = a27bd01c
[00000000] *pgd=236a0003, *pmd=1ffa64003
Internal error: Oops: 207 [#1] SMP ARM
Modules linked in: mdio_bcm_unimac(+) brcmfmac cfg80211 brcmutil raspberrypi_hwmon hci_uart crc32_arm_ce bcm2711_thermal phy_generic genet
CPU: 0 PID: 123 Comm: mkfs.ext4 Not tainted 5.9.6 #1
Hardware name: BCM2711
PC is at zs_map_object+0x94/0x338
LR is at zram_bvec_rw.constprop.0+0x330/0xa64
pc : [<c0602b38>] lr : [<c0bda6a0>] psr: 60000013
sp : e376bbe0 ip : 00000000 fp : c1e2921c
r10: 00000002 r9 : c1dda730 r8 : 00000000
r7 : e8ff7a00 r6 : 00000000 r5 : 02f9ffa0 r4 : e3710000
r3 : 000fdffe r2 : c1e0ce80 r1 : ebf979a0 r0 : 00000000
Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user
Control: 30c5383d Table: 235c2a80 DAC: fffffffd
Process mkfs.ext4 (pid: 123, stack limit = 0x495a22e6)
Stack: (0xe376bbe0 to 0xe376c000)
As it turns out, zsram needs to know the maximum memory size, which
is defined in MAX_PHYSMEM_BITS when CONFIG_SPARSEMEM is set, or in
MAX_POSSIBLE_PHYSMEM_BITS on the x86 architecture.
The same problem will be hit on all 32-bit architectures that have a
physical address space larger than 4GB and happen to not enable sparsemem
and include asm/sparsemem.h from asm/pgtable.h.
After the initial discussion, I suggested just always defining
MAX_POSSIBLE_PHYSMEM_BITS whenever CONFIG_PHYS_ADDR_T_64BIT is
set, or provoking a build error otherwise. This addresses all
configurations that can currently have this runtime bug, but
leaves all other configurations unchanged.
I looked up the possible number of bits in source code and
datasheets, here is what I found:
- on ARC, CONFIG_ARC_HAS_PAE40 controls whether 32 or 40 bits are used
- on ARM, CONFIG_LPAE enables 40 bit addressing, without it we never
support more than 32 bits, even though supersections in theory allow
up to 40 bits as well.
- on MIPS, some MIPS32r1 or later chips support 36 bits, and MIPS32r5
XPA supports up to 60 bits in theory, but 40 bits are more than
anyone will ever ship
- On PowerPC, there are three different implementations of 36 bit
addressing, but 32-bit is used without CONFIG_PTE_64BIT
- On RISC-V, the normal page table format can support 34 bit
addressing. There is no highmem support on RISC-V, so anything
above 2GB is unused, but it might be useful to eventually support
CONFIG_ZRAM for high pages.
Fixes: 61989a80fb ("staging: zsmalloc: zsmalloc memory allocation library")
Fixes: 02390b87a9 ("mm/zsmalloc: Prepare to variable MAX_PHYSMEM_BITS")
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Tested-by: Stefan Agner <stefan@agner.ch>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/linux-mm/bdfa44bf1c570b05d6c70898e2bbb0acf234ecdf.1604762181.git.stefan@agner.ch/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
When CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS is available, the ftrace call
will be able to set the ip of the calling function. This will improve the
performance of live kernel patching where it does not need all the regs to
be stored just to change the instruction pointer.
If all archs that support live kernel patching also support
HAVE_DYNAMIC_FTRACE_WITH_ARGS, then the architecture specific function
klp_arch_set_pc() could be made generic.
It is possible that an arch can support HAVE_DYNAMIC_FTRACE_WITH_ARGS but
not HAVE_DYNAMIC_FTRACE_WITH_REGS and then have access to live patching.
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: live-patching@vger.kernel.org
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
No reason having the same code in every architecture
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20201103095858.087635810@linutronix.de
Add a non-NUMA definition for of_drconf_to_nid_single() to topology.h
so we have one even if powerpc/mm/numa.c is not compiled. On a
non-NUMA kernel the appropriate node id is always first_online_node.
Fixes: 72cdd117c4 ("pseries/hotplug-memory: hot-add: skip redundant LMB lookup")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201105223040.3612663-1-cheloha@linux.ibm.com
When _PAGE_ACCESSED is not set, a minor fault is expected.
To do this, TLB miss exception ANDs _PAGE_PRESENT and _PAGE_ACCESSED
into the L2 entry valid bit.
To simplify the processing and reduce the number of instructions in
TLB miss exceptions, manage it as an APG bit and get it next to
_PAGE_GUARDED bit to allow a copy in one go. Then declare the
corresponding groups as handling all accesses as user accesses.
As the PP bits always define user as No Access, it will generate
a fault.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/80f488db230c6b0e7b3b990d72bd94a8a069e93e.1602492856.git.christophe.leroy@csgroup.eu
Andreas reported that commit ee0a49a687 ("powerpc/uaccess: Switch
__put_user_size_allowed() to __put_user_asm_goto()") broke
CLONE_CHILD_SETTID.
Further inspection showed that the put_user() in schedule_tail() was
missing entirely, the store not emitted by the compiler.
<.schedule_tail>:
mflr r0
std r0,16(r1)
stdu r1,-112(r1)
bl <.finish_task_switch>
ld r9,2496(r3)
cmpdi cr7,r9,0
bne cr7,<.schedule_tail+0x60>
ld r3,392(r13)
ld r9,1392(r3)
cmpdi cr7,r9,0
beq cr7,<.schedule_tail+0x3c>
li r4,0
li r5,0
bl <.__task_pid_nr_ns>
nop
bl <.calculate_sigpending>
nop
addi r1,r1,112
ld r0,16(r1)
mtlr r0
blr
nop
nop
nop
bl <.__balance_callback>
b <.schedule_tail+0x1c>
Notice there are no stores other than to the stack. There should be a
stw in there for the store to current->set_child_tid.
This is only seen with GCC 4.9 era compilers (tested with 4.9.3 and
4.9.4), and only when CONFIG_PPC_KUAP is disabled.
When CONFIG_PPC_KUAP=y, the inline asm that's part of the isync()
and mtspr() inlined via allow_user_access() seems to be enough to
avoid the bug.
We already have a macro to work around this (or a similar bug), called
asm_volatile_goto which includes an empty asm block to tickle the
compiler into generating the right code. So use that.
With this applied the code generation looks more like it will work:
<.schedule_tail>:
mflr r0
std r31,-8(r1)
std r0,16(r1)
stdu r1,-144(r1)
std r3,112(r1)
bl <._mcount>
nop
ld r3,112(r1)
bl <.finish_task_switch>
ld r9,2624(r3)
cmpdi cr7,r9,0
bne cr7,<.schedule_tail+0xa0>
ld r3,2408(r13)
ld r31,1856(r3)
cmpdi cr7,r31,0
beq cr7,<.schedule_tail+0x80>
li r4,0
li r5,0
bl <.__task_pid_nr_ns>
nop
li r9,-1
clrldi r9,r9,12
cmpld cr7,r31,r9
bgt cr7,<.schedule_tail+0x80>
lis r9,16
rldicr r9,r9,32,31
subf r9,r31,r9
cmpldi cr7,r9,3
ble cr7,<.schedule_tail+0x80>
li r9,0
stw r3,0(r31) <-- stw
nop
bl <.calculate_sigpending>
nop
addi r1,r1,144
ld r0,16(r1)
ld r31,-8(r1)
mtlr r0
blr
nop
bl <.__balance_callback>
b <.schedule_tail+0x30>
Fixes: ee0a49a687 ("powerpc/uaccess: Switch __put_user_size_allowed() to __put_user_asm_goto()")
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Tested-by: Andreas Schwab <schwab@linux-m68k.org>
Suggested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201104111742.672142-1-mpe@ellerman.id.au
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A fix for undetected data corruption on Power9 Nimbus <= DD2.1 in the emulation
of VSX loads. The affected CPUs were not widely available.
Two fixes for machine check handling in guests under PowerVM.
A fix for our recent changes to SMP setup, when CONFIG_CPUMASK_OFFSTACK=y.
Three fixes for races in the handling of some of our powernv sysfs attributes.
One change to remove TM from the set of Power10 CPU features.
A couple of other minor fixes.
Thanks to:
Aneesh Kumar K.V, Christophe Leroy, Ganesh Goudar, Jordan Niethe, Mahesh
Salgaonkar, Michael Neuling, Oliver O'Halloran, Qian Cai, Srikar Dronamraju,
Vasant Hegde.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl+UASATHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgAbpD/4nN+0cM7M2iCPL1cqd3nmzziJ/tXsq
1ZxU+2B+cU+pUy4LHgtH1arJb85iVqFR3cC9j705uo6kO9vqsppTj2752srSEioM
er1UxzRza/lNZaVGaywCD9oApayPkzg74IbenXDDduI+oWvQuvWZbSBskJfdARg2
7kBFhV7w8sUGa8e/JS1FITndPPO9tMurk+s0FgP4cjsGM/iTW8eUfGcOFsOlc+uZ
tybZUCY/G4E77etE1KHVjw8IcwSh0P/ibQ6nLnIFpOtPCRs5tTqbuARYN8U55M9H
0ebt3sv5QTyNvZY0bm5p9ZsC1AKyciUO5SWPNEEwzOdyYVQjlofHj3UvcHKW2D1t
ymbglsdQeXM5uuexa23ape1e3UuwW1JhsHTQLnCbI3C/snkMA3ZegVsS66GIMXn2
C0gef0RzQ7HrvwUEl3V/b6W87LL6NpGU6RRWyva7/0pLMZkMtKpGgWg/hVzPRTcC
6yoUVWNN5p7pZu6VDkoqdJuw7hQPyo7t5Kj71G+/SdH5engcFjnbBxDiEge/4a7+
RluvswpCn9SyyEvS2BL262LSPq8iYH4+at6n+uLbonZSY0P9Z5zSpPpkNJkyTnwz
GXj1DBSEOBDZQ7pFeoCFOeYoo1Yk5EQpmA7YuxnZkzOdxFpIUgFU1wdRemzVZw2o
PTw5VHoRgCmIsQ==
=LMZv
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- A fix for undetected data corruption on Power9 Nimbus <= DD2.1 in the
emulation of VSX loads. The affected CPUs were not widely available.
- Two fixes for machine check handling in guests under PowerVM.
- A fix for our recent changes to SMP setup, when
CONFIG_CPUMASK_OFFSTACK=y.
- Three fixes for races in the handling of some of our powernv sysfs
attributes.
- One change to remove TM from the set of Power10 CPU features.
- A couple of other minor fixes.
Thanks to: Aneesh Kumar K.V, Christophe Leroy, Ganesh Goudar, Jordan
Niethe, Mahesh Salgaonkar, Michael Neuling, Oliver O'Halloran, Qian Cai,
Srikar Dronamraju, Vasant Hegde.
* tag 'powerpc-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/pseries: Avoid using addr_to_pfn in real mode
powerpc/uaccess: Don't use "m<>" constraint with GCC 4.9
powerpc/eeh: Fix eeh_dev_check_failure() for PE#0
powerpc/64s: Remove TM from Power10 features
selftests/powerpc: Make alignment handler test P9N DD2.1 vector CI load workaround
powerpc: Fix undetected data corruption with P9N DD2.1 VSX CI load emulation
powerpc/powernv/dump: Handle multiple writes to ack attribute
powerpc/powernv/dump: Fix race while processing OPAL dump
powerpc/smp: Use GFP_ATOMIC while allocating tmp mask
powerpc/smp: Remove unnecessary variable
powerpc/mce: Avoid nmi_enter/exit in real mode on pseries hash
powerpc/opal_elog: Handle multiple writes to ack attribute
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes
For x86, also included in this pull request is a new alternative and
(in the future) more scalable implementation of extended page tables
that does not need a reverse map from guest physical addresses to
host physical addresses. For now it is disabled by default because
it is still lacking a few of the existing MMU's bells and whistles.
