Commit Graph

285 Commits

Author SHA1 Message Date
Michal Hocko
34ad129657 mm, memory_hotplug: remove explicit build_all_zonelists from try_online_node
try_online_node calls hotadd_new_pgdat which already calls
build_all_zonelists.  So the additional call is redundant.  Even though
hotadd_new_pgdat will only initialize zonelists of the new node this is
the right thing to do because such a node doesn't have any memory so
other zonelists would ignore all the zones from this node anyway.

Link: http://lkml.kernel.org/r/20170721143915.14161-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:26 -07:00
Michal Hocko
72675e131e mm, memory_hotplug: drop zone from build_all_zonelists
build_all_zonelists gets a zone parameter to initialize zone's pagesets.
There is only a single user which gives a non-NULL zone parameter and
that one doesn't really need the rest of the build_all_zonelists (see
commit 6dcd73d701 ("memory-hotplug: allocate zone's pcp before
onlining pages")).

Therefore remove setup_zone_pageset from build_all_zonelists and call it
from its only user directly.  This will also remove a pointless zonlists
rebuilding which is always good.

Link: http://lkml.kernel.org/r/20170721143915.14161-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:25 -07:00
Michal Hocko
c6f03e2903 mm, memory_hotplug: remove zone restrictions
Historically we have enforced that any kernel zone (e.g ZONE_NORMAL) has
to precede the Movable zone in the physical memory range.  The purpose
of the movable zone is, however, not bound to any physical memory
restriction.  It merely defines a class of migrateable and reclaimable
memory.

There are users (e.g.  CMA) who might want to reserve specific physical
memory ranges for their own purpose.  Moreover our pfn walkers have to
be prepared for zones overlapping in the physical range already because
we do support interleaving NUMA nodes and therefore zones can interleave
as well.  This means we can allow each memory block to be associated
with a different zone.

Loosen the current onlining semantic and allow explicit onlining type on
any memblock.  That means that online_{kernel,movable} will be allowed
regardless of the physical address of the memblock as long as it is
offline of course.  This might result in moveble zone overlapping with
other kernel zones.  Default onlining then becomes a bit tricky but
still sensible.  echo online > memoryXY/state will online the given
block to

	1) the default zone if the given range is outside of any zone
	2) the enclosing zone if such a zone doesn't interleave with
	   any other zone
        3) the default zone if more zones interleave for this range

where default zone is movable zone only if movable_node is enabled
otherwise it is a kernel zone.

Here is an example of the semantic with (movable_node is not present but
it work in an analogous way). We start with following memblocks, all of
them offline:

  memory34/valid_zones:Normal Movable
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Normal Movable
  memory38/valid_zones:Normal Movable
  memory39/valid_zones:Normal Movable
  memory40/valid_zones:Normal Movable
  memory41/valid_zones:Normal Movable

Now, we online block 34 in default mode and block 37 as movable

  root@test1:/sys/devices/system/node/node1# echo online > memory34/state
  root@test1:/sys/devices/system/node/node1# echo online_movable > memory37/state
  memory34/valid_zones:Normal
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Movable
  memory38/valid_zones:Normal Movable
  memory39/valid_zones:Normal Movable
  memory40/valid_zones:Normal Movable
  memory41/valid_zones:Normal Movable

As we can see all other blocks can still be onlined both into Normal and
Movable zones and the Normal is default because the Movable zone spans
only block37 now.

  root@test1:/sys/devices/system/node/node1# echo online_movable > memory41/state
  memory34/valid_zones:Normal
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Movable
  memory38/valid_zones:Movable Normal
  memory39/valid_zones:Movable Normal
  memory40/valid_zones:Movable Normal
  memory41/valid_zones:Movable

Now the default zone for blocks 37-41 has changed because movable zone
spans that range.

  root@test1:/sys/devices/system/node/node1# echo online_kernel > memory39/state
  memory34/valid_zones:Normal
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Movable
  memory38/valid_zones:Normal Movable
  memory39/valid_zones:Normal
  memory40/valid_zones:Movable Normal
  memory41/valid_zones:Movable

Note that the block 39 now belongs to the zone Normal and so block38
falls into Normal by default as well.

For completness

  root@test1:/sys/devices/system/node/node1# for i in memory[34]?
  do
	echo online > $i/state 2>/dev/null
  done

  memory34/valid_zones:Normal
  memory35/valid_zones:Normal
  memory36/valid_zones:Normal
  memory37/valid_zones:Movable
  memory38/valid_zones:Normal
  memory39/valid_zones:Normal
  memory40/valid_zones:Movable
  memory41/valid_zones:Movable

Implementation wise the change is quite straightforward.  We can get rid
of allow_online_pfn_range altogether.  online_pages allows only offline
nodes already.  The original default_zone_for_pfn will become
default_kernel_zone_for_pfn.  New default_zone_for_pfn implements the
above semantic.  zone_for_pfn_range is slightly reorganized to implement
kernel and movable online type explicitly and MMOP_ONLINE_KEEP becomes a
catch all default behavior.

Link: http://lkml.kernel.org/r/20170714121233.16861-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:25 -07:00
Michal Hocko
e5e6893026 mm, memory_hotplug: display allowed zones in the preferred ordering
Prior to commit f1dd2cd13c ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") we used to allow to change the
valid zone types of a memory block if it is adjacent to a different zone
type.

This fact was reflected in memoryNN/valid_zones by the ordering of
printed zones.  The first one was default (echo online > memoryNN/state)
and the other one could be onlined explicitly by online_{movable,kernel}.

This behavior was removed by the said patch and as such the ordering was
not all that important.  In most cases a kernel zone would be default
anyway.  The only exception is movable_node handled by "mm,
memory_hotplug: support movable_node for hotpluggable nodes".

Let's reintroduce this behavior again because later patch will remove
the zone overlap restriction and so user will be allowed to online
kernel resp.  movable block regardless of its placement.  Original
behavior will then become significant again because it would be
non-trivial for users to see what is the default zone to online into.

Implementation is really simple.  Pull out zone selection out of
move_pfn_range into zone_for_pfn_range helper and use it in
show_valid_zones to display the zone for default onlining and then both
kernel and movable if they are allowed.  Default online zone is not
duplicated.

Link: http://lkml.kernel.org/r/20170714121233.16861-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:25 -07:00
Thomas Gleixner
3f906ba236 mm/memory-hotplug: switch locking to a percpu rwsem
Andrey reported a potential deadlock with the memory hotplug lock and
the cpu hotplug lock.

The reason is that memory hotplug takes the memory hotplug lock and then
calls stop_machine() which calls get_online_cpus().  That's the reverse
lock order to get_online_cpus(); get_online_mems(); in mm/slub_common.c

The problem has been there forever.  The reason why this was never
reported is that the cpu hotplug locking had this homebrewn recursive
reader writer semaphore construct which due to the recursion evaded the
full lock dep coverage.  The memory hotplug code copied that construct
verbatim and therefor has similar issues.

Three steps to fix this:

1) Convert the memory hotplug locking to a per cpu rwsem so the
   potential issues get reported proper by lockdep.

2) Lock the online cpus in mem_hotplug_begin() before taking the memory
   hotplug rwsem and use stop_machine_cpuslocked() in the page_alloc
   code to avoid recursive locking.

3) The cpu hotpluck locking in #2 causes a recursive locking of the cpu
   hotplug lock via __offline_pages() -> lru_add_drain_all(). Solve this
   by invoking lru_add_drain_all_cpuslocked() instead.

Link: http://lkml.kernel.org/r/20170704093421.506836322@linutronix.de
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:33 -07:00
John Hubbard
a52149f129 mm/memory_hotplug.c: remove unused local zone_type from __remove_zone()
__remove_zone() sets up up zone_type, but never uses it for anything.
This does not cause a warning, due to the (necessary) use of
-Wno-unused-but-set-variable.  However, it's noise, so just delete it.

Link: http://lkml.kernel.org/r/20170624043421.24465-2-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:32 -07:00
Michal Hocko
8b91323889 mm: unify new_node_page and alloc_migrate_target
Commit 394e31d2ce ("mem-hotplug: alloc new page from a nearest
neighbor node when mem-offline") has duplicated a large part of
alloc_migrate_target with some hotplug specific special casing.

To be more precise it tried to enfore the allocation from a different
node than the original page.  As a result the two function diverged in
their shared logic, e.g.  the hugetlb allocation strategy.

