Forgo the struct_mutex serialisation for i915_active, and interpose its
own mutex handling for active/retire.
This is a multi-layered sleight-of-hand. First, we had to ensure that no
active/retire callbacks accidentally inverted the mutex ordering rules,
nor assumed that they were themselves serialised by struct_mutex. More
challenging though, is the rule over updating elements of the active
rbtree. Instead of the whole i915_active now being serialised by
struct_mutex, allocations/rotations of the tree are serialised by the
i915_active.mutex and individual nodes are serialised by the caller
using the i915_timeline.mutex (we need to use nested spinlocks to
interact with the dma_fence callback lists).
The pain point here is that instead of a single mutex around execbuf, we
now have to take a mutex for active tracker (one for each vma, context,
etc) and a couple of spinlocks for each fence update. The improvement in
fine grained locking allowing for multiple concurrent clients
(eventually!) should be worth it in typical loads.
v2: Add some comments that barely elucidate anything :(
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-6-chris@chris-wilson.co.uk
As we need to use a mutex to serialise i915_active activation
(because we want to allow the callback to sleep), we need to push the
i915_active.retire into a worker callback in case we get need to retire
from an atomic context.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-5-chris@chris-wilson.co.uk
obj->pin_global was originally used as a means to keep the shrinker off
the active scanout, but we use the vma->pin_count itself for that and
the obj->frontbuffer to delay shrinking active framebuffers. The other
role that obj->pin_global gained was for spotting display objects inside
GEM and working harder to keep those coherent; for which we can again
simply inspect obj->frontbuffer directly.
Coming up next, we will want to manipulate the pin_global counter
outside of the principle locks, so would need to make pin_global atomic.
However, since obj->frontbuffer is already managed atomically, it makes
sense to use that the primary key for display objects instead of having
pin_global.
Ville pointed out the principle difference is that obj->frontbuffer is
set for as long as an intel_framebuffer is attached to an object, but
obj->pin_global was only raised for as long as the object was active. In
practice, this means that we consider the object as being on the scanout
for longer than is strictly required, causing us to be more proactive in
flushing -- though it should be true that we would have flushed
eventually when the back became the front, except that on the flip path
that flush is async but when hit from another ioctl it will be
synchronous.
v2: i915_gem_object_is_framebuffer()
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190902040303.14195-5-chris@chris-wilson.co.uk
Move the active tracking for the frontbuffer operations out of the
i915_gem_object and into its own first class (refcounted) object. In the
process of detangling, we switch from low level request tracking to the
easier i915_active -- with the plan that this avoids any potential
atomic callbacks as the frontbuffer tracking wishes to sleep as it
flushes.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190816074635.26062-1-chris@chris-wilson.co.uk
Everything about the file is about display, and mostly about types
related to display. Move under display/ as intel_display_types.h to
reflect the facts.
There's still plenty to clean up, but start off with moving the file
where it logically belongs and naming according to contents.
v2: fix the include guard name in the renamed file
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190806113933.11799-1-jani.nikula@intel.com
Now that we have a new subdirectory for display code, continue by moving
modesetting core code.
display/intel_frontbuffer.h sticks out like a sore thumb, otherwise this
is, again, a surprisingly clean operation.
v2:
- don't move intel_sideband.[ch] (Ville)
- use tabs for Makefile file lists and sort them
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Acked-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190613084416.6794-3-jani.nikula@intel.com