However it is a very solid piece of work and it is already available
for people to hammer on it.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl+S8dsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM40Af+M46NJmuS5rcwFfybvK/c42KT6svX
Co1NrZDwzSQ2mMy3WQzH9qeLvb+nbY4sT3n5BPNPNsT+aIDPOTDt//qJ2/Ip9UUs
tRNea0MAR96JWLE7MSeeRxnTaQIrw/AAZC0RXFzZvxcgytXwdqBExugw4im+b+dn
Dcz8QxX1EkwT+4lTm5HC0hKZAuo4apnK1QkqCq4SdD2QVJ1YE6+z7pgj4wX7xitr
STKD6q/Yt/0ndwqS0GSGbyg0jy6mE620SN6isFRkJYwqfwLJci6KnqvEK67EcNMu
qeE017K+d93yIVC46/6TfVHzLR/D1FpQ8LZ16Yl6S13OuGIfAWBkQZtPRg==
=AD6a
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
- Support 'make compile_commands.json' to generate the compilation
database more easily, avoiding stale entries
- Support 'make clang-analyzer' and 'make clang-tidy' for static checks
using clang-tidy
- Preprocess scripts/modules.lds.S to allow CONFIG options in the module
linker script
- Drop cc-option tests from compiler flags supported by our minimal
GCC/Clang versions
- Use always 12-digits commit hash for CONFIG_LOCALVERSION_AUTO=y
- Use sha1 build id for both BFD linker and LLD
- Improve deb-pkg for reproducible builds and rootless builds
- Remove stale, useless scripts/namespace.pl
- Turn -Wreturn-type warning into error
- Fix build error of deb-pkg when CONFIG_MODULES=n
- Replace 'hostname' command with more portable 'uname -n'
- Various Makefile cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAl+RfS0VHG1hc2FoaXJv
eUBrZXJuZWwub3JnAAoJED2LAQed4NsGG1QP/2hzoMzK1YXErPUhGrhYU1rxz7Nu
HkLTIkyKF1HPwSJf5XyNW/FTBI4SDlkNoVg/weEDCS1yFxxpvQLIck8ChzA1kIIM
P+1IfBWOTzqn91XsapU2zwSno3gylphVchVIvYAB3oLUotGeMSluy1cQtBRzyA5D
rj2Q7H8fzkzk3YoBcBC/BOKDlfo/usqQ1X/gsfRFwN/BJxeZSYoujNBE7KtHaDsd
8K/ggBIqmST4NBn+M8c11d8CxzvWbtG1gq3EkUL5nG8T13DsGn1EFC0SPt85bkvv
f9YywfJi37HixhZzK6tXYjN/PWoiEY6z90mhd0NtZghQT7kQMiTQ3sWrM8dX3ssf
phBzO94uFQDjhyxOaSSsCoI/TIciAPo4+G8PNjcaEtj63IEfhEz/dnlstYwY5Y9P
Pp3aZtVjSGJwGW2u2EUYj6paFVqjf6DXQjQKPNHnsYCEidIvFTjjguRGvx9gl6mx
yd8oseOsAtOEf0alRe9MMdvN17O3UrRAxgBdap7fktg02TLVRGxZIbuwKmBf29ho
ORl9zeFkYBn6XQFyuItJoXy/kYFyHDaBEPYCRQcY4dwqcjZIiAc/FhYbqYthJ59L
5vLN2etmDIVSuUv1J5nBqHHGCqJChykbqg7riQ651dCNKw4gZB8ctCay2lXhBXMg
1mqOcoG5WWL7//F+
=tZRN
-----END PGP SIGNATURE-----
Merge tag 'kbuild-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Support 'make compile_commands.json' to generate the compilation
database more easily, avoiding stale entries
- Support 'make clang-analyzer' and 'make clang-tidy' for static checks
using clang-tidy
- Preprocess scripts/modules.lds.S to allow CONFIG options in the
module linker script
- Drop cc-option tests from compiler flags supported by our minimal
GCC/Clang versions
- Use always 12-digits commit hash for CONFIG_LOCALVERSION_AUTO=y
- Use sha1 build id for both BFD linker and LLD
- Improve deb-pkg for reproducible builds and rootless builds
- Remove stale, useless scripts/namespace.pl
- Turn -Wreturn-type warning into error
- Fix build error of deb-pkg when CONFIG_MODULES=n
- Replace 'hostname' command with more portable 'uname -n'
- Various Makefile cleanups
* tag 'kbuild-v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (34 commits)
kbuild: Use uname for LINUX_COMPILE_HOST detection
kbuild: Only add -fno-var-tracking-assignments for old GCC versions
kbuild: remove leftover comment for filechk utility
treewide: remove DISABLE_LTO
kbuild: deb-pkg: clean up package name variables
kbuild: deb-pkg: do not build linux-headers package if CONFIG_MODULES=n
kbuild: enforce -Werror=return-type
scripts: remove namespace.pl
builddeb: Add support for all required debian/rules targets
builddeb: Enable rootless builds
builddeb: Pass -n to gzip for reproducible packages
kbuild: split the build log of kallsyms
kbuild: explicitly specify the build id style
scripts/setlocalversion: make git describe output more reliable
kbuild: remove cc-option test of -Werror=date-time
kbuild: remove cc-option test of -fno-stack-check
kbuild: remove cc-option test of -fno-strict-overflow
kbuild: move CFLAGS_{KASAN,UBSAN,KCSAN} exports to relevant Makefiles
kbuild: remove redundant CONFIG_KASAN check from scripts/Makefile.kasan
kbuild: do not create built-in objects for external module builds
...
Pull initial set_fs() removal from Al Viro:
"Christoph's set_fs base series + fixups"
* 'work.set_fs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Allow a NULL pos pointer to __kernel_read
fs: Allow a NULL pos pointer to __kernel_write
powerpc: remove address space overrides using set_fs()
powerpc: use non-set_fs based maccess routines
x86: remove address space overrides using set_fs()
x86: make TASK_SIZE_MAX usable from assembly code
x86: move PAGE_OFFSET, TASK_SIZE & friends to page_{32,64}_types.h
lkdtm: remove set_fs-based tests
test_bitmap: remove user bitmap tests
uaccess: add infrastructure for kernel builds with set_fs()
fs: don't allow splice read/write without explicit ops
fs: don't allow kernel reads and writes without iter ops
sysctl: Convert to iter interfaces
proc: add a read_iter method to proc proc_ops
proc: cleanup the compat vs no compat file ops
proc: remove a level of indentation in proc_get_inode
GCC 4.9 sometimes fails to build with "m<>" constraint in
inline assembly.
CC lib/iov_iter.o
In file included from ./arch/powerpc/include/asm/cmpxchg.h:6:0,
from ./arch/powerpc/include/asm/atomic.h:11,
from ./include/linux/atomic.h:7,
from ./include/linux/crypto.h:15,
from ./include/crypto/hash.h:11,
from lib/iov_iter.c:2:
lib/iov_iter.c: In function 'iovec_from_user.part.30':
./arch/powerpc/include/asm/uaccess.h:287:2: error: 'asm' operand has impossible constraints
__asm__ __volatile__( \
^
./include/linux/compiler.h:78:42: note: in definition of macro 'unlikely'
# define unlikely(x) __builtin_expect(!!(x), 0)
^
./arch/powerpc/include/asm/uaccess.h:583:34: note: in expansion of macro 'unsafe_op_wrap'
#define unsafe_get_user(x, p, e) unsafe_op_wrap(__get_user_allowed(x, p), e)
^
./arch/powerpc/include/asm/uaccess.h:329:10: note: in expansion of macro '__get_user_asm'
case 4: __get_user_asm(x, (u32 __user *)ptr, retval, "lwz"); break; \
^
./arch/powerpc/include/asm/uaccess.h:363:3: note: in expansion of macro '__get_user_size_allowed'
__get_user_size_allowed(__gu_val, __gu_addr, __gu_size, __gu_err); \
^
./arch/powerpc/include/asm/uaccess.h💯2: note: in expansion of macro '__get_user_nocheck'
__get_user_nocheck((x), (ptr), sizeof(*(ptr)), false)
^
./arch/powerpc/include/asm/uaccess.h:583:49: note: in expansion of macro '__get_user_allowed'
#define unsafe_get_user(x, p, e) unsafe_op_wrap(__get_user_allowed(x, p), e)
^
lib/iov_iter.c:1663:3: note: in expansion of macro 'unsafe_get_user'
unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
^
make[1]: *** [scripts/Makefile.build:283: lib/iov_iter.o] Error 1
Define a UPD_CONSTR macro that is "<>" by default and
only "" with GCC prior to GCC 5.
Fixes: fcf1f26895 ("powerpc/uaccess: Add pre-update addressing to __put_user_asm_goto()")
Fixes: 2f279eeb68 ("powerpc/uaccess: Add pre-update addressing to __get_user_asm() and __put_user_asm()")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/212d3bc4a52ca71523759517bb9c61f7e477c46a.1603179582.git.christophe.leroy@csgroup.eu
ISA v3.1 removes transactional memory and hence it should not be present
in cpu_features or cpu_user_features2. Remove CPU_FTR_TM_COMP from
CPU_FTRS_POWER10. Remove PPC_FEATURE2_HTM_COMP and
PPC_FEATURE2_HTM_NOSC_COMP from COMMON_USER2_POWER10.
Fixes: a3ea40d5c7 ("powerpc: Add POWER10 architected mode")
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200827035529.900-1-jniethe5@gmail.com
- A series from Nick adding ARCH_WANT_IRQS_OFF_ACTIVATE_MM & selecting it for
powerpc, as well as a related fix for sparc.
- Remove support for PowerPC 601.
- Some fixes for watchpoints & addition of a new ptrace flag for detecting ISA
v3.1 (Power10) watchpoint features.
- A fix for kernels using 4K pages and the hash MMU on bare metal Power9
systems with > 16TB of RAM, or RAM on the 2nd node.
- A basic idle driver for shallow stop states on Power10.
- Tweaks to our sched domains code to better inform the scheduler about the
hardware topology on Power9/10, where two SMT4 cores can be presented by
firmware as an SMT8 core.
- A series doing further reworks & cleanups of our EEH code.
- Addition of a filter for RTAS (firmware) calls done via sys_rtas(), to
prevent root from overwriting kernel memory.
- Other smaller features, fixes & cleanups.
Thanks to:
Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V, Athira Rajeev, Biwen
Li, Cameron Berkenpas, Cédric Le Goater, Christophe Leroy, Christoph Hellwig,
Colin Ian King, Daniel Axtens, David Dai, Finn Thain, Frederic Barrat, Gautham
R. Shenoy, Greg Kurz, Gustavo Romero, Ira Weiny, Jason Yan, Joel Stanley,
Jordan Niethe, Kajol Jain, Konrad Rzeszutek Wilk, Laurent Dufour, Leonardo
Bras, Liu Shixin, Luca Ceresoli, Madhavan Srinivasan, Mahesh Salgaonkar,
Nathan Lynch, Nicholas Mc Guire, Nicholas Piggin, Nick Desaulniers, Oliver
O'Halloran, Pedro Miraglia Franco de Carvalho, Pratik Rajesh Sampat, Qian Cai,
Qinglang Miao, Ravi Bangoria, Russell Currey, Satheesh Rajendran, Scott
Cheloha, Segher Boessenkool, Srikar Dronamraju, Stan Johnson, Stephen Kitt,
Stephen Rothwell, Thiago Jung Bauermann, Tyrel Datwyler, Vaibhav Jain,
Vaidyanathan Srinivasan, Vasant Hegde, Wang Wensheng, Wolfram Sang, Yang
Yingliang, zhengbin.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl+JBQoTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgJJAD/0e3tsFP+9rFlxKSJlDcMW3w7kXDRXE
tG40F1ubYFLU8wtFVR0De3njTRsz5HyaNU6SI8CwPq48mCa7OFn1D1OeHonHXDX9
w6v3GE2S1uXXQnjm+czcfdjWQut0IwWBLx007/S23WcPff3Abc2irupKLNu+Gx29
b/yxJHZSRJVX59jSV94HkdJS75mDHQ3oUOlFGXtuGcUZDufpD1ynRcQOjr0V/8JU
F4WAblFSe7hiczHGqIvfhFVJ+OikEhnj2aEMAL8U7vxzrAZ7RErKCN9s/0Tf0Ktx
FzNEFNLHZGqh+qNDpKKmM+RnaeO2Lcoc9qVn7vMHOsXPzx9F5LJwkI/DgPjtgAq/
mFvGnQB/FapATnQeMluViC/qhEe5bQXLUfPP5i2+QOjK0QqwyFlUMgaVNfsY8jRW
0Q/sNA72Opzst4WUTveCd4SOInlUuat09e5nLooCRLW7u7/jIiXNRSFNvpOiwkfF
EcIPJsi6FUQ4SNbqpRSNEO9fK5JZrrUtmr0pg8I7fZhHYGcxEjqPR6IWCs3DTsak
4/KhjhhTnP/IWJRw6qKAyNhEyEwpWqYZ97SIQbvSb1g/bS47AIdQdJRb0eEoRjhx
sbbnnYFwPFkG4c1yQSIFanT9wNDQ2hFx/c/mRfbd7J+ordx9JsoqXjqrGuhsU/pH
GttJLmkJ5FH+pQ==
=akeX
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- A series from Nick adding ARCH_WANT_IRQS_OFF_ACTIVATE_MM & selecting
it for powerpc, as well as a related fix for sparc.
- Remove support for PowerPC 601.
- Some fixes for watchpoints & addition of a new ptrace flag for
detecting ISA v3.1 (Power10) watchpoint features.
- A fix for kernels using 4K pages and the hash MMU on bare metal
Power9 systems with > 16TB of RAM, or RAM on the 2nd node.
- A basic idle driver for shallow stop states on Power10.
- Tweaks to our sched domains code to better inform the scheduler about
the hardware topology on Power9/10, where two SMT4 cores can be
presented by firmware as an SMT8 core.
- A series doing further reworks & cleanups of our EEH code.
- Addition of a filter for RTAS (firmware) calls done via sys_rtas(),
to prevent root from overwriting kernel memory.
- Other smaller features, fixes & cleanups.
Thanks to: Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V,
Athira Rajeev, Biwen Li, Cameron Berkenpas, Cédric Le Goater, Christophe
Leroy, Christoph Hellwig, Colin Ian King, Daniel Axtens, David Dai, Finn
Thain, Frederic Barrat, Gautham R. Shenoy, Greg Kurz, Gustavo Romero,
Ira Weiny, Jason Yan, Joel Stanley, Jordan Niethe, Kajol Jain, Konrad
Rzeszutek Wilk, Laurent Dufour, Leonardo Bras, Liu Shixin, Luca
Ceresoli, Madhavan Srinivasan, Mahesh Salgaonkar, Nathan Lynch, Nicholas
Mc Guire, Nicholas Piggin, Nick Desaulniers, Oliver O'Halloran, Pedro
Miraglia Franco de Carvalho, Pratik Rajesh Sampat, Qian Cai, Qinglang
Miao, Ravi Bangoria, Russell Currey, Satheesh Rajendran, Scott Cheloha,
Segher Boessenkool, Srikar Dronamraju, Stan Johnson, Stephen Kitt,
Stephen Rothwell, Thiago Jung Bauermann, Tyrel Datwyler, Vaibhav Jain,
Vaidyanathan Srinivasan, Vasant Hegde, Wang Wensheng, Wolfram Sang, Yang
Yingliang, zhengbin.
* tag 'powerpc-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (228 commits)
Revert "powerpc/pci: unmap legacy INTx interrupts when a PHB is removed"
selftests/powerpc: Fix eeh-basic.sh exit codes
cpufreq: powernv: Fix frame-size-overflow in powernv_cpufreq_reboot_notifier
powerpc/time: Make get_tb() common to PPC32 and PPC64
powerpc/time: Make get_tbl() common to PPC32 and PPC64
powerpc/time: Remove get_tbu()
powerpc/time: Avoid using get_tbl() and get_tbu() internally
powerpc/time: Make mftb() common to PPC32 and PPC64
powerpc/time: Rename mftbl() to mftb()
powerpc/32s: Remove #ifdef CONFIG_PPC_BOOK3S_32 in head_book3s_32.S
powerpc/32s: Rename head_32.S to head_book3s_32.S
powerpc/32s: Setup the early hash table at all time.
powerpc/time: Remove ifdef in get_dec() and set_dec()
powerpc: Remove get_tb_or_rtc()
powerpc: Remove __USE_RTC()
powerpc: Tidy up a bit after removal of PowerPC 601.
powerpc: Remove support for PowerPC 601
powerpc: Remove PowerPC 601
powerpc: Drop SYNC_601() ISYNC_601() and SYNC()
powerpc: Remove CONFIG_PPC601_SYNC_FIX
...
powerpc used to set the pte specific flags in set_pte_at(). This is
different from other architectures. To be consistent with other
architecture update pfn_pte to set _PAGE_PTE on ppc64. Also, drop now
unused pte_mkpte.
We add a VM_WARN_ON() to catch the usage of calling set_pte_at() without
setting _PAGE_PTE bit. We will remove that after a few releases.
With respect to huge pmd entries, pmd_mkhuge() takes care of adding the
_PAGE_PTE bit.
[akpm@linux-foundation.org: whitespace fix, per Christophe]
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lkml.kernel.org/r/20200902114222.181353-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- rework the non-coherent DMA allocator
- move private definitions out of <linux/dma-mapping.h>
- lower CMA_ALIGNMENT (Paul Cercueil)
- remove the omap1 dma address translation in favor of the common
code
- make dma-direct aware of multiple dma offset ranges (Jim Quinlan)
- support per-node DMA CMA areas (Barry Song)
- increase the default seg boundary limit (Nicolin Chen)
- misc fixes (Robin Murphy, Thomas Tai, Xu Wang)
- various cleanups
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl+IiPwLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPKEQ//TM8vxjucnRl/pklpMin49dJorwiVvROLhQqLmdxw
286ZKpVzYYAPc7LnNqwIBugnFZiXuHu8xPKQkIiOa2OtNDTwhKNoBxOAmOJaV6DD
8JfEtZYeX5mKJ/Nqd2iSkIqOvCwZ9Wzii+aytJ2U88wezQr1fnyF4X49MegETEey
FHWreSaRWZKa0MMRu9AQ0QxmoNTHAQUNaPc0PeqEtPULybfkGOGw4/ghSB7WcKrA
gtKTuooNOSpVEHkTas2TMpcBp6lxtOjFqKzVN0ml+/nqq5NeTSDx91VOCX/6Cj76
mXIg+s7fbACTk/BmkkwAkd0QEw4fo4tyD6Bep/5QNhvEoAriTuSRbhvLdOwFz0EF
vhkF0Rer6umdhSK7nPd7SBqn8kAnP4vBbdmB68+nc3lmkqysLyE4VkgkdH/IYYQI
6TJ0oilXWFmU6DT5Rm4FBqCvfcEfU2dUIHJr5wZHqrF2kLzoZ+mpg42fADoG4GuI
D/oOsz7soeaRe3eYfWybC0omGR6YYPozZJ9lsfftcElmwSsFrmPsbO1DM5IBkj1B
gItmEbOB9ZK3RhIK55T/3u1UWY3Uc/RVr+kchWvADGrWnRQnW0kxYIqDgiOytLFi
JZNH8uHpJIwzoJAv6XXSPyEUBwXTG+zK37Ce769HGbUEaUrE71MxBbQAQsK8mDpg
7fM=
=Bkf/
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.10' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- rework the non-coherent DMA allocator
- move private definitions out of <linux/dma-mapping.h>
- lower CMA_ALIGNMENT (Paul Cercueil)
- remove the omap1 dma address translation in favor of the common code
- make dma-direct aware of multiple dma offset ranges (Jim Quinlan)
- support per-node DMA CMA areas (Barry Song)
- increase the default seg boundary limit (Nicolin Chen)
- misc fixes (Robin Murphy, Thomas Tai, Xu Wang)
- various cleanups
* tag 'dma-mapping-5.10' of git://git.infradead.org/users/hch/dma-mapping: (63 commits)
ARM/ixp4xx: add a missing include of dma-map-ops.h
dma-direct: simplify the DMA_ATTR_NO_KERNEL_MAPPING handling
dma-direct: factor out a dma_direct_alloc_from_pool helper
dma-direct check for highmem pages in dma_direct_alloc_pages
dma-mapping: merge <linux/dma-noncoherent.h> into <linux/dma-map-ops.h>
dma-mapping: move large parts of <linux/dma-direct.h> to kernel/dma
dma-mapping: move dma-debug.h to kernel/dma/
dma-mapping: remove <asm/dma-contiguous.h>
dma-mapping: merge <linux/dma-contiguous.h> into <linux/dma-map-ops.h>
dma-contiguous: remove dma_contiguous_set_default
dma-contiguous: remove dev_set_cma_area
dma-contiguous: remove dma_declare_contiguous
dma-mapping: split <linux/dma-mapping.h>
cma: decrease CMA_ALIGNMENT lower limit to 2
firewire-ohci: use dma_alloc_pages
dma-iommu: implement ->alloc_noncoherent
dma-mapping: add new {alloc,free}_noncoherent dma_map_ops methods
dma-mapping: add a new dma_alloc_pages API
dma-mapping: remove dma_cache_sync
53c700: convert to dma_alloc_noncoherent
...
Pull compat quotactl cleanups from Al Viro:
"More Christoph's compat cleanups: quotactl(2)"
* 'work.quota-compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
quota: simplify the quotactl compat handling
compat: add a compat_need_64bit_alignment_fixup() helper
compat: lift compat_s64 and compat_u64 to <asm-generic/compat.h>
Pull copy_and_csum cleanups from Al Viro:
"Saner calling conventions for csum_and_copy_..._user() and friends"
[ Removing 800+ lines of code and cleaning stuff up is good - Linus ]
* 'work.csum_and_copy' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
ppc: propagate the calling conventions change down to csum_partial_copy_generic()
amd64: switch csum_partial_copy_generic() to new calling conventions
sparc64: propagate the calling convention changes down to __csum_partial_copy_...()
xtensa: propagate the calling conventions change down into csum_partial_copy_generic()
mips: propagate the calling convention change down into __csum_partial_copy_..._user()
mips: __csum_partial_copy_kernel() has no users left
mips: csum_and_copy_{to,from}_user() are never called under KERNEL_DS
sparc32: propagate the calling conventions change down to __csum_partial_copy_sparc_generic()
i386: propagate the calling conventions change down to csum_partial_copy_generic()
sh: propage the calling conventions change down to csum_partial_copy_generic()
m68k: get rid of zeroing destination on error in csum_and_copy_from_user()
arm: propagate the calling convention changes down to csum_partial_copy_from_user()
alpha: propagate the calling convention changes down to csum_partial_copy.c helpers
saner calling conventions for csum_and_copy_..._user()
csum_and_copy_..._user(): pass 0xffffffff instead of 0 as initial sum
csum_partial_copy_nocheck(): drop the last argument
unify generic instances of csum_partial_copy_nocheck()
icmp_push_reply(): reorder adding the checksum up
skb_copy_and_csum_bits(): don't bother with the last argument
encounter an MCE in kernel space but while copying from user memory by
sending them a SIGBUS on return to user space and umapping the faulty
memory, by Tony Luck and Youquan Song.
* memcpy_mcsafe() rework by splitting the functionality into
copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables
support for new hardware which can recover from a machine check
encountered during a fast string copy and makes that the default and
lets the older hardware which does not support that advance recovery,
opt in to use the old, fragile, slow variant, by Dan Williams.
* New AMD hw enablement, by Yazen Ghannam and Akshay Gupta.
* Do not use MSR-tracing accessors in #MC context and flag any fault
while accessing MCA architectural MSRs as an architectural violation
with the hope that such hw/fw misdesigns are caught early during the hw
eval phase and they don't make it into production.
* Misc fixes, improvements and cleanups, as always.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+EIpUACgkQEsHwGGHe
VUouoBAAgwb+NkWZtIqGImV4f+LOyFjhTR/r/7ZyiijXdbhOIuAdc/jQM31mQxug
sX2jxaRYnf1n6SLA0ggX99gwr2deRQ/hsNf5Abw55GC+Z1dOxpGL0k59A3ELl1IR
H9KYmCAFQIHvzfk38qcdND73XHcgthQoXFBOG9wAPAdgDWnaiWt6lcLAq8OiJTmp
D8pInAYhcnL8YXwMGyQQ1KkFn9HwydoWDsK5Ff2shaw2/+dMQqd1zetenbVtjhLb
iNYGvV7Bi/RQ8PyMbzmtTWa4kwQJAHC2gptkGxty//2ADGVBbqUQdqF9TjIWCNy5
V6Ldv5zo0/1s7DOzji3htzqkSs/K1Ea6d2LtZjejkJipHKV5x068UC6Fu+PlfS2D
VZfcICeapU4G2F3Zvks2DlZ7dVTbHCvoI78Qi7bBgczPUVmk6iqah4xuQaiHyBJc
kTFDA4Nnf/026GpoWRiFry9vqdnHBZyLet5A6Y+SoWF0FbhYnCVPpq4MnussYoav
lUIi9ZZav6X2RZp9DDM1f9d5xubtKq0DKt93wvzqAhjK0T2DikckJ+riOYkI6N8t
fHCBNUkdfgyMzJUTBPAzYQ7RmjbjKWJi7xWP0oz6+GqOJkQfSTVC5/2yEffbb3ya
whYRS6iklbl7yshzaOeecXsZcAeK2oGPfoHg34WkHFgXdF5mNgA=
=u1Wg
-----END PGP SIGNATURE-----
Merge tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Extend the recovery from MCE in kernel space also to processes which
encounter an MCE in kernel space but while copying from user memory
by sending them a SIGBUS on return to user space and umapping the
faulty memory, by Tony Luck and Youquan Song.
- memcpy_mcsafe() rework by splitting the functionality into
copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables
support for new hardware which can recover from a machine check
encountered during a fast string copy and makes that the default and
lets the older hardware which does not support that advance recovery,
opt in to use the old, fragile, slow variant, by Dan Williams.
- New AMD hw enablement, by Yazen Ghannam and Akshay Gupta.
- Do not use MSR-tracing accessors in #MC context and flag any fault
while accessing MCA architectural MSRs as an architectural violation
with the hope that such hw/fw misdesigns are caught early during the
hw eval phase and they don't make it into production.
- Misc fixes, improvements and cleanups, as always.
* tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Allow for copy_mc_fragile symbol checksum to be generated
x86/mce: Decode a kernel instruction to determine if it is copying from user
x86/mce: Recover from poison found while copying from user space
x86/mce: Avoid tail copy when machine check terminated a copy from user
x86/mce: Add _ASM_EXTABLE_CPY for copy user access
x86/mce: Provide method to find out the type of an exception handler
x86/mce: Pass pointer to saved pt_regs to severity calculation routines
x86/copy_mc: Introduce copy_mc_enhanced_fast_string()
x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()
x86/mce: Drop AMD-specific "DEFERRED" case from Intel severity rule list
x86/mce: Add Skylake quirk for patrol scrub reported errors
RAS/CEC: Convert to DEFINE_SHOW_ATTRIBUTE()
x86/mce: Annotate mce_rd/wrmsrl() with noinstr
x86/mce/dev-mcelog: Do not update kflags on AMD systems
x86/mce: Stop mce_reign() from re-computing severity for every CPU
x86/mce: Make mce_rdmsrl() panic on an inaccessible MSR
x86/mce: Increase maximum number of banks to 64
x86/mce: Delay clearing IA32_MCG_STATUS to the end of do_machine_check()
x86/MCE/AMD, EDAC/mce_amd: Remove struct smca_hwid.xec_bitmap
RAS/CEC: Fix cec_init() prototype
On PPC64, get_tbl() is defined as an alias of get_tb() which return
the result of mftb(). That exactly the same as what the PPC32 version
does. We don't need two versions.
Remove the PPC64 definition of get_tbl() and use the PPC32 version
for both.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/a8eaabb87d69534e533ebac805163e08146e05bd.1601556145.git.christophe.leroy@csgroup.eu
get_tbl() is confusing as it returns the content of TBL register
on PPC32 but the concatenation of TBL and TBU on PPC64.
Use mftb() instead.
Do the same with get_tbu() for consistency allthough it's name
is less confusing.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/41573406a4eab98838decaa91649086fef1e6119.1601556145.git.christophe.leroy@csgroup.eu
On PPC64, we have mftb().
On PPC32, we have mftbl() and an #define mftb() mftbl().
mftb() and mftbl() are equivalent, their purpose is to read the
content of SPRN_TRBL, as returned by 'mftb' simplified instruction.
binutils seems to define 'mftbl' instruction as an equivalent
of 'mftb'.
However in both 32 bits and 64 bits documentation, only 'mftb' is
defined, and when performing a disassembly with objdump, the displayed
instruction is 'mftb'
No need to have two ways to do the same thing with different
names, rename mftbl() to have only mftb().
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/94dc68d3d9ef9eb549796d4b938b6ba0305a049b.1601556145.git.christophe.leroy@csgroup.eu
PowerPC 601 has been retired.
Remove all associated specific code.
CPU_FTRS_PPC601 has CPU_FTR_COHERENT_ICACHE and CPU_FTR_COMMON.
CPU_FTR_COMMON is already present via other CPU_FTRS.
None of the remaining CPU selects CPU_FTR_COHERENT_ICACHE.
So CPU_FTRS_PPC601 can be removed from the possible features,
hence can be removed completely.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/60b725d55e21beec3335175c20b77903ff98284f.1601362098.git.christophe.leroy@csgroup.eu
This config option isn't in any defconfig.
The very first versions of Powerpc 601 have a bug which
requires additional sync before and/or after some instructions.
This was more than 25 years ago and time has come to retire
those buggy versions of the 601 from the kernel.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/55b46bff16705b1ae7bf0a60ccd522b1010ebf75.1601362098.git.christophe.leroy@csgroup.eu
Similar to commit 89c140bbae ("pseries: Fix 64 bit logical memory block panic")
make sure different variables tracking lmb_size are updated to be 64 bit.
Fixes: af9d00e93a ("powerpc/mm/radix: Create separate mappings for hot-plugged memory")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007114836.282468-4-aneesh.kumar@linux.ibm.com
Similar to commit 89c140bbae ("pseries: Fix 64 bit logical memory block panic")
make sure different variables tracking lmb_size are updated to be 64 bit.
This was found by code audit.
Cc: stable@vger.kernel.org
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007114836.282468-2-aneesh.kumar@linux.ibm.com
The inline execution path for the hardware assisted branch flush
instruction failed to set CTR to the correct value before bcctr,
causing a crash when the feature is enabled.
Fixes: 4d24e21cc6 ("powerpc/security: Allow for processors that flush the link stack using the special bcctr")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007080605.64423-1-npiggin@gmail.com
The eeh_pe->config_addr field was supposed to be removed in
commit 35d64734b6 ("powerpc/eeh: Clean up PE addressing") which made it
largely unused. Finish the job.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201007040903.819081-1-oohall@gmail.com
During memory hot-add, dlpar_add_lmb() calls memory_add_physaddr_to_nid()
to determine which node id (nid) to use when later calling __add_memory().
This is wasteful. On pseries, memory_add_physaddr_to_nid() finds an
appropriate nid for a given address by looking up the LMB containing the
address and then passing that LMB to of_drconf_to_nid_single() to get the
nid. In dlpar_add_lmb() we get this address from the LMB itself.
In short, we have a pointer to an LMB and then we are searching for
that LMB *again* in order to find its nid.
If we call of_drconf_to_nid_single() directly from dlpar_add_lmb() we
can skip the redundant lookup. The only error handling we need to
duplicate from memory_add_physaddr_to_nid() is the fallback to the
default nid when drconf_to_nid_single() returns -1 (NUMA_NO_NODE) or
an invalid nid.
Skipping the extra lookup makes hot-add operations faster, especially
on machines with many LMBs.
Consider an LPAR with 126976 LMBs. In one test, hot-adding 126000
LMBs on an upatched kernel took ~3.5 hours while a patched kernel
completed the same operation in ~2 hours:
Unpatched (12450 seconds):
Sep 9 04:06:31 ltc-brazos1 drmgr[810169]: drmgr: -c mem -a -q 126000
Sep 9 04:06:31 ltc-brazos1 kernel: pseries-hotplug-mem: Attempting to hot-add 126000 LMB(s)
[...]
Sep 9 07:34:01 ltc-brazos1 kernel: pseries-hotplug-mem: Memory at 20000000 (drc index 80000002) was hot-added
Patched (7065 seconds):
Sep 8 21:49:57 ltc-brazos1 drmgr[877703]: drmgr: -c mem -a -q 126000
Sep 8 21:49:57 ltc-brazos1 kernel: pseries-hotplug-mem: Attempting to hot-add 126000 LMB(s)
[...]
Sep 8 23:27:42 ltc-brazos1 kernel: pseries-hotplug-mem: Memory at 20000000 (drc index 80000002) was hot-added
It should be noted that the speedup grows more substantial when
hot-adding LMBs at the end of the drconf range. This is because we
are skipping a linear LMB search.
To see the distinction, consider smaller hot-add test on the same
LPAR. A perf-stat run with 10 iterations showed that hot-adding 4096
LMBs completed less than 1 second faster on a patched kernel:
Unpatched:
Performance counter stats for 'drmgr -c mem -a -q 4096' (10 runs):
104,753.42 msec task-clock # 0.992 CPUs utilized ( +- 0.55% )
4,708 context-switches # 0.045 K/sec ( +- 0.69% )
2,444 cpu-migrations # 0.023 K/sec ( +- 1.25% )
394 page-faults # 0.004 K/sec ( +- 0.22% )
445,902,503,057 cycles # 4.257 GHz ( +- 0.55% ) (66.67%)
8,558,376,740 stalled-cycles-frontend # 1.92% frontend cycles idle ( +- 0.88% ) (49.99%)
300,346,181,651 stalled-cycles-backend # 67.36% backend cycles idle ( +- 0.76% ) (50.01%)
258,091,488,691 instructions # 0.58 insn per cycle
# 1.16 stalled cycles per insn ( +- 0.22% ) (66.67%)
70,568,169,256 branches # 673.660 M/sec ( +- 0.17% ) (50.01%)
3,100,725,426 branch-misses # 4.39% of all branches ( +- 0.20% ) (49.99%)
105.583 +- 0.589 seconds time elapsed ( +- 0.56% )
Patched:
Performance counter stats for 'drmgr -c mem -a -q 4096' (10 runs):
104,055.69 msec task-clock # 0.993 CPUs utilized ( +- 0.32% )
4,606 context-switches # 0.044 K/sec ( +- 0.20% )
2,463 cpu-migrations # 0.024 K/sec ( +- 0.93% )
394 page-faults # 0.004 K/sec ( +- 0.25% )
442,951,129,921 cycles # 4.257 GHz ( +- 0.32% ) (66.66%)
8,710,413,329 stalled-cycles-frontend # 1.97% frontend cycles idle ( +- 0.47% ) (50.06%)
299,656,905,836 stalled-cycles-backend # 67.65% backend cycles idle ( +- 0.39% ) (50.02%)
252,731,168,193 instructions # 0.57 insn per cycle
# 1.19 stalled cycles per insn ( +- 0.20% ) (66.66%)
68,902,851,121 branches # 662.173 M/sec ( +- 0.13% ) (49.94%)
3,100,242,882 branch-misses # 4.50% of all branches ( +- 0.15% ) (49.98%)
104.829 +- 0.325 seconds time elapsed ( +- 0.31% )
This is consistent. An add-by-count hot-add operation adds LMBs
greedily, so LMBs near the start of the drconf range are considered
first. On an otherwise idle LPAR with so many LMBs we would expect to
find the LMBs we need near the start of the drconf range, hence the
smaller speedup.
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916145122.3408129-1-cheloha@linux.ibm.com
Now that cpu_core_mask has been removed and topology_core_cpumask has
been updated to use cpu_cpu_mask, we no more need
get_physical_package_id.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-4-srikar@linux.vnet.ibm.com
Anton Blanchard reported that his 4096 vcpu KVM guest took around 30
minutes to boot. He also analyzed it to the time taken to iterate while
setting the cpu_core_mask.
Further analysis shows that cpu_core_mask and cpu_cpu_mask for any CPU
would be equal on Power. However updating cpu_core_mask took forever to
update as its a per cpu cpumask variable. Instead cpu_cpu_mask was a per
NODE /per DIE cpumask that was shared by all the respective CPUs.
Also cpu_cpu_mask is needed from a scheduler perspective. However
cpu_core_map is an exported symbol. Hence stop updating cpu_core_map
and make it point to cpu_cpu_mask.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-3-srikar@linux.vnet.ibm.com
On Power, cpu_core_mask and cpu_cpu_mask refer to the same set of CPUs.
cpu_cpu_mask is needed by scheduler, hence look at deprecating
cpu_core_mask. Before deleting the cpu_core_mask, ensure its only user
is moved to cpu_cpu_mask.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200921095653.9701-2-srikar@linux.vnet.ibm.com
Althought AMR is stashed in the checkpoint area, currently we don't save
it to the per thread checkpoint struct after a treclaim and so we don't
restore it either from that struct when we trechkpt. As a consequence when
the transaction is later rolled back the kernel space AMR value when the
trechkpt was done appears in userspace.
That commit saves and restores AMR accordingly on treclaim and trechkpt.
Since AMR value is also used in kernel space in other functions, it also
takes care of stashing kernel live AMR into the stack before treclaim and
before trechkpt, restoring it later, just before returning from tm_reclaim
and __tm_recheckpoint.
Is also fixes two nonrelated comments about CR and MSR.
Signed-off-by: Gustavo Romero <gromero@linux.ibm.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200919150025.9609-1-gromero@linux.ibm.com
When support for EEH on PowerNV was added a lot of pseries specific code
was made "generic" and some of the quirks of pseries EEH came along for the
ride. One of the stranger quirks is eeh_pe containing two types of PE
address: pe->addr and pe->config_addr. There reason for this appears to be
historical baggage rather than any real requirements.
On pseries EEH PEs are manipulated using RTAS calls. Each EEH RTAS call
takes a "PE configuration address" as an input which is used to identify
which EEH PE is being manipulated by the call. When initialising the EEH
state for a device the first thing we need to do is determine the
configuration address for the PE which contains the device so we can enable
EEH on that PE. This process is outlined in PAPR which is the modern
(i.e post-2003) FW specification for pseries. However, EEH support was
first described in the pSeries RISC Platform Architecture (RPA) and
although they are mostly compatible EEH is one of the areas where they are
not.
The major difference is that RPA doesn't actually have the concept of a PE.
On RPA systems the EEH RTAS calls are done on a per-device basis using the
same config_addr that would be passed to the RTAS functions to access PCI
config space (e.g. ibm,read-pci-config). The config_addr is not identical
since the function and config register offsets of the config_addr must be
set to zero. EEH operations being done on a per-device basis doesn't make a
whole lot of sense when you consider how EEH was implemented on legacy PCI
systems.
For legacy PCI(-X) systems EEH was implemented using special PCI-PCI
bridges which contained logic to detect errors and freeze the secondary
bus when one occurred. This means that the EEH enabled state is shared
among all devices behind that EEH bridge. As a result there's no way to
implement the per-device control required for the semantics specified by
RPA. It can be made to work if we assume that a separate EEH bridge exists
for each EEH capable PCI slot and there are no bridges behind those slots.
However, RPA also specifies the ibm,configure-bridge RTAS call for
re-initalising bridges behind EEH capable slots after they are reset due
to an EEH event so that is probably not a valid assumption. This
incoherence was fixed in later PAPR, which succeeded RPA. Unfortunately,
since Linux EEH support seems to have been implemented based on the RPA
spec some of the legacy assumptions were carried over (probably for POWER4
compatibility).
The fix made in PAPR was the introduction of the "PE" concept and
redefining the EEH RTAS calls (set-eeh-option, reset-slot, etc) to operate
on a per-PE basis so all devices behind an EEH bride would share the same
EEH state. The "config_addr" argument to the EEH RTAS calls became the
"PE_config_addr" and the OS was required to use the
ibm,get-config-addr-info RTAS call to find the correct PE address for the
device. When support for the new interfaces was added to Linux it was
implemented using something like:
At probe time:
pdn->eeh_config_addr = rtas_config_addr(pdn);
pdn->eeh_pe_config_addr = rtas_get_config_addr_info(pdn);
When performing an RTAS call:
config_addr = pdn->eeh_config_addr;
if (pdn->eeh_pe_config_addr)
config_addr = pdn->eeh_pe_config_addr;
rtas_call(..., config_addr, ...);
In other words, if the ibm,get-config-addr-info RTAS call is implemented
and returned a valid result we'd use that as the argument to the EEH
RTAS calls. If not, Linux would fall back to using the device's
config_addr. Over time these addresses have moved around going from pci_dn
to eeh_dev and finally into eeh_pe. Today the users look like this:
config_addr = pe->config_addr;
if (pe->addr)
config_addr = pe->addr;
rtas_call(..., config_addr, ...);
However, considering the EEH core always operates on a per-PE basis and
even on pseries the only per-device operation is the initial call to
ibm,set-eeh-option I'm not sure if any of this actually works on an RPA
system today. It doesn't make much sense to have the fallback address in
a generic structure either since the bulk of the code which reference it
is in pseries anyway.
The EEH core makes a token effort to support looking up a PE using the
config_addr by having two arguments to eeh_pe_get(). However, a survey of
all the callers to eeh_pe_get() shows that all bar one have the config_addr
argument hard-coded to zero.The only caller that doesn't is in
eeh_pe_tree_insert() which has:
if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr)
return -EINVAL;
pe = eeh_pe_get(hose, edev->pe_config_addr, edev->bdfn);
The third argument (config_addr) is only used if the second (pe->addr)
argument is invalid. The preceding check ensures that the call to
eeh_pe_get() will never happen if edev->pe_config_addr is invalid so there
is no situation where eeh_pe_get() will search for a PE based on the 3rd
argument. The check also means that we'll never insert a PE into the tree
where pe_config_addr is zero since EEH_VALID_PE_ZERO is never set on
pseries. All the users of the fallback address on pseries never actually
use the fallback and all the only caller that supplies something for the
config_addr argument to eeh_pe_get() never use it either. It's all dead
code.
This patch removes the fallback address from eeh_pe since nothing uses it.
Specificly, we do this by:
1) Removing pe->config_addr
2) Removing the EEH_VALID_PE_ZERO flag
3) Removing the fallback address argument to eeh_pe_get().
4) Removing all the checks for pe->addr being zero in the pseries EEH code.
This leaves us with PE's only being identified by what's in their pe->addr
field and the EEH core relying on the platform to ensure that eeh_dev's are
only inserted into the EEH tree if they're actually inside a PE.
No functional changes, I hope.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-9-oohall@gmail.com
No longer used since the platforms perform their EEH initialisation before
calling eeh_init().
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-4-oohall@gmail.com
Drop the EEH register / unregister ops thing and have the platform pass the
ops structure into eeh_init() directly. This takes one initcall out of the
EEH setup path and it means we're only doing EEH setup on the platforms
which actually support it. It's also less code and generally easier to
follow.
No functional changes.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200918093050.37344-1-oohall@gmail.com
The hypervisor interface has defined branch prediction security bits for
handling the link stack. Wire them up.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200825075612.224656-1-npiggin@gmail.com
The copy buffer is implemented as a real address in the nest which is
translated from EA by copy, and used for memory access by paste. This
requires that it be invalidated by TLB invalidation.
TLBIE does invalidate the copy buffer, but TLBIEL does not. Add
cp_abort to the tlbiel sequence.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fixup whitespace and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916030234.4110379-2-npiggin@gmail.com
Having cputable.h include mce.h means it pulls in a bunch of low level
headers (e.g., synch.h) which then can't use CPU_FTR_ definitions.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200916030234.4110379-1-npiggin@gmail.com
In reaction to a proposal to introduce a memcpy_mcsafe_fast()
implementation Linus points out that memcpy_mcsafe() is poorly named
relative to communicating the scope of the interface. Specifically what
addresses are valid to pass as source, destination, and what faults /
exceptions are handled.
Of particular concern is that even though x86 might be able to handle
the semantics of copy_mc_to_user() with its common copy_user_generic()
implementation other archs likely need / want an explicit path for this
case:
On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote:
>
> On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote:
> >
> > However now I see that copy_user_generic() works for the wrong reason.
> > It works because the exception on the source address due to poison
> > looks no different than a write fault on the user address to the
> > caller, it's still just a short copy. So it makes copy_to_user() work
> > for the wrong reason relative to the name.
>
> Right.
>
> And it won't work that way on other architectures. On x86, we have a
> generic function that can take faults on either side, and we use it
> for both cases (and for the "in_user" case too), but that's an
> artifact of the architecture oddity.
>
> In fact, it's probably wrong even on x86 - because it can hide bugs -
> but writing those things is painful enough that everybody prefers
> having just one function.
Replace a single top-level memcpy_mcsafe() with either
copy_mc_to_user(), or copy_mc_to_kernel().
Introduce an x86 copy_mc_fragile() name as the rename for the
low-level x86 implementation formerly named memcpy_mcsafe(). It is used
as the slow / careful backend that is supplanted by a fast
copy_mc_generic() in a follow-on patch.
One side-effect of this reorganization is that separating copy_mc_64.S
to its own file means that perf no longer needs to track dependencies
for its memcpy_64.S benchmarks.
[ bp: Massage a bit. ]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: <stable@vger.kernel.org>
Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com
Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com
Split out all the bits that are purely for dma_map_ops implementations
and related code into a new <linux/dma-map-ops.h> header so that they
don't get pulled into all the drivers. That also means the architecture
specific <asm/dma-mapping.h> is not pulled in by <linux/dma-mapping.h>
any more, which leads to a missing includes that were pulled in by the
x86 or arm versions in a few not overly portable drivers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
There was a request to preprocess the module linker script like we
do for the vmlinux one. (https://lkml.org/lkml/2020/8/21/512)
The difference between vmlinux.lds and module.lds is that the latter
is needed for external module builds, thus must be cleaned up by
'make mrproper' instead of 'make clean'. Also, it must be created
by 'make modules_prepare'.
You cannot put it in arch/$(SRCARCH)/kernel/, which is cleaned up by
'make clean'. I moved arch/$(SRCARCH)/kernel/module.lds to
arch/$(SRCARCH)/include/asm/module.lds.h, which is included from
scripts/module.lds.S.
scripts/module.lds is fine because 'make clean' keeps all the
build artifacts under scripts/.
You can add arch-specific sections in <asm/module.lds.h>.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Jessica Yu <jeyu@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Opt us out of the DEBUG_VM_PGTABLE support for now as it's causing crashes.
Fix a long standing bug in our DMA mask handling that was hidden until recently,
and which caused problems with some drivers.
Fix a boot failure on systems with large amounts of RAM, and no hugepage support
and using Radix MMU, only seen in the lab.
A few other minor fixes.
Thanks to:
Alexey Kardashevskiy, Aneesh Kumar K.V, Gautham R. Shenoy, Hari Bathini, Ira
Weiny, Nick Desaulniers, Shirisha Ganta, Vaibhav Jain, Vaidyanathan
Srinivasan.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl9kk4UTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgLM5D/42Wuuq6hOpGEfE2XjBjsOxCR07SCw9
CQ/c72jw/1tDLe0YclPVYAZc8BmT8uLo6tE2Ot+0vI+1Y06rRvC5g5uQBwp1zD/t
MOwC0d4zf8a7WzBCcVaBv9HMHVOaKaTBwQc2R4k6NzYtARIf5m0evMPOWINioRsv
/x4+Np8aeQd1WiVn6PBdqL8w1yRhk8LsVDvX35lFzQlgZvH09umXSGjw9K442xdE
lr1PrV9GKd4DeudwLHPkMNs8Ul1QTxmY5vKIAklsJ5g3dBySfM7+GMrTzYOHYkWr
aqGfGH6ojdFSQZRo7QwFhO52Kni7JN7AIoUPEBDqLb1fR10w8wesdjCs8JQMXIMc
8Eo210EbiSsq6kG/LzqZuStLUAup3rQd20+wWua7jo8HbcZOLDH7pPGwNtJInPTr
gwH7sALYhTzFUAO4LzqVVE+yA8wndFPHoz+QSkO6LZJKuszON2LJ0r+IEx1l9Wmr
ClZYujK36/N+ih42xBFcBZi2lL0VKzlkn7u7NDeZQBONgoJMCoWkGDkEHnMI9zdT
1iYcVZyY+IpJLcwxH+NP8weJKHIZbP4kvuFXR/QIpHdrDWKaTT95BvBhAK1KMYBo
lLo81zMTzJCz2wWDg/+3sLuEzHdGr//uxcVXxjqE2vyEckeuZjiCyz0dRNEY4Sw3
vB2p3Zl7L0J4pQ==
=cj6B
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.9-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Some more powerpc fixes for 5.9:
- Opt us out of the DEBUG_VM_PGTABLE support for now as it's causing
crashes.
- Fix a long standing bug in our DMA mask handling that was hidden
until recently, and which caused problems with some drivers.
- Fix a boot failure on systems with large amounts of RAM, and no
hugepage support and using Radix MMU, only seen in the lab.
- A few other minor fixes.
Thanks to Alexey Kardashevskiy, Aneesh Kumar K.V, Gautham R. Shenoy,
Hari Bathini, Ira Weiny, Nick Desaulniers, Shirisha Ganta, Vaibhav
Jain, and Vaidyanathan Srinivasan"
* tag 'powerpc-5.9-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/papr_scm: Limit the readability of 'perf_stats' sysfs attribute
cpuidle: pseries: Fix CEDE latency conversion from tb to us
powerpc/dma: Fix dma_map_ops::get_required_mask
Revert "powerpc/build: vdso linker warning for orphan sections"
powerpc/mm: Remove DEBUG_VM_PGTABLE support on powerpc
selftests/powerpc: Skip PROT_SAO test in guests/LPARS
powerpc/book3s64/radix: Fix boot failure with large amount of guest memory
This fixes a compile error with W=1.
CC arch/powerpc/kernel/traps.o
../arch/powerpc/kernel/traps.c:1663:6: error: no previous prototype for ‘stack_overflow_exception’ [-Werror=missing-prototypes]
void stack_overflow_exception(struct pt_regs *regs)
^~~~~~~~~~~~~~~~~~~~~~~~
Fixes: 3978eb7851 ("powerpc/32: Add early stack overflow detection with VMAP stack.")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200914211007.2285999-8-clg@kaod.org
We have smp_ops->cpu_die() and ppc_md.cpu_die(). One of them offlines
the current CPU and one offlines another CPU, can you guess which is
which? Also one is in smp_ops and one is in ppc_md?
So rename ppc_md.cpu_die(), to cpu_offline_self(), because that's what
it does. And move it into smp_ops where it belongs.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200819015634.1974478-3-mpe@ellerman.id.au
lift the compat_s64 and compat_u64 definitions into common code using the
COMPAT_FOR_U64_ALIGNMENT symbol for the x86 special case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add percpu coregroup maps and masks to create coregroup domain.
If a coregroup doesn't exist, the coregroup domain will be degenerated
in favour of SMT/CACHE domain. Do note this patch is only creating stubs
for cpu_to_coregroup_id. The actual cpu_to_coregroup_id implementation
would be in a subsequent patch.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200810071834.92514-10-srikar@linux.vnet.ibm.com
Add support for grouping cores based on the device-tree classification.
- The last domain in the associativity domains always refers to the
core.
- If primary reference domain happens to be the penultimate domain in
the associativity domains device-tree property, then there are no
coregroups. However if its not a penultimate domain, then there are
coregroups. There can be more than one coregroup. For now we would be
interested in the last or the smallest coregroups, i.e one sub-group
per DIE.
Currently there are no firmwares that are exposing this grouping. Hence
allow the basis for grouping to be abstract. Once the firmware starts
using this grouping, code would be added to detect the type of grouping
and adjust the sd domain flags accordingly.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200810071834.92514-8-srikar@linux.vnet.ibm.com
Commit 0cef77c779 ("powerpc/64s/radix: flush remote CPUs out of
single-threaded mm_cpumask") added a mechanism to trim the mm_cpumask of
a process under certain conditions. One of the assumptions is that
mm_users would not be incremented via a reference outside the process
context with mmget_not_zero() then go on to kthread_use_mm() via that
reference.
That invariant was broken by io_uring code (see previous sparc64 fix),
but I'll point Fixes: to the original powerpc commit because we are
changing that assumption going forward, so this will make backports
match up.
Fix this by no longer relying on that assumption, but by having each CPU
check the mm is not being used, and clearing their own bit from the mask
only if it hasn't been switched-to by the time the IPI is processed.
This relies on commit 38cf307c1f ("mm: fix kthread_use_mm() vs TLB
invalidate") and ARCH_WANT_IRQS_OFF_ACTIVATE_MM to disable irqs over mm
switch sequences.
Fixes: 0cef77c779 ("powerpc/64s/radix: flush remote CPUs out of single-threaded mm_cpumask")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
Depends-on: 38cf307c1f ("mm: fix kthread_use_mm() vs TLB invalidate")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200914045219.3736466-5-npiggin@gmail.com
powerpc uses IPIs in some situations to switch a kernel thread away
from a lazy tlb mm, which is subject to the TLB flushing race
described in the changelog introducing ARCH_WANT_IRQS_OFF_ACTIVATE_MM.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200914045219.3736466-3-npiggin@gmail.com
When a passthrough IO adapter is removed from a pseries machine using
hash MMU and the XIVE interrupt mode, the POWER hypervisor expects the
guest OS to clear all page table entries related to the adapter. If
some are still present, the RTAS call which isolates the PCI slot
returns error 9001 "valid outstanding translations" and the removal of
the IO adapter fails. This is because when the PHBs are scanned, Linux
maps automatically the INTx interrupts in the Linux interrupt number
space but these are never removed.
To solve this problem, we introduce a PPC platform specific
pcibios_remove_bus() routine which clears all interrupt mappings when
the bus is removed. This also clears the associated page table entries
of the ESB pages when using XIVE.
For this purpose, we record the logical interrupt numbers of the
mapped interrupt under the PHB structure and let pcibios_remove_bus()
do the clean up.
Since some PCI adapters, like GPUs, use the "interrupt-map" property
to describe interrupt mappings other than the legacy INTx interrupts,
we can not restrict the size of the mapping array to PCI_NUM_INTX. The
number of interrupt mappings is computed from the "interrupt-map"
property and the mapping array is allocated accordingly.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200807101854.844619-1-clg@kaod.org
This driver does not restore stop > 3 state, so it limits itself
to states which do not lose full state or TB.
The POWER10 SPRs are sufficiently different from P9 that it seems
easier to split out the P10 code. The POWER10 deep sleep code
(e.g., the BHRB restore) has been taken out, but it can be re-added
when stop > 3 support is added.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Tested-by: Pratik Rajesh Sampat<psampat@linux.ibm.com>
Tested-by: Vaidyanathan Srinivasan <svaidy@linux.ibm.com>
Reviewed-by: Pratik Rajesh Sampat<psampat@linux.ibm.com>
Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200819094700.493399-1-npiggin@gmail.com
cpu_has_feature(CPU_FTR_SPE) returns false when CONFIG_SPE is
not set.
There is no need to enclose the test in an #ifdef CONFIG_SPE.
Remove it.
CPU_FTR_SPE only exists on 32 bits. Define it as 0 on 64 bits.
We have a couple of places like:
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE)) {
do_something_that_requires_CONFIG_SPE
} else {
return -EINVAL;
}
#else
return -EINVAL;
#endif
Replace them by a cleaner version:
if (cpu_has_feature(CPU_FTR_SPE)) {
#ifdef CONFIG_SPE
do_something_that_requires_CONFIG_SPE
#endif
} else {
return -EINVAL;
}
When CONFIG_SPE is not set, this resolves to an unconditional
return of -EINVAL
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/698df8387555765b70ea42e4a7fa48141c309c1f.1597643221.git.christophe.leroy@csgroup.eu
The 8xx has 4 page sizes: 4k, 16k, 512k and 8M
4k and 16k can be selected at build time as standard page sizes,
and 512k and 8M are hugepages.
When 4k standard pages are selected, 16k pages are not available.
Allow 16k pages as hugepages when 4k pages are used.
To allow that, implement arch_make_huge_pte() which receives
the necessary arguments to allow setting the PTE in accordance
with the page size:
- 512 k pages must have _PAGE_HUGE and _PAGE_SPS. They are set
by pte_mkhuge(). arch_make_huge_pte() does nothing.
- 16 k pages must have only _PAGE_SPS. arch_make_huge_pte() clears
_PAGE_HUGE.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/a518abc29266a708dfbccc8fce9ae6694fe4c2c6.1598862623.git.christophe.leroy@csgroup.eu
On 8xx, the number of entries occupied by a PTE in the page tables
depends on the size of the page. At the time being, this calculation
is done in two places: in pte_update() and in set_huge_pte_at()
Refactor this calculation into a helper called
number_of_cells_per_pte(). For the time being, the val param is
unused. It will be used by following patch.
Instead of opencoding is_hugepd(), use hugepd_ok() with a forward
declaration.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f6ea2483c2c389567b007945948f704d18cfaeea.1598862623.git.christophe.leroy@csgroup.eu
According to the MPC750 Users Manual, the SITV value in Thermal
Management Register 3 is 13 bits long. The present code calculates the
SITV value as 60 * 500 cycles. This would overflow to give 10 us on
a 500 MHz CPU rather than the intended 60 us. (But according to the
Microprocessor Datasheet, there is also a factor of 266 that has to be
applied to this value on certain parts i.e. speed sort above 266 MHz.)
Always use the maximum cycle count, as recommended by the Datasheet.
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Tested-by: Stan Johnson <userm57@yahoo.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/896f542e5f0f1d6cf8218524c2b67d79f3d69b3c.1599260540.git.fthain@telegraphics.com.au
MAX_PHYSMEM #define is used along with sparsemem to determine the SECTION_SHIFT
value. Powerpc also uses the same value to limit the max memory enabled on the
system. With 4K PAGE_SIZE and hash translation mode, we want to limit the max
memory enabled to 64TB due to page table size restrictions. However, with
radix translation, we don't have these restrictions. Hence split the radix
and hash MA_PHYSMEM limit and use different limit for each of them.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200608070904.387440-4-aneesh.kumar@linux.ibm.com
With commit: 0034d395f8 ("powerpc/mm/hash64: Map all the kernel
regions in the same 0xc range"), we now split the 64TB address range
into 4 contexts each of 16TB. That implies we can do only 16TB linear
mapping.
On some systems, eg. Power9, memory attached to nodes > 0 will appear
above 16TB in the linear mapping. This resulted in kernel crash when
we boot such systems in hash translation mode with 4K PAGE_SIZE.
This patch updates the kernel mapping such that we now start supporting upto
61TB of memory with 4K. The kernel mapping now looks like below 4K PAGE_SIZE
and hash translation.
vmalloc start = 0xc0003d0000000000
IO start = 0xc0003e0000000000
vmemmap start = 0xc0003f0000000000
Our MAX_PHYSMEM_BITS for 4K is still 64TB even though we can only map 61TB.
We prevent bolt mapping anything outside 61TB range by checking against
H_VMALLOC_START.
Fixes: 0034d395f8 ("powerpc/mm/hash64: Map all the kernel regions in the same 0xc range")
Reported-by: Cameron Berkenpas <cam@neo-zeon.de>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200608070904.387440-3-aneesh.kumar@linux.ibm.com
PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 can be used to determine whether
we are running on an ISA 3.1 compliant machine. Which is needed to
determine DAR behaviour, 512 byte boundary limit etc. This was
requested by Pedro Miraglia Franco de Carvalho for extending
watchpoint features in gdb. Note that availability of 2nd DAWR is
independent of this flag and should be checked using
ppc_debug_info->num_data_bps.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200902042945.129369-8-ravi.bangoria@linux.ibm.com
On powerpc, ptrace watchpoint works in one-shot mode. i.e. kernel
disables event every time it fires and user has to re-enable it.
Also, in case of ptrace watchpoint, kernel notifies ptrace user
before executing instruction.
With CONFIG_HAVE_HW_BREAKPOINT=N, kernel is missing to disable
ptrace event and thus it's causing infinite loop of exceptions.
This is especially harmful when user watches on a data which is
also read/written by kernel, eg syscall parameters. In such case,
infinite exceptions happens in kernel mode which causes soft-lockup.
Fixes: 9422de3e95 ("powerpc: Hardware breakpoints rewrite to handle non DABR breakpoint registers")
Reported-by: Pedro Miraglia Franco de Carvalho <pedromfc@linux.ibm.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200902042945.129369-6-ravi.bangoria@linux.ibm.com
Power10 hw has multiple DAWRs but hw doesn't tell which DAWR caused
the exception. So we have a sw logic to detect that in hw_breakpoint.c.
But hw_breakpoint.c gets compiled only with CONFIG_HAVE_HW_BREAKPOINT=Y.
Move DAWR detection logic outside of hw_breakpoint.c so that it can be
reused when CONFIG_HAVE_HW_BREAKPOINT is not set.
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200902042945.129369-5-ravi.bangoria@linux.ibm.com
On p10 predecessors, watchpoint with quadword access is compared at
quadword length. If the watch range is doubleword or less than that
in a first half of quadword aligned 16 bytes, and if there is any
unaligned quadword access which will access only the 2nd half, the
handler should consider it as extraneous and emulate/single-step it
before continuing.
Fixes: 74c6881019 ("powerpc/watchpoint: Prepare handler to handle more than one watchpoint")
Reported-by: Pedro Miraglia Franco de Carvalho <pedromfc@linux.ibm.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200902042945.129369-2-ravi.bangoria@linux.ibm.com
POWER secure guests (i.e., guests which use the Protected Execution
Facility) need to use SWIOTLB to be able to do I/O with the
hypervisor, but they don't need the SWIOTLB memory to be in low
addresses since the hypervisor doesn't have any addressing limitation.
This solves a SWIOTLB initialization problem we are seeing in secure
guests with 128 GB of RAM: they are configured with 4 GB of
crashkernel reserved memory, which leaves no space for SWIOTLB in low
addresses.
To do this, we use mostly the same code as swiotlb_init(), but
allocate the buffer using memblock_alloc() instead of
memblock_alloc_low().
Fixes: 2efbc58f15 ("powerpc/pseries/svm: Force SWIOTLB for secure guests")
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200818221126.391073-1-bauerman@linux.ibm.com
The __phys_to_dma vs phys_to_dma distinction isn't exactly obvious. Try
to improve the situation by renaming __phys_to_dma to
phys_to_dma_unencryped, and not forcing architectures that want to
override phys_to_dma to actually provide __phys_to_dma.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
There is no harm in just always clearing the SME encryption bit, while
significantly simplifying the interface.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Stop providing the possibility to override the address space using
set_fs() now that there is no need for that any more.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Provide __get_kernel_nofault and __put_kernel_nofault routines to
implement the maccess routines without messing with set_fs and without
opening up access to user space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The last caller was removed in 2014 in commit fb5a515704 ("powerpc:
Remove platforms/wsp and associated pieces").
As Jordan noticed even though there are no callers, the code above in
fsl_secondary_thread_init() falls through into
generic_secondary_thread_init(). So we can remove the _GLOBAL but not
the body of the function.
However because fsl_secondary_thread_init() is inside #ifdef
CONFIG_PPC_BOOK3E, we can never reach the body of
generic_secondary_thread_init() unless CONFIG_PPC_BOOK3E is enabled,
so we can wrap the whole thing in a single #ifdef.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200819015704.1976364-1-mpe@ellerman.id.au
Similarly to what was done with XICS-on-XIVE and XIVE native KVM devices
with commit 5422e95103 ("KVM: PPC: Book3S HV: XIVE: Replace the 'destroy'
method by a 'release' method"), convert the historical XICS KVM device to
implement the 'release' method. This is needed to run nested guests with
an in-kernel IRQ chip. A typical POWER9 guest can select XICS or XIVE
during boot, which requires to be able to destroy and to re-create the
KVM device. Only the historical XICS KVM device is available under pseries
at the current time and it still uses the legacy 'destroy' method.
Switching to 'release' means that vCPUs might still be running when the
device is destroyed. In order to avoid potential use-after-free, the
kvmppc_xics structure is allocated on first usage and kept around until
the VM exits. The same pointer is used each time a KVM XICS device is
being created, but this is okay since we only have one per VM.
Clear the ICP of each vCPU with vcpu->mutex held. This ensures that the
next time the vCPU resumes execution, it won't be going into the XICS
code anymore.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At memory hot-remove time we can retrieve an LMB's nid from its
corresponding memory_block. There is no need to store the nid
in multiple locations.
Note that lmb_to_memblock() uses find_memory_block() to get the
corresponding memory_block. As find_memory_block() runs in sub-linear
time this approach is negligibly slower than what we do at present.
In exchange for this lookup at hot-remove time we no longer need to
call memory_add_physaddr_to_nid() during drmem_init() for each LMB.
On powerpc, memory_add_physaddr_to_nid() is a linear search, so this
spares us an O(n^2) initialization during boot.
On systems with many LMBs that initialization overhead is palpable and
disruptive. For example, on a box with 249854 LMBs we're seeing
drmem_init() take upwards of 30 seconds to complete:
[ 53.721639] drmem: initializing drmem v2
[ 80.604346] watchdog: BUG: soft lockup - CPU#65 stuck for 23s! [swapper/0:1]
[ 80.604377] Modules linked in:
[ 80.604389] CPU: 65 PID: 1 Comm: swapper/0 Not tainted 5.6.0-rc2+ #4
[ 80.604397] NIP: c0000000000a4980 LR: c0000000000a4940 CTR: 0000000000000000
[ 80.604407] REGS: c0002dbff8493830 TRAP: 0901 Not tainted (5.6.0-rc2+)
[ 80.604412] MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE> CR: 44000248 XER: 0000000d
[ 80.604431] CFAR: c0000000000a4a38 IRQMASK: 0
[ 80.604431] GPR00: c0000000000a4940 c0002dbff8493ac0 c000000001904400 c0003cfffffede30
[ 80.604431] GPR04: 0000000000000000 c000000000f4095a 000000000000002f 0000000010000000
[ 80.604431] GPR08: c0000bf7ecdb7fb8 c0000bf7ecc2d3c8 0000000000000008 c00c0002fdfb2001
[ 80.604431] GPR12: 0000000000000000 c00000001e8ec200
[ 80.604477] NIP [c0000000000a4980] hot_add_scn_to_nid+0xa0/0x3e0
[ 80.604486] LR [c0000000000a4940] hot_add_scn_to_nid+0x60/0x3e0
[ 80.604492] Call Trace:
[ 80.604498] [c0002dbff8493ac0] [c0000000000a4940] hot_add_scn_to_nid+0x60/0x3e0 (unreliable)
[ 80.604509] [c0002dbff8493b20] [c000000000087c10] memory_add_physaddr_to_nid+0x20/0x60
[ 80.604521] [c0002dbff8493b40] [c0000000010d4880] drmem_init+0x25c/0x2f0
[ 80.604530] [c0002dbff8493c10] [c000000000010154] do_one_initcall+0x64/0x2c0
[ 80.604540] [c0002dbff8493ce0] [c0000000010c4aa0] kernel_init_freeable+0x2d8/0x3a0
[ 80.604550] [c0002dbff8493db0] [c000000000010824] kernel_init+0x2c/0x148
[ 80.604560] [c0002dbff8493e20] [c00000000000b648] ret_from_kernel_thread+0x5c/0x74
[ 80.604567] Instruction dump:
[ 80.604574] 392918e8 e9490000 e90a000a e92a0000 80ea000c 1d080018 3908ffe8 7d094214
[ 80.604586] 7fa94040 419d00dc e9490010 714a0088 <2faa0008> 409e00ac e9490000 7fbe5040
[ 89.047390] drmem: 249854 LMB(s)
With a patched kernel on the same machine we're no longer seeing the
soft lockup. drmem_init() now completes in negligible time, even when
the LMB count is large.
Fixes: b2d3b5ee66 ("powerpc/pseries: Track LMB nid instead of using device tree")
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Reviewed-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200811015115.63677-1-cheloha@linux.ibm.com
Nothing prevents flush_cache_instruction() from being writen in C.
Do it to improve readability and maintainability.
This function is very small and isn't called from assembly,
make it static inline in asm/cacheflush.h
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/93d93fc69b4b3ad3ceba2fc0756333c0c0245bb7.1597384512.git.christophe.leroy@csgroup.eu
The drmem lmb list can have hundreds of thousands of entries, and
unfortunately lookups take the form of linear searches. As long as
this is the case, traversals have the potential to monopolize the CPU
and provoke lockup reports, workqueue stalls, and the like unless
they explicitly yield.
Rather than placing cond_resched() calls within various
for_each_drmem_lmb() loop blocks in the code, put it in the iteration
expression of the loop macro itself so users can't omit it.
Introduce a drmem_lmb_next() iteration helper function which calls
cond_resched() at a regular interval during array traversal. Each
iteration of the loop in DLPAR code paths can involve around ten RTAS
calls which can each take up to 250us, so this ensures the check is
performed at worst every few milliseconds.
Fixes: 6c6ea53725 ("powerpc/mm: Separate ibm, dynamic-memory data from DT format")
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200813151131.2070161-1-nathanl@linux.ibm.com
The H_GetPerformanceCounterInfo (GPCI) hypercall input/output structs are
useful to modules outside of perf/, so move them into asm/hvcall.h to live
alongside the other powerpc hypercall structs.
Leave the perf-specific GPCI stuff in perf/hv-gpci.h.
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Acked-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200727184605.2945095-1-cheloha@linux.ibm.com
Since commit identified below, the forward declaration of
struct irq_chip is useless (was struct hw_interrupt_type at that time)
Remove it, together with the associated comment.
Fixes: c0ad90a32f ("[PATCH] genirq: add ->retrigger() irq op to consolidate hw_irq_resend()")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/fbe58d27cf128d5fe581e4510ded8701858f268e.1596716328.git.christophe.leroy@csgroup.eu
- Prevent recursion by using raw_cpu_* operations
- Fixup the interrupt state in the cpu idle code to be consistent
- Push rcu_idle_enter/exit() invocations deeper into the idle path so
that the lock operations are inside the RCU watching sections
- Move trace_cpu_idle() into generic code so it's called before RCU goes
idle.
- Handle raw_local_irq* vs. local_irq* operations correctly
- Move the tracepoints out from under the lockdep recursion handling
which turned out to be fragile and inconsistent.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl9L5qETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoV/NEADG+h02tj2I4gP7IQ3nVodEzS1+odPI
orabY5ggH0kn4YIhPB4UtOd5zKZjr3FJs9wEhyhQpV6ZhvFfgaIKiYqfg+Q81aMO
/BXrfh6jBD2Hu7gaPBnVdkKeh1ehl+w0PhTeJhPBHEEvbGeLUYWwyPNlaKz//VQl
XCWl7e7o/Uw2UyJ469SCx3z+M2DMNqwdMys/zcqvTLiBdLNCwp4TW5ACzEA0rfHh
Pepu3eIKnMURyt82QanrOATvT2io9pOOaUh59zeKi2WM8ikwKd/Eho2kXYng6GvM
GzX4Kn13MsNobZXf9BhqEGICdRkaJqLsXlmBNmbJdSTCn5W2lLZqu2wCEp5VZHCc
XwMbey8ek+BRskJMqAV4oq2GA8Om9KEYWOOdixyOG0UJCiW5qDowuDYBXTLV7FWj
XhzLGuHpUF9eKLKokJ7ideLaDcpzwYjHr58pFLQrqPwmjVKWguLeYMg5BhhTiEuV
wNfiLIGdMNsCpYKhnce3o9paV8+hy1ZveWhNy+/4HaDLoEwI2T62i8R7xxbrcWMg
sgdAiQG+kVLwSJ13bN+Cz79uLYTIbqGaZHtOXmeIT3jSxBjx5RlXfzocwTHSYrNk
GuLYHd7+QaemN49Rrf4bPR16Db7ifL32QkUtLBTBLcnos9jM+fcl+BWyqYRxhgDv
xzDS+vfK8DvRiA==
=Hgt6
-----END PGP SIGNATURE-----
Merge tag 'locking-urgent-2020-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Thomas Gleixner:
"A set of fixes for lockdep, tracing and RCU:
- Prevent recursion by using raw_cpu_* operations
- Fixup the interrupt state in the cpu idle code to be consistent
- Push rcu_idle_enter/exit() invocations deeper into the idle path so
that the lock operations are inside the RCU watching sections
- Move trace_cpu_idle() into generic code so it's called before RCU
goes idle.
- Handle raw_local_irq* vs. local_irq* operations correctly
- Move the tracepoints out from under the lockdep recursion handling
which turned out to be fragile and inconsistent"
* tag 'locking-urgent-2020-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
lockdep,trace: Expose tracepoints
lockdep: Only trace IRQ edges
mips: Implement arch_irqs_disabled()
arm64: Implement arch_irqs_disabled()
nds32: Implement arch_irqs_disabled()
locking/lockdep: Cleanup
x86/entry: Remove unused THUNKs
cpuidle: Move trace_cpu_idle() into generic code
cpuidle: Make CPUIDLE_FLAG_TLB_FLUSHED generic
sched,idle,rcu: Push rcu_idle deeper into the idle path
cpuidle: Fixup IRQ state
lockdep: Use raw_cpu_*() for per-cpu variables
Revert our removal of PROT_SAO, at least one user expressed an interest in using
it on Power9. Instead don't allow it to be used in guests unless enabled
explicitly at compile time.
A fix for a crash introduced by a recent change to FP handling.
Revert a change to our idle code that left Power10 with no idle support.
One minor fix for the new scv system call path to set PPR.
Fix a crash in our "generic" PMU if branch stack events were enabled.
A fix for the IMC PMU, to correctly identify host kernel samples.
The ADB_PMU powermac code was found to be incompatible with VMAP_STACK, so make
them incompatible in Kconfig until the code can be fixed.
A build fix in drivers/video/fbdev/controlfb.c, and a documentation fix.
Thanks to:
Alexey Kardashevskiy, Athira Rajeev, Christophe Leroy, Giuseppe Sacco,
Madhavan Srinivasan, Milton Miller, Nicholas Piggin, Pratik Rajesh Sampat,
Randy Dunlap, Shawn Anastasio, Vaidyanathan Srinivasan.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl9LlF8THG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgEwJD/4nEkp9id7bZyiGruoawqxdpmc9viIp
JFRH3+eHWbE5rfoXn7fwM1zTE9SsHxCd0q09cHk2rtAwKMXcJW83/pXNuWEjIzcy
7Ra8Zq2jRl6qgWAx84VKoZVg+W40yNFex0M0akMQV55SjYOTN8gpGe+algi+wPaH
44oYBYctDi3B9X8CsaUQEdov1EZdWT6TxcN9xIJiIdr53VXMER6C+ytYV8VgkGHW
Qt+Ardyvp6eNq9+foGegRSk3OmNcmj+CJZYzhkp5+1k9ko9GQ8wg9NzxTV4ZoSJ9
g5rgD4ztBfLGyUDu6oUypzOnSVbfzJh9JPH/h1zaSOjSv9MnJ20zqvqjD7QXFNbs
j960PiylTfVWdnOoUUkvON0UOYZM9XiZP63i8z/mBsMJ5BFaLB1TonZ+lDwXc1vK
MHXhjahP2qP0LnJZ/M5gT3zfLPyrKoeIlmLTOkLjrM5C9mcSxpPnagq+AHacfYpG
sGrg2LGLfBo/9PomUNHseQhBfsc2uYwM924si9MpNWN6BT+TNgTJYeNPDOnvRCbG
ivDQ7HFZ6aiOj+b5iTZI2RV3EOaBKZgo+VEryNDnqd7etjyDr5PNbooGaHJDgsnz
mNFxUNusxzv0vMI3zyFtLMTe/99/NlRSYyMXPL8SL7MvlRt624ngrrxYv+2+dBRt
aIpxSpgdqTVXSw==
=t+yB
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.9-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- Revert our removal of PROT_SAO, at least one user expressed an
interest in using it on Power9. Instead don't allow it to be used in
guests unless enabled explicitly at compile time.
- A fix for a crash introduced by a recent change to FP handling.
- Revert a change to our idle code that left Power10 with no idle
support.
- One minor fix for the new scv system call path to set PPR.
- Fix a crash in our "generic" PMU if branch stack events were enabled.
- A fix for the IMC PMU, to correctly identify host kernel samples.
- The ADB_PMU powermac code was found to be incompatible with
VMAP_STACK, so make them incompatible in Kconfig until the code can
be fixed.
- A build fix in drivers/video/fbdev/controlfb.c, and a documentation
fix.
Thanks to Alexey Kardashevskiy, Athira Rajeev, Christophe Leroy,
Giuseppe Sacco, Madhavan Srinivasan, Milton Miller, Nicholas Piggin,
Pratik Rajesh Sampat, Randy Dunlap, Shawn Anastasio, Vaidyanathan
Srinivasan.
* tag 'powerpc-5.9-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/32s: Disable VMAP stack which CONFIG_ADB_PMU
Revert "powerpc/powernv/idle: Replace CPU feature check with PVR check"
powerpc/perf: Fix reading of MSR[HV/PR] bits in trace-imc
powerpc/perf: Fix crashes with generic_compat_pmu & BHRB
powerpc/64s: Fix crash in load_fp_state() due to fpexc_mode
powerpc/64s: scv entry should set PPR
Documentation/powerpc: fix malformed table in syscall64-abi
video: fbdev: controlfb: Fix build for COMPILE_TEST=y && PPC_PMAC=n
selftests/powerpc: Update PROT_SAO test to skip ISA 3.1
powerpc/64s: Disallow PROT_SAO in LPARs by default
Revert "powerpc/64s: Remove PROT_SAO support"
If the hypervisor doesn't support hugepages, the kernel ends up allocating a large
number of page table pages. The early page table allocation was wrongly
setting the max memblock limit to ppc64_rma_size with radix translation
which resulted in boot failure as shown below.
Kernel panic - not syncing:
early_alloc_pgtable: Failed to allocate 16777216 bytes align=0x1000000 nid=-1 from=0x0000000000000000 max_addr=0xffffffffffffffff
CPU: 0 PID: 0 Comm: swapper Not tainted 5.8.0-24.9-default+ #2
Call Trace:
[c0000000016f3d00] [c0000000007c6470] dump_stack+0xc4/0x114 (unreliable)
[c0000000016f3d40] [c00000000014c78c] panic+0x164/0x418
[c0000000016f3dd0] [c000000000098890] early_alloc_pgtable+0xe0/0xec
[c0000000016f3e60] [c0000000010a5440] radix__early_init_mmu+0x360/0x4b4
[c0000000016f3ef0] [c000000001099bac] early_init_mmu+0x1c/0x3c
[c0000000016f3f10] [c00000000109a320] early_setup+0x134/0x170
This was because the kernel was checking for the radix feature before we enable the
feature via mmu_features. This resulted in the kernel using hash restrictions on
radix.
Rework the early init code such that the kernel boot with memblock restrictions
as imposed by hash. At that point, the kernel still hasn't finalized the
translation the kernel will end up using.
We have three different ways of detecting radix.
1. dt_cpu_ftrs_scan -> used only in case of PowerNV
2. ibm,pa-features -> Used when we don't use cpu_dt_ftr_scan
3. CAS -> Where we negotiate with hypervisor about the supported translation.
We look at 1 or 2 early in the boot and after that, we look at the CAS vector to
finalize the translation the kernel will use. We also support a kernel command
line option (disable_radix) to switch to hash.
Update the memblock limit after mmu_early_init_devtree() if the kernel is going
to use radix translation. This forces some of the memblock allocations we do before
mmu_early_init_devtree() to be within the RMA limit.
Fixes: 2bfd65e45e ("powerpc/mm/radix: Add radix callbacks for early init routines")
Reported-by: Shirisha Ganta <shiganta@in.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200828100852.426575-1-aneesh.kumar@linux.ibm.com
Problem:
raw_local_irq_save(); // software state on
local_irq_save(); // software state off
...
local_irq_restore(); // software state still off, because we don't enable IRQs
raw_local_irq_restore(); // software state still off, *whoopsie*
existing instances:
- lock_acquire()
raw_local_irq_save()
__lock_acquire()
arch_spin_lock(&graph_lock)
pv_wait() := kvm_wait() (same or worse for Xen/HyperV)
local_irq_save()
- trace_clock_global()
raw_local_irq_save()
arch_spin_lock()
pv_wait() := kvm_wait()
local_irq_save()
- apic_retrigger_irq()
raw_local_irq_save()
apic->send_IPI() := default_send_IPI_single_phys()
local_irq_save()
Possible solutions:
A) make it work by enabling the tracing inside raw_*()
B) make it work by keeping tracing disabled inside raw_*()
C) call it broken and clean it up now
Now, given that the only reason to use the raw_* variant is because you don't
want tracing. Therefore A) seems like a weird option (although it can be done).
C) is tempting, but OTOH it ends up converting a _lot_ of code to raw just
because there is one raw user, this strips the validation/tracing off for all
the other users.
So we pick B) and declare any code that ends up doing:
raw_local_irq_save()
local_irq_save()
lockdep_assert_irqs_disabled();
broken. AFAICT this problem has existed forever, the only reason it came
up is because commit: 859d069ee1 ("lockdep: Prepare for NMI IRQ
state tracking") changed IRQ tracing vs lockdep recursion and the
first instance is fairly common, the other cases hardly ever happen.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[rewrote changelog]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Marco Elver <elver@google.com>
Link: https://lkml.kernel.org/r/20200723105615.1268126-1-npiggin@gmail.com
Building with W=1 results in the following warning:
In file included from arch/powerpc/platforms/powernv/vas-fault.c:16:
./arch/powerpc/include/asm/icswx.h:159:1: error: alignment 1 of ‘struct
coprocessor_request_block’ is less than 16 [-Werror=packed-not-aligned]
159 | } __packed;
| ^
./arch/powerpc/include/asm/icswx.h:159:1: error: alignment 1 of ‘struct
coprocessor_request_block’ is less than 16 [-Werror=packed-not-aligned]
./arch/powerpc/include/asm/icswx.h:159:1: error: alignment 1 of ‘struct
coprocessor_request_block’ is less than 16 [-Werror=packed-not-aligned]
./arch/powerpc/include/asm/icswx.h:159:1: error: alignment 1 of ‘struct
coprocessor_request_block’ is less than 16 [-Werror=packed-not-aligned]
cc1: all warnings being treated as errors
This happens because coprocessor_request_block includes several
sub-structures with an alignment specified using the __aligned(XX)
attribute. The problem comes from coprocessor_request_block having the
__packed attribute. Packing the structure causes the preferred alignment of
the nested structures to be ignored and we get the warnings as a result.
This isn't a problem in practice since the struct is defined with explicit
padding in the form of reserved fields, but we'd like to get rid of the
spurious warnings. The simplest solution is to remove the packed attribute
and use a BUILD_BUG_ON() to ensure the struct is the correct (expected by
HW) size compile time.
Also add a __aligned(128) to the request block structure since Book4 for P8
suggests the HW requires it to be aligned to a 128 byte boundary. There's a
similar requirement for P9 since the COPY and PASTE instructions used to
invoke VAS/NX accelerators operates on a cache line boundary.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200804005410.146094-7-oohall@gmail.com
We now allocate interrupts through xive directly.
Signed-off-by: Frederic Barrat <fbarrat@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
Acked-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200403153838.29224-5-fbarrat@linux.ibm.com
Since migration of guests using SAO to ISA 3.1 hosts may cause issues,
disable PROT_SAO in LPARs by default and introduce a new Kconfig option
PPC_PROT_SAO_LPAR to allow users to enable it if desired.
Signed-off-by: Shawn Anastasio <shawn@anastas.io>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200821185558.35561-3-shawn@anastas.io
This reverts commit 5c9fa16e8a.
Since PROT_SAO can still be useful for certain classes of software,
reintroduce it. Concerns about guest migration for LPARs using SAO
will be addressed next.
Signed-off-by: Shawn Anastasio <shawn@anastas.io>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200821185558.35561-2-shawn@anastas.io
Add perf support for emitting extended registers for power10.
A fix for CPU hotplug on pseries, where on large/loaded systems we may not wait
long enough for the CPU to be offlined, leading to crashes.
Addition of a raw cputable entry for Power10, which is not required to boot, but
is required to make our PMU setup work correctly in guests.
Three fixes for the recent changes on 32-bit Book3S to move modules into their
own segment for strict RWX.
A fix for a recent change in our powernv PCI code that could lead to crashes.
A change to our perf interrupt accounting to avoid soft lockups when using some
events, found by syzkaller.
A change in the way we handle power loss events from the hypervisor on pseries.
We no longer immediately shut down if we're told we're running on a UPS.
A few other minor fixes.
Thanks to:
Alexey Kardashevskiy, Andreas Schwab, Aneesh Kumar K.V, Anju T Sudhakar,
Athira Rajeev, Christophe Leroy, Frederic Barrat, Greg Kurz, Kajol Jain,
Madhavan Srinivasan, Michael Neuling, Michael Roth, Nageswara R Sastry, Oliver
O'Halloran, Thiago Jung Bauermann, Vaidyanathan Srinivasan, Vasant Hegde.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAl9CYMwTHG1wZUBlbGxl
cm1hbi5pZC5hdQAKCRBR6+o8yOGlgC/wEACljEVnfHzUObmIgqn9Ru3JlfEI6Hlk
ts7kajCgS/I/bV6DoDMZ8rlZX87QFOwiBkNM1I+vGHSLAuzsmFAnbFPyxw/idxpQ
XUoNy8OCvbbzCPzChYdiU0PxW2h2i+QxkmktlWSN1SAPudJUWvoPS2Y4+sC4zksk
B4B6tbW2DT8TFO1kKeZsU9r2t+EH5KwlIOi+uxbH8d76lJINKkBNSnjzMytl7drM
TZx/HWr8+s/WJo1787x6bv8gxs5tV9b4vIKt2YZNTY2kvYsEDE+fBR1XfCAneXMw
ASYnZV+/xCLIUpRF6DI4RAShLBT/Sfiy1yMTndZgfqAgquokFosszNx2zrk0IzCd
AgqX93YGbGz/H72W3Y/B0W9+74XyO/u2D9zhNpkCRMpdcsM5MbvOQrQA5Ustu47E
av5MOaF/nNCd8J+OC4Qjgt5VFb/s0h4FdtrwT80srOa2U6Of9cD/T6xAfOszSJ96
cWdSb5qhn5wuD9pP32KjwdmWBiUw38/gnRGKpRlOVzyHL/GKZijyaBbWBlkoEmty
0nbjWW/IVfsOb5Weuiybg541h/QOVuOkb2pOvPClITiH83MY/AciDJ+auo4M//hW
haKz9IgV/KctmzDE+v9d0BD8sGmW03YUcQAPdRufI0eGXijDLcnHeuk2B3Nu84Pq
8mtev+VQ+T6cZA==
=sdJ1
-----END PGP SIGNATURE-----
Merge tag 'powerpc-5.9-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- Add perf support for emitting extended registers for power10.
- A fix for CPU hotplug on pseries, where on large/loaded systems we
may not wait long enough for the CPU to be offlined, leading to
crashes.
- Addition of a raw cputable entry for Power10, which is not required
to boot, but is required to make our PMU setup work correctly in
guests.
- Three fixes for the recent changes on 32-bit Book3S to move modules
into their own segment for strict RWX.
- A fix for a recent change in our powernv PCI code that could lead to
crashes.
- A change to our perf interrupt accounting to avoid soft lockups when
using some events, found by syzkaller.
- A change in the way we handle power loss events from the hypervisor
on pseries. We no longer immediately shut down if we're told we're
running on a UPS.
- A few other minor fixes.
Thanks to Alexey Kardashevskiy, Andreas Schwab, Aneesh Kumar K.V, Anju T
Sudhakar, Athira Rajeev, Christophe Leroy, Frederic Barrat, Greg Kurz,
Kajol Jain, Madhavan Srinivasan, Michael Neuling, Michael Roth,
Nageswara R Sastry, Oliver O'Halloran, Thiago Jung Bauermann,
Vaidyanathan Srinivasan, Vasant Hegde.
* tag 'powerpc-5.9-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/perf/hv-24x7: Move cpumask file to top folder of hv-24x7 driver
powerpc/32s: Fix module loading failure when VMALLOC_END is over 0xf0000000
powerpc/pseries: Do not initiate shutdown when system is running on UPS
powerpc/perf: Fix soft lockups due to missed interrupt accounting
powerpc/powernv/pci: Fix possible crash when releasing DMA resources
powerpc/pseries/hotplug-cpu: wait indefinitely for vCPU death
powerpc/32s: Fix is_module_segment() when MODULES_VADDR is defined
powerpc/kasan: Fix KASAN_SHADOW_START on BOOK3S_32
powerpc/fixmap: Fix the size of the early debug area
powerpc/pkeys: Fix build error with PPC_MEM_KEYS disabled
powerpc/kernel: Cleanup machine check function declarations
powerpc: Add POWER10 raw mode cputable entry
powerpc/perf: Add extended regs support for power10 platform
powerpc/perf: Add support for outputting extended regs in perf intr_regs
powerpc: Fix P10 PVR revision in /proc/cpuinfo for SMT4 cores
* selftests fix for new binutils
* MMU notifier fix for arm64
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl9ARnoUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroP2YAf/dgLrPm4y4jxm7Aiz3/txqrHEwogT
ZtvnzqUPb6+vkFrkop8QMOPw7A8NCfkn3/6sWbyUN5ObgOG1pxKyPraeN3ZdsDoR
KGwv6P0dKgI8B4UuGEMe9GazXv+oOv8+bSUJnE+HZiUHzJKlX4HJbxDwUhvSSatY
qYCZb/Uzqundh79TYULa7oI1/3F15A2J1zQPe4QgkToH9tsVB8PVfkH5uPJPp64M
DTm5+qgwwsBULFaAuuo3FTs9f3pWJxn8GOuico1Sm+RnR53mhbUJggUfFzP0rwzZ
Emevunje5r1rluFs+JWeNtflGH0gI4CLak7jvlOOBjrNb5XJgUSbzLXxkA==
=Jwic
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
- PAE and PKU bugfixes for x86
- selftests fix for new binutils
- MMU notifier fix for arm64
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: arm64: Only reschedule if MMU_NOTIFIER_RANGE_BLOCKABLE is not set
KVM: Pass MMU notifier range flags to kvm_unmap_hva_range()
kvm: x86: Toggling CR4.PKE does not load PDPTEs in PAE mode
kvm: x86: Toggling CR4.SMAP does not load PDPTEs in PAE mode
KVM: x86: fix access code passed to gva_to_gpa
selftests: kvm: Use a shorter encoding to clear RAX
The 'flags' field of 'struct mmu_notifier_range' is used to indicate
whether invalidate_range_{start,end}() are permitted to block. In the
case of kvm_mmu_notifier_invalidate_range_start(), this field is not
forwarded on to the architecture-specific implementation of
kvm_unmap_hva_range() and therefore the backend cannot sensibly decide
whether or not to block.
Add an extra 'flags' parameter to kvm_unmap_hva_range() so that
architectures are aware as to whether or not they are permitted to block.
Cc: <stable@vger.kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Message-Id: <20200811102725.7121-2-will@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... and get rid of the pointless fallback in the wrappers. On error it used
to zero the unwritten area and calculate the csum of the entire thing. Not
wanting to do it in assembler part had been very reasonable; doing that in
the first place, OTOH... In case of an error the caller discards the data
we'd copied, along with whatever checksum it might've had.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>