Pull Devicetree updates from Rob Herring:
"The biggest highlight here is the start of using json-schema for DT
bindings. Being able to validate bindings has been discussed for years
with little progress.
- Initial support for DT bindings using json-schema language. This is
the start of converting DT bindings from free-form text to a
structured format.
- Reworking of initrd address initialization. This moves to using the
phys address instead of virt addr in the DT parsing code. This
rework was motivated by CONFIG_DEV_BLK_INITRD causing unnecessary
rebuilding of lots of files.
- Fix stale phandle entries in phandle cache
- DT overlay validation improvements. This exposed several memory
leak bugs which have been fixed.
- Use node name and device_type helper functions in DT code
- Last remaining conversions to using %pOFn printk specifier instead
of device_node.name directly
- Create new common RTC binding doc and move all trivial RTC devices
out of trivial-devices.txt.
- New bindings for Freescale MAG3110 magnetometer, Cadence Sierra
PHY, and Xen shared memory
- Update dtc to upstream version v1.4.7-57-gf267e674d145"
* tag 'devicetree-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: (68 commits)
of: __of_detach_node() - remove node from phandle cache
of: of_node_get()/of_node_put() nodes held in phandle cache
gpio-omap.txt: add reg and interrupts properties
dt-bindings: mrvl,intc: fix a trivial typo
dt-bindings: iio: magnetometer: add dt-bindings for freescale mag3110
dt-bindings: Convert trivial-devices.txt to json-schema
dt-bindings: arm: mrvl: amend Browstone compatible string
dt-bindings: arm: Convert Tegra board/soc bindings to json-schema
dt-bindings: arm: Convert ZTE board/soc bindings to json-schema
dt-bindings: arm: Add missing Xilinx boards
dt-bindings: arm: Convert Xilinx board/soc bindings to json-schema
dt-bindings: arm: Convert VIA board/soc bindings to json-schema
dt-bindings: arm: Convert ST STi board/soc bindings to json-schema
dt-bindings: arm: Convert SPEAr board/soc bindings to json-schema
dt-bindings: arm: Convert CSR SiRF board/soc bindings to json-schema
dt-bindings: arm: Convert QCom board/soc bindings to json-schema
dt-bindings: arm: Convert TI nspire board/soc bindings to json-schema
dt-bindings: arm: Convert TI davinci board/soc bindings to json-schema
dt-bindings: arm: Convert Calxeda board/soc bindings to json-schema
dt-bindings: arm: Convert Altera board/soc bindings to json-schema
...
Tag-based KASAN doesn't check memory accesses through pointers tagged with
0xff. When page_address is used to get pointer to memory that corresponds
to some page, the tag of the resulting pointer gets set to 0xff, even
though the allocated memory might have been tagged differently.
For slab pages it's impossible to recover the correct tag to return from
page_address, since the page might contain multiple slab objects tagged
with different values, and we can't know in advance which one of them is
going to get accessed. For non slab pages however, we can recover the tag
in page_address, since the whole page was marked with the same tag.
This patch adds tagging to non slab memory allocated with pagealloc. To
set the tag of the pointer returned from page_address, the tag gets stored
to page->flags when the memory gets allocated.
Link: http://lkml.kernel.org/r/d758ddcef46a5abc9970182b9137e2fbee202a2c.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
virt_addr_is_linear (which is used by virt_addr_valid) assumes that the
top byte of the address is 0xff, which isn't always the case with
tag-based KASAN.
This patch resets the tag in this macro.
Link: http://lkml.kernel.org/r/df73a37dd5ed37f4deaf77bc718e9f2e590e69b1.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds a few helper functions, that are meant to be used to work
with tags embedded in the top byte of kernel pointers: to set, to get or
to reset the top byte.
Link: http://lkml.kernel.org/r/f6c6437bb8e143bc44f42c3c259c62e734be7935.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the untagged_addr() macro from arch/arm64/include/asm/uaccess.h
to arch/arm64/include/asm/memory.h to be later reused by KASAN.
Also make the untagged_addr() macro accept all kinds of address types
(void *, unsigned long, etc.). This allows not to specify type casts in
each place where the macro is used. This is done by using __typeof__.
Link: http://lkml.kernel.org/r/2e9ef8d2ed594106eca514b268365b5419113f6a.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tag-based KASAN uses 1 shadow byte for 16 bytes of kernel memory, so it
requires 1/16th of the kernel virtual address space for the shadow memory.
This commit sets KASAN_SHADOW_SCALE_SHIFT to 4 when the tag-based KASAN
mode is enabled.
Link: http://lkml.kernel.org/r/308b6bd49f756bb5e533be93c6f085ba99b30339.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
1) New ipset extensions for matching on destination MAC addresses, from
Stefano Brivio.
2) Add ipv4 ttl and tos, plus ipv6 flow label and hop limit offloads to
nfp driver. From Stefano Brivio.
3) Implement GRO for plain UDP sockets, from Paolo Abeni.
4) Lots of work from Michał Mirosław to eliminate the VLAN_TAG_PRESENT
bit so that we could support the entire vlan_tci value.
5) Rework the IPSEC policy lookups to better optimize more usecases,
from Florian Westphal.
6) Infrastructure changes eliminating direct manipulation of SKB lists
wherever possible, and to always use the appropriate SKB list
helpers. This work is still ongoing...
7) Lots of PHY driver and state machine improvements and
simplifications, from Heiner Kallweit.
8) Various TSO deferral refinements, from Eric Dumazet.
9) Add ntuple filter support to aquantia driver, from Dmitry Bogdanov.
10) Batch dropping of XDP packets in tuntap, from Jason Wang.
11) Lots of cleanups and improvements to the r8169 driver from Heiner
Kallweit, including support for ->xmit_more. This driver has been
getting some much needed love since he started working on it.
12) Lots of new forwarding selftests from Petr Machata.
13) Enable VXLAN learning in mlxsw driver, from Ido Schimmel.
14) Packed ring support for virtio, from Tiwei Bie.
15) Add new Aquantia AQtion USB driver, from Dmitry Bezrukov.
16) Add XDP support to dpaa2-eth driver, from Ioana Ciocoi Radulescu.
17) Implement coalescing on TCP backlog queue, from Eric Dumazet.
18) Implement carrier change in tun driver, from Nicolas Dichtel.
19) Support msg_zerocopy in UDP, from Willem de Bruijn.
20) Significantly improve garbage collection of neighbor objects when
the table has many PERMANENT entries, from David Ahern.
21) Remove egdev usage from nfp and mlx5, and remove the facility
completely from the tree as it no longer has any users. From Oz
Shlomo and others.
22) Add a NETDEV_PRE_CHANGEADDR so that drivers can veto the change and
therefore abort the operation before the commit phase (which is the
NETDEV_CHANGEADDR event). From Petr Machata.
23) Add indirect call wrappers to avoid retpoline overhead, and use them
in the GRO code paths. From Paolo Abeni.
24) Add support for netlink FDB get operations, from Roopa Prabhu.
25) Support bloom filter in mlxsw driver, from Nir Dotan.
26) Add SKB extension infrastructure. This consolidates the handling of
the auxiliary SKB data used by IPSEC and bridge netfilter, and is
designed to support the needs to MPTCP which could be integrated in
the future.
27) Lots of XDP TX optimizations in mlx5 from Tariq Toukan.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1845 commits)
net: dccp: fix kernel crash on module load
drivers/net: appletalk/cops: remove redundant if statement and mask
bnx2x: Fix NULL pointer dereference in bnx2x_del_all_vlans() on some hw
net/net_namespace: Check the return value of register_pernet_subsys()
net/netlink_compat: Fix a missing check of nla_parse_nested
ieee802154: lowpan_header_create check must check daddr
net/mlx4_core: drop useless LIST_HEAD
mlxsw: spectrum: drop useless LIST_HEAD
net/mlx5e: drop useless LIST_HEAD
iptunnel: Set tun_flags in the iptunnel_metadata_reply from src
net/mlx5e: fix semicolon.cocci warnings
staging: octeon: fix build failure with XFRM enabled
net: Revert recent Spectre-v1 patches.
can: af_can: Fix Spectre v1 vulnerability
packet: validate address length if non-zero
nfc: af_nfc: Fix Spectre v1 vulnerability
phonet: af_phonet: Fix Spectre v1 vulnerability
net: core: Fix Spectre v1 vulnerability
net: minor cleanup in skb_ext_add()
net: drop the unused helper skb_ext_get()
...
In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC that
is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine() invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32 optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJcE4TmAAoJELescNyEwWM0Nr0H/iaU7/wQSzHyNXtZoImyKTul
Blu2ga4/EqUrTU7AVVfmkl/3NBILWlgQVpY6tH6EfXQuvnxqD7CizbHyLdyO+z0S
B5PsFUH2GLMNAi48AUNqGqkgb2knFbg+T+9IimijDBkKg1G/KhQnRg6bXX32mLJv
Une8oshUPBVJMsHN1AcQknzKariuoE3u0SgJ+eOZ9yA2ZwKxP4yy1SkDt3xQrtI0
lojeRjxcyjTP1oGRNZC+BWUtGOT35p7y6cGTnBd/4TlqBGz5wVAJUcdoxnZ6JYVR
O8+ob9zU+4I0+SKt80s7pTLqQiL9rxkKZ5joWK1pr1g9e0s5N5yoETXKFHgJYP8=
=sYdt
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 festive updates from Will Deacon:
"In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC
that is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine()
invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32
optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits)
arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset()
arm64: sysreg: Use _BITUL() when defining register bits
arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches
arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
arm64: docs: document pointer authentication
arm64: ptr auth: Move per-thread keys from thread_info to thread_struct
arm64: enable pointer authentication
arm64: add prctl control for resetting ptrauth keys
arm64: perf: strip PAC when unwinding userspace
arm64: expose user PAC bit positions via ptrace
arm64: add basic pointer authentication support
arm64/cpufeature: detect pointer authentication
arm64: Don't trap host pointer auth use to EL2
arm64/kvm: hide ptrauth from guests
arm64/kvm: consistently handle host HCR_EL2 flags
arm64: add pointer authentication register bits
arm64: add comments about EC exception levels
arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned
arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field
arm64: enable per-task stack canaries
...
Lots of conflicts, by happily all cases of overlapping
changes, parallel adds, things of that nature.
Thanks to Stephen Rothwell, Saeed Mahameed, and others
for their guidance in these resolutions.
Signed-off-by: David S. Miller <davem@davemloft.net>
This define is used by arm64 to calculate the size of the vmemmap
region. It is defined as the log2 of the upper bound on the size of a
struct page.
We move it into mm_types.h so it can be defined properly instead of set
and checked with a build bug. This also allows us to use the same
define for riscv.
Link: http://lkml.kernel.org/r/20181107205433.3875-2-logang@deltatee.com
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pointer authentication is in use, data/instruction pointers have a
number of PAC bits inserted into them. The number and position of these
bits depends on the configured TCR_ELx.TxSZ and whether tagging is
enabled. ARMv8.3 allows tagging to differ for instruction and data
pointers.
For userspace debuggers to unwind the stack and/or to follow pointer
chains, they need to be able to remove the PAC bits before attempting to
use a pointer.
This patch adds a new structure with masks describing the location of
the PAC bits in userspace instruction and data pointers (i.e. those
addressable via TTBR0), which userspace can query via PTRACE_GETREGSET.
By clearing these bits from pointers (and replacing them with the value
of bit 55), userspace can acquire the PAC-less versions.
This new regset is exposed when the kernel is built with (user) pointer
authentication support, and the address authentication feature is
enabled. Otherwise, the regset is hidden.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[will: Fix to use vabits_user instead of VA_BITS and rename macro]
Signed-off-by: Will Deacon <will.deacon@arm.com>
With the introduction of 52-bit virtual addressing for userspace, we are
now in a position where the virtual addressing capability of userspace
may exceed that of the kernel. Consequently, the VA_BITS definition
cannot be used blindly, since it reflects only the size of kernel
virtual addresses.
This patch introduces MAX_USER_VA_BITS which is either VA_BITS or 52
depending on whether 52-bit virtual addressing has been configured at
build time, removing a few places where the 52 is open-coded based on
explicit CONFIG_ guards.
Signed-off-by: Will Deacon <will.deacon@arm.com>
If the kernel is configured with KASAN_EXTRA, the stack size is
increased significantly due to setting the GCC -fstack-reuse option to
"none" [1]. As a result, it can trigger a stack overrun quite often with
32k stack size compiled using GCC 8. For example, this reproducer
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/madvise/madvise06.c
can trigger a "corrupted stack end detected inside scheduler" very
reliably with CONFIG_SCHED_STACK_END_CHECK enabled. There are other
reports at:
https://lore.kernel.org/lkml/1542144497.12945.29.camel@gmx.us/https://lore.kernel.org/lkml/721E7B42-2D55-4866-9C1A-3E8D64F33F9C@gmx.us/
There are just too many functions that could have a large stack with
KASAN_EXTRA due to large local variables that have been called over and
over again without being able to reuse the stacks. Some noticiable ones
are,
size
7536 shrink_inactive_list
7440 shrink_page_list
6560 fscache_stats_show
3920 jbd2_journal_commit_transaction
3216 try_to_unmap_one
3072 migrate_page_move_mapping
3584 migrate_misplaced_transhuge_page
3920 ip_vs_lblcr_schedule
4304 lpfc_nvme_info_show
3888 lpfc_debugfs_nvmestat_data.constprop
There are other 49 functions over 2k in size while compiling kernel with
"-Wframe-larger-than=" on this machine. Hence, it is too much work to
change Makefiles for each object to compile without
-fsanitize-address-use-after-scope individually.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81715#c23
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The arm64 module region is a 128 MB region that is kept close to
the core kernel, in order to ensure that relative branches are
always in range. So using the same region for programs that do
not have this restriction is wasteful, and preferably avoided.
Now that the core BPF JIT code permits the alloc/free routines to
be overridden, implement them by vmalloc()/vfree() calls from a
dedicated 128 MB region set aside for BPF programs. This ensures
that BPF programs are still in branching range of each other, which
is something the JIT currently depends upon (and is not guaranteed
when using module_alloc() on KASLR kernels like we do currently).
It also ensures that placement of BPF programs does not correlate
with the placement of the core kernel or modules, making it less
likely that leaking the former will reveal the latter.
This also solves an issue under KASAN, where shadow memory is
needlessly allocated for all BPF programs (which don't require KASAN
shadow pages since they are not KASAN instrumented)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Now that ARM64 uses phys_initrd_start/phys_initrd_size, we can get rid
of its custom __early_init_dt_declare_initrd() which causes a fair
amount of objects rebuild when changing CONFIG_BLK_DEV_INITRD. In order
to make sure ARM64 does not produce a BUG() when VM debugging is turned
on though, we must avoid early calls to __va() which is what
__early_init_dt_declare_initrd() does and wrap this around to avoid
running that code on ARM64.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes
results in the strongest attribute of the two stages. This means
that the hypervisor has to perform quite a lot of cache maintenance
just in case the guest has some non-cacheable mappings around.
ARMv8.4 solves this problem by offering a different mode (FWB) where
Stage-2 has total control over the memory attribute (this is limited
to systems where both I/O and instruction fetches are coherent with
the dcache). This is achieved by having a different set of memory
attributes in the page tables, and a new bit set in HCR_EL2.
On such a system, we can then safely sidestep any form of dcache
management.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ARM, ARM64 and UniCore32 duplicate the definition of UL():
#define UL(x) _AC(x, UL)
This is not actually arch-specific, so it will be useful to move it to a
common header. Currently, we only have the uapi variant for
linux/const.h, so I am creating include/linux/const.h.
I also added _UL(), _ULL() and ULL() because _AC() is mostly used in
the form either _AC(..., UL) or _AC(..., ULL). I expect they will be
replaced in follow-up cleanups. The underscore-prefixed ones should
be used for exported headers.
Link: http://lkml.kernel.org/r/1519301715-31798-4-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now the fact that KASAN uses a single shadow byte for 8 bytes of
memory is scattered all over the code.
This change defines KASAN_SHADOW_SCALE_SHIFT early in asm include files
and makes use of this constant where necessary.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/34937ca3b90736eaad91b568edf5684091f662e3.1515775666.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Plenty of acronym soup here:
- Initial support for the Scalable Vector Extension (SVE)
- Improved handling for SError interrupts (required to handle RAS events)
- Enable GCC support for 128-bit integer types
- Remove kernel text addresses from backtraces and register dumps
- Use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- Perf PMU driver for the Statistical Profiling Extension (SPE)
- Perf PMU driver for Hisilicon's system PMUs
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
=0qrg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
AddressSanitizer instrumentation can significantly bloat the stack, and
with GCC 7 this can result in stack overflows at boot time in some
configurations.
We can avoid this by doubling our stack size when KASAN is in use, as is
already done on x86 (and has been since KASAN was introduced).
Regardless of other patches to decrease KASAN's stack utilization,
kernels built with KASAN will always require more stack space than those
built without, and we should take this into account.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ILP32 series [1] introduces the dependency on <asm/is_compat.h> for
TASK_SIZE macro. Which in turn requires <asm/thread_info.h>, and
<asm/thread_info.h> include <asm/memory.h>, giving a circular dependency,
because TASK_SIZE is currently located in <asm/memory.h>.
In other architectures, TASK_SIZE is defined in <asm/processor.h>, and
moving TASK_SIZE there fixes the problem.
Discussion: https://patchwork.kernel.org/patch/9929107/
[1] https://github.com/norov/linux/tree/ilp32-next
CC: Will Deacon <will.deacon@arm.com>
CC: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch enables arm64 to be built with vmap'd task and IRQ stacks.
As vmap'd stacks are mapped at page granularity, stacks must be a multiple of
PAGE_SIZE. This means that a 64K page kernel must use stacks of at least 64K in
size.
To minimize the increase in Image size, IRQ stacks are dynamically allocated at
boot time, rather than embedding the boot CPU's IRQ stack in the kernel image.
This patch was co-authored by Ard Biesheuvel and Mark Rutland.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Currently we define SEGMENT_ALIGN directly in our vmlinux.lds.S.
This is unfortunate, as the EFI stub currently open-codes the same
number, and in future we'll want to fiddle with this.
This patch moves the definition to our <asm/memory.h>, where it can be
used by both vmlinux.lds.S and the EFI stub code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Before we add yet another stack to the kernel, it would be nice to
ensure that we consistently organise stack definitions and related
helper functions.
This patch moves the basic IRQ stack defintions to <asm/memory.h> to
live with their task stack counterparts. Helpers used for unwinding are
moved into <asm/stacktrace.h>, where subsequent patches will add helpers
for other stacks. Includes are fixed up accordingly.
This patch is a pure refactoring -- there should be no functional
changes as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Currently we define THREAD_SIZE and THREAD_SIZE_ORDER separately, with
the latter dependent on particular CONFIG_ARM64_*K_PAGES definitions.
This is somewhat opaque, and will get in the way of future modifications
to THREAD_SIZE.
This patch cleans this up, defining both in terms of a common
THREAD_SHIFT, and using PAGE_SHIFT to calculate THREAD_SIZE_ORDER,
rather than using a number of definitions dependent on config symbols.
Subsequent patches will make use of this to alter the stack size used in
some configurations.
At the same time, these are moved into <asm/memory.h>, which will avoid
circular include issues in subsequent patches. To ensure that existing
code isn't adversely affected, <asm/thread_info.h> is updated to
transitively include these definitions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Some headers rely on PAGE_* definitions from <asm/page.h>, but cannot
include this due to potential circular includes. For example, a number
of definitions in <asm/memory.h> rely on PAGE_SHIFT, and <asm/page.h>
includes <asm/memory.h>.
This requires users of these definitions to include both headers, which
is fragile and error-prone.
This patch ameliorates matters by moving the basic definitions out to a
new header, <asm/page-def.h>. Both <asm/page.h> and <asm/memory.h> are
updated to include this, avoiding this fragility, and avoiding the
possibility of circular include dependencies.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
The bitmask used to define these values produces overflow, as seen by
this compiler warning:
arch/arm64/kernel/head.S:47:8: warning:
integer overflow in preprocessor expression
#elif (PAGE_OFFSET & 0x1fffff) != 0
^~~~~~~~~~~
arch/arm64/include/asm/memory.h:52:46: note:
expanded from macro 'PAGE_OFFSET'
#define PAGE_OFFSET (UL(0xffffffffffffffff) << (VA_BITS -
1))
~~~~~~~~~~~~~~~~~~ ^
It would be preferrable to use GENMASK_ULL() instead, but it's not set
up to be used from assembly (the UL() macro token pastes UL suffixes
when not included in assembly sources).
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Suggested-by: Yury Norov <ynorov@caviumnetworks.com>
Suggested-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Errata workarounds for Qualcomm's Falkor CPU
- Qualcomm L2 Cache PMU driver
- Qualcomm SMCCC firmware quirk
- Support for DEBUG_VIRTUAL
- CPU feature detection for userspace via MRS emulation
- Preliminary work for the Statistical Profiling Extension
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJYpIxqAAoJELescNyEwWM0xdwH/AsTYAXPZDMdRnrQUyV0Fd2H
/9pMzww6dHXEmCMKkImf++otUD6S+gTCJTsj7kEAXT5sZzLk27std5lsW7R9oPjc
bGQMalZy+ovLR1gJ6v072seM3In4xph/qAYOpD8Q0AfYCLHjfMMArQfoLa8Esgru
eSsrAgzVAkrK7XHi3sYycUjr9Hac9tvOOuQ3SaZkDz4MfFIbI4b43+c1SCF7wgT9
tQUHLhhxzGmgxjViI2lLYZuBWsIWsE+algvOe1qocvA9JEIXF+W8NeOuCjdL8WwX
3aoqYClC+qD/9+/skShFv5gM5fo0/IweLTUNIHADXpB6OkCYDyg+sxNM+xnEWQU=
=YrPg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- Errata workarounds for Qualcomm's Falkor CPU
- Qualcomm L2 Cache PMU driver
- Qualcomm SMCCC firmware quirk
- Support for DEBUG_VIRTUAL
- CPU feature detection for userspace via MRS emulation
- Preliminary work for the Statistical Profiling Extension
- Misc cleanups and non-critical fixes
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (74 commits)
arm64/kprobes: consistently handle MRS/MSR with XZR
arm64: cpufeature: correctly handle MRS to XZR
arm64: traps: correctly handle MRS/MSR with XZR
arm64: ptrace: add XZR-safe regs accessors
arm64: include asm/assembler.h in entry-ftrace.S
arm64: fix warning about swapper_pg_dir overflow
arm64: Work around Falkor erratum 1003
arm64: head.S: Enable EL1 (host) access to SPE when entered at EL2
arm64: arch_timer: document Hisilicon erratum 161010101
arm64: use is_vmalloc_addr
arm64: use linux/sizes.h for constants
arm64: uaccess: consistently check object sizes
perf: add qcom l2 cache perf events driver
arm64: remove wrong CONFIG_PROC_SYSCTL ifdef
ARM: smccc: Update HVC comment to describe new quirk parameter
arm64: do not trace atomic operations
ACPI/IORT: Fix the error return code in iort_add_smmu_platform_device()
ACPI/IORT: Fix iort_node_get_id() mapping entries indexing
arm64: mm: enable CONFIG_HOLES_IN_ZONE for NUMA
perf: xgene: Include module.h
...
The arm64 __page_to_voff() macro takes a parameter called 'page', and
also refers to 'struct page'. Thus, if the value passed in is not
called 'page', we'll refer to the wrong struct name (which might not
exist).
Fixes: 3fa72fe9c6 ("arm64: mm: fix __page_to_voff definition")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Suggested-by: Volodymyr Babchuk <Volodymyr_Babchuk@epam.com>
Signed-off-by: Oleksandr Andrushchenko <Oleksandr_Andrushchenko@epam.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
x86 has an option CONFIG_DEBUG_VIRTUAL to do additional checks
on virt_to_phys calls. The goal is to catch users who are calling
virt_to_phys on non-linear addresses immediately. This inclues callers
using virt_to_phys on image addresses instead of __pa_symbol. As features
such as CONFIG_VMAP_STACK get enabled for arm64, this becomes increasingly
important. Add checks to catch bad virt_to_phys usage.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
__pa_symbol is technically the marcro that should be used for kernel
symbols. Switch to this as a pre-requisite for DEBUG_VIRTUAL which
will do bounds checking.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
virt_to_pfn lacks a cast at the top level. Don't rely on __virt_to_phys
and explicitly cast to unsigned long.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Several macros for various x_to_y exist outside the bounds of an
__ASSEMBLY__ guard. Move them in preparation for support for
CONFIG_DEBUG_VIRTUAL.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Fix parameter name for __page_to_voff, to match its definition.
At present, we don't see any issue, as page_to_virt's caller
declares 'page'.
Fixes: 9f2875912d ("arm64: mm: restrict virt_to_page() to the linear mapping")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
virt_addr_valid is supposed to return true if and only if virt_to_page
returns a valid page structure. The current macro does math on whatever
address is given and passes that to pfn_valid to verify. vmalloc and
module addresses can happen to generate a pfn that 'happens' to be
valid. Fix this by only performing the pfn_valid check on addresses that
have the potential to be valid.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit ab893fb9f1 ("arm64: introduce KIMAGE_VADDR as the virtual
base of the kernel region") logically split KIMAGE_VADDR from
PAGE_OFFSET, and since commit f9040773b7 ("arm64: move kernel
image to base of vmalloc area") the two have been distinct values.
Unfortunately, neither commit updated the comment above these
definitions, which now erroneously states that PAGE_OFFSET is the start
of the kernel image rather than the start of the linear mapping.
This patch fixes said comment, and introduces an explanation of
KIMAGE_VADDR.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
KERNEL_START and KERNEL_END are useful outside head.S, move them to a
header file.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the vmemmap region has been redefined to cover the linear region
rather than the entire physical address space, we no longer need to
perform a virtual-to-physical translation in the implementaion of
virt_to_page(). This restricts virt_to_page() translations to the linear
region, so redefine virt_addr_valid() as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This moves the vmemmap region right below PAGE_OFFSET, aka the start
of the linear region, and redefines its size to be a power of two.
Due to the placement of PAGE_OFFSET in the middle of the address space,
whose size is a power of two as well, this guarantees that virt to
page conversions and vice versa can be implemented efficiently, by
masking and shifting rather than ordinary arithmetic.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit c031a4213c ("arm64: kaslr: randomize the linear region")
implements randomization of the linear region, by subtracting a random
multiple of PUD_SIZE from memstart_addr. This causes the virtual mapping
of system RAM to move upwards in the linear region, and at the same time
causes memstart_addr to assume a value which may be negative if the offset
of system RAM in the physical space is smaller than its offset relative to
PAGE_OFFSET in the virtual space.
Since memstart_addr is effectively an offset now, redefine its type as s64
so that expressions involving shifting or division preserve its sign.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This adds support for KASLR is implemented, based on entropy provided by
the bootloader in the /chosen/kaslr-seed DT property. Depending on the size
of the address space (VA_BITS) and the page size, the entropy in the
virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all
4 levels), with the sidenote that displacements that result in the kernel
image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB
granule kernels, respectively) are not allowed, and will be rounded up to
an acceptable value.
If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is
randomized independently from the core kernel. This makes it less likely
that the location of core kernel data structures can be determined by an
adversary, but causes all function calls from modules into the core kernel
to be resolved via entries in the module PLTs.
If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is
randomized by choosing a page aligned 128 MB region inside the interval
[_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of
entropy (depending on page size), independently of the kernel randomization,
but still guarantees that modules are within the range of relative branch
and jump instructions (with the caveat that, since the module region is
shared with other uses of the vmalloc area, modules may need to be loaded
further away if the module region is exhausted)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since PAGE_OFFSET is chosen such that it cuts the kernel VA space right
in half, and since the size of the kernel VA space itself is always a
power of 2, we can treat PAGE_OFFSET as a bitmask and replace the
additions/subtractions with 'or' and 'and-not' operations.
For the comparison against PAGE_OFFSET, a mov/cmp/branch sequence ends
up getting replaced with a single tbz instruction. For the additions and
subtractions, we save a mov instruction since the mask is folded into the
instruction's immediate field.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Checking whether memstart_addr has been assigned every time it is
referenced adds a branch instruction that may hurt performance if
the reference in question occurs on a hot path. So only perform the
check if CONFIG_DEBUG_VM=y.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[catalin.marinas@arm.com: replaced #ifdef with VM_BUG_ON]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This relaxes the kernel Image placement requirements, so that it
may be placed at any 2 MB aligned offset in physical memory.
This is accomplished by ignoring PHYS_OFFSET when installing
memblocks, and accounting for the apparent virtual offset of
the kernel Image. As a result, virtual address references
below PAGE_OFFSET are correctly mapped onto physical references
into the kernel Image regardless of where it sits in memory.
Special care needs to be taken for dealing with memory limits passed
via mem=, since the generic implementation clips memory top down, which
may clip the kernel image itself if it is loaded high up in memory. To
deal with this case, we simply add back the memory covering the kernel
image, which may result in more memory to be retained than was passed
as a mem= parameter.
Since mem= should not be considered a production feature, a panic notifier
handler is installed that dumps the memory limit at panic time if one was
set.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Before deferring the assignment of memstart_addr in a subsequent patch, to
the moment where all memory has been discovered and possibly clipped based
on the size of the linear region and the presence of a mem= command line
parameter, we need to ensure that memstart_addr is not used to perform __va
translations before it is assigned.
One such use is in the generic early DT discovery of the initrd location,
which is recorded as a virtual address in the globals initrd_start and
initrd_end. So wire up the generic support to declare the initrd addresses,
and implement it without __va() translations, and perform the translation
after memstart_addr has been assigned.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This moves the module area to right before the vmalloc area, and moves
the kernel image to the base of the vmalloc area. This is an intermediate
step towards implementing KASLR, which allows the kernel image to be
located anywhere in the vmalloc area.
Since other subsystems such as hibernate may still need to refer to the
kernel text or data segments via their linears addresses, both are mapped
in the linear region as well. The linear alias of the text region is
mapped read-only/non-executable to prevent inadvertent modification or
execution.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This introduces the preprocessor symbol KIMAGE_VADDR which will serve as
the symbolic virtual base of the kernel region, i.e., the kernel's virtual
offset will be KIMAGE_VADDR + TEXT_OFFSET. For now, we define it as being
equal to PAGE_OFFSET, but in the future, it will be moved below it once
we move the kernel virtual mapping out of the linear mapping.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This wires up the existing generic huge-vmap feature, which allows
ioremap() to use PMD or PUD sized block mappings. It also adds support
to the unmap path for dealing with block mappings, which will allow us
to unmap the __init region using unmap_kernel_range() in a subsequent
patch.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
merged from tip/irq/for-arm to allow the arm64-specific part to be
upstreamed via the arm64 tree
- CPU feature detection reworked to cope with heterogeneous systems
where CPUs may not have exactly the same features. The features
reported by the kernel via internal data structures or ELF_HWCAP are
delayed until all the CPUs are up (and before user space starts)
- Support for 16KB pages, with the additional bonus of a 36-bit VA
space, though the latter only depending on EXPERT
- Implement native {relaxed, acquire, release} atomics for arm64
- New ASID allocation algorithm which avoids IPI on roll-over, together
with TLB invalidation optimisations (using local vs global where
feasible)
- KASan support for arm64
- EFI_STUB clean-up and isolation for the kernel proper (required by
KASan)
- copy_{to,from,in}_user optimisations (sharing the memcpy template)
- perf: moving arm64 to the arm32/64 shared PMU framework
- L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
- Support for the contiguous PTE hint on kernel mapping (16 consecutive
entries may be able to use a single TLB entry)
- Generic CONFIG_HZ now used on arm64
- defconfig updates
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWOkmIAAoJEGvWsS0AyF7x4GgQAINU3NePjFFvWZNCkqobeH9+
jFKwtXamIudhTSdnXNXyYWmtRL9Krg3qI4zDQf68dvDFAZAze2kVuOi1yPpCbpFZ
/j/afNyQc7+PoyqRAzmT+EMPZlcuOA84Prrl1r3QWZ58QaFeVk/6ZxrHunTHxN0x
mR9PIXfWx73MTo+UnG8FChkmEY6LmV4XpemgTaMR9FqFhdT51OZSxDDAYXOTm4JW
a5HdN9OWjjJ2rhLlFEaC7tszG9B5doHdy2tr5ge/YERVJzIPDogHkMe8ZhfAJc+x
SQU5tKN6Pg4MOi+dLhxlk0/mKCvHLiEQ5KVREJnt8GxupAR54Bat+DQ+rP9cSnpq
dRQTcARIOyy9LGgy+ROAsSo+NiyM5WuJ0/WJUYKmgWTJOfczRYoZv6TMKlwNOUYb
tGLCZHhKPM3yBHJlWbQykl3xmSuudxCMmjlZzg7B+MVfTP6uo0CRSPmYl+v67q+J
bBw/Z2RYXWYGnvlc6OfbMeImI6prXeE36+5ytyJFga0m+IqcTzRGzjcLxKEvdbiU
pr8n9i+hV9iSsT/UwukXZ8ay6zH7PrTLzILWQlieutfXlvha7MYeGxnkbLmdYcfe
GCj374io5cdImHcVKmfhnOMlFOLuOHphl9cmsd/O2LmCIqBj9BIeNH2Om8mHVK2F
YHczMdpESlJApE7kUc1e
=3six
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- "genirq: Introduce generic irq migration for cpu hotunplugged" patch
merged from tip/irq/for-arm to allow the arm64-specific part to be
upstreamed via the arm64 tree
- CPU feature detection reworked to cope with heterogeneous systems
where CPUs may not have exactly the same features. The features
reported by the kernel via internal data structures or ELF_HWCAP are
delayed until all the CPUs are up (and before user space starts)
- Support for 16KB pages, with the additional bonus of a 36-bit VA
space, though the latter only depending on EXPERT
- Implement native {relaxed, acquire, release} atomics for arm64
- New ASID allocation algorithm which avoids IPI on roll-over, together
with TLB invalidation optimisations (using local vs global where
feasible)
- KASan support for arm64
- EFI_STUB clean-up and isolation for the kernel proper (required by
KASan)
- copy_{to,from,in}_user optimisations (sharing the memcpy template)
- perf: moving arm64 to the arm32/64 shared PMU framework
- L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware
- Support for the contiguous PTE hint on kernel mapping (16 consecutive
entries may be able to use a single TLB entry)
- Generic CONFIG_HZ now used on arm64
- defconfig updates
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (91 commits)
arm64/efi: fix libstub build under CONFIG_MODVERSIONS
ARM64: Enable multi-core scheduler support by default
arm64/efi: move arm64 specific stub C code to libstub
arm64: page-align sections for DEBUG_RODATA
arm64: Fix build with CONFIG_ZONE_DMA=n
arm64: Fix compat register mappings
arm64: Increase the max granular size
arm64: remove bogus TASK_SIZE_64 check
arm64: make Timer Interrupt Frequency selectable
arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNED
arm64: cachetype: fix definitions of ICACHEF_* flags
arm64: cpufeature: declare enable_cpu_capabilities as static
genirq: Make the cpuhotplug migration code less noisy
arm64: Constify hwcap name string arrays
arm64/kvm: Make use of the system wide safe values
arm64/debug: Make use of the system wide safe value
arm64: Move FP/ASIMD hwcap handling to common code
arm64/HWCAP: Use system wide safe values
arm64/capabilities: Make use of system wide safe value
arm64: Delay cpu feature capability checks
...
The comparison between TASK_SIZE_64 and MODULES_VADDR does not
make any sense on arm64, it is simply something that has been
carried over from the ARM port which arm64 is based on. So drop it.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In order to not use lengthy (UL(0xffffffffffffffff) << VA_BITS) everywhere,
replace it with VA_START.
Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map. This facility is used by the pmem driver to
enable pfn_to_page() operations on the page frames returned by DAX
('direct_access' in 'struct block_device_operations'). For now, the
'memmap' allocation for these "device" pages comes from "System
RAM". Support for allocating the memmap from device memory will
arrive in a later kernel.
2/ Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3. Completion of
the conversion is targeted for v4.4.
3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
5/ Miscellaneous updates and fixes to libnvdimm including support
for issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
slsw6DkrWT60CRE42nbK
=o57/
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
Three architectures already define these, and we'll need them genericly
soon.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The linear region size of a 39-bit VA kernel is only 256 GB, which
may be insufficient to cover all of system RAM, even on platforms
that have much less than 256 GB of memory but which is laid out
very sparsely.
So make sure we clip the memory we will not be able to map before
installing it into the memblock memory table, by setting
MAX_MEMBLOCK_ADDR accordingly.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
UEFI spec 2.5 section 2.3.6.1 defines that
EFI_MEMORY_[UC|WC|WT|WB] are possible EFI memory types for
AArch64.
Each of those EFI memory types is mapped to a corresponding
AArch64 memory type. So we need to define PROT_DEVICE_nGnRnE
and PROT_NORMWL_WT additionaly.
MT_NORMAL_WT is defined, and its encoding is added to MAIR_EL1
when initializing the CPU.
Signed-off-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1438936621-5215-6-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
PCI IO space was intended to be 16MiB, at 32MiB below MODULES_VADDR, but
commit d1e6dc91b5 ("arm64: Add architectural support for PCI")
extended this to cover the full 32MiB. The final 8KiB of this 32MiB is
also allocated for the fixmap, allowing for potential clashes between
the two.
This change was masked by assumptions in mem_init and the page table
dumping code, which assumed the I/O space to be 16MiB long through
seaparte hard-coded definitions.
This patch changes the definition of the PCI I/O space allocation to
live in asm/memory.h, along with the other VA space allocations. As the
fixmap allocation depends on the number of fixmap entries, this is moved
below the PCI I/O space allocation. Both the fixmap and PCI I/O space
are guarded with 2MB of padding. Sites assuming the I/O space was 16MiB
are moved over use new PCI_IO_{START,END} definitions, which will keep
in sync with the size of the IO space (now restored to 16MiB).
As a useful side effect, the use of the new PCI_IO_{START,END}
definitions prevents a build issue in the dumping code due to a (now
redundant) missing include of io.h for PCI_IOBASE.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Liviu Dudau <liviu.dudau@arm.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
[catalin.marinas@arm.com: reorder FIXADDR and PCI_IO address_markers_idx enum]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
While there normally is no reason to have a pull request for asm-generic
but have all changes get merged through whichever tree needs them, I do
have a series for 3.19. There are two sets of patches that change
significant portions of asm/io.h, and this branch contains both in order
to resolve the conflicts:
- Will Deacon has done a set of patches to ensure that all architectures
define {read,write}{b,w,l,q}_relaxed() functions or get them by
including asm-generic/io.h. These functions are commonly used on ARM
specific drivers to avoid expensive L2 cache synchronization implied by
the normal {read,write}{b,w,l,q}, but we need to define them on all
architectures in order to share the drivers across architectures and
to enable CONFIG_COMPILE_TEST configurations for them
- Thierry Reding has done an unrelated set of patches that extends
the asm-generic/io.h file to the degree necessary to make it useful
on ARM64 and potentially other architectures.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIVAwUAVIdwNmCrR//JCVInAQJWuw/9FHt2ThMnI1J1Jqy4CVwtyjWTSa6Y/uVj
xSytS7AOvmU/nw1quSoba5mN9fcUQUtK9kqjqNcq71WsQcDE6BF9SFpi9cWtjWcI
ZfWsC+5kqry/mbnuHefENipem9RqBrLbOBJ3LARf5M8rZJuTz1KbdZs9r9+1QsCX
ou8jeqVvNKUn9J1WyekJBFSrPOtZ4bCUpeyh23JHRfPtJeAHNOuPuymj6WceAz98
uMV1icRaCBMySsf9HgsHRYW5HwuCm3MrrYj6ukyPpgxYz7FRq4hJLDs6GnlFtAGb
71g87NpFdB32qbW+y1ntfYaJyUryMHMVHBWcV5H9m0btdHTRHYZjoOGOPuyLHHO8
+l4/FaOQhnDL8cNDj0HKfhdlyaFylcWgs1wzj68nv31c1dGjcJcQiyCDwry9mJhr
erh4EewcerUvWzbBMQ4JP1f8syKMsKwbo1bVU61a1RQJxEqVCzJMLweGSOFmqMX2
6E4ZJVWv81UFLoFTzYx+7+M45K4NWywKNQdzwKmqKHc4OQyvq4ALJI0A7SGFJdDR
HJ7VqDiLaSdBitgJcJUxNzKcyXij6wE9jE1fBe3YDFE4LrnZXFVLN+MX6hs7AIFJ
vJM1UpxRxQUMGIH2m7rbDNazOAsvQGxINOjNor23cNLuf6qLY1LrpHVPQDAfJVvA
6tROM77bwIQ=
=xUv6
-----END PGP SIGNATURE-----
Merge tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic asm/io.h rewrite from Arnd Bergmann:
"While there normally is no reason to have a pull request for
asm-generic but have all changes get merged through whichever tree
needs them, I do have a series for 3.19.
There are two sets of patches that change significant portions of
asm/io.h, and this branch contains both in order to resolve the
conflicts:
- Will Deacon has done a set of patches to ensure that all
architectures define {read,write}{b,w,l,q}_relaxed() functions or
get them by including asm-generic/io.h.
These functions are commonly used on ARM specific drivers to avoid
expensive L2 cache synchronization implied by the normal
{read,write}{b,w,l,q}, but we need to define them on all
architectures in order to share the drivers across architectures
and to enable CONFIG_COMPILE_TEST configurations for them
- Thierry Reding has done an unrelated set of patches that extends
the asm-generic/io.h file to the degree necessary to make it useful
on ARM64 and potentially other architectures"
* tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (29 commits)
ARM64: use GENERIC_PCI_IOMAP
sparc: io: remove duplicate relaxed accessors on sparc32
ARM: sa11x0: Use void __iomem * in MMIO accessors
arm64: Use include/asm-generic/io.h
ARM: Use include/asm-generic/io.h
asm-generic/io.h: Implement generic {read,write}s*()
asm-generic/io.h: Reconcile I/O accessor overrides
/dev/mem: Use more consistent data types
Change xlate_dev_{kmem,mem}_ptr() prototypes
ARM: ixp4xx: Properly override I/O accessors
ARM: ixp4xx: Fix build with IXP4XX_INDIRECT_PCI
ARM: ebsa110: Properly override I/O accessors
ARC: Remove redundant PCI_IOBASE declaration
documentation: memory-barriers: clarify relaxed io accessor semantics
x86: io: implement dummy relaxed accessor macros for writes
tile: io: implement dummy relaxed accessor macros for writes
sparc: io: implement dummy relaxed accessor macros for writes
powerpc: io: implement dummy relaxed accessor macros for writes
parisc: io: implement dummy relaxed accessor macros for writes
mn10300: io: implement dummy relaxed accessor macros for writes
...
pfns are unsigned long, but PHYS_PFN_OFFSET is phys_addr_t. This leads
to page_to_pfn() returning phys_addr_t which cause type mismatches in
some print statements.
Signed-off-by: Neil Zhang <zhangwm@marvell.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Include the generic I/O header file so that duplicate implementations
can be removed. This will also help to establish consistency across more
architectures regarding which accessors they support.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Changes include:
- Context tracking support (NO_HZ_FULL) which narrowly missed 3.16
- vDSO layout rework following Andy's work on x86
- TEXT_OFFSET fuzzing for bootloader testing
- /proc/cpuinfo tidy-up
- Preliminary work to support 48-bit virtual addresses, but this is
currently disabled until KVM has been ported to use it (the patches
do, however, bring some nice clean-up)
- Boot-time CPU sanity checks (especially useful on heterogenous
systems)
- Support for syscall auditing
- Support for CC_STACKPROTECTOR
- defconfig updates
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABCgAGBQJT3qkzAAoJEC379FI+VC/ZxwEP/3uYs9glDLTd1hmVFr1cRutg
j4m1Kc7RCO+zpbYCXJLAQLPjwjOaUWPZUeZPQZib6bO+4sTqFYe9vsaqRyvn/bxM
BaQhytpyxymfG8m3rmXaI97TzBwnRB2oQ0k36rsjMwG/VQMLf9kVuEwURoAHF07l
RyMK2sAwE0/8XIJZQFNo5SAbkO52EiHlehdlTzCXGWWOWdHDyVfks/k6YhIS991r
0W9Y0ghHaMz+mAumTSq7jzPQa3aF3GjTp0W7gJjk/PRBDHfPisphEO36zsA0yHtE
3uvEH0kUQK/ve4ZUQiNvuEZCSqalPFag6j5Z8BnFtafa66J5h414CGPAfER6Kz7+
KGpoEve+7Rpvvb1S4T0tTMg7HoGrvqc5wKS3uFxfoGooGUcUOchSkYiVTBMDJSKn
QlJbb1QSvuNFGhcKntTOe1QMT+x0w9urq/e+QfnQrZ/m5Er7J3qCZzeOfA2JFTjQ
sB24yjzAz5a5VwbKbuB2b4gDILY9oYNe94HFP08o/rJfANnL0dpP1Oyl0b12ILsI
a69EMdpaeEQo8703KLIlzfW6u92PqYs6UkYvya8o27FAvmNvDfB/PffjgVsOAHFi
Qc+dpYbnzNfwJgG9w0qhJ+MR8g5fiBYHqNpfGOY+g5M50j0hZUX9comoWw1xkl0X
HlvG7xzrTF7/VbWEtZ2o
=6XMc
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Once again, Catalin's off on holiday and I'm looking after the arm64
tree. Please can you pull the following arm64 updates for 3.17?
Note that this branch also includes the new GICv3 driver (merged via a
stable tag from Jason's irqchip tree), since there is a fix for older
binutils on top.
Changes include:
- context tracking support (NO_HZ_FULL) which narrowly missed 3.16
- vDSO layout rework following Andy's work on x86
- TEXT_OFFSET fuzzing for bootloader testing
- /proc/cpuinfo tidy-up
- preliminary work to support 48-bit virtual addresses, but this is
currently disabled until KVM has been ported to use it (the patches
do, however, bring some nice clean-up)
- boot-time CPU sanity checks (especially useful on heterogenous
systems)
- support for syscall auditing
- support for CC_STACKPROTECTOR
- defconfig updates"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (55 commits)
arm64: add newline to I-cache policy string
Revert "arm64: dmi: Add SMBIOS/DMI support"
arm64: fpsimd: fix a typo in fpsimd_save_partial_state ENDPROC
arm64: don't call break hooks for BRK exceptions from EL0
arm64: defconfig: enable devtmpfs mount option
arm64: vdso: fix build error when switching from LE to BE
arm64: defconfig: add virtio support for running as a kvm guest
arm64: gicv3: Allow GICv3 compilation with older binutils
arm64: fix soft lockup due to large tlb flush range
arm64/crypto: fix makefile rule for aes-glue-%.o
arm64: Do not invoke audit_syscall_* functions if !CONFIG_AUDIT_SYSCALL
arm64: Fix barriers used for page table modifications
arm64: Add support for 48-bit VA space with 64KB page configuration
arm64: asm/pgtable.h pmd/pud definitions clean-up
arm64: Determine the vmalloc/vmemmap space at build time based on VA_BITS
arm64: Clean up the initial page table creation in head.S
arm64: Remove asm/pgtable-*level-types.h files
arm64: Remove asm/pgtable-*level-hwdef.h files
arm64: Convert bool ARM64_x_LEVELS to int ARM64_PGTABLE_LEVELS
arm64: mm: Implement 4 levels of translation tables
...
This patch adds virtual address space size and a level of translation
tables to kernel configuration. It facilicates introduction of
different MMU options, such as 4KB + 4 levels, 16KB + 4 levels and
64KB + 3 levels, easily.
The idea is based on the discussion with Catalin Marinas:
http://www.spinics.net/linux/lists/arm-kernel/msg319552.html
Signed-off-by: Jungseok Lee <jays.lee@samsung.com>
Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com>
Acked-by: Kukjin Kim <kgene.kim@samsung.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
include/linux/sched.h implements TASK_SIZE_OF as TASK_SIZE if it
is not set by the architecture headers. TASK_SIZE uses the
current task to determine the size of the virtual address space.
On a 64-bit kernel this will cause reading /proc/pid/pagemap of a
64-bit process from a 32-bit process to return EOF when it reads
past 0xffffffff.
Implement TASK_SIZE_OF exactly the same as TASK_SIZE with
test_tsk_thread_flag instead of test_thread_flag.
Cc: stable@vger.kernel.org
Signed-off-by: Colin Cross <ccross@android.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
virt_to_pfn has been defined in arch/arm/include/asm/memory.h by commit
e26a9e0 "ARM: Better virt_to_page() handling" and Xen has come to rely
on it. Introduce virt_to_pfn on arm64 too.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for early IO or memory mappings which are needed before the
normal ioremap() is usable. This also adds fixmap support for permanent
fixed mappings such as that used by the earlyprintk device register
region.
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The definition of virt_addr_valid is that virt_addr_valid should
return true if and only if virt_to_page returns a valid pointer.
The current definition of virt_addr_valid only checks against the
virtual address range. There's no guarantee that just because a
virtual address falls bewteen PAGE_OFFSET and high_memory the
associated physical memory has a valid backing struct page. Follow
the example of other architectures and convert to pfn_valid to
verify that the virtual address is actually valid.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch expands the VA_BITS to 42 when the 64K page configuration is
enabled allowing 2TB kernel linear mapping. Linux still uses 2 levels of
page tables in this configuration with pgd now being a full page.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Add HYP and S2 page flags, for both normal and device memory.
Reviewed-by: Christopher Covington <cov@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This patch adds support for "earlyprintk=" parameter on the kernel
command line. The format is:
earlyprintk=<name>[,<addr>][,<options>]
where <name> is the name of the (UART) device, e.g. "pl011", <addr> is
the I/O address. The <options> aren't currently used.
The mapping of the earlyprintk device is done very early during kernel
boot and there are restrictions on which functions it can call. A
special early_io_map() function is added which creates the mapping from
the pre-defined EARLY_IOBASE to the device I/O address passed via the
kernel parameter. The pgd entry corresponding to EARLY_IOBASE is
pre-populated in head.S during kernel boot.
Only PL011 is currently supported and it is assumed that the interface
is already initialised by the boot loader before the kernel is started.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
The virtual memory layout is described in
Documentation/arm64/memory.txt. This patch adds the MMU definitions for
the 4KB and 64KB translation table configurations. The SECTION_SIZE is
2MB with 4KB page and 512MB with 64KB page configuration.
PHYS_OFFSET is calculated at run-time and stored in a variable (no
run-time code patching at this stage).
On the current implementation, both user and kernel address spaces are
512G (39-bit) each with a maximum of 256G for the RAM linear mapping.
Linux uses 3 levels of translation tables with the 4K page configuration
and 2 levels with the 64K configuration. Extending the memory space
beyond 39-bit with the 4K pages or 42-bit with 64K pages requires an
additional level of translation tables.
The SPARSEMEM configuration is global to all AArch64 platforms and
allows for 1GB sections with SPARSEMEM_VMEMMAP enabled by default.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>