Let's unify the two and express different NUMA requirements by the given
nodemask.  new_node_page will simply exclude the node it doesn't care
about and alloc_migrate_target will use all the available nodes.
alloc_migrate_target will then learn to migrate hugetlb pages more
sanely and use preallocated pool when possible.

Please note that alloc_migrate_target used to call alloc_page resp.
alloc_pages_current so the memory policy of the current context which is
quite strange when we consider that it is used in the context of
alloc_contig_range which just tries to migrate pages which stand in the
way.

Link: http://lkml.kernel.org/r/20170608074553.22152-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Michal Hocko
4db9b2efe9 hugetlb, memory_hotplug: prefer to use reserved pages for migration
new_node_page will try to use the origin's next NUMA node as the
migration destination for hugetlb pages.  If such a node doesn't have
any preallocated pool it falls back to __alloc_buddy_huge_page_no_mpol
to allocate a surplus page instead.  This is quite subotpimal for any
configuration when hugetlb pages are no distributed to all NUMA nodes
evenly.  Say we have a hotplugable node 4 and spare hugetlb pages are
node 0

  /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:10000
  /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node2/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node3/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node4/hugepages/hugepages-2048kB/nr_hugepages:10000
  /sys/devices/system/node/node5/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node6/hugepages/hugepages-2048kB/nr_hugepages:0
  /sys/devices/system/node/node7/hugepages/hugepages-2048kB/nr_hugepages:0

Now we consume the whole pool on node 4 and try to offline this node.
All the allocated pages should be moved to node0 which has enough
preallocated pages to hold them.  With the current implementation
offlining very likely fails because hugetlb allocations during runtime
are much less reliable.

Fix this by reusing the nodemask which excludes migration source and try
to find a first node which has a page in the preallocated pool first and
fall back to __alloc_buddy_huge_page_no_mpol only when the whole pool is
consumed.

[akpm@linux-foundation.org: remove bogus arg from alloc_huge_page_nodemask() stub]
Link: http://lkml.kernel.org/r/20170608074553.22152-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Michal Hocko
7f252f277b mm, memory_hotplug: simplify empty node mask handling in new_node_page
new_node_page tries to allocate the target page on a different NUMA node
than the source page.  This makes sense in most cases during the hotplug
because we are likely to offline the whole numa node.  But there are
cases where there are no other nodes to fallback (e.g.  when offlining
parts of the only existing node) and we have to fallback to allocating
from the source node.  The current code does that but it can be
simplified by checking the nmask and updating it before we even try to
allocate rather than special casing it.

This patch shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170608074553.22152-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhong jiang <zhongjiang@huawei.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Michal Hocko
9f123ab544 mm, memory_hotplug: support movable_node for hotpluggable nodes
movable_node kernel parameter allows making hotpluggable NUMA nodes to
put all the hotplugable memory into movable zone which allows more or
less reliable memory hotremove.  At least this is the case for the NUMA
nodes present during the boot (see find_zone_movable_pfns_for_nodes).

This is not the case for the memory hotplug, though.

	echo online > /sys/devices/system/memory/memoryXYZ/state

will default to a kernel zone (usually ZONE_NORMAL) unless the
particular memblock is already in the movable zone range which is not
the case normally when onlining the memory from the udev rule context
for a freshly hotadded NUMA node.  The only option currently is to have
a special udev rule to echo online_movable to all memblocks belonging to
such a node which is rather clumsy.  Not to mention this is inconsistent
as well because what ended up in the movable zone during the boot will
end up in a kernel zone after hotremove & hotadd without special care.

It would be nice to reuse memblock_is_hotpluggable but the runtime
hotplug doesn't have that information available because the boot and
hotplug paths are not shared and it would be really non trivial to make
them use the same code path because the runtime hotplug doesn't play
with the memblock allocator at all.

Teach move_pfn_range that MMOP_ONLINE_KEEP can use the movable zone if
movable_node is enabled and the range doesn't overlap with the existing
normal zone.  This should provide a reasonable default onlining
strategy.

Strictly speaking the semantic is not identical with the boot time
initialization because find_zone_movable_pfns_for_nodes covers only the
hotplugable range as described by the BIOS/FW.  From my experience this
is usually a full node though (except for Node0 which is special and
never goes away completely).  If this turns out to be a problem in the
real life we can tweak the code to store hotplug flag into memblocks but
let's keep this simple now.

Link: http://lkml.kernel.org/r/20170612111227.GI7476@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:31 -07:00
Gustavo A. R. Silva
dbac61a3f2 mm/memory_hotplug.c: add NULL check to avoid potential NULL pointer dereference
The NULL check at line 1226: if (!pgdat), implies that pointer pgdat
might be NULL.

rollback_node_hotadd() dereferences this pointer.  Add NULL check to
avoid a potential NULL pointer dereference.

Addresses-Coverity-ID: 1369133
Link: http://lkml.kernel.org/r/20170530212436.GA6195@embeddedgus
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Michal Hocko
4932381ee2 mm, memory_hotplug: move movable_node to the hotplug proper
movable_node_is_enabled is defined in memblock proper while it is
initialized from the memory hotplug proper.  This is quite messy and it
makes a dependency between the two so move movable_node along with the
helper functions to memory_hotplug.

To make it more entertaining the kernel parameter is ignored unless
CONFIG_HAVE_MEMBLOCK_NODE_MAP=y because we do not have the node
information for each memblock otherwise.  So let's warn when the option
is disabled.

Link: http://lkml.kernel.org/r/20170529114141.536-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Michal Hocko
f70029bbaa mm, memory_hotplug: drop CONFIG_MOVABLE_NODE
Commit 20b2f52b73 ("numa: add CONFIG_MOVABLE_NODE for
movable-dedicated node") has introduced CONFIG_MOVABLE_NODE without a
good explanation on why it is actually useful.

It makes a lot of sense to make movable node semantic opt in but we
already have that because the feature has to be explicitly enabled on
the kernel command line.  A config option on top only makes the
configuration space larger without a good reason.  It also adds an
additional ifdefery that pollutes the code.

Just drop the config option and make it de-facto always enabled.  This
shouldn't introduce any change to the semantic.

Link: http://lkml.kernel.org/r/20170529114141.536-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Michal Hocko
57c0a17238 mm, memory_hotplug: drop artificial restriction on online/offline
Patch series "remove CONFIG_MOVABLE_NODE".

I am continuing to clean up the memory hotplug code and
CONFIG_MOVABLE_NODE seems dubious at best.  The following two patches
simply removes the flag and make it de-facto always enabled.

The current semantic of the config option is twofold 1) it automatically
binds hotplugable nodes to have memory in zone_movable by default when
movable_node is enabled 2) forbids memory hotplug to online all the
memory as movable when !CONFIG_MOVABLE_NODE.

The later restriction is quite dubious because there is no clear cut of
how much normal memory do we need for a reasonable system operation.  A
single memory block which is sufficient to allow further movable onlines
is far from sufficient (e.g a node with >2GB and memblocks 128MB will
fill up this zone with struct pages leaving nothing for other
allocations).  Removing the config option will not only reduce the
configuration space it also removes quite some code.

The semantic of the movable_node command line parameter is preserved.

The first patch removes the restriction mentioned above and the second
one simply removes all the CONFIG_MOVABLE_NODE related stuff.  The last
patch moves movable_node flag handling to memory_hotplug proper where it
belongs.

[1] http://lkml.kernel.org/r/20170524122411.25212-1-mhocko@kernel.org

This patch (of 3):

Commit 74d42d8fe1 ("memory_hotplug: ensure every online node has
NORMAL memory") has introduced a restriction that every numa node has to
have at least some memory in !movable zones before a first movable
memory can be onlined if !CONFIG_MOVABLE_NODE.

Likewise can_offline_normal checks the amount of normal memory in
!movable zones and it disallows to offline memory if there is no normal
memory left with a justification that "memory-management acts bad when
we have nodes which is online but don't have any normal memory".

While it is true that not having _any_ memory for kernel allocations on
a NUMA node is far from great and such a node would be quite subotimal
because all kernel allocations will have to fallback to another NUMA
node but there is no reason to disallow such a configuration in
principle.

Besides that there is not really a big difference to have one memblock
for ZONE_NORMAL available or none.  With 128MB size memblocks the system
might trash on the kernel allocations requests anyway.  It is really
hard to draw a line on how much normal memory is really sufficient so we
have to rely on administrator to configure system sanely therefore drop
the artificial restriction and remove can_offline_normal and
can_online_high_movable altogether.

Link: http://lkml.kernel.org/r/20170529114141.536-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Yasuaki Ishimatsu <yasu.isimatu@gmail.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kani Toshimitsu <toshi.kani@hpe.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Vlastimil Babka
04ec6264f2 mm, page_alloc: pass preferred nid instead of zonelist to allocator
The main allocator function __alloc_pages_nodemask() takes a zonelist
pointer as one of its parameters.  All of its callers directly or
indirectly obtain the zonelist via node_zonelist() using a preferred
node id and gfp_mask.  We can make the code a bit simpler by doing the
zonelist lookup in __alloc_pages_nodemask(), passing it a preferred node
id instead (gfp_mask is already another parameter).

There are some code size benefits thanks to removal of inlined
node_zonelist():

  bloat-o-meter add/remove: 2/2 grow/shrink: 4/36 up/down: 399/-1351 (-952)

This will also make things simpler if we proceed with converting cpusets
to zonelists.

Link: http://lkml.kernel.org/r/20170517081140.30654-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:34 -07:00
Michal Hocko
559bfc7d1b mm, memory_hotplug: remove unused cruft after memory hotplug rework
zone_for_memory doesn't have any user anymore as well as the whole zone
shifting infrastructure so drop them all.

This shouldn't introduce any functional changes.

Link: http://lkml.kernel.org/r/20170515085827.16474-15-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
cdf72f2504 mm, memory_hotplug: fix the section mismatch warning
Tobias has reported following section mismatches introduced by "mm,
memory_hotplug: do not associate hotadded memory to zones until online".

  WARNING: mm/built-in.o(.text+0x5a1c2): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:memmap_init_zone()
  The function move_pfn_range_to_zone() references
  the function __meminit memmap_init_zone().
  This is often because move_pfn_range_to_zone lacks a __meminit
  annotation or the annotation of memmap_init_zone is wrong.

  WARNING: mm/built-in.o(.text+0x5a25b): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:init_currently_empty_zone()
  The function move_pfn_range_to_zone() references
  the function __meminit init_currently_empty_zone().
  This is often because move_pfn_range_to_zone lacks a __meminit
  annotation or the annotation of init_currently_empty_zone is wrong.

  WARNING: vmlinux.o(.text+0x188aa2): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:memmap_init_zone()
  The function move_pfn_range_to_zone() references
  the function __meminit memmap_init_zone().
  This is often because move_pfn_range_to_zone lacks a __meminit
  annotation or the annotation of memmap_init_zone is wrong.

  WARNING: vmlinux.o(.text+0x188b3b): Section mismatch in reference from the function move_pfn_range_to_zone() to the function .meminit.text:init_currently_empty_zone()
  The function move_pfn_range_to_zone() references
  the function __meminit init_currently_empty_zone().
  This is often because move_pfn_range_to_zone lacks a __meminit
  annotation or the annotation of init_currently_empty_zone is wrong.

Both memmap_init_zone and init_currently_empty_zone are marked __meminit
but move_pfn_range_to_zone is used outside of __meminit sections (e.g.
devm_memremap_pages) so we have to hide it from the checker by __ref
annotation.

Link: http://lkml.kernel.org/r/20170515085827.16474-14-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
3d79a728f9 mm, memory_hotplug: replace for_device by want_memblock in arch_add_memory
arch_add_memory gets for_device argument which then controls whether we
want to create memblocks for created memory sections.  Simplify the
logic by telling whether we want memblocks directly rather than going
through pointless negation.  This also makes the api easier to
understand because it is clear what we want rather than nothing telling
for_device which can mean anything.

This shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170515085827.16474-13-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
c246a213f5 mm, memory_hotplug: do not assume ZONE_NORMAL is default kernel zone
Heiko Carstens has noticed that he can generate overlapping zones for
ZONE_DMA and ZONE_NORMAL:

  DMA      [mem 0x0000000000000000-0x000000007fffffff]
  Normal   [mem 0x0000000080000000-0x000000017fffffff]

  $ cat /sys/devices/system/memory/block_size_bytes
  10000000
  $ cat /sys/devices/system/memory/memory5/valid_zones
  DMA
  $ echo 0 > /sys/devices/system/memory/memory5/online
  $ cat /sys/devices/system/memory/memory5/valid_zones
  Normal
  $ echo 1 > /sys/devices/system/memory/memory5/online
  Normal

  $ cat /proc/zoneinfo
  Node 0, zone      DMA
  spanned  524288        <-----
  present  458752
  managed  455078
  start_pfn:           0 <-----

  Node 0, zone   Normal
  spanned  720896
  present  589824
  managed  571648
  start_pfn:           327680 <-----

The reason is that we assume that the default zone for kernel onlining
is ZONE_NORMAL.  This was a simplification introduced by the memory
hotplug rework and it is easily fixable by checking the range overlap in
the zone order and considering the first matching zone as the default
one.  If there is no such zone then assume ZONE_NORMAL as we have been
doing so far.

Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online"
Link: http://lkml.kernel.org/r/20170601083746.4924-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
a69578a154 mm, memory_hotplug: fix MMOP_ONLINE_KEEP behavior
Heiko Carstens has noticed that the MMOP_ONLINE_KEEP is broken currently

  $ grep . memory3?/valid_zones
  memory34/valid_zones:Normal Movable
  memory35/valid_zones:Normal Movable
  memory36/valid_zones:Normal Movable
  memory37/valid_zones:Normal Movable

  $ echo online_movable > memory34/state
  $ grep . memory3?/valid_zones
  memory34/valid_zones:Movable
  memory35/valid_zones:Movable
  memory36/valid_zones:Movable
  memory37/valid_zones:Movable

  $ echo online > memory36/state
  $ grep . memory3?/valid_zones
  memory34/valid_zones:Movable
  memory36/valid_zones:Normal
  memory37/valid_zones:Movable

so we have effectively punched a hole into the movable zone.

The problem is that move_pfn_range() check for MMOP_ONLINE_KEEP is
wrong.  It only checks whether the given range is already part of the
movable zone which is not the case here as only memory34 is in the zone.
Fix this by using allow_online_pfn_range(..., MMOP_ONLINE_KERNEL) if
that is false then we can be sure that movable onlining is the right
thing to do.

Fixes: "mm, memory_hotplug: do not associate hotadded memory to zones until online"
Link: http://lkml.kernel.org/r/20170601083746.4924-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
f1dd2cd13c mm, memory_hotplug: do not associate hotadded memory to zones until online
The current memory hotplug implementation relies on having all the
struct pages associate with a zone/node during the physical hotplug
phase (arch_add_memory->__add_pages->__add_section->__add_zone).  In the
vast majority of cases this means that they are added to ZONE_NORMAL.
This has been so since 9d99aaa31f ("[PATCH] x86_64: Support memory
hotadd without sparsemem") and it wasn't a big deal back then because
movable onlining didn't exist yet.

Much later memory hotplug wanted to (ab)use ZONE_MOVABLE for movable
onlining 511c2aba8f ("mm, memory-hotplug: dynamic configure movable
memory and portion memory") and then things got more complicated.
Rather than reconsidering the zone association which was no longer
needed (because the memory hotplug already depended on SPARSEMEM) a
convoluted semantic of zone shifting has been developed.  Only the
currently last memblock or the one adjacent to the zone_movable can be
onlined movable.  This essentially means that the online type changes as
the new memblocks are added.

Let's simulate memory hot online manually
  $ echo 0x100000000 > /sys/devices/system/memory/probe
  $ grep . /sys/devices/system/memory/memory32/valid_zones
  Normal Movable

  $ echo $((0x100000000+(128<<20))) > /sys/devices/system/memory/probe
  $ grep . /sys/devices/system/memory/memory3?/valid_zones
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable

  $ echo $((0x100000000+2*(128<<20))) > /sys/devices/system/memory/probe
  $ grep . /sys/devices/system/memory/memory3?/valid_zones
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal
  /sys/devices/system/memory/memory34/valid_zones:Normal Movable

  $ echo online_movable > /sys/devices/system/memory/memory34/state
  $ grep . /sys/devices/system/memory/memory3?/valid_zones
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable Normal

This is an awkward semantic because an udev event is sent as soon as the
block is onlined and an udev handler might want to online it based on
some policy (e.g.  association with a node) but it will inherently race
with new blocks showing up.

This patch changes the physical online phase to not associate pages with
any zone at all.  All the pages are just marked reserved and wait for
the onlining phase to be associated with the zone as per the online
request.  There are only two requirements

	- existing ZONE_NORMAL and ZONE_MOVABLE cannot overlap

	- ZONE_NORMAL precedes ZONE_MOVABLE in physical addresses

the latter one is not an inherent requirement and can be changed in the
future.  It preserves the current behavior and made the code slightly
simpler.  This is subject to change in future.

This means that the same physical online steps as above will lead to the
following state: Normal Movable

  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable

  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Normal Movable

  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable

Implementation:
The current move_pfn_range is reimplemented to check the above
requirements (allow_online_pfn_range) and then updates the respective
zone (move_pfn_range_to_zone), the pgdat and links all the pages in the
pfn range with the zone/node.  __add_pages is updated to not require the
zone and only initializes sections in the range.  This allowed to
simplify the arch_add_memory code (s390 could get rid of quite some of
code).

devm_memremap_pages is the only user of arch_add_memory which relies on
the zone association because it only hooks into the memory hotplug only
half way.  It uses it to associate the new memory with ZONE_DEVICE but
doesn't allow it to be {on,off}lined via sysfs.  This means that this
particular code path has to call move_pfn_range_to_zone explicitly.

The original zone shifting code is kept in place and will be removed in
the follow up patch for an easier review.

Please note that this patch also changes the original behavior when
offlining a memory block adjacent to another zone (Normal vs.  Movable)
used to allow to change its movable type.  This will be handled later.

[richard.weiyang@gmail.com: simplify zone_intersects()]
  Link: http://lkml.kernel.org/r/20170616092335.5177-1-richard.weiyang@gmail.com
[richard.weiyang@gmail.com: remove duplicate call for set_page_links]
  Link: http://lkml.kernel.org/r/20170616092335.5177-2-richard.weiyang@gmail.com
[akpm@linux-foundation.org: remove unused local `i']
Link: http://lkml.kernel.org/r/20170515085827.16474-12-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # For s390 bits
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
2d070eab2e mm: consider zone which is not fully populated to have holes
__pageblock_pfn_to_page has two users currently, set_zone_contiguous
which checks whether the given zone contains holes and
pageblock_pfn_to_page which then carefully returns a first valid page
from the given pfn range for the given zone.  This doesn't handle zones
which are not fully populated though.  Memory pageblocks can be offlined
or might not have been onlined yet.  In such a case the zone should be
considered to have holes otherwise pfn walkers can touch and play with
offline pages.

Current callers of pageblock_pfn_to_page in compaction seem to work
properly right now because they only isolate PageBuddy
(isolate_freepages_block) or PageLRU resp.  __PageMovable
(isolate_migratepages_block) which will be always false for these pages.
It would be safer to skip these pages altogether, though.

In order to do this patch adds a new memory section state
(SECTION_IS_ONLINE) which is set in memory_present (during boot time) or
in online_pages_range during the memory hotplug.  Similarly
offline_mem_sections clears the bit and it is called when the memory
range is offlined.

pfn_to_online_page helper is then added which check the mem section and
only returns a page if it is onlined already.

Use the new helper in __pageblock_pfn_to_page and skip the whole page
block in such a case.

[mhocko@suse.com: check valid section number in pfn_to_online_page (Vlastimil),
 mark sections online after all struct pages are initialized in
 online_pages_range (Vlastimil)]
  Link: http://lkml.kernel.org/r/20170518164210.GD18333@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170515085827.16474-8-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
9037a99343 mm, memory_hotplug: split up register_one_node()
Memory hotplug (add_memory_resource) has to reinitialize node
infrastructure if the node is offline (one which went through the
complete add_memory(); remove_memory() cycle).  That involves node
registration to the kobj infrastructure (register_node), the proper
association with cpus (register_cpu_under_node) and finally creation of
node<->memblock symlinks (link_mem_sections).

The last part requires to know node_start_pfn and node_spanned_pages
which we currently have but a leter patch will postpone this
initialization to the onlining phase which happens later.  In fact we do
not need to rely on the early pgdat initialization even now because the
currently hot added pfn range is currently known.

Split register_one_node into core which does all the common work for the
boot time NUMA initialization and the hotplug (__register_one_node).
register_one_node keeps the full initialization while hotplug calls
__register_one_node and manually calls link_mem_sections for the proper
range.

This shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170515085827.16474-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
1b862aecfb mm, memory_hotplug: get rid of is_zone_device_section
Device memory hotplug hooks into regular memory hotplug only half way.
It needs memory sections to track struct pages but there is no
need/desire to associate those sections with memory blocks and export
them to the userspace via sysfs because they cannot be onlined anyway.

This is currently expressed by for_device argument to arch_add_memory
which then makes sure to associate the given memory range with
ZONE_DEVICE.  register_new_memory then relies on is_zone_device_section
to distinguish special memory hotplug from the regular one.  While this
works now, later patches in this series want to move __add_zone outside
of arch_add_memory path so we have to come up with something else.

Add want_memblock down the __add_pages path and use it to control
whether the section->memblock association should be done.
arch_add_memory then just trivially want memblock for everything but
for_device hotplug.

remove_memory_section doesn't need is_zone_device_section either.  We
can simply skip all the memblock specific cleanup if there is no
memblock for the given section.

This shouldn't introduce any functional change.

Link: http://lkml.kernel.org/r/20170515085827.16474-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
c8f9565716 mm, memory_hotplug: use node instead of zone in can_online_high_movable
The primary purpose of this helper is to query the node state so use the
node id directly.  This is a preparatory patch for later changes.

This shouldn't introduce any functional change

Link: http://lkml.kernel.org/r/20170515085827.16474-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Michal Hocko
dc0bbf3b7f mm: remove return value from init_currently_empty_zone
Patch series "mm: make movable onlining suck less", v4.

Movable onlining is a real hack with many downsides - mainly
reintroduction of lowmem/highmem issues we used to have on 32b systems -
but it is the only way to make the memory hotremove more reliable which
is something that people are asking for.

The current semantic of memory movable onlinening is really cumbersome,
however.  The main reason for this is that the udev driven approach is
basically unusable because udev races with the memory probing while only
the last memory block or the one adjacent to the existing zone_movable
are allowed to be onlined movable.  In short the criterion for the
successful online_movable changes under udev's feet.  A reliable udev
approach would require a 2 phase approach where the first successful
movable online would have to check all the previous blocks and online
them in descending order.  This is hard to be considered sane.

This patchset aims at making the onlining semantic more usable.  First
of all it allows to online memory movable as long as it doesn't clash
with the existing ZONE_NORMAL.  That means that ZONE_NORMAL and
ZONE_MOVABLE cannot overlap.  Currently I preserve the original ordering
semantic so the zone always precedes the movable zone but I have plans
to remove this restriction in future because it is not really necessary.

First 3 patches are cleanups which should be ready to be merged right
away (unless I have missed something subtle of course).

Patch 4 deals with ZONE_DEVICE dependencies down the __add_pages path.

Patch 5 deals with implicit assumptions of register_one_node on pgdat
initialization.

Patches 6-10 deal with offline holes in the zone for pfn walkers.  I
hope I got all of them right but people familiar with compaction should
double check this.

Patch 11 is the core of the change.  In order to make it easier to
review I have tried it to be as minimalistic as possible and the large
code removal is moved to patch 14.

Patch 12 is a trivial follow up cleanup.  Patch 13 fixes sparse warnings
and finally patch 14 removes the unused code.

I have tested the patches in kvm:
  # qemu-system-x86_64 -enable-kvm -monitor pty -m 2G,slots=4,maxmem=4G -numa node,mem=1G -numa node,mem=1G ...

and then probed the additional memory by
  (qemu) object_add memory-backend-ram,id=mem1,size=1G
  (qemu) device_add pc-dimm,id=dimm1,memdev=mem1

Then I have used this simple script to probe the memory block by hand
  # cat probe_memblock.sh
  #!/bin/sh

  BLOCK_NR=$1

  # echo $((0x100000000+$BLOCK_NR*(128<<20))) > /sys/devices/system/memory/probe

  # for i in $(seq 10); do sh probe_memblock.sh $i; done
  # grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Normal Movable
  /sys/devices/system/memory/memory35/valid_zones:Normal Movable
  /sys/devices/system/memory/memory36/valid_zones:Normal Movable
  /sys/devices/system/memory/memory37/valid_zones:Normal Movable
  /sys/devices/system/memory/memory38/valid_zones:Normal Movable
  /sys/devices/system/memory/memory39/valid_zones:Normal Movable

The main difference to the original implementation is that all new
memblocks can be both online_kernel and online_movable initially because
there is no clash obviously.  For the comparison the original
implementation would have

  /sys/devices/system/memory/memory33/valid_zones:Normal
  /sys/devices/system/memory/memory34/valid_zones:Normal
  /sys/devices/system/memory/memory35/valid_zones:Normal
  /sys/devices/system/memory/memory36/valid_zones:Normal
  /sys/devices/system/memory/memory37/valid_zones:Normal
  /sys/devices/system/memory/memory38/valid_zones:Normal
  /sys/devices/system/memory/memory39/valid_zones:Normal Movable

Now
  # echo online_movable > /sys/devices/system/memory/memory34/state
  # grep . /sys/devices/system/memory/memory3?/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable
  /sys/devices/system/memory/memory36/valid_zones:Movable
  /sys/devices/system/memory/memory37/valid_zones:Movable
  /sys/devices/system/memory/memory38/valid_zones:Movable
  /sys/devices/system/memory/memory39/valid_zones:Movable

Block 33 can still be online both kernel and movable while all
the remaining can be only movable.

/proc/zonelist says
  Node 0, zone   Normal
    pages free     0
          min      0
          low      0
          high     0
          spanned  0
          present  0
  --
  Node 0, zone  Movable
    pages free     32753
          min      85
          low      117
          high     149
          spanned  32768
          present  32768

A new memblock at a lower address will result in a new memblock (32)
which will still allow both Normal and Movable.

  # sh probe_memblock.sh 0
  # grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory32/valid_zones:Normal Movable
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable

and online_kernel will convert it to the zone normal properly
while 33 can be still onlined both ways.

  # echo online_kernel > /sys/devices/system/memory/memory32/state
  # grep . /sys/devices/system/memory/memory3[2-5]/valid_zones 2>/dev/null
  /sys/devices/system/memory/memory32/valid_zones:Normal
  /sys/devices/system/memory/memory33/valid_zones:Normal Movable
  /sys/devices/system/memory/memory34/valid_zones:Movable
  /sys/devices/system/memory/memory35/valid_zones:Movable

/proc/zoneinfo will now tell
  Node 0, zone   Normal
    pages free     65441
          min      165
          low      230
          high     295
          spanned  65536
          present  65536
  --
  Node 0, zone  Movable
    pages free     32740
          min      82
          low      114
          high     146
          spanned  32768
          present  32768

so both zones have one memblock spanned and present.

Onlining 39 should associate this block to the movable zone

  # echo online > /sys/devices/system/memory/memory39/state

/proc/zoneinfo will now tell
  Node 0, zone   Normal
    pages free     32765
          min      80
          low      112
          high     144
          spanned  32768
          present  32768
  --
  Node 0, zone  Movable
    pages free     65501
          min      160
          low      225
          high     290
          spanned  196608
          present  65536

so we will have a movable zone which spans 6 memblocks, 2 present and 4
representing a hole.

Offlining both movable blocks will lead to the zone with no present
pages which is the expected behavior I believe.

  # echo offline > /sys/devices/system/memory/memory39/state
  # echo offline > /sys/devices/system/memory/memory34/state
  # grep -A6 "Movable\|Normal" /proc/zoneinfo
  Node 0, zone   Normal
    pages free     32735
          min      90
          low      122
          high     154
          spanned  32768
          present  32768
  --
  Node 0, zone  Movable
    pages free     0
          min      0
          low      0
          high     0
          spanned  196608
          present  0

As a bonus we will get a nice cleanup in the memory hotplug codebase.

This patch (of 16):

init_currently_empty_zone doesn't have any error to return yet it is
still an int and callers try to be defensive and try to handle potential
error.  Remove this nonsense and simplify all callers.

This patch shouldn't have any visible effect

Link: http://lkml.kernel.org/r/20170515085827.16474-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Mel Gorman
e716f2eb24 mm, vmscan: prevent kswapd sleeping prematurely due to mismatched classzone_idx
kswapd is woken to reclaim a node based on a failed allocation request
from any eligible zone.  Once reclaiming in balance_pgdat(), it will
continue reclaiming until there is an eligible zone available for the
zone it was woken for.  kswapd tracks what zone it was recently woken
for in pgdat->kswapd_classzone_idx.  If it has not been woken recently,
this zone will be 0.

However, the decision on whether to sleep is made on
kswapd_classzone_idx which is 0 without a recent wakeup request and that
classzone does not account for lowmem reserves.  This allows kswapd to
sleep when a low small zone such as ZONE_DMA is balanced for a GFP_DMA
request even if a stream of allocations cannot use that zone.  While
kswapd may be woken again shortly in the near future there are two
consequences -- the pgdat bits that control congestion are cleared
prematurely and direct reclaim is more likely as kswapd slept
prematurely.

This patch flips kswapd_classzone_idx to default to MAX_NR_ZONES (an
invalid index) when there has been no recent wakeups.  If there are no
wakeups, it'll decide whether to sleep based on the highest possible
zone available (MAX_NR_ZONES - 1).  It then becomes critical that the
"pgdat balanced" decisions during reclaim and when deciding to sleep are
the same.  If there is a mismatch, kswapd can stay awake continually
trying to balance tiny zones.

simoop was used to evaluate it again.  Two of the preparation patches
regressed the workload so they are included as the second set of
results.  Otherwise this patch looks artifically excellent

                                         4.11.0-rc1            4.11.0-rc1            4.11.0-rc1
                                            vanilla              clear-v2          keepawake-v2
Amean    p50-Read             21670074.18 (  0.00%) 19786774.76 (  8.69%) 22668332.52 ( -4.61%)
Amean    p95-Read             25456267.64 (  0.00%) 24101956.27 (  5.32%) 26738688.00 ( -5.04%)
Amean    p99-Read             29369064.73 (  0.00%) 27691872.71 (  5.71%) 30991404.52 ( -5.52%)
Amean    p50-Write                1390.30 (  0.00%)     1011.91 ( 27.22%)      924.91 ( 33.47%)
Amean    p95-Write              412901.57 (  0.00%)    34874.98 ( 91.55%)     1362.62 ( 99.67%)
Amean    p99-Write             6668722.09 (  0.00%)   575449.60 ( 91.37%)    16854.04 ( 99.75%)
Amean    p50-Allocation          78714.31 (  0.00%)    84246.26 ( -7.03%)    74729.74 (  5.06%)
Amean    p95-Allocation         175533.51 (  0.00%)   400058.43 (-127.91%)   101609.74 ( 42.11%)
Amean    p99-Allocation         247003.02 (  0.00%) 10905600.00 (-4315.17%)   125765.57 ( 49.08%)

With this patch on top, write and allocation latencies are massively
improved.  The read latencies are slightly impaired but it's worth
noting that this is mostly due to the IO scheduler and not directly
related to reclaim.  The vmstats are a bit of a mix but the relevant
ones are as follows;

                            4.10.0-rc7  4.10.0-rc7  4.10.0-rc7
                          mmots-20170209 clear-v1r25keepawake-v1r25
Swap Ins                             0           0           0
Swap Outs                            0         608           0
Direct pages scanned           6910672     3132699     6357298
Kswapd pages scanned          57036946    82488665    56986286
Kswapd pages reclaimed        55993488    63474329    55939113
Direct pages reclaimed         6905990     2964843     6352115
Kswapd efficiency                  98%         76%         98%
Kswapd velocity              12494.375   17597.507   12488.065
Direct efficiency                  99%         94%         99%
Direct velocity               1513.835     668.306    1393.148
Page writes by reclaim           0.000 4410243.000       0.000
Page writes file                     0     4409635           0
Page writes anon                     0         608           0
Page reclaim immediate         1036792    14175203     1042571

                            4.11.0-rc1  4.11.0-rc1  4.11.0-rc1
                               vanilla  clear-v2  keepawake-v2
Swap Ins                             0          12           0
Swap Outs                            0         838           0
Direct pages scanned           6579706     3237270     6256811
Kswapd pages scanned          61853702    79961486    54837791
Kswapd pages reclaimed        60768764    60755788    53849586
Direct pages reclaimed         6579055     2987453     6256151
Kswapd efficiency                  98%         75%         98%
Page writes by reclaim           0.000 4389496.000       0.000
Page writes file                     0     4388658           0
Page writes anon                     0         838           0
Page reclaim immediate         1073573    14473009      982507

Swap-outs are equivalent to baseline.

Direct reclaim is reduced but not eliminated.  It's worth noting that
there are two periods of direct reclaim for this workload.  The first is
when it switches from preparing the files for the actual test itself.
It's a lot of file IO followed by a lot of allocs that reclaims heavily
for a brief window.  While direct reclaim is lower with clear-v2, it is
due to kswapd scanning aggressively and trying to reclaim the world
which is not the right thing to do.  With the patches applied, there is
still direct reclaim but the phase change from "creating work files" to
starting multiple threads that allocate a lot of anonymous memory faster
than kswapd can reclaim.

Scanning/reclaim efficiency is restored by this patch.

Page writes from reclaim context are back at 0 which is ideal.

Pages immediately reclaimed after IO completes is slightly improved but
it is expected this will vary slightly.

On UMA, there is almost no change so this is not expected to be a
universal win.

[mgorman@suse.de: fix ->kswapd_classzone_idx initialization]
  Link: http://lkml.kernel.org/r/20170406174538.5msrznj6nt6qpbx5@suse.de
Link: http://lkml.kernel.org/r/20170309075657.25121-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:09 -07:00
Heiko Carstens
55adc1d05d mm: add private lock to serialize memory hotplug operations
Commit bfc8c90139 ("mem-hotplug: implement get/put_online_mems")
introduced new functions get/put_online_mems() and mem_hotplug_begin/end()
in order to allow similar semantics for memory hotplug like for cpu
hotplug.

The corresponding functions for cpu hotplug are get/put_online_cpus()
and cpu_hotplug_begin/done() for cpu hotplug.

The commit however missed to introduce functions that would serialize
memory hotplug operations like they are done for cpu hotplug with
cpu_maps_update_begin/done().

This basically leaves mem_hotplug.active_writer unprotected and allows
concurrent writers to modify it, which may lead to problems as outlined
by commit f931ab479d ("mm: fix devm_memremap_pages crash, use
mem_hotplug_{begin, done}").

That commit was extended again with commit b5d24fda9c ("mm,
devm_memremap_pages: hold device_hotplug lock over mem_hotplug_{begin,
done}") which serializes memory hotplug operations for some call sites
by using the device_hotplug lock.

In addition with commit 3fc2192410 ("mm: validate device_hotplug is held
for memory hotplug") a sanity check was added to mem_hotplug_begin() to
verify that the device_hotplug lock is held.

This in turn triggers the following warning on s390:

WARNING: CPU: 6 PID: 1 at drivers/base/core.c:643 assert_held_device_hotplug+0x4a/0x58
 Call Trace:
  assert_held_device_hotplug+0x40/0x58)
  mem_hotplug_begin+0x34/0xc8
  add_memory_resource+0x7e/0x1f8
  add_memory+0xda/0x130
  add_memory_merged+0x15c/0x178
  sclp_detect_standby_memory+0x2ae/0x2f8
  do_one_initcall+0xa2/0x150
  kernel_init_freeable+0x228/0x2d8
  kernel_init+0x2a/0x140
  kernel_thread_starter+0x6/0xc

One possible fix would be to add more lock_device_hotplug() and
unlock_device_hotplug() calls around each call site of
mem_hotplug_begin/end().  But that would give the device_hotplug lock
additional semantics it better should not have (serialize memory hotplug
operations).

Instead add a new memory_add_remove_lock which has the similar semantics
like cpu_add_remove_lock for cpu hotplug.

To keep things hopefully a bit easier the lock will be locked and unlocked
within the mem_hotplug_begin/end() functions.

Link: http://lkml.kernel.org/r/20170314125226.16779-2-heiko.carstens@de.ibm.com
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reported-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-16 16:56:18 -07:00
Ingo Molnar
174cd4b1e5 sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:32 +01:00
Nathan Fontenot
dc18d706a4 memory-hotplug: use dev_online for memhp_auto_online
Commit 31bc3858ea ("add automatic onlining policy for the newly added
memory") provides the capability to have added memory automatically
onlined during add, but this appears to be slightly broken.

The current implementation uses walk_memory_range() to call
online_memory_block, which uses memory_block_change_state() to online
the memory.  Instead, we should be calling device_online() for the
memory block in online_memory_block().  This would online the memory
(the memory bus online routine memory_subsys_online() called from
device_online calls memory_block_change_state()) and properly update the
device struct offline flag.

As a result of the current implementation, attempting to remove a memory
block after adding it using auto online fails.  This is because doing a
remove, for instance

  echo offline > /sys/devices/system/memory/memoryXXX/state

uses device_offline() which checks the dev->offline flag.

Link: http://lkml.kernel.org/r/20170222220744.8119.19687.stgit@ltcalpine2-lp14.aus.stglabs.ibm.com
Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michael Roth <mdroth@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
zhong jiang
d6d8c8a482 mm/memory_hotplug.c: fix overflow in test_pages_in_a_zone()
When mainline introduced commit a96dfddbcc ("base/memory, hotplug: fix
a kernel oops in show_valid_zones()"), it obtained the valid start and
end pfn from the given pfn range.  The valid start pfn can fix the
actual issue, but it introduced another issue.  The valid end pfn will
may exceed the given end_pfn.

Although the incorrect overflow will not result in actual problem at
present, but I think it need to be fixed.

[toshi.kani@hpe.com: remove assumption that end_pfn is aligned by MAX_ORDER_NR_PAGES]
Fixes: a96dfddbcc ("base/memory, hotplug: fix a kernel oops in show_valid_zones()")
Link: http://lkml.kernel.org/r/1486467299-22648-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Yisheng Xie
0efadf48bc mm/hotplug: enable memory hotplug for non-lru movable pages
We had considered all of the non-lru pages as unmovable before commit
bda807d444 ("mm: migrate: support non-lru movable page migration").
But now some of non-lru pages like zsmalloc, virtio-balloon pages also
become movable.  So we can offline such blocks by using non-lru page
migration.

This patch straightforwardly adds non-lru migration code, which means
adding non-lru related code to the functions which scan over pfn and
collect pages to be migrated and isolate them before migration.

Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:55 -08:00
Andrew Morton
997126bbc5 mm/memory_hotplug.c: unexport __remove_pages()
It has no modular callers.

Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:53 -08:00
Dan Williams
3fc2192410 mm: validate device_hotplug is held for memory hotplug
mem_hotplug_begin() assumes that it can set mem_hotplug.active_writer
and run the hotplug process without racing another thread.  Validate
this assumption with a lockdep assertion.

Link: http://lkml.kernel.org/r/148693886229.16345.1770484669403334689.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:53 -08:00
Yasuaki Ishimatsu
ddffe98d16 mm/memory_hotplug: set magic number to page->freelist instead of page->lru.next
To identify that pages of page table are allocated from bootmem
allocator, magic number sets to page->lru.next.

But page->lru list is initialized in reserve_bootmem_region().  So when
calling free_pagetable(), the function cannot find the magic number of
pages.  And free_pagetable() frees the pages by free_reserved_page() not
put_page_bootmem().

But if the pages are allocated from bootmem allocator and used as page
table, the pages have private flag.  So before freeing the pages, we
should clear the private flag by put_page_bootmem().

Before applying the commit 7bfec6f47b ("mm, page_alloc: check multiple
page fields with a single branch"), we could find the following visible
issue:

  BUG: Bad page state in process kworker/u1024:1
  page:ffffea103cfd8040 count:0 mapcount:0 mappi
  flags: 0x6fffff80000800(private)
  page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
  bad because of flags: 0x800(private)
  <snip>
  Call Trace:
  [...] dump_stack+0x63/0x87
  [...] bad_page+0x114/0x130
  [...] free_pages_prepare+0x299/0x2d0
  [...] free_hot_cold_page+0x31/0x150
  [...] __free_pages+0x25/0x30
  [...] free_pagetable+0x6f/0xb4
  [...] remove_pagetable+0x379/0x7ff
  [...] vmemmap_free+0x10/0x20
  [...] sparse_remove_one_section+0x149/0x180
  [...] __remove_pages+0x2e9/0x4f0
  [...] arch_remove_memory+0x63/0xc0
  [...] remove_memory+0x8c/0xc0
  [...] acpi_memory_device_remove+0x79/0xa5
  [...] acpi_bus_trim+0x5a/0x8d
  [...] acpi_bus_trim+0x38/0x8d
  [...] acpi_device_hotplug+0x1b7/0x418
  [...] acpi_hotplug_work_fn+0x1e/0x29
  [...] process_one_work+0x152/0x400
  [...] worker_thread+0x125/0x4b0
  [...] kthread+0xd8/0xf0
  [...] ret_from_fork+0x22/0x40

And the issue still silently occurs.

Until freeing the pages of page table allocated from bootmem allocator,
the page->freelist is never used.  So the patch sets magic number to
page->freelist instead of page->lru.next.

[isimatu.yasuaki@jp.fujitsu.com: fix merge issue]
  Link: http://lkml.kernel.org/r/722b1cc4-93ac-dd8b-2be2-7a7e313b3b0b@gmail.com
Link: http://lkml.kernel.org/r/2c29bd9f-5b67-02d0-18a3-8828e78bbb6f@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:29 -08:00
Toshi Kani
a96dfddbcc base/memory, hotplug: fix a kernel oops in show_valid_zones()
Reading a sysfs "memoryN/valid_zones" file leads to the following oops
when the first page of a range is not backed by struct page.
show_valid_zones() assumes that 'start_pfn' is always valid for
page_zone().

 BUG: unable to handle kernel paging request at ffffea017a000000
 IP: show_valid_zones+0x6f/0x160

This issue may happen on x86-64 systems with 64GiB or more memory since
their memory block size is bumped up to 2GiB.  [1] An example of such
systems is desribed below.  0x3240000000 is only aligned by 1GiB and
this memory block starts from 0x3200000000, which is not backed by
struct page.

 BIOS-e820: [mem 0x0000003240000000-0x000000603fffffff] usable

Since test_pages_in_a_zone() already checks holes, fix this issue by
extending this function to return 'valid_start' and 'valid_end' for a
given range.  show_valid_zones() then proceeds with the valid range.

[1] 'Commit bdee237c03 ("x86: mm: Use 2GB memory block size on
    large-memory x86-64 systems")'

Link: http://lkml.kernel.org/r/20170127222149.30893-3-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>	[4.4+]

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 14:13:19 -08:00
Toshi Kani
deb88a2a19 mm/memory_hotplug.c: check start_pfn in test_pages_in_a_zone()
Patch series "fix a kernel oops when reading sysfs valid_zones", v2.

A sysfs memory file is created for each 2GiB memory block on x86-64 when
the system has 64GiB or more memory.  [1] When the start address of a
memory block is not backed by struct page, i.e.  a memory range is not
aligned by 2GiB, reading its 'valid_zones' attribute file leads to a
kernel oops.  This issue was observed on multiple x86-64 systems with
more than 64GiB of memory.  This patch-set fixes this issue.

Patch 1 first fixes an issue in test_pages_in_a_zone(), which does not
test the start section.

Patch 2 then fixes the kernel oops by extending test_pages_in_a_zone()
to return valid [start, end).

Note for stable kernels: The memory block size change was made by commit
bdee237c03 ("x86: mm: Use 2GB memory block size on large-memory x86-64
systems"), which was accepted to 3.9.  However, this patch-set depends
on (and fixes) the change to test_pages_in_a_zone() made by commit
5f0f2887f4 ("mm/memory_hotplug.c: check for missing sections in
test_pages_in_a_zone()"), which was accepted to 4.4.

So, I recommend that we backport it up to 4.4.

[1] 'Commit bdee237c03 ("x86: mm: Use 2GB memory block size on
    large-memory x86-64 systems")'

This patch (of 2):

test_pages_in_a_zone() does not check 'start_pfn' when it is aligned by
section since 'sec_end_pfn' is set equal to 'pfn'.  Since this function
is called for testing the range of a sysfs memory file, 'start_pfn' is
always aligned by section.

Fix it by properly setting 'sec_end_pfn' to the next section pfn.

Also make sure that this function returns 1 only when the range belongs
to a zone.

Link: http://lkml.kernel.org/r/20170127222149.30893-2-toshi.kani@hpe.com
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Greg KH <greg@kroah.com>
Cc: <stable@vger.kernel.org>	[4.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-03 14:13:19 -08:00
Yasuaki Ishimatsu
8a1f780e7f memory_hotplug: make zone_can_shift() return a boolean value
online_{kernel|movable} is used to change the memory zone to
ZONE_{NORMAL|MOVABLE} and online the memory.

To check that memory zone can be changed, zone_can_shift() is used.
Currently the function returns minus integer value, plus integer
value and 0. When the function returns minus or plus integer value,
it means that the memory zone can be changed to ZONE_{NORNAL|MOVABLE}.

But when the function returns 0, there are two meanings.

One of the meanings is that the memory zone does not need to be changed.
For example, when memory is in ZONE_NORMAL and onlined by online_kernel
the memory zone does not need to be changed.

Another meaning is that the memory zone cannot be changed. When memory
is in ZONE_NORMAL and onlined by online_movable, the memory zone may
not be changed to ZONE_MOVALBE due to memory online limitation(see
Documentation/memory-hotplug.txt). In this case, memory must not be
onlined.

The patch changes the return type of zone_can_shift() so that memory
online operation fails when memory zone cannot be changed as follows:

Before applying patch:
   # grep -A 35 "Node 2" /proc/zoneinfo
   Node 2, zone   Normal
   <snip>
      node_scanned  0
           spanned  8388608
           present  7864320
           managed  7864320
   # echo online_movable > memory4097/state
   # grep -A 35 "Node 2" /proc/zoneinfo
   Node 2, zone   Normal
   <snip>
      node_scanned  0
           spanned  8388608
           present  8388608
           managed  8388608

   online_movable operation succeeded. But memory is onlined as
   ZONE_NORMAL, not ZONE_MOVABLE.

After applying patch:
   # grep -A 35 "Node 2" /proc/zoneinfo
   Node 2, zone   Normal
   <snip>
      node_scanned  0
           spanned  8388608
           present  7864320
           managed  7864320
   # echo online_movable > memory4097/state
   bash: echo: write error: Invalid argument
   # grep -A 35 "Node 2" /proc/zoneinfo
   Node 2, zone   Normal
   <snip>
      node_scanned  0
           spanned  8388608
           present  7864320
           managed  7864320

   online_movable operation failed because of failure of changing
   the memory zone from ZONE_NORMAL to ZONE_MOVABLE

Fixes: df429ac039 ("memory-hotplug: more general validation of zone during online")
Link: http://lkml.kernel.org/r/2f9c3837-33d7-b6e5-59c0-6ca4372b2d84@gmail.com
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Reviewed-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-24 16:26:14 -08:00
Reza Arbab
39fa104d5b mm: remove x86-only restriction of movable_node
In commit c5320926e3 ("mem-hotplug: introduce movable_node boot
option"), the memblock allocation direction is changed to bottom-up and
then back to top-down like this:

1. memblock_set_bottom_up(true), called by cmdline_parse_movable_node().
2. memblock_set_bottom_up(false), called by x86's numa_init().

Even though (1) occurs in generic mm code, it is wrapped by #ifdef
CONFIG_MOVABLE_NODE, which depends on X86_64.

This means that when we extend CONFIG_MOVABLE_NODE to non-x86 arches,
things will be unbalanced.  (1) will happen for them, but (2) will not.

This toggle was added in the first place because x86 has a delay between
adding memblocks and marking them as hotpluggable.  Since other arches
do this marking either immediately or not at all, they do not require
the bottom-up toggle.

So, resolve things by moving (1) from cmdline_parse_movable_node() to
x86's setup_arch(), immediately after the movable_node parameter has
been parsed.

Link: http://lkml.kernel.org/r/1479160961-25840-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alistair Popple <apopple@au1.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Stewart Smith <stewart@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Linus Torvalds
9db4f36e82 mm: remove unused variable in memory hotplug
When I removed the per-zone bitlock hashed waitqueues in commit
9dcb8b685f ("mm: remove per-zone hashtable of bitlock waitqueues"), I
removed all the magic hotplug memory initialization of said waitqueues
too.

But when I actually _tested_ the resulting build, I stupidly assumed
that "allmodconfig" would enable memory hotplug.  And it doesn't,
because it enables KASAN instead, which then disables hotplug memory
support.

As a result, my build test of the per-zone waitqueues was totally
broken, and I didn't notice that the compiler warns about the now unused
iterator variable 'i'.

I guess I should be happy that that seems to be the worst breakage from
my clearly horribly failed test coverage.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 15:49:12 -07:00
Linus Torvalds
9dcb8b685f mm: remove per-zone hashtable of bitlock waitqueues
The per-zone waitqueues exist because of a scalability issue with the
page waitqueues on some NUMA machines, but it turns out that they hurt
normal loads, and now with the vmalloced stacks they also end up
breaking gfs2 that uses a bit_wait on a stack object:

     wait_on_bit(&gh->gh_iflags, HIF_WAIT, TASK_UNINTERRUPTIBLE)

where 'gh' can be a reference to the local variable 'mount_gh' on the
stack of fill_super().

The reason the per-zone hash table breaks for this case is that there is
no "zone" for virtual allocations, and trying to look up the physical
page to get at it will fail (with a BUG_ON()).

It turns out that I actually complained to the mm people about the
per-zone hash table for another reason just a month ago: the zone lookup
also hurts the regular use of "unlock_page()" a lot, because the zone
lookup ends up forcing several unnecessary cache misses and generates
horrible code.

As part of that earlier discussion, we had a much better solution for
the NUMA scalability issue - by just making the page lock have a
separate contention bit, the waitqueue doesn't even have to be looked at
for the normal case.

Peter Zijlstra already has a patch for that, but let's see if anybody
even notices.  In the meantime, let's fix the actual gfs2 breakage by
simplifying the bitlock waitqueues and removing the per-zone issue.

Reported-by: Andreas Gruenbacher <agruenba@redhat.com>
Tested-by: Bob Peterson <rpeterso@redhat.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-27 09:27:57 -07:00
Gerald Schaefer
082d5b6b60 mm/hugetlb: check for reserved hugepages during memory offline
In dissolve_free_huge_pages(), free hugepages will be dissolved without
making sure that there are enough of them left to satisfy hugepage
reservations.

Fix this by adding a return value to dissolve_free_huge_pages() and
checking h->free_huge_pages vs.  h->resv_huge_pages.  Note that this may
lead to the situation where dissolve_free_huge_page() returns an error
and all free hugepages that were dissolved before that error are lost,
while the memory block still cannot be set offline.

Fixes: c8721bbb ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Link: http://lkml.kernel.org/r/20160926172811.94033-3-gerald.schaefer@de.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Rui Teng <rui.teng@linux.vnet.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Li Zhong
231e97e2b8 mem-hotplug: use nodes that contain memory as mask in new_node_page()
9bb627be47 ("mem-hotplug: don't clear the only node in new_node_page()")
prevents allocating from an empty nodemask, but as David points out, it is
still wrong.  As node_online_map may include memoryless nodes, only
allocating from these nodes is meaningless.

This patch uses node_states[N_MEMORY] mask to prevent the above case.

Fixes: 9bb627be47 ("mem-hotplug: don't clear the only node in new_node_page()")
Fixes: 394e31d2ce ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline")
Link: http://lkml.kernel.org/r/1474447117.28370.6.camel@TP420
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-28 16:19:02 -07:00
Li Zhong
9bb627be47 mem-hotplug: don't clear the only node in new_node_page()
Commit 394e31d2ce ("mem-hotplug: alloc new page from a nearest
neighbor node when mem-offline") introduced new_node_page() for memory
hotplug.

In new_node_page(), the nid is cleared before calling
__alloc_pages_nodemask().  But if it is the only node of the system, and
the first round allocation fails, it will not be able to get memory from
an empty nodemask, and will trigger oom.

The patch checks whether it is the last node on the system, and if it
is, then don't clear the nid in the nodemask.

Fixes: 394e31d2ce ("mem-hotplug: alloc new page from a nearest neighbor node when mem-offline")
Link: http://lkml.kernel.org/r/1473044391.4250.19.camel@TP420
Signed-off-by: Li Zhong <zhong@linux.vnet.ibm.com>
Reported-by: John Allen <jallen@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-19 15:36:16 -07:00
Reza Arbab
5830169f47 mm/memory_hotplug.c: initialize per_cpu_nodestats for hotadded pgdats
The following oops occurs after a pgdat is hotadded:

  Unable to handle kernel paging request for data at address 0x00c30001
  Faulting instruction address: 0xc00000000022f8f4
  Oops: Kernel access of bad area, sig: 11 [#1]
  SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 xt_conntrack ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw iptable_filter nls_utf8 isofs sg virtio_balloon uio_pdrv_genirq uio ip_tables xfs libcrc32c sr_mod cdrom sd_mod virtio_net ibmvscsi scsi_transport_srp virtio_pci virtio_ring virtio dm_mirror dm_region_hash dm_log dm_mod
  CPU: 0 PID: 0 Comm: swapper/0 Tainted: G        W 4.8.0-rc1-device #110
  task: c000000000ef3080 task.stack: c000000000f6c000
  NIP: c00000000022f8f4 LR: c00000000022f948 CTR: 0000000000000000
  REGS: c000000000f6fa50 TRAP: 0300   Tainted: G        W (4.8.0-rc1-device)
  MSR: 800000010280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]>  CR: 84002028  XER: 20000000
  CFAR: d000000001d2013c DAR: 0000000000c30001 DSISR: 40000000 SOFTE: 0
  NIP refresh_cpu_vm_stats+0x1a4/0x2f0
  LR refresh_cpu_vm_stats+0x1f8/0x2f0
  Call Trace:
    refresh_cpu_vm_stats+0x1f8/0x2f0 (unreliable)

Add per_cpu_nodestats initialization to the hotplug codepath.

Link: http://lkml.kernel.org/r/1470931473-7090-1-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-11 16:58:14 -07:00
Xishi Qiu
394e31d2ce mem-hotplug: alloc new page from a nearest neighbor node when mem-offline
If we offline a node, alloc the new page from a nearest neighbor node
instead of the current node or other remote nodes, because re-migrate is
a waste of time and the distance of the remote nodes is often very
large.

Also use GFP_HIGHUSER_MOVABLE to alloc new page if the zone is movable
zone or highmem zone.

Link: http://lkml.kernel.org/r/5795E18B.5060302@huawei.com
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
38087d9b03 mm, vmscan: simplify the logic deciding whether kswapd sleeps
kswapd goes through some complex steps trying to figure out if it should
stay awake based on the classzone_idx and the requested order.  It is
unnecessarily complex and passes in an invalid classzone_idx to
balance_pgdat().  What matters most of all is whether a larger order has
been requsted and whether kswapd successfully reclaimed at the previous
order.  This patch irons out the logic to check just that and the end
result is less headache inducing.

Link: http://lkml.kernel.org/r/1467970510-21195-10-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Reza Arbab
df429ac039 memory-hotplug: more general validation of zone during online
When memory is onlined, we are only able to rezone from ZONE_MOVABLE to
ZONE_KERNEL, or from (ZONE_MOVABLE - 1) to ZONE_MOVABLE.

To be more flexible, use the following criteria instead; to online
memory from zone X into zone Y,

* Any zones between X and Y must be unused.
* If X is lower than Y, the onlined memory must lie at the end of X.
* If X is higher than Y, the onlined memory must lie at the start of X.

Add zone_can_shift() to make this determination.

Link: http://lkml.kernel.org/r/1462816419-4479-3-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewd-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Reza Arbab
e51e6c8f80 memory-hotplug: add move_pfn_range()
Add move_pfn_range(), a wrapper to call move_pfn_range_left() or
move_pfn_range_right().

No functional change. This will be utilized by a later patch.

Link: http://lkml.kernel.org/r/1462816419-4479-2-git-send-email-arbab@linux.vnet.ibm.com
Signed-off-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Banman <abanman@sgi.com>
Cc: Chen Yucong <slaoub@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00