When EPT is used for nested guest we need to re-init MMU as shadow
EPT MMU (nested_ept_init_mmu_context() does that). When we return back
from L2 to L1 kvm_mmu_reset_context() in nested_vmx_load_cr3() resets
MMU back to normal TDP mode. Add a special 'guest_mmu' so we can use
separate root caches; the improved hit rate is not very important for
single vCPU performance, but it avoids contention on the mmu_lock for
many vCPUs.
On the nested CPUID benchmark, with 16 vCPUs, an L2->L1->L2 vmexit
goes from 42k to 26k cycles.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add an option to specify which MMU root we want to free. This will
be used when nested and non-nested MMUs for L1 are split.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
As a preparation to full MMU split between L1 and L2 make vcpu->arch.mmu
a pointer to the currently used mmu. For now, this is always
vcpu->arch.root_mmu. No functional change.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Regardless of whether your TLB is lush or not it still needs flushing.
Reported-by: Roman Kagan <rkagan@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In most common cases VP index of a vcpu matches its vcpu index. Userspace
is, however, free to set any mapping it wishes and we need to account for
that when we need to find a vCPU with a particular VP index. To keep search
algorithms optimal in both cases introduce 'num_mismatched_vp_indexes'
counter showing how many vCPUs with mismatching VP index we have. In case
the counter is zero we can assume vp_index == vcpu_idx.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, there are two definitions related to huge page, but a little bit
far from each other and seems loosely connected:
* KVM_NR_PAGE_SIZES defines the number of different size a page could map
* PT_MAX_HUGEPAGE_LEVEL means the maximum level of huge page
The number of different size a page could map equals the maximum level
of huge page, which is implied by current definition.
While current implementation may not be kind to readers and further
developers:
* KVM_NR_PAGE_SIZES looks like a stand alone definition at first sight
* in case we need to support more level, two places need to change
This patch tries to make these two definition more close, so that reader
and developer would feel more comfortable to manipulate.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On a 64bits machine, struct is naturally aligned with 8 bytes. Since
kvm_mmu_page member *unsync* and *role* are less then 4 bytes, we can
rearrange the sequence to compace the struct.
As the comment shows, *role* and *gfn* are used to key the shadow page. In
order to keep the comment valid, this patch moves the *unsync* up and
exchange the position of *role* and *gfn*.
From /proc/slabinfo, it shows the size of kvm_mmu_page is 8 bytes less and
with one more object per slap after applying this patch.
# name <active_objs> <num_objs> <objsize> <objperslab>
kvm_mmu_page_header 0 0 168 24
kvm_mmu_page_header 0 0 160 25
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit
qualification field for debug exceptions are reserved (cleared to
0). However, the SDM is incorrect about bit 16 (corresponding to
DR6.RTM). This bit should be set if a debug exception (#DB) or a
breakpoint exception (#BP) occurred inside an RTM region while
advanced debugging of RTM transactional regions was enabled. Note that
this is the opposite of DR6.RTM, which "indicates (when clear) that a
debug exception (#DB) or breakpoint exception (#BP) occurred inside an
RTM region while advanced debugging of RTM transactional regions was
enabled."
There is still an issue with stale DR6 bits potentially being
misreported for the current debug exception. DR6 should not have been
modified before vectoring the #DB exception, and the "new DR6 bits"
should be available somewhere, but it was and they aren't.
Fixes: b96fb43977 ("KVM: nVMX: fixes to nested virt interrupt injection")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access
to reads of MSR_PLATFORM_INFO.
Disabling access to reads of this MSR gives userspace the control to "expose"
this platform-dependent information to guests in a clear way. As it exists
today, guests that read this MSR would get unpopulated information if userspace
hadn't already set it (and prior to this patch series, only the CPUID faulting
information could have been populated). This existing interface could be
confusing if guests don't handle the potential for incorrect/incomplete
information gracefully (e.g. zero reported for base frequency).
Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state,
it is possible for a vCPU to be blocked while it is in guest-mode.
According to Intel SDM 26.6.5 Interrupt-Window Exiting and
Virtual-Interrupt Delivery: "These events wake the logical processor
if it just entered the HLT state because of a VM entry".
Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending
deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU
should be waken from the HLT state and injected with the interrupt.
In addition, if while the vCPU is blocked (while it is in guest-mode),
it receives a nested posted-interrupt, then the vCPU should also be
waken and injected with the posted interrupt.
To handle these cases, this patch enhances kvm_vcpu_has_events() to also
check if there is a pending interrupt in L2 virtual APICv provided by
L1. That is, it evaluates if there is a pending virtual interrupt for L2
by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1
Evaluation of Pending Interrupts.
Note that this also handles the case of nested posted-interrupt by the
fact RVI is updated in vmx_complete_nested_posted_interrupt() which is
called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() ->
kvm_vcpu_running() -> vmx_check_nested_events() ->
vmx_complete_nested_posted_interrupt().
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A VMX preemption timer value of '0' is guaranteed to cause a VMExit
prior to the CPU executing any instructions in the guest. Use the
preemption timer (if it's supported) to trigger immediate VMExit
in place of the current method of sending a self-IPI. This ensures
that pending VMExit injection to L1 occurs prior to executing any
instructions in the guest (regardless of nesting level).
When deferring VMExit injection, KVM generates an immediate VMExit
from the (possibly nested) guest by sending itself an IPI. Because
hardware interrupts are blocked prior to VMEnter and are unblocked
(in hardware) after VMEnter, this results in taking a VMExit(INTR)
before any guest instruction is executed. But, as this approach
relies on the IPI being received before VMEnter executes, it only
works as intended when KVM is running as L0. Because there are no
architectural guarantees regarding when IPIs are delivered, when
running nested the INTR may "arrive" long after L2 is running e.g.
L0 KVM doesn't force an immediate switch to L1 to deliver an INTR.
For the most part, this unintended delay is not an issue since the
events being injected to L1 also do not have architectural guarantees
regarding their timing. The notable exception is the VMX preemption
timer[1], which is architecturally guaranteed to cause a VMExit prior
to executing any instructions in the guest if the timer value is '0'
at VMEnter. Specifically, the delay in injecting the VMExit causes
the preemption timer KVM unit test to fail when run in a nested guest.
Note: this approach is viable even on CPUs with a broken preemption
timer, as broken in this context only means the timer counts at the
wrong rate. There are no known errata affecting timer value of '0'.
