When KVM traps an unhandled sysreg/coproc access from a guest, it logs
the guest PC. To aid debugging, it would be helpful to know which
exception level the trap came from, along with other PSTATE/CPSR bits,
so let's log the PSTATE/CPSR too.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In subsequent patches we're going to expose ptrauth to the host kernel
and userspace, but things are a bit trickier for guest kernels. For the
time being, let's hide ptrauth from KVM guests.
Regardless of how well-behaved the guest kernel is, guest userspace
could attempt to use ptrauth instructions, triggering a trap to EL2,
resulting in noise from kvm_handle_unknown_ec(). So let's write up a
handler for the PAC trap, which silently injects an UNDEF into the
guest, as if the feature were really missing.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Will Deacon <will.deacon@arm.com>
In order to generate Group0 SGIs, let's add some decoding logic to
access_gic_sgi(), and pass the generating group accordingly.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Although vgic-v3 now supports Group0 interrupts, it still doesn't
deal with Group0 SGIs. As usually with the GIC, nothing is simple:
- ICC_SGI1R can signal SGIs of both groups, since GICD_CTLR.DS==1
with KVM (as per 8.1.10, Non-secure EL1 access)
- ICC_SGI0R can only generate Group0 SGIs
- ICC_ASGI1R sees its scope refocussed to generate only Group0
SGIs (as per the note at the bottom of Table 8-14)
We only support Group1 SGIs so far, so no material change.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ICC_SGI1R is a 64bit system register, even on AArch32. It is thus
pointless to have such an encoding in the 32bit cp15 array. Let's
drop it.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Set/Way handling is one of the ugliest corners of KVM. We shouldn't
have to handle that, but better safe than sorry.
Thankfully, FWB fixes this for us by not requiering any maintenance
(the guest is forced to use cacheable memory, no matter what it says,
and the whole system is garanteed to be cache coherent), which means
we don't have to emulate S/W CMOs, and don't have to track VM ops either.
We still have to trap S/W though, if only to prevent the guest from
doing something bad.
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In struct vcpu_arch, the debug_flags field is used to store
debug-related flags about the vcpu state.
Since we are about to add some more flags related to FPSIMD and
SVE, it makes sense to add them to the existing flags field rather
than adding new fields. Since there is only one debug_flags flag
defined so far, there is plenty of free space for expansion.
In preparation for adding more flags, this patch renames the
debug_flags field to simply "flags", and updates comments
appropriately.
The flag definitions are also moved to <asm/kvm_host.h>, since
their presence in <asm/kvm_asm.h> was for purely historical
reasons: these definitions are not used from asm any more, and not
very likely to be as more Hyp asm is migrated to C.
KVM_ARM64_DEBUG_DIRTY_SHIFT has not been used since commit
1ea66d27e7 ("arm64: KVM: Move away from the assembly version of
the world switch"), so this patch gets rid of that too.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
[maz: fixed minor conflict]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
While generating a message about guests probing for SVE/LORegions
is a useful debugging tool, considering it an error is slightly
over the top, as this is the only way the guest can find out
about the presence of the feature.
Let's turn these message into kvm_debug so that they can only
be seen if CONFIG_DYNAMIC_DEBUG, and kept quiet otherwise.
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When running a 32-bit VM (EL1 in AArch32), the AArch32 system registers
can be deferred to vcpu load/put on VHE systems because neither
the host kernel nor host userspace uses these registers.
Note that we can't save DBGVCR32_EL2 conditionally based on the state of
the debug dirty flag on VHE after this change, because during
vcpu_load() we haven't calculated a valid debug flag yet, and when we've
restored the register during vcpu_load() we also have to save it during
vcpu_put(). This means that we'll always restore/save the register for
VHE on load/put, but luckily vcpu load/put are called rarely, so saving
an extra register unconditionally shouldn't significantly hurt
performance.
We can also not defer saving FPEXC32_32 because this register only holds
a guest-valid value for 32-bit guests during the exit path when the
guest has used FPSIMD registers and restored the register in the early
assembly handler from taking the EL2 fault, and therefore we have to
check if fpsimd is enabled for the guest in the exit path and save the
register then, for both VHE and non-VHE guests.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some system registers do not affect the host kernel's execution and can
therefore be loaded when we are about to run a VCPU and we don't have to
restore the host state to the hardware before the time when we are
actually about to return to userspace or schedule out the VCPU thread.
The EL1 system registers and the userspace state registers only
affecting EL0 execution do not need to be saved and restored on every
switch between the VM and the host, because they don't affect the host
kernel's execution.
We mark all registers which are now deffered as such in the
vcpu_{read,write}_sys_reg accessors in sys-regs.c to ensure the most
up-to-date copy is always accessed.
Note MPIDR_EL1 (controlled via VMPIDR_EL2) is accessed from other vcpu
threads, for example via the GIC emulation, and therefore must be
declared as immediate, which is fine as the guest cannot modify this
value.
The 32-bit sysregs can also be deferred but we do this in a separate
patch as it requires a bit more infrastructure.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We are about to defer saving and restoring some groups of system
registers to vcpu_put and vcpu_load on supported systems. This means
that we need some infrastructure to access system registes which
supports either accessing the memory backing of the register or directly
accessing the system registers, depending on the state of the system
when we access the register.
We do this by defining read/write accessor functions, which can handle
both "immediate" and "deferrable" system registers. Immediate registers
are always saved/restored in the world-switch path, but deferrable
registers are only saved/restored in vcpu_put/vcpu_load when supported
and sysregs_loaded_on_cpu will be set in that case.
Note that we don't use the deferred mechanism yet in this patch, but only
introduce infrastructure. This is to improve convenience of review in
the subsequent patches where it is clear which registers become
deferred.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Currently we access the system registers array via the vcpu_sys_reg()
macro. However, we are about to change the behavior to some times
modify the register file directly, so let's change this to two
primitives:
* Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg()
* Direct array access macro __vcpu_sys_reg()
The accessor macros should be used in places where the code needs to
access the currently loaded VCPU's state as observed by the guest. For
example, when trapping on cache related registers, a write to a system
register should go directly to the VCPU version of the register.
The direct array access macro can be used in places where the VCPU is
known to never be running (for example userspace access) or for
registers which are never context switched (for example all the PMU
system registers).
This rewrites all users of vcpu_sys_regs to one of the macros described
above.
No functional change.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently handle 32-bit accesses to trapped VM system registers using
the 32-bit index into the coproc array on the vcpu structure, which is a
union of the coproc array and the sysreg array.
Since all the 32-bit coproc indices are created to correspond to the
architectural mapping between 64-bit system registers and 32-bit
coprocessor registers, and because the AArch64 system registers are the
double in size of the AArch32 coprocessor registers, we can always find
the system register entry that we must update by dividing the 32-bit
coproc index by 2.
This is going to make our lives much easier when we have to start
accessing system registers that use deferred save/restore and might
have to be read directly from the physical CPU.
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Some 32bits guest OS can use the CNTP timer, however KVM does not
handle the accesses, injecting a fault instead.
Use the proper handlers to emulate the EL1 Physical Timer (CNTP)
register accesses of AArch32 guests.
Signed-off-by: Jérémy Fanguède <j.fanguede@virtualopensystems.com>
Signed-off-by: Alvise Rigo <a.rigo@virtualopensystems.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We don't currently limit guest accesses to the LOR registers, which we
neither virtualize nor context-switch. As such, guests are provided with
unusable information/controls, and are not isolated from each other (or
the host).
To prevent these issues, we can trap register accesses and present the
illusion LORegions are unssupported by the CPU. To do this, we mask
ID_AA64MMFR1.LO, and set HCR_EL2.TLOR to trap accesses to the following
registers:
* LORC_EL1
* LOREA_EL1
* LORID_EL1
* LORN_EL1
* LORSA_EL1
... when trapped, we inject an UNDEFINED exception to EL1, simulating
their non-existence.
As noted in D7.2.67, when no LORegions are implemented, LoadLOAcquire
and StoreLORelease must behave as LoadAcquire and StoreRelease
respectively. We can ensure this by clearing LORC_EL1.EN when a CPU's
EL2 is first initialized, as the host kernel will not modify this.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
ARMv8.2 adds a new bit HCR_EL2.TEA which routes synchronous external
aborts to EL2, and adds a trap control bit HCR_EL2.TERR which traps
all Non-secure EL1&0 error record accesses to EL2.
This patch enables the two bits for the guest OS, guaranteeing that
KVM takes external aborts and traps attempts to access the physical
error registers.
ERRIDR_EL1 advertises the number of error records, we return
zero meaning we can treat all the other registers as RAZ/WI too.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
[removed specific emulation, use trap_raz_wi() directly for everything,
rephrased parts of the commit message]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If we deliver a virtual SError to the guest, the guest may defer it
with an ESB instruction. The guest reads the deferred value via DISR_EL1,
but the guests view of DISR_EL1 is re-mapped to VDISR_EL2 when HCR_EL2.AMO
is set.
Add the KVM code to save/restore VDISR_EL2, and make it accessible to
userspace as DISR_EL1.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
When trapping on a guest access to one of the timer registers, we were
messing with the internals of the timer state from the sysregs handling
code, and that logic was about to receive more added complexity when
optimizing the timer handling code.
Therefore, since we already have timer register access functions (to
access registers from userspace), reuse those for the timer register
traps from a VM and let the timer code maintain its own consistency.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
KVM guests cannot currently use SVE, because SVE is always
configured to trap to EL2.
However, a guest that sees SVE reported as present in
ID_AA64PFR0_EL1 may legitimately expect that SVE works and try to
use it. Instead of working, the guest will receive an injected
undef exception, which may cause the guest to oops or go into a
spin.
To avoid misleading the guest into believing that SVE will work,
this patch masks out the SVE field from ID_AA64PFR0_EL1 when a
guest attempts to read this register. No support is explicitly
added for ID_AA64ZFR0_EL1 either, so that is still emulated as
reading as zero, which is consistent with SVE not being
implemented.
This is a temporary measure, and will be removed in a later series
when full KVM support for SVE is implemented.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, a guest kernel sees the true CPU feature registers
(ID_*_EL1) when it reads them using MRS instructions. This means
that the guest may observe features that are present in the
hardware but the host doesn't understand or doesn't provide support
for. A guest may legimitately try to use such a feature as per the
architecture, but use of the feature may trap instead of working
normally, triggering undef injection into the guest.
This is not a problem for the host, but the guest may go wrong when
running on newer hardware than the host knows about.
This patch hides from guest VMs any AArch64-specific CPU features
that the host doesn't support, by exposing to the guest the
sanitised versions of the registers computed by the cpufeatures
framework, instead of the true hardware registers. To achieve
this, HCR_EL2.TID3 is now set for AArch64 guests, and emulation
code is added to KVM to report the sanitised versions of the
affected registers in response to MRS and register reads from
userspace.
The affected registers are removed from invariant_sys_regs[] (since
the invariant_sys_regs handling is no longer quite correct for
them) and added to sys_reg_desgs[], with appropriate access(),
get_user() and set_user() methods. No runtime vcpu storage is
allocated for the registers: instead, they are read on demand from
the cpufeatures framework. This may need modification in the
future if there is a need for userspace to customise the features
visible to the guest.
Attempts by userspace to write the registers are handled similarly
to the current invariant_sys_regs handling: writes are permitted,
but only if they don't attempt to change the value. This is
sufficient to support VM snapshot/restore from userspace.
Because of the additional registers, restoring a VM on an older
kernel may not work unless userspace knows how to handle the extra
VM registers exposed to the KVM user ABI by this patch.
Under the principle of least damage, this patch makes no attempt to
handle any of the other registers currently in
invariant_sys_regs[], or to emulate registers for AArch32: however,
these could be handled in a similar way in future, as necessary.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
kvm_pmu_overflow_set() is called from perf's interrupt handler,
making the call of kvm_vgic_inject_irq() from it introduced with
"KVM: arm/arm64: PMU: remove request-less vcpu kick" a really bad
idea, as it's quite easy to try and retake a lock that the
interrupted context is already holding. The fix is to use a vcpu
kick, leaving the interrupt injection to kvm_pmu_sync_hwstate(),
like it was doing before the refactoring. We don't just revert,
though, because before the kick was request-less, leaving the vcpu
exposed to the request-less vcpu kick race, and also because the
kick was used unnecessarily from register access handlers.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
A write-to-read-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A read-from-write-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJZEZihAAoJEEtpOizt6ddyGDYH/jmGjDMnryORn2P2o10dUQKJ
RnHTQYnpOYqnprlkFtZFpmK+mjl/a8R1Btb7GK2EwmovTR95pMYPRqtrCTOL0aQA
4OToh7+vFGatwxsGCS6utazdhmx0UT/LhO/GEF4G1zOb7eVa4ZtS1NKLP2WjPD1E
RU3Qn8wa0pESv3tJScv8qo2+PWVX4krbFllhY2Hk0AkVQcI66ExkdVq4ikm1eUXn
rxzIayLG2bv3KEPNCzozdwoY9tDL+b40q6vN/RHGJmM05SZbbSx2/Bkw2RbslSpD
2hvhHWX7xeuEBcd5mZO7sP4WS3hM/BI8eX7q+uMeNJ9B+nM82yjGfOTtglVi2cc=
=JfvQ
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
Second round of KVM/ARM Changes for v4.12.
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
Our 32bit CP14/15 handling inherited some of the ARMv7 code for handling
the trapped system registers, completely missing the fact that the
fields for Rt and Rt2 are now 5 bit wide, and not 4...
Let's fix it, and provide an accessor for the most common Rt case.
Cc: stable@vger.kernel.org
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
If we fail to emulate a mrrc instruction, we:
1) deliver an exception,
2) spit a nastygram on the console,
3) write back some garbage to Rt/Rt2
While 1) and 2) are perfectly acceptable, 3) is out of the scope of
the architecture... Let's mimick the code in kvm_handle_cp_32 and
be more cautious.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Instead of considering that a sysreg accessor has failed when
returning false, let's consider that it is *always* successful
(after all, we won't stand for an incomplete emulation).
The return value now simply indicates whether we should skip
the instruction (because it has now been emulated), or if we
should leave the PC alone if the emulation has injected an
exception.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
PMSWINC_EL0 is a WO register, so let's UNDEF when reading from it
(in the highly hypothetical case where this doesn't UNDEF at EL1).
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reads from write-only system registers are generally confined to
EL1 and not propagated to EL2 (that's what the architecture
mantates). In order to be sure that we have a sane behaviour
even in the unlikely event that we have a broken system, we still
handle it in KVM.
In that case, let's inject an undef into the guest.
Let's also remove write_to_read_only which isn't used anywhere.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
access_pminten() and access_pmuserenr() can only be accessed when
the CPU is in a priviledged mode. If it is not, let's inject an
UNDEF exception.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Both pmu_*_el0_disabled() and pmu_counter_idx_valid() perform checks
on the validity of an access, but only return a boolean indicating
if the access is valid or not.
Let's allow these functions to also inject an UNDEF exception if
the access was illegal.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
There is a lot of duplication in the pmu_*_el0_disabled helpers,
and as we're going to modify them shortly, let's move all the
common stuff in a single function.
No functional change.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
read_system_reg() can readily be confused with read_sysreg(),
whereas these are really quite different in their meaning.
This patches attempts to reduce the ambiguity be reserving "sysreg"
for the actual system register accessors.
read_system_reg() is instead renamed to read_sanitised_ftr_reg(),
to make it more obvious that the Linux-defined sanitised feature
register cache is being accessed here, not the underlying
architectural system registers.
cpufeature.c's internal __raw_read_system_reg() function is renamed
in line with its actual purpose: a form of read_sysreg() that
indexes on (non-compiletime-constant) encoding rather than symbolic
register name.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have common definitions for the encoding of Set/Way cache
maintenance operations, make the KVM code use these, simplifying the
sys_reg_descs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the remaining register encodings
required by KVM, make the KVM code use these, simplifying the
sys_reg_descs table and the genericv8_sys_regs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the register encodings used by
KVM, make the KVM code uses thse for invariant sysreg definitions. This
makes said definitions a reasonable amount shorter, especially as many
comments are rendered redundant and can be removed.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the physical timer control
registers, make the KVM code use these, simplifying the sys_reg_descs
table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the GICv3 register encodings,
make the KVM code use these, simplifying the sys_reg_descs table.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the performance monitor register
encodings, make the KVM code use these, simplifying the sys_reg_descs
table.
The comments for PMUSERENR_EL0 and PMCCFILTR_EL0 are kept, as these
describe non-obvious details regarding the registers. However, a slight
fixup is applied to bring these into line with the usual comment style.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Now that we have common definitions for the debug register encodings,
make the KVM code use these, simplifying the sys_reg_descs table.
The table previously erroneously referred to MDCCSR_EL0 as MDCCSR_EL1.
This is corrected (as is necessary in order to use the common sysreg
definition).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Emulate read and write operations to CNTP_TVAL, CNTP_CVAL and CNTP_CTL.
Now VMs are able to use the EL1 physical timer.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
KVM traps on the EL1 phys timer accesses from VMs, but it doesn't handle
those traps. This results in terminating VMs. Instead, set a handler for
the EL1 phys timer access, and inject an undefined exception as an
intermediate step.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to implement vGICv3 CPU interface access, we will need to perform
table lookup of system registers. We would need both index_to_params() and
find_reg() exported for that purpose, but instead we export a single
function which combines them both.
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Vijaya Kumar K <Vijaya.Kumar@cavium.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We're missing the handling code for the cycle counter accessed
from a 32bit guest, leading to unexpected results.
Cc: stable@vger.kernel.org # 4.6+
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJX7k31AAoJELescNyEwWM0XX0H/iOaWCfKlWOhvBsStGUCsLrK
XryTzQT2KjdnLKf3jwP+1ateCuBR5ROurYxoDCX5/7mD63c5KiI338Vbv61a1lE1
AAwjt1stmQVUg/j+kqnuQwB/0DYg+2C8se3D3q5Iyn7zc19cDZJEGcBHNrvLMufc
XgHrgHgl/rzBDDlHJXleknDFge/MfhU5/Q1vJMRRb4JYrpAtmIokzCO75CYMRcCT
ND2QbmppKtsyuFPGUTVbAFzJlP6dGKb3eruYta7/ct5d0pJQxav3u98D2yWGfjdM
YaYq1EmX5Pol7rWumqLtk0+mA9yCFcKLLc+PrJu20Vx0UkvOq8G8Xt70sHNvZU8=
=gdPM
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"It's a bit all over the place this time with no "killer feature" to
speak of. Support for mismatched cache line sizes should help people
seeing whacky JIT failures on some SoCs, and the big.LITTLE perf
updates have been a long time coming, but a lot of the changes here
are cleanups.
We stray outside arch/arm64 in a few areas: the arch/arm/ arch_timer
workaround is acked by Russell, the DT/OF bits are acked by Rob, the
arch_timer clocksource changes acked by Marc, CPU hotplug by tglx and
jump_label by Peter (all CC'd).
Summary:
- Support for execute-only page permissions
- Support for hibernate and DEBUG_PAGEALLOC
- Support for heterogeneous systems with mismatches cache line sizes
- Errata workarounds (A53 843419 update and QorIQ A-008585 timer bug)
- arm64 PMU perf updates, including cpumasks for heterogeneous systems
- Set UTS_MACHINE for building rpm packages
- Yet another head.S tidy-up
- Some cleanups and refactoring, particularly in the NUMA code
- Lots of random, non-critical fixes across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (100 commits)
arm64: tlbflush.h: add __tlbi() macro
arm64: Kconfig: remove SMP dependence for NUMA
arm64: Kconfig: select OF/ACPI_NUMA under NUMA config
arm64: fix dump_backtrace/unwind_frame with NULL tsk
arm/arm64: arch_timer: Use archdata to indicate vdso suitability
arm64: arch_timer: Work around QorIQ Erratum A-008585
arm64: arch_timer: Add device tree binding for A-008585 erratum
arm64: Correctly bounds check virt_addr_valid
arm64: migrate exception table users off module.h and onto extable.h
arm64: pmu: Hoist pmu platform device name
arm64: pmu: Probe default hw/cache counters
arm64: pmu: add fallback probe table
MAINTAINERS: Update ARM PMU PROFILING AND DEBUGGING entry
arm64: Improve kprobes test for atomic sequence
arm64/kvm: use alternative auto-nop
arm64: use alternative auto-nop
arm64: alternative: add auto-nop infrastructure
arm64: lse: convert lse alternatives NOP padding to use __nops
arm64: barriers: introduce nops and __nops macros for NOP sequences
arm64: sysreg: replace open-coded mrs_s/msr_s with {read,write}_sysreg_s
...
A while back we added {read,write}_sysreg accessors to handle accesses
to system registers, without the usual boilerplate asm volatile,
temporary variable, etc.
This patch makes use of these in the arm64 KVM code to make the code
shorter and clearer.
At the same time, a comment style violation next to a system register
access is fixed up in reset_pmcr, and comments describing whether
operations are reads or writes are removed as this is now painfully
obvious.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
After commit b34f2bc ("arm64: KVM: Make ICC_SRE_EL1 access return the
configured SRE value") we report SRE value to 64-bit guest, but 32-bit
one still handled as RAZ/WI what leads to funny promise we do not keep:
"GICv3: GIC: unable to set SRE (disabled at EL2), panic ahead"
Instead, return the actual value of the ICC_SRE_EL1 register that the
guest should see.
[ Tweaked commit message - Christoffer ]
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Comment about how PMU access is handled is not relavant since v4.6
where proper PMU support was added in.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
My static checker complains that this condition looks like it should be
== instead of =. This isn't a fast path, so we don't need to be fancy.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When we trap ICC_SRE_EL1, we handle it as RAZ/WI. It would be
more correct to actual make it RO, and return the configured
value when read.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture requires
break-before-make in such cases to avoid TLB conflicts but that's not
always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked to
the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is provided
by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this allows
uaccess functions (get_user etc.) to be implemented using LDTR/STTR
instructions. Such instructions, when run by the kernel, perform
unprivileged accesses adding an extra level of protection. The
set_fs() macro is used to "upgrade" such instruction to privileged
accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the sigcontext
information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
LepccTgykiUBqW5TRzPz
=/oS+
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Here are the main arm64 updates for 4.6. There are some relatively
intrusive changes to support KASLR, the reworking of the kernel
virtual memory layout and initial page table creation.
Summary:
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture
requires break-before-make in such cases to avoid TLB conflicts but
that's not always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked
to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
of the vmalloc space, allowing the kernel to be loaded (nearly)
anywhere in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is
provided by UEFI (efi_get_random_bytes() patches merged via the
arm64 tree, acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
but actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this
allows uaccess functions (get_user etc.) to be implemented using
LDTR/STTR instructions. Such instructions, when run by the kernel,
perform unprivileged accesses adding an extra level of protection.
The set_fs() macro is used to "upgrade" such instruction to
privileged accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the
sigcontext information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Fix misspellings in comments.
arm64: efi: add missing frame pointer assignment
arm64: make mrs_s prefixing implicit in read_cpuid
arm64: enable CONFIG_DEBUG_RODATA by default
arm64: Rework valid_user_regs
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: KVM: Move kvm_call_hyp back to its original localtion
arm64: mm: treat memstart_addr as a signed quantity
arm64: mm: list kernel sections in order
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
arm64: kconfig: add submenu for 8.2 architectural features
arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
arm64: Add support for Half precision floating point
arm64: Remove fixmap include fragility
arm64: Add workaround for Cavium erratum 27456
arm64: mm: Mark .rodata as RO
...
Our 64bit sys_reg table is about 90 entries long (so far, and the
PMU support is likely to increase this). This means that on average,
it takes 45 comparaisons to find the right entry (and actually the
full 90 if we have to search the invariant table).
Not the most efficient thing. Specially when you think that this
table is already sorted. Switching to a binary search effectively
reduces the search to about 7 comparaisons. Slightly better!
As an added bonus, the comparison is done by comparing all the
fields at once, instead of one at a time.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This register resets as unknown in 64bit mode while it resets as zero
in 32bit mode. Here we choose to reset it as zero for consistency.
PMUSERENR_EL0 holds some bits which decide whether PMU registers can be
accessed from EL0. Add some check helpers to handle the access from EL0.
When these bits are zero, only reading PMUSERENR will trap to EL2 and
writing PMUSERENR or reading/writing other PMU registers will trap to
EL1 other than EL2 when HCR.TGE==0. To current KVM configuration
(HCR.TGE==0) there is no way to get these traps. Here we write 0xf to
physical PMUSERENR register on VM entry, so that it will trap PMU access
from EL0 to EL2. Within the register access handler we check the real
value of guest PMUSERENR register to decide whether this access is
allowed. If not allowed, return false to inject UND to guest.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
According to ARMv8 spec, when writing 1 to PMCR.E, all counters are
enabled by PMCNTENSET, while writing 0 to PMCR.E, all counters are
disabled. When writing 1 to PMCR.P, reset all event counters, not
including PMCCNTR, to zero. When writing 1 to PMCR.C, reset PMCCNTR to
zero.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add access handler which emulates writing and reading PMSWINC
register and add support for creating software increment event.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since the reset value of PMOVSSET and PMOVSCLR is UNKNOWN, use
reset_unknown for its reset handler. Add a handler to emulate writing
PMOVSSET or PMOVSCLR register.
When writing non-zero value to PMOVSSET, the counter and its interrupt
is enabled, kick this vcpu to sync PMU interrupt.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since the reset value of PMINTENSET and PMINTENCLR is UNKNOWN, use
reset_unknown for its reset handler. Add a handler to emulate writing
PMINTENSET or PMINTENCLR register.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
These kind of registers include PMEVTYPERn, PMCCFILTR and PMXEVTYPER
which is mapped to PMEVTYPERn or PMCCFILTR.
The access handler translates all aarch32 register offsets to aarch64
ones and uses vcpu_sys_reg() to access their values to avoid taking care
of big endian.
When writing to these registers, create a perf_event for the selected
event type.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since the reset value of PMCNTENSET and PMCNTENCLR is UNKNOWN, use
reset_unknown for its reset handler. Add a handler to emulate writing
PMCNTENSET or PMCNTENCLR register.
When writing to PMCNTENSET, call perf_event_enable to enable the perf
event. When writing to PMCNTENCLR, call perf_event_disable to disable
the perf event.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
These kind of registers include PMEVCNTRn, PMCCNTR and PMXEVCNTR which
is mapped to PMEVCNTRn.
The access handler translates all aarch32 register offsets to aarch64
ones and uses vcpu_sys_reg() to access their values to avoid taking care
of big endian.
When reading these registers, return the sum of register value and the
value perf event counts.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add access handler which gets host value of PMCEID0 or PMCEID1 when
guest access these registers. Writing action to PMCEID0 or PMCEID1 is
UNDEFINED.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since the reset value of PMSELR_EL0 is UNKNOWN, use reset_unknown for
its reset handler. When reading PMSELR, return the PMSELR.SEL field to
guest.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add reset handler which gets host value of PMCR_EL0 and make writable
bits architecturally UNKNOWN except PMCR.E which is zero. Add an access
handler for PMCR.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that we have a clear understanding of the sign of a feature,
rename the routines to reflect the sign, so that it is not misused.
The cpuid_feature_extract_field() now accepts a 'sign' parameter.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently emulate_cp will return 0 (Handled) no matter what the accessor
returns. If register accessor returns false, it will not skip current PC
while emulate_cp return handled. Then guest will stuck in a dead loop.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Make sure the documentation reflects the actual name of the functions.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The debug trapping code is pretty heavy on the "inline" attribute,
but most functions are actually referenced in the sysreg tables,
making the inlining imposible.
Removing the useless inline qualifier seems the right thing to do,
having verified that the output code is similar.
Cc: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Having the system register numbers as #defines has been a pain
since day one, as the ordering is pretty fragile, and moving
things around leads to renumbering and epic conflict resolutions.
Now that we're mostly acessing the sysreg file in C, an enum is
a much better type to use, and we can clean things up a bit.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
System register accesses also use zero register for Rt == 31, and
therefore using it will also result in getting SP value instead. This
patch makes them also using new accessors, introduced by the previous
patch. Since register value is no longer directly associated with storage
inside vCPU context structure, we introduce a dedicated storage for it in
struct sys_reg_params.
This refactor also gets rid of "massive hack" in kvm_handle_cp_64().
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Further rework is going to introduce a dedicated storage for transfer
register value in struct sys_reg_params. Before doing this we have to
remove 'const' modifiers from it in all accessor functions and their
callers.
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Use the system wide safe value from the new API for safer
decisions
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Tested-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Although the ThumbEE registers and traps were present in earlier
versions of the v8 architecture, it was retrospectively removed and so
we can do the same.
Whilst this breaks migrating a guest started on a previous version of
the kernel, it is much better to kill these (non existent) registers
as soon as possible.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[maz: added commend about migration]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When setting the debug register from userspace, make sure that
copy_from_user() is called with its parameters in the expected
order. It otherwise doesn't do what you think.
Fixes: 84e690bfbe ("KVM: arm64: introduce vcpu->arch.debug_ptr")
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Cc: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This includes trace points for:
kvm_arch_setup_guest_debug
kvm_arch_clear_guest_debug
I've also added some generic register setting trace events and also a
trace point to dump the array of hardware registers.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This introduces a level of indirection for the debug registers. Instead
of using the sys_regs[] directly we store registers in a structure in
the vcpu. The new kvm_arm_reset_debug_ptr() sets the debug ptr to the
guest context.
Because we no longer give the sys_regs offset for the sys_reg_desc->reg
field, but instead the index into a debug-specific struct we need to
add a number of additional trap functions for each register. Also as the
generic generic user-space access code no longer works we have
introduced a new pair of function pointers to the sys_reg_desc structure
to override the generic code when needed.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Common: Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other architectures).
This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes
or TCP_RR netperf tests). This also has to be enabled manually for now,
but the plan is to auto-tune this in the future.
ARM/ARM64: the highlights are support for GICv3 emulation and dirty page
tracking
s390: several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS: Bugfixes.
x86: Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested virtualization
improvements (nested APICv---a nice optimization), usual round of emulation
fixes. There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
ARM has other conflicts where functions are added in the same place
by 3.19-rc and 3.20 patches. These are not large though, and entirely
within KVM.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJU28rkAAoJEL/70l94x66DXqQH/1TDOfJIjW7P2kb0Sw7Fy1wi
cEX1KO/VFxAqc8R0E/0Wb55CXyPjQJM6xBXuFr5cUDaIjQ8ULSktL4pEwXyyv/s5
DBDkN65mriry2w5VuEaRLVcuX9Wy+tqLQXWNkEySfyb4uhZChWWHvKEcgw5SqCyg
NlpeHurYESIoNyov3jWqvBjr4OmaQENyv7t2c6q5ErIgG02V+iCux5QGbphM2IC9
LFtPKxoqhfeB2xFxTOIt8HJiXrZNwflsTejIlCl/NSEiDVLLxxHCxK2tWK/tUXMn
JfLD9ytXBWtNMwInvtFm4fPmDouv2VDyR0xnK2db+/axsJZnbxqjGu1um4Dqbak=
=7gdx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM update from Paolo Bonzini:
"Fairly small update, but there are some interesting new features.
Common:
Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other
architectures). This can improve latency up to 50% on some
scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This
also has to be enabled manually for now, but the plan is to
auto-tune this in the future.
ARM/ARM64:
The highlights are support for GICv3 emulation and dirty page
tracking
s390:
Several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS:
Bugfixes.
x86:
Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested
virtualization improvements (nested APICv---a nice optimization),
usual round of emulation fixes.
There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
Powerpc:
Nothing yet.
The KVM/PPC changes will come in through the PPC maintainers,
because I haven't received them yet and I might end up being
offline for some part of next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: ia64: drop kvm.h from installed user headers
KVM: x86: fix build with !CONFIG_SMP
KVM: x86: emulate: correct page fault error code for NoWrite instructions
KVM: Disable compat ioctl for s390
KVM: s390: add cpu model support
KVM: s390: use facilities and cpu_id per KVM
KVM: s390/CPACF: Choose crypto control block format
s390/kernel: Update /proc/sysinfo file with Extended Name and UUID
KVM: s390: reenable LPP facility
KVM: s390: floating irqs: fix user triggerable endless loop
kvm: add halt_poll_ns module parameter
kvm: remove KVM_MMIO_SIZE
KVM: MIPS: Don't leak FPU/DSP to guest
KVM: MIPS: Disable HTW while in guest
KVM: nVMX: Enable nested posted interrupt processing
KVM: nVMX: Enable nested virtual interrupt delivery
KVM: nVMX: Enable nested apic register virtualization
KVM: nVMX: Make nested control MSRs per-cpu
KVM: nVMX: Enable nested virtualize x2apic mode
KVM: nVMX: Prepare for using hardware MSR bitmap
...
- reimplementation of the virtual remapping of UEFI Runtime Services in
a way that is stable across kexec
- emulation of the "setend" instruction for 32-bit tasks (user
endianness switching trapped in the kernel, SCTLR_EL1.E0E bit set
accordingly)
- compat_sys_call_table implemented in C (from asm) and made it a
constant array together with sys_call_table
- export CPU cache information via /sys (like other architectures)
- DMA API implementation clean-up in preparation for IOMMU support
- macros clean-up for KVM
- dropped some unnecessary cache+tlb maintenance
- CONFIG_ARM64_CPU_SUSPEND clean-up
- defconfig update (CPU_IDLE)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJU25v3AAoJEGvWsS0AyF7xYjcP/j8ESvs+z0BPgeJ6XREfOnCh
cp+w/1rJ5BafJ5RRkibrciwTNOIJS4FGMivWyURtoh430lS0Rh7fxZ3Ouna3xjrT
Nf7AxenWoA8Lo6wHh+FlNUeGk3iWfX6WwA2tYrbKudK+LBJ1wHjwpE7cWQO0FgwJ
aFDahu+QD5/u45p/VcVctMtiEDvOxBdO8gfat6r+YkLm7pbRxQkZnpA/JE4Gps1p
Td5jvMNH9pXI5pffSbeR9Q+vs/r0yqKLXQg01Eb2bZgGDgwf9yzADrHuaKamZt35
X5flmLiTGC6swJCJvUkZC1Nuue33bXcvW5+vgvar+MNGyXsxv+B/wARLqGhiWhQZ
nLGwFpuNu6wdY9tGHb/XR8khcewkw1/lRH1hHKhchrmRyUqHvXcPgC5tamjLrY8C
BV3BAeQvRho8OKwWUmbXIlyON1vPux6CJdj4D/A5NL+qph2WHeVWJCXg6nVFx0Wc
Eb3bXbI4QRwTFL7pGRF8RyZJBAQtgYhQMKWMW2GHgUgn+r1EixG73BZoSwvpHrrw
FOR9AVNfVBqmNON8xiIb3DN4EViq76EF0jrsZh5I9EoWS2w5qtk60kJQgXE+M4EE
vOlmh3dhEVfCN2SxOn0bgoQmTulyjqGauTSSJKQbIBuinPFveukrJfGNFIWt0SZs
f38FBMo6sgU4VG85B+Fr
=X5x/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"arm64 updates for 3.20:
- reimplementation of the virtual remapping of UEFI Runtime Services
in a way that is stable across kexec
- emulation of the "setend" instruction for 32-bit tasks (user
endianness switching trapped in the kernel, SCTLR_EL1.E0E bit set
accordingly)
- compat_sys_call_table implemented in C (from asm) and made it a
constant array together with sys_call_table
- export CPU cache information via /sys (like other architectures)
- DMA API implementation clean-up in preparation for IOMMU support
- macros clean-up for KVM
- dropped some unnecessary cache+tlb maintenance
- CONFIG_ARM64_CPU_SUSPEND clean-up
- defconfig update (CPU_IDLE)
The EFI changes going via the arm64 tree have been acked by Matt
Fleming. There is also a patch adding sys_*stat64 prototypes to
include/linux/syscalls.h, acked by Andrew Morton"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (47 commits)
arm64: compat: Remove incorrect comment in compat_siginfo
arm64: Fix section mismatch on alloc_init_p[mu]d()
arm64: Avoid breakage caused by .altmacro in fpsimd save/restore macros
arm64: mm: use *_sect to check for section maps
arm64: drop unnecessary cache+tlb maintenance
arm64:mm: free the useless initial page table
arm64: Enable CPU_IDLE in defconfig
arm64: kernel: remove ARM64_CPU_SUSPEND config option
arm64: make sys_call_table const
arm64: Remove asm/syscalls.h
arm64: Implement the compat_sys_call_table in C
syscalls: Declare sys_*stat64 prototypes if __ARCH_WANT_(COMPAT_)STAT64
compat: Declare compat_sys_sigpending and compat_sys_sigprocmask prototypes
arm64: uapi: expose our struct ucontext to the uapi headers
smp, ARM64: Kill SMP single function call interrupt
arm64: Emulate SETEND for AArch32 tasks
arm64: Consolidate hotplug notifier for instruction emulation
arm64: Track system support for mixed endian EL0
arm64: implement generic IOMMU configuration
arm64: Combine coherent and non-coherent swiotlb dma_ops
...
Trying to emulate the behaviour of set/way cache ops is fairly
pointless, as there are too many ways we can end-up missing stuff.
Also, there is some system caches out there that simply ignore
set/way operations.
So instead of trying to implement them, let's convert it to VA ops,
and use them as a way to re-enable the trapping of VM ops. That way,
we can detect the point when the MMU/caches are turned off, and do
a full VM flush (which is what the guest was trying to do anyway).
This allows a 32bit zImage to boot on the APM thingy, and will
probably help bootloaders in general.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
While the generation of a (virtual) inter-processor interrupt (SGI)
on a GICv2 works by writing to a MMIO register, GICv3 uses the system
register ICC_SGI1R_EL1 to trigger them.
Add a trap handler function that calls the new SGI register handler
in the GICv3 code. As ICC_SRE_EL1.SRE at this point is still always 0,
this will not trap yet, but will only be used later when all the data
structures have been initialized properly.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The virtual MPIDR registers (containing topology information) for the
guest are currently mapped linearily to the vcpu_id. Improve this
mapping for arm64 by using three levels to not artificially limit the
number of vCPUs.
To help this, change and rename the kvm_vcpu_get_mpidr() function to
mask off the non-affinity bits in the MPIDR register.
Also add an accessor to later allow easier access to a vCPU with a
given MPIDR. Use this new accessor in the PSCI emulation.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Now that we have common ESR_ELx macros, make use of them in the arm64
KVM code. The addition of <asm/esr.h> to the include path highlighted
badly ordered (i.e. not alphabetical) include lists; these are changed
to alphabetical order.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
When running on a system with a GICv3, we currenly don't allow the guest
to access the system register interface of the GICv3. We do this by
clearing the ICC_SRE_EL2.Enable, which causes all guest accesses to
ICC_SRE_EL1 to trap to EL2 and causes all guest accesses to other ICC_
registers to cause an undefined exception in the guest.
However, we currently don't handle the trap of guest accesses to
ICC_SRE_EL1 and will spill out a warning. The trap just needs to handle
the access as RAZ/WI, and a guest that tries to prod this register and
set ICC_SRE_EL1.SRE=1, must read back the value (which Linux already
does) to see if it succeeded, and will thus observe that ICC_SRE_EL1.SRE
was not set.
Add the simple trap handler in the sorted table of the system registers.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
[ardb: added cp15 handling]
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
is_valid_cache returns true if the specified cache is valid.
Unfortunately, if the parameter passed it out of range, we return
-ENOENT, which ends up as true leading to potential hilarity.
This patch returns false on the failure path instead.
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Commit f0a3eaff71 (ARM64: KVM: fix big endian issue in
access_vm_reg for 32bit guest) changed the way we handle CP15
VM accesses, so that all 64bit accesses are done via vcpu_sys_reg.
This looks like a good idea as it solves indianness issues in an
elegant way, except for one small detail: the register index is
doesn't refer to the same array! We end up corrupting some random
data structure instead.
Fix this by reverting to the original code, except for the introduction
of a vcpu_cp15_64_high macro that deals with the endianness thing.
Tested on Juno with 32bit SMP guests.
Cc: Victor Kamensky <victor.kamensky@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Add handlers for all the AArch32 debug registers that are accessible
from EL0 or EL1. The code follow the same strategy as the AArch64
counterpart with regards to tracking the dirty state of the debug
registers.
Reviewed-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We now have multiple tables for the various system registers
we trap. Make sure we check the order of all of them, as it is
critical that we get the order right (been there, done that...).
Reviewed-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
An interesting "feature" of the CP14 encoding is that there is
an overlap between 32 and 64bit registers, meaning they cannot
live in the same table as we did for CP15.
Create separate tables for 64bit CP14 and CP15 registers, and
let the top level handler use the right one.
Reviewed-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
As we're about to trap a bunch of CP14 registers, let's rework
the CP15 handling so it can be generalized and work with multiple
tables.
Reviewed-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add handlers for all the AArch64 debug registers that are accessible
from EL0 or EL1. The trapping code keeps track of the state of the
debug registers, allowing for the switch code to implement a lazy
switching strategy.
Reviewed-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
pm_fake doesn't quite describe what the handler does (ignoring writes
and returning 0 for reads).
As we're about to use it (a lot) in a different context, rename it
with a (admitedly cryptic) name that make sense for all users.
Reviewed-by: Anup Patel <anup.patel@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Fix issue with 32bit guests running on top of BE KVM host.
Indexes of high and low words of 64bit cp15 register are
swapped in case of big endian code, since 64bit cp15 state is
restored or saved with double word write or read instruction.
Define helper macro to access low words of 64bit cp15 register.
Signed-off-by: Victor Kamensky <victor.kamensky@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Since size of all sys registers is always 8 bytes. Current
code is actually endian agnostic. Just clean it up a bit.
Removed comment about little endian. Change type of pointer
from 'void *' to 'u64 *' to enforce stronger type checking.
Signed-off-by: Victor Kamensky <victor.kamensky@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
I suspect this is a -ECUTPASTE fault from the initial implementation. If
we don't declare the register ID to be KVM_REG_ARM64 the KVM_GET_ONE_REG
implementation kvm_arm_get_reg() returns -EINVAL and hilarity ensues.
The kvm/api.txt document describes all arm64 registers as starting with
0x60xx... (i.e KVM_REG_ARM64).
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When calling our low-level barrier macros directly, we can often suffice
with more relaxed behaviour than the default "all accesses, full system"
option.
This patch updates the users of dsb() to specify the option which they
actually require.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When the guest runs with caches disabled (like in an early boot
sequence, for example), all the writes are diectly going to RAM,
bypassing the caches altogether.
Once the MMU and caches are enabled, whatever sits in the cache
becomes suddenly visible, which isn't what the guest expects.
A way to avoid this potential disaster is to invalidate the cache
when the MMU is being turned on. For this, we hook into the SCTLR_EL1
trapping code, and scan the stage-2 page tables, invalidating the
pages/sections that have already been mapped in.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
In order to be able to detect the point where the guest enables
its MMU and caches, trap all the VM related system registers.
Once we see the guest enabling both the MMU and the caches, we
can go back to a saner mode of operation, which is to leave these
registers in complete control of the guest.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
The current handling of AArch32 trapping is slightly less than
perfect, as it is not possible (from a handler point of view)
to distinguish it from an AArch64 access, nor to tell a 32bit
from a 64bit access either.
Fix this by introducing two additional flags:
- is_aarch32: true if the access was made in AArch32 mode
- is_32bit: true if is_aarch32 == true and a MCR/MRC instruction
was used to perform the access (as opposed to MCRR/MRRC).
This allows a handler to cover all the possible conditions in which
a system register gets trapped.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Not saving PAR_EL1 is an unfortunate oversight. If the guest
performs an AT* operation and gets scheduled out before reading
the result of the translation from PAREL1, it could become
corrupted by another guest or the host.
Saving this register is made slightly more complicated as KVM also
uses it on the permission fault handling path, leading to an ugly
"stash and restore" sequence. Fortunately, this is already a slow
path so we don't really care. Also, Linux doesn't do any AT*
operation, so Linux guests are not impacted by this bug.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Provide the necessary infrastructure to trap coprocessor accesses that
occur when running 32bit guests.
Also wire SMC and HVC trapped in 32bit mode while were at it.
Reviewed-by: Christopher Covington <cov@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Provide 64bit system register handling, modeled after the cp15
handling for ARM.
Reviewed-by: Christopher Covington <cov@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>