[1] I/O SMIs also have guarantees on when they arrive, but I have
no idea if/how those are emulated in KVM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Use a hook for SVM instead of leaving the default in x86.c - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Dan Carpenter reported that the untrusted data returns from kvm_register_read()
results in the following static checker warning:
arch/x86/kvm/lapic.c:576 kvm_pv_send_ipi()
error: buffer underflow 'map->phys_map' 's32min-s32max'
KVM guest can easily trigger this by executing the following assembly sequence
in Ring0:
mov $10, %rax
mov $0xFFFFFFFF, %rbx
mov $0xFFFFFFFF, %rdx
mov $0, %rsi
vmcall
As this will cause KVM to execute the following code-path:
vmx_handle_exit() -> handle_vmcall() -> kvm_emulate_hypercall() -> kvm_pv_send_ipi()
which will reach out-of-bounds access.
This patch fixes it by adding a check to kvm_pv_send_ipi() against map->max_apic_id,
ignoring destinations that are not present and delivering the rest. We also check
whether or not map->phys_map[min + i] is NULL since the max_apic_id is set to the
max apic id, some phys_map maybe NULL when apic id is sparse, especially kvm
unconditionally set max_apic_id to 255 to reserve enough space for any xAPIC ID.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
[Add second "if (min > map->max_apic_id)" to complete the fix. -Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
- Fix a VFP corruption in 32-bit guest
- Add missing cache invalidation for CoW pages
- Two small cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJbkngmAAoJEEtpOizt6ddyeaoH/15bbGHlwWf23tGjSoDzhyD4
zAXfy+SJdm4cR8K7jEkVrNffkEMAby7Zl28hTHKB9jsY1K8DD+EuCE3Nd4kkVAsc
iHJwV4aiHil/zC5SyE0MqMzELeS8UhsxESYebG6yNF0ElQDQ0SG+QAFr47/OBN9S
u4I7x0rhyJP6Kg8z9U4KtEX0hM6C7VVunGWu44/xZSAecTaMuJnItCIM4UMdEkSs
xpAoI59lwM6BWrXLvEunekAkxEXoR7AVpQER2PDINoLK2I0i0oavhPim9Xdt2ZXs
rqQqfmwmPOVvYbexDp97JtfWo3/psGLqvgoK1tq9bzF3u6Y3ylnUK5IspyVYwuQ=
=TK8A
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-v4.19-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
Fixes for KVM/ARM for Linux v4.19 v2:
- Fix a VFP corruption in 32-bit guest
- Add missing cache invalidation for CoW pages
- Two small cleanups
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to
deal with. Drop the now obsolete code.
Fixes: fb1522e099 ("KVM: update to new mmu_notifier semantic v2")
Cc: James Hogan <jhogan@kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Allowing x86_emulate_instruction() to be called directly has led to
subtle bugs being introduced, e.g. not setting EMULTYPE_NO_REEXECUTE
in the emulation type. While most of the blame lies on re-execute
being opt-out, exporting x86_emulate_instruction() also exposes its
cr2 parameter, which may have contributed to commit d391f12070
("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO
when running nested") using x86_emulate_instruction() instead of
emulate_instruction() because "hey, I have a cr2!", which in turn
introduced its EMULTYPE_NO_REEXECUTE bug.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Lack of the kvm_ prefix gives the impression that it's a VMX or SVM
specific function, and there's no conflict that prevents adding the
kvm_ prefix.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
retry_instruction() and reexecute_instruction() are a package deal,
i.e. there is no scenario where one is allowed and the other is not.
Merge their controlling emulation type flags to enforce this in code.
Name the combined flag EMULTYPE_ALLOW_RETRY to make it abundantly
clear that we are allowing re{try,execute} to occur, as opposed to
explicitly requesting retry of a previously failed instruction.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Re-execution of an instruction after emulation decode failure is
intended to be used only when emulating shadow page accesses. Invert
the flag to make allowing re-execution opt-in since that behavior is
by far in the minority.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Re-execution after an emulation decode failure is only intended to
handle a case where two or vCPUs race to write a shadowed page, i.e.
we should never re-execute an instruction as part of RSM emulation.
Add a new helper, kvm_emulate_instruction_from_buffer(), to support
emulating from a pre-defined buffer. This eliminates the last direct
call to x86_emulate_instruction() outside of kvm_mmu_page_fault(),
which means x86_emulate_instruction() can be unexported in a future
patch.
Fixes: 7607b71744 ("KVM: SVM: install RSM intercept")
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
For x86 this brings in PCID emulation and CR3 caching for shadow page
tables, nested VMX live migration, nested VMCS shadowing, an optimized
IPI hypercall, and some optimizations.
ARM will come next week.
There is a semantic conflict because tip also added an .init_platform
callback to kvm.c. Please keep the initializer from this branch,
and add a call to kvmclock_init (added by tip) inside kvm_init_platform
(added here).
Also, there is a backmerge from 4.18-rc6. This is because of a
refactoring that conflicted with a relatively late bugfix and
resulted in a particularly hellish conflict. Because the conflict
was only due to unfortunate timing of the bugfix, I backmerged and
rebased the refactoring rather than force the resolution on you.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz
kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR
yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS
UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z
EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+
2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I=
=9Mgw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first set of KVM updates from Paolo Bonzini:
"PPC:
- minor code cleanups
x86:
- PCID emulation and CR3 caching for shadow page tables
- nested VMX live migration
- nested VMCS shadowing
- optimized IPI hypercall
- some optimizations
ARM will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
KVM: X86: Implement PV IPIs in linux guest
KVM: X86: Add kvm hypervisor init time platform setup callback
KVM: X86: Implement "send IPI" hypercall
KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
KVM: x86: Skip pae_root shadow allocation if tdp enabled
KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
KVM: vmx: move struct host_state usage to struct loaded_vmcs
KVM: vmx: compute need to reload FS/GS/LDT on demand
KVM: nVMX: remove a misleading comment regarding vmcs02 fields
KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
KVM: vmx: add dedicated utility to access guest's kernel_gs_base
KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
KVM: vmx: refactor segmentation code in vmx_save_host_state()
kvm: nVMX: Fix fault priority for VMX operations
kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
...
This patch is to provide a way for platforms to register hv tlb remote
flush callback and this helps to optimize operation of tlb flush
among vcpus for nested virtualization case.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is a duplicate of X86_CR3_PCID_NOFLUSH. So just use that instead.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds support for storing multiple previous CR3/root_hpa pairs maintained
as an LRU cache, so that the lockless CR3 switch path can be used when
switching back to any of them.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This needs a minor bug fix. The updated patch is as follows.
Thanks,
Junaid
------------------------------------------------------------------------------
kvm_mmu_invlpg() and kvm_mmu_invpcid_gva() only need to flush the TLB
entries for the specific guest virtual address, instead of flushing all
TLB entries associated with the VM.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_mmu_free_roots() now takes a mask specifying which roots to free, so
that either one of the roots (active/previous) can be individually freed
when needed.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows invlpg() to be called using either the active root_hpa
or the prev_root_hpa.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When PCIDs are enabled, the MSb of the source operand for a MOV-to-CR3
instruction indicates that the TLB doesn't need to be flushed.
This change enables this optimization for MOV-to-CR3s in the guest
that have been intercepted by KVM for shadow paging and are handled
within the fast CR3 switch path.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement support for INVPCID in shadow paging mode as well.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_REQ_LOAD_CR3 request loads the hardware CR3 using the
current root_hpa.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using shadow paging, a CR3 switch in the guest results in a VM Exit.
In the common case, that VM exit doesn't require much processing by KVM.
However, it does acquire the MMU lock, which can start showing signs of
contention under some workloads even on a 2 VCPU VM when the guest is
using KPTI. Therefore, we add a fast path that avoids acquiring the MMU
lock in the most common cases e.g. when switching back and forth between
the kernel and user mode CR3s used by KPTI with no guest page table
changes in between.
For now, this fast path is implemented only for 64-bit guests and hosts
to avoid the handling of PDPTEs, but it can be extended later to 32-bit
guests and/or hosts as well.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For nested virtualization L0 KVM is managing a bit of state for L2 guests,
this state can not be captured through the currently available IOCTLs. In
fact the state captured through all of these IOCTLs is usually a mix of L1
and L2 state. It is also dependent on whether the L2 guest was running at
the moment when the process was interrupted to save its state.
With this capability, there are two new vcpu ioctls: KVM_GET_NESTED_STATE
and KVM_SET_NESTED_STATE. These can be used for saving and restoring a VM
that is in VMX operation.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Jim Mattson <jmattson@google.com>
[karahmed@ - rename structs and functions and make them ready for AMD and
address previous comments.
- handle nested.smm state.
- rebase & a bit of refactoring.
- Merge 7/8 and 8/8 into one patch. ]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the vCPU enters system management mode while running a nested guest,
RSM starts processing the vmentry while still in SMM. In that case,
however, the pages pointed to by the vmcs12 might be incorrectly
loaded from SMRAM. To avoid this, delay the handling of the pages
until just before the next vmentry. This is done with a new request
and a new entry in kvm_x86_ops, which we will be able to reuse for
nested VMX state migration.
Extracted from a patch by Jim Mattson and KarimAllah Ahmed.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When nested virtualization is in use, VMENTER operations from the nested
hypervisor into the nested guest will always be processed by the bare metal
hypervisor, and KVM's "conditional cache flushes" mode in particular does a
flush on nested vmentry. Therefore, include the "skip L1D flush on
vmentry" bit in KVM's suggested ARCH_CAPABILITIES setting.
Add the relevant Documentation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The next patch in this series will have to make the definition of
irq_cpustat_t available to entering_irq().
Inclusion of asm/hardirq.h into asm/apic.h would cause circular header
dependencies like
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/topology.h
linux/smp.h
asm/smp.h
or
linux/gfp.h
linux/mmzone.h
asm/mmzone.h
asm/mmzone_64.h
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/irqdesc.h
linux/kobject.h
linux/sysfs.h
linux/kernfs.h
linux/idr.h
linux/gfp.h
and others.
This causes compilation errors because of the header guards becoming
effective in the second inclusion: symbols/macros that had been defined
before wouldn't be available to intermediate headers in the #include chain
anymore.
A possible workaround would be to move the definition of irq_cpustat_t
into its own header and include that from both, asm/hardirq.h and
asm/apic.h.
However, this wouldn't solve the real problem, namely asm/harirq.h
unnecessarily pulling in all the linux/irq.h cruft: nothing in
asm/hardirq.h itself requires it. Also, note that there are some other
archs, like e.g. arm64, which don't have that #include in their
asm/hardirq.h.
Remove the linux/irq.h #include from x86' asm/hardirq.h.
Fix resulting compilation errors by adding appropriate #includes to *.c
files as needed.
Note that some of these *.c files could be cleaned up a bit wrt. to their
set of #includes, but that should better be done from separate patches, if
at all.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the logic for flushing L1D on VMENTER. The flush depends on the static
key being enabled and the new l1tf_flush_l1d flag being set.
The flags is set:
- Always, if the flush module parameter is 'always'
- Conditionally at:
- Entry to vcpu_run(), i.e. after executing user space
- From the sched_in notifier, i.e. when switching to a vCPU thread.
- From vmexit handlers which are considered unsafe, i.e. where
sensitive data can be brought into L1D:
- The emulator, which could be a good target for other speculative
execution-based threats,
- The MMU, which can bring host page tables in the L1 cache.
- External interrupts
- Nested operations that require the MMU (see above). That is
vmptrld, vmptrst, vmclear,vmwrite,vmread.
- When handling invept,invvpid
[ tglx: Split out from combo patch and reduced to a single flag ]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* ARM: lazy context-switching of FPSIMD registers on arm64, "split"
regions for vGIC redistributor
* s390: cleanups for nested, clock handling, crypto, storage keys and
control register bits
* x86: many bugfixes, implement more Hyper-V super powers,
implement lapic_timer_advance_ns even when the LAPIC timer
is emulated using the processor's VMX preemption timer. Two
security-related bugfixes at the top of the branch.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbH8Z/AAoJEL/70l94x66DF+UIAJeOuTp6LGasT/9uAb2OovaN
+5kGmOPGFwkTcmg8BQHI2fXT4vhxMXWPFcQnyig9eXJVxhuwluXDOH4P9IMay0yw
VDCBsWRdMvZDQad2hn6Z5zR4Jx01XrSaG/KqvXbbDKDCy96mWG7SYAY2m3ZwmeQi
3Pa3O3BTijr7hBYnMhdXGkSn4ZyU8uPaAgIJ8795YKeOJ2JmioGYk6fj6y2WCxA3
ztJymBjTmIoZ/F8bjuVouIyP64xH4q9roAyw4rpu7vnbWGqx1fjPYJoB8yddluWF
JqCPsPzhKDO7mjZJy+lfaxIlzz2BN7tKBNCm88s5GefGXgZwk3ByAq/0GQ2M3rk=
=H5zI
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Small update for KVM:
ARM:
- lazy context-switching of FPSIMD registers on arm64
- "split" regions for vGIC redistributor
s390:
- cleanups for nested
- clock handling
- crypto
- storage keys
- control register bits
x86:
- many bugfixes
- implement more Hyper-V super powers
- implement lapic_timer_advance_ns even when the LAPIC timer is
emulated using the processor's VMX preemption timer.
- two security-related bugfixes at the top of the branch"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (79 commits)
kvm: fix typo in flag name
kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor access
KVM: x86: pass kvm_vcpu to kvm_read_guest_virt and kvm_write_guest_virt_system
KVM: x86: introduce linear_{read,write}_system
kvm: nVMX: Enforce cpl=0 for VMX instructions
kvm: nVMX: Add support for "VMWRITE to any supported field"
kvm: nVMX: Restrict VMX capability MSR changes
KVM: VMX: Optimize tscdeadline timer latency
KVM: docs: nVMX: Remove known limitations as they do not exist now
KVM: docs: mmu: KVM support exposing SLAT to guests
kvm: no need to check return value of debugfs_create functions
kvm: Make VM ioctl do valloc for some archs
kvm: Change return type to vm_fault_t
KVM: docs: mmu: Fix link to NPT presentation from KVM Forum 2008
kvm: x86: Amend the KVM_GET_SUPPORTED_CPUID API documentation
KVM: x86: hyperv: declare KVM_CAP_HYPERV_TLBFLUSH capability
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE}_EX implementation
KVM: x86: hyperv: simplistic HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} implementation
KVM: introduce kvm_make_vcpus_request_mask() API
KVM: x86: hyperv: do rep check for each hypercall separately
...
Implement HvFlushVirtualAddress{List,Space} hypercalls in a simplistic way:
do full TLB flush with KVM_REQ_TLB_FLUSH and kick vCPUs which are currently
IN_GUEST_MODE.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Expose the new virtualized architectural mechanism, VIRT_SSBD, for using
speculative store bypass disable (SSBD) under SVM. This will allow guests
to use SSBD on hardware that uses non-architectural mechanisms for enabling
SSBD.
[ tglx: Folded the migration fixup from Paolo Bonzini ]
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
L1 and L2 need to have disjoint mappings, so that L1's APIC access
page (under VMX) can be omitted from L2's mappings.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, we toggled between SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
and SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES, depending on whether or
not the EXTD bit was set in MSR_IA32_APICBASE. However, if the local
APIC is disabled, we should not set either of these APIC
virtualization control bits.
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extract the logic to free a root page in a separate function to avoid code
duplication in mmu_free_roots(). Also, change it to an exported function
i.e. kvm_mmu_free_roots().
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update 'tsc_offset' on vmentry/vmexit of L2 guests to ensure that it always
captures the TSC_OFFSET of the running guest whether it is the L1 or L2
guest.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
[AMD changes, fix update_ia32_tsc_adjust_msr. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For exceptions & NMIs events, KVM code use the following
coding convention:
*) "pending" represents an event that should be injected to guest at
some point but it's side-effects have not yet occurred.
*) "injected" represents an event that it's side-effects have already
occurred.
However, interrupts don't conform to this coding convention.
All current code flows mark interrupt.pending when it's side-effects
have already taken place (For example, bit moved from LAPIC IRR to
ISR). Therefore, it makes sense to just rename
interrupt.pending to interrupt.injected.
This change follows logic of previous commit 664f8e26b0 ("KVM: X86:
Fix loss of exception which has not yet been injected") which changed
exception to follow this coding convention as well.
It is important to note that in case !lapic_in_kernel(vcpu),
interrupt.pending usage was and still incorrect.
In this case, interrrupt.pending can only be set using one of the
following ioctls: KVM_INTERRUPT, KVM_SET_VCPU_EVENTS and
KVM_SET_SREGS. Looking at how QEMU uses these ioctls, one can see that
QEMU uses them either to re-set an "interrupt.pending" state it has
received from KVM (via KVM_GET_VCPU_EVENTS interrupt.pending or
via KVM_GET_SREGS interrupt_bitmap) or by dispatching a new interrupt
from QEMU's emulated LAPIC which reset bit in IRR and set bit in ISR
before sending ioctl to KVM. So it seems that indeed "interrupt.pending"
in this case is also suppose to represent "interrupt.injected".
However, kvm_cpu_has_interrupt() & kvm_cpu_has_injectable_intr()
is misusing (now named) interrupt.injected in order to return if
there is a pending interrupt.
This leads to nVMX/nSVM not be able to distinguish if it should exit
from L2 to L1 on EXTERNAL_INTERRUPT on pending interrupt or should
re-inject an injected interrupt.
Therefore, add a FIXME at these functions for handling this issue.
This patch introduce no semantics change.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
hyperv.h is not part of uapi, there are no (known) users outside of kernel.
We are making changes to this file to match current Hyper-V Hypervisor
Top-Level Functional Specification (TLFS, see:
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs)
and we don't want to maintain backwards compatibility.
Move the file renaming to hyperv-tlfs.h to avoid confusing it with
mshyperv.h. In future, all definitions from TLFS should go to it and
all kernel objects should go to mshyperv.h or include/linux/hyperv.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Add struct kvm_svm, which is analagous to struct vcpu_svm, along with
a helper to_kvm_svm() to retrieve kvm_svm from a struct kvm *. Move
the SVM specific variables and struct definitions out of kvm_arch
and into kvm_svm.
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add struct kvm_vmx, which wraps struct kvm, and a helper to_kvm_vmx()
that retrieves 'struct kvm_vmx *' from 'struct kvm *'. Move the VMX
specific variables out of kvm_arch and into kvm_vmx.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add kvm_x86_ops->set_identity_map_addr and set ept_identity_map_addr
in VMX specific code so that ept_identity_map_addr can be moved out
of 'struct kvm_arch' in a future patch.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Define kvm_arch_[alloc|free]_vm in x86 as pass through functions
to new kvm_x86_ops vm_alloc and vm_free, and move the current
allocation logic as-is to SVM and VMX. Vendor specific alloc/free
functions set the stage for SVM/VMX wrappers of 'struct kvm',
which will allow us to move the growing number of SVM/VMX specific
member variables out of 'struct kvm_arch'.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When L1 IOAPIC redirection-table is written, a request of
KVM_REQ_SCAN_IOAPIC is set on all vCPUs. This is done such that
all vCPUs will now recalc their IOAPIC handled vectors and load
it to their EOI-exitmap.
However, it could be that one of the vCPUs is currently running
L2. In this case, load_eoi_exitmap() will be called which would
write to vmcs02->eoi_exit_bitmap, which is wrong because
vmcs02->eoi_exit_bitmap should always be equal to
vmcs12->eoi_exit_bitmap. Furthermore, at this point
KVM_REQ_SCAN_IOAPIC was already consumed and therefore we will
never update vmcs01->eoi_exit_bitmap. This could lead to remote_irr
of some IOAPIC level-triggered entry to remain set forever.
Fix this issue by delaying the load of EOI-exitmap to when vCPU
is running L1.
One may wonder why not just delay entire KVM_REQ_SCAN_IOAPIC
processing to when vCPU is running L1. This is done in order to handle
correctly the case where LAPIC & IO-APIC of L1 is pass-throughed into
L2. In this case, vmcs12->virtual_interrupt_delivery should be 0. In
current nVMX implementation, that results in
vmcs02->virtual_interrupt_delivery to also be 0. Thus,
vmcs02->eoi_exit_bitmap is not used. Therefore, every L2 EOI cause
a #VMExit into L0 (either on MSR_WRITE to x2APIC MSR or
APIC_ACCESS/APIC_WRITE/EPT_MISCONFIG to APIC MMIO page).
In order for such L2 EOI to be broadcasted, if needed, from LAPIC
to IO-APIC, vcpu->arch.ioapic_handled_vectors must be updated
while L2 is running. Therefore, patch makes sure to delay only the
loading of EOI-exitmap but not the update of
vcpu->arch.ioapic_handled_vectors.
Reviewed-by: Arbel Moshe <arbel.moshe@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow to disable pause loop exit/pause filtering on a per VM basis.
If some VMs have dedicated host CPUs, they won't be negatively affected
due to needlessly intercepted PAUSE instructions.
Thanks to Jan H. Schönherr's initial patch.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If host CPUs are dedicated to a VM, we can avoid VM exits on HLT.
This patch adds the per-VM capability to disable them.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allowing a guest to execute MWAIT without interception enables a guest
to put a (physical) CPU into a power saving state, where it takes
longer to return from than what may be desired by the host.
Don't give a guest that power over a host by default. (Especially,
since nothing prevents a guest from using MWAIT even when it is not
advertised via CPUID.)
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Access to VMware backdoor ports is done by one of the IN/OUT/INS/OUTS
instructions. These ports must be allowed access even if TSS I/O
permission bitmap don't allow it.
To handle this, VMX/SVM will be changed in future commits
to intercept #GP which was raised by such access and
handle it by calling x86 emulator to emulate instruction.
If it was one of these instructions, the x86 emulator already handles
it correctly (Since commit "KVM: x86: Always allow access to VMware
backdoor I/O ports") by not checking these ports against TSS I/O
permission bitmap.
One may wonder why checking for specific instructions is necessary
as we can just forward all #GPs to the x86 emulator.
There are multiple reasons for doing so:
1. We don't want the x86 emulator to be reached easily
by guest by just executing an instruction that raises #GP as that
exposes the x86 emulator as a bigger attack surface.
2. The x86 emulator is incomplete and therefore certain instructions
that can cause #GP cannot be emulated. Such an example is "INT x"
(opcode 0xcd) which reaches emulate_int() which can only emulate
the instruction if vCPU is in real-mode.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Next commits are going introduce support for accessing VMware backdoor
ports even though guest's TSS I/O permissions bitmap doesn't allow
access. This mimic VMware hypervisor behavior.
In order to support this, next commits will change VMX/SVM to
intercept #GP which was raised by such access and handle it by calling
the x86 emulator to emulate instruction. Since commit "KVM: x86:
Always allow access to VMware backdoor I/O ports", the x86 emulator
handles access to these I/O ports by not checking these ports against
the TSS I/O permission bitmap.
However, there could be cases that CPU rasies a #GP on instruction
that fails to be disassembled by the x86 emulator (Because of
incomplete implementation for example).
In those cases, we would like the #GP intercept to just forward #GP
as-is to guest as if there was no intercept to begin with.
However, current emulator code always queues #UD exception in case
emulator fails (including disassembly failures) which is not what is
wanted in this flow.
This commit addresses this issue by adding a new emulation_type flag
that will allow the #GP intercept handler to specify that it wishes
to be aware when instruction emulation fails and doesn't want #UD
exception to be queued.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add kvm_fast_pio() to consolidate duplicate code in VMX and SVM.
Unexport kvm_fast_pio_in() and kvm_fast_pio_out().
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nested Hyper-V/Windows guest running on top of KVM will use TSC page
clocksource in two cases:
- L0 exposes invariant TSC (CPUID.80000007H:EDX[8]).
- L0 provides Hyper-V Reenlightenment support (CPUID.40000003H:EAX[13]).
Exposing invariant TSC effectively blocks migration to hosts with different
TSC frequencies, providing reenlightenment support will be needed when we
start migrating nested workloads.
Implement rudimentary support for reenlightenment MSRs. For now, these are
just read/write MSRs with no effect.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
In Hyper-V, the fast guest->host notification mechanism is the
SIGNAL_EVENT hypercall, with a single parameter of the connection ID to
signal.
Currently this hypercall incurs a user exit and requires the userspace
to decode the parameters and trigger the notification of the potentially
different I/O context.
To avoid the costly user exit, process this hypercall and signal the
corresponding eventfd in KVM, similar to ioeventfd. The association
between the connection id and the eventfd is established via the newly
introduced KVM_HYPERV_EVENTFD ioctl, and maintained in an
(srcu-protected) IDR.
Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[asm/hyperv.h changes approved by KY Srinivasan. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Linux (among the others) has checks to make sure that certain features
aren't enabled on a certain family/model/stepping if the microcode version
isn't greater than or equal to a known good version.
By exposing the real microcode version, we're preventing buggy guests that
don't check that they are running virtualized (i.e., they should trust the
hypervisor) from disabling features that are effectively not buggy.
Suggested-by: Filippo Sironi <sironi@amazon.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Provide a new KVM capability that allows bits within MSRs to be recognized
as features. Two new ioctls are added to the /dev/kvm ioctl routine to
retrieve the list of these MSRs and then retrieve their values. A kvm_x86_ops
callback is used to determine support for the listed MSR-based features.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Tweaked documentation. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Fix the following sparse warning by moving the prototype
of kvm_arch_mmu_notifier_invalidate_range() to linux/kvm_host.h .
CHECK arch/s390/kvm/../../../virt/kvm/kvm_main.c
arch/s390/kvm/../../../virt/kvm/kvm_main.c:138:13: warning: symbol 'kvm_arch_mmu_notifier_invalidate_range' was not declared. Should it be static?
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The efer_reload is never used since
commit 26bb0981b3 ("KVM: VMX: Use shared msr infrastructure"),
so remove it.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This part of Secure Encrypted Virtualization (SEV) patch series focuses on KVM
changes required to create and manage SEV guests.
SEV is an extension to the AMD-V architecture which supports running encrypted
virtual machine (VMs) under the control of a hypervisor. Encrypted VMs have their
pages (code and data) secured such that only the guest itself has access to
unencrypted version. Each encrypted VM is associated with a unique encryption key;
if its data is accessed to a different entity using a different key the encrypted
guest's data will be incorrectly decrypted, leading to unintelligible data.
This security model ensures that hypervisor will no longer able to inspect or
alter any guest code or data.
The key management of this feature is handled by a separate processor known as
the AMD Secure Processor (AMD-SP) which is present on AMD SOCs. The SEV Key
Management Specification (see below) provides a set of commands which can be
used by hypervisor to load virtual machine keys through the AMD-SP driver.
The patch series adds a new ioctl in KVM driver (KVM_MEMORY_ENCRYPT_OP). The
ioctl will be used by qemu to issue SEV guest-specific commands defined in Key
Management Specification.
The following links provide additional details:
AMD Memory Encryption white paper:
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
AMD64 Architecture Programmer's Manual:
http://support.amd.com/TechDocs/24593.pdf
SME is section 7.10
SEV is section 15.34
SEV Key Management:
http://support.amd.com/TechDocs/55766_SEV-KM API_Specification.pdf
KVM Forum Presentation:
http://www.linux-kvm.org/images/7/74/02x08A-Thomas_Lendacky-AMDs_Virtualizatoin_Memory_Encryption_Technology.pdf
SEV Guest BIOS support:
SEV support has been add to EDKII/OVMF BIOS
https://github.com/tianocore/edk2
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a new bool invalidate_gpa argument to kvm_x86_ops->tlb_flush,
it will be used by later patches to just flush guest tlb.
For VMX, this will use INVVPID instead of INVEPT, which will invalidate
combined mappings while keeping guest-physical mappings.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This MSR returns the number of #SMIs that occurred on CPU since
boot.
It was seen to be used frequently by ESXi guest.
Patch adds a new vcpu-arch specific var called smi_count to
save the number of #SMIs which occurred on CPU since boot.
It is exposed as a read-only MSR to guest (causing #GP
on wrmsr) in RDMSR/WRMSR emulation code.
MSR_SMI_COUNT is also added to emulated_msrs[] to make sure
user-space can save/restore it for migration purposes.
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Bhavesh Davda <bhavesh.davda@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The User-Mode Instruction Prevention feature present in recent Intel
processor prevents a group of instructions (sgdt, sidt, sldt, smsw, and
str) from being executed with CPL > 0. Otherwise, a general protection
fault is issued.
UMIP instructions in general are also able to trigger vmexits, so we can
actually emulate UMIP on older processors. This commit sets up the
infrastructure so that kvm-intel.ko and kvm-amd.ko can set the UMIP
feature bit for CPUID even if the feature is not actually available
in hardware.
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add the CPUID bits, make the CR4.UMIP bit not reserved anymore, and
add UMIP support for instructions that are already emulated by KVM.
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implementation of the unpinned APIC page didn't update the VMCS address
cache when invalidation was done through range mmu notifiers.
This became a problem when the page notifier was removed.
Re-introduce the arch-specific helper and call it from ...range_start.
Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Fixes: 38b9917350 ("kvm: vmx: Implement set_apic_access_page_addr")
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Cc: <stable@vger.kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Currently, every time a VCPU is scheduled out, the host kernel will
first save the guest FPU/xstate context, then load the qemu userspace
FPU context, only to then immediately save the qemu userspace FPU
context back to memory. When scheduling in a VCPU, the same extraneous
FPU loads and saves are done.
This could be avoided by moving from a model where the guest FPU is
loaded and stored with preemption disabled, to a model where the
qemu userspace FPU is swapped out for the guest FPU context for
the duration of the KVM_RUN ioctl.
This is done under the VCPU mutex, which is also taken when other
tasks inspect the VCPU FPU context, so the code should already be
safe for this change. That should come as no surprise, given that
s390 already has this optimization.
This can fix a bug where KVM calls get_user_pages while owning the
FPU, and the file system ends up requesting the FPU again:
[258270.527947] __warn+0xcb/0xf0
[258270.527948] warn_slowpath_null+0x1d/0x20
[258270.527951] kernel_fpu_disable+0x3f/0x50
[258270.527953] __kernel_fpu_begin+0x49/0x100
[258270.527955] kernel_fpu_begin+0xe/0x10
[258270.527958] crc32c_pcl_intel_update+0x84/0xb0
[258270.527961] crypto_shash_update+0x3f/0x110
[258270.527968] crc32c+0x63/0x8a [libcrc32c]
[258270.527975] dm_bm_checksum+0x1b/0x20 [dm_persistent_data]
[258270.527978] node_prepare_for_write+0x44/0x70 [dm_persistent_data]
[258270.527985] dm_block_manager_write_callback+0x41/0x50 [dm_persistent_data]
[258270.527988] submit_io+0x170/0x1b0 [dm_bufio]
[258270.527992] __write_dirty_buffer+0x89/0x90 [dm_bufio]
[258270.527994] __make_buffer_clean+0x4f/0x80 [dm_bufio]
[258270.527996] __try_evict_buffer+0x42/0x60 [dm_bufio]
[258270.527998] dm_bufio_shrink_scan+0xc0/0x130 [dm_bufio]
[258270.528002] shrink_slab.part.40+0x1f5/0x420
[258270.528004] shrink_node+0x22c/0x320
[258270.528006] do_try_to_free_pages+0xf5/0x330
[258270.528008] try_to_free_pages+0xe9/0x190
[258270.528009] __alloc_pages_slowpath+0x40f/0xba0
[258270.528011] __alloc_pages_nodemask+0x209/0x260
[258270.528014] alloc_pages_vma+0x1f1/0x250
[258270.528017] do_huge_pmd_anonymous_page+0x123/0x660
[258270.528021] handle_mm_fault+0xfd3/0x1330
[258270.528025] __get_user_pages+0x113/0x640
[258270.528027] get_user_pages+0x4f/0x60
[258270.528063] __gfn_to_pfn_memslot+0x120/0x3f0 [kvm]
[258270.528108] try_async_pf+0x66/0x230 [kvm]
[258270.528135] tdp_page_fault+0x130/0x280 [kvm]
[258270.528149] kvm_mmu_page_fault+0x60/0x120 [kvm]
[258270.528158] handle_ept_violation+0x91/0x170 [kvm_intel]
[258270.528162] vmx_handle_exit+0x1ca/0x1400 [kvm_intel]
No performance changes were detected in quick ping-pong tests on
my 4 socket system, which is expected since an FPU+xstate load is
on the order of 0.1us, while ping-ponging between CPUs is on the
order of 20us, and somewhat noisy.
Cc: stable@vger.kernel.org
Signed-off-by: Rik van Riel <riel@redhat.com>
Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[Fixed a bug where reset_vcpu called put_fpu without preceding load_fpu,
which happened inside from KVM_CREATE_VCPU ioctl. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The SEV memory encryption engine uses a tweak such that two identical
plaintext pages at different location will have different ciphertext.
So swapping or moving ciphertext of two pages will not result in
plaintext being swapped. Relocating (or migrating) physical backing
pages for a SEV guest will require some additional steps. The current SEV
key management spec does not provide commands to swap or migrate (move)
ciphertext pages. For now, we pin the guest memory registered through
KVM_MEMORY_ENCRYPT_REG_REGION ioctl.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
The command is used for encrypting the guest memory region using the VM
encryption key (VEK) created during KVM_SEV_LAUNCH_START.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
The KVM_SEV_LAUNCH_START command is used to create a memory encryption
context within the SEV firmware. In order to do so, the guest owner
should provide the guest's policy, its public Diffie-Hellman (PDH) key
and session information. The command implements the LAUNCH_START flow
defined in SEV spec Section 6.2.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
The command initializes the SEV platform context and allocates a new ASID
for this guest from the SEV ASID pool. The firmware must be initialized
before we issue any guest launch commands to create a new memory encryption
context.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
If hardware supports memory encryption then KVM_MEMORY_ENCRYPT_REG_REGION
and KVM_MEMORY_ENCRYPT_UNREG_REGION ioctl's can be used by userspace to
register/unregister the guest memory regions which may contain the encrypted
data (e.g guest RAM, PCI BAR, SMRAM etc).
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Improvements-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
If the hardware supports memory encryption then the
KVM_MEMORY_ENCRYPT_OP ioctl can be used by qemu to issue a platform
specific memory encryption commands.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
In case of instruction-decode failure or emulation failure,
x86_emulate_instruction() will call reexecute_instruction() which will
attempt to use the cr2 value passed to x86_emulate_instruction().
However, when x86_emulate_instruction() is called from
emulate_instruction(), cr2 is not passed (passed as 0) and therefore
it doesn't make sense to execute reexecute_instruction() logic at all.
Fixes: 51d8b66199 ("KVM: cleanup emulate_instruction")
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
Commit 05cade71cf ("KVM: nSVM: fix SMI injection in guest mode") made
KVM mask SMI if GIF=0 but it didn't do anything to unmask it when GIF is
enabled.
The issue manifests for me as a significantly longer boot time of Windows
guests when running with SMM-enabled OVMF.
This commit fixes it by intercepting STGI instead of requesting immediate
exit if the reason why SMM was masked is GIF.
Fixes: 05cade71cf ("KVM: nSVM: fix SMI injection in guest mode")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Entering SMM while running in guest mode wasn't working very well because several
pieces of the vcpu state were left set up for nested operation.
Some of the issues observed:
* L1 was getting unexpected VM exits (using L1 interception controls but running
in SMM execution environment)
* MMU was confused (walk_mmu was still set to nested_mmu)
* INTERCEPT_SMI was not emulated for L1 (KVM never injected SVM_EXIT_SMI)
Intel SDM actually prescribes the logical processor to "leave VMX operation" upon
entering SMM in 34.14.1 Default Treatment of SMI Delivery. AMD doesn't seem to
document this but they provide fields in the SMM state-save area to stash the
current state of SVM. What we need to do is basically get out of guest mode for
the duration of SMM. All this completely transparent to L1, i.e. L1 is not given
control and no L1 observable state changes.
To avoid code duplication this commit takes advantage of the existing nested
vmexit and run functionality, perhaps at the cost of efficiency. To get out of
guest mode, nested_svm_vmexit is called, unchanged. Re-entering is performed using
enter_svm_guest_mode.
This commit fixes running Windows Server 2016 with Hyper-V enabled in a VM with
OVMF firmware (OVMF_CODE-need-smm.fd).
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to NMI, there may be ISA specific reasons why an SMI cannot be
injected into the guest. This commit adds a new smi_allowed callback to
be implemented in following commits.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Entering and exiting SMM may require ISA specific handling under certain
circumstances. This commit adds two new callbacks with empty implementations.
Actual functionality will be added in following commits.
* pre_enter_smm() is to be called when injecting an SMM, before any
SMM related vcpu state has been changed
* pre_leave_smm() is to be called when emulating the RSM instruction,
when the vcpu is in real mode and before any SMM related vcpu state
has been restored
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The 32bit and the 64bit implementation of default_cpu_present_to_apicid()
and default_check_phys_apicid_present() are exactly the same, but
implemented and located differently.
Move them to common apic code and get rid of the pointless difference.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.757329991@linutronix.de
Modify struct kvm_x86_ops.arch.apicv_active() to take struct kvm_vcpu
pointer as parameter in preparation to subsequent changes.
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The commit
9dd21e104bc ('KVM: x86: simplify handling of PKRU')
removed all users and providers of that call-back, but
didn't remove it. Remove it now.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Common:
- improve heuristic for boosting preempted spinlocks by ignoring VCPUs
in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge powerpc/topic/ppc-kvm branch that contains
find_linux_pte_or_hugepte and POWER9 thread management cleanup
- merge kvm-ppc-fixes with a fix that missed 4.13 because of vacations
- fixes
s390:
- merge of topic branch tlb-flushing from the s390 tree to get the
no-dat base features
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJZspE1AAoJEED/6hsPKofoDcMIALT11n+LKV50QGwQdg2W1GOt
aChbgnj/Kegit3hQlDhVNb8kmdZEOZzSL81Lh0VPEr7zXU8QiWn2snbizDPv8sde
MpHhcZYZZ0YrpoiZKjl8yiwcu88OWGn2qtJ7OpuTS5hvEGAfxMncp0AMZho6fnz/
ySTwJ9GK2MTgBw39OAzCeDOeoYn4NKYMwjJGqBXRhNX8PG/1wmfqv0vPrd6wfg31
KJ58BumavwJjr8YbQ1xELm9rpQrAmaayIsG0R1dEUqCbt5a1+t2gt4h2uY7tWcIv
ACt2bIze7eF3xA+OpRs+eT+yemiH3t9btIVmhCfzUpnQ+V5Z55VMSwASLtTuJRQ=
=R8Ry
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.14
Common:
- improve heuristic for boosting preempted spinlocks by ignoring
VCPUs in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge kvm-ppc-fixes with a fix that missed 4.13 because of
vacations
- fixes
s390:
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested"
* tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits)
KVM: arm/arm64: Support uaccess of GICC_APRn
KVM: arm/arm64: Extract GICv3 max APRn index calculation
KVM: arm/arm64: vITS: Drop its_ite->lpi field
KVM: arm/arm64: vgic: constify seq_operations and file_operations
KVM: arm/arm64: Fix guest external abort matching
KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd
KVM: s390: vsie: cleanup mcck reinjection
KVM: s390: use WARN_ON_ONCE only for checking
KVM: s390: guestdbg: fix range check
KVM: PPC: Book3S HV: Report storage key support to userspace
KVM: PPC: Book3S HV: Fix case where HDEC is treated as 32-bit on POWER9
KVM: PPC: Book3S HV: Fix invalid use of register expression
KVM: PPC: Book3S HV: Fix H_REGISTER_VPA VPA size validation
KVM: PPC: Book3S HV: Fix setting of storage key in H_ENTER
KVM: PPC: e500mc: Fix a NULL dereference
KVM: PPC: e500: Fix some NULL dereferences on error
KVM: PPC: Book3S HV: Protect updates to spapr_tce_tables list
KVM: s390: we are always in czam mode
KVM: s390: expose no-DAT to guest and migration support
KVM: s390: sthyi: remove invalid guest write access
...
This fix was intended for 4.13, but didn't get in because both
maintainers were on vacation.
Paul Mackerras:
"It adds mutual exclusion between list_add_rcu and list_del_rcu calls
on the kvm->arch.spapr_tce_tables list. Without this, userspace could
potentially trigger corruption of the list and cause a host crash or
worse."
Pull x86 mm changes from Ingo Molnar:
"PCID support, 5-level paging support, Secure Memory Encryption support
The main changes in this cycle are support for three new, complex
hardware features of x86 CPUs:
- Add 5-level paging support, which is a new hardware feature on
upcoming Intel CPUs allowing up to 128 PB of virtual address space
and 4 PB of physical RAM space - a 512-fold increase over the old
limits. (Supercomputers of the future forecasting hurricanes on an
ever warming planet can certainly make good use of more RAM.)
Many of the necessary changes went upstream in previous cycles,
v4.14 is the first kernel that can enable 5-level paging.
This feature is activated via CONFIG_X86_5LEVEL=y - disabled by
default.
(By Kirill A. Shutemov)
- Add 'encrypted memory' support, which is a new hardware feature on
upcoming AMD CPUs ('Secure Memory Encryption', SME) allowing system
RAM to be encrypted and decrypted (mostly) transparently by the
CPU, with a little help from the kernel to transition to/from
encrypted RAM. Such RAM should be more secure against various
attacks like RAM access via the memory bus and should make the
radio signature of memory bus traffic harder to intercept (and
decrypt) as well.
This feature is activated via CONFIG_AMD_MEM_ENCRYPT=y - disabled
by default.
(By Tom Lendacky)
- Enable PCID optimized TLB flushing on newer Intel CPUs: PCID is a
hardware feature that attaches an address space tag to TLB entries
and thus allows to skip TLB flushing in many cases, even if we
switch mm's.
(By Andy Lutomirski)
All three of these features were in the works for a long time, and
it's coincidence of the three independent development paths that they
are all enabled in v4.14 at once"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (65 commits)
x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)
x86/mm: Use pr_cont() in dump_pagetable()
x86/mm: Fix SME encryption stack ptr handling
kvm/x86: Avoid clearing the C-bit in rsvd_bits()
x86/CPU: Align CR3 defines
x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages
acpi, x86/mm: Remove encryption mask from ACPI page protection type
x86/mm, kexec: Fix memory corruption with SME on successive kexecs
x86/mm/pkeys: Fix typo in Documentation/x86/protection-keys.txt
x86/mm/dump_pagetables: Speed up page tables dump for CONFIG_KASAN=y
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
x86: Enable 5-level paging support via CONFIG_X86_5LEVEL=y
x86/mm: Allow userspace have mappings above 47-bit
x86/mm: Prepare to expose larger address space to userspace
x86/mpx: Do not allow MPX if we have mappings above 47-bit
x86/mm: Rename tasksize_32bit/64bit to task_size_32bit/64bit()
x86/xen: Redefine XEN_ELFNOTE_INIT_P2M using PUD_SIZE * PTRS_PER_PUD
x86/mm/dump_pagetables: Fix printout of p4d level
x86/mm/dump_pagetables: Generalize address normalization
x86/boot: Fix memremap() related build failure
...
Calls to mmu_notifier_invalidate_page() were replaced by calls to
mmu_notifier_invalidate_range() and are now bracketed by calls to
mmu_notifier_invalidate_range_start()/end()
Remove now useless invalidate_page callback.
Changed since v1 (Linus Torvalds)
- remove now useless kvm_arch_mmu_notifier_invalidate_page()
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Tested-by: Adam Borowski <kilobyte@angband.pl>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move it to struct kvm_arch_vcpu, replacing guest_pkru_valid with a
simple comparison against the host value of the register. The write of
PKRU in addition can be skipped if the guest has not enabled the feature.
Once we do this, we need not test OSPKE in the host anymore, because
guest_CR4.PKE=1 implies host_CR4.PKE=1.
The static PKU test is kept to elide the code on older CPUs.
Suggested-by: Yang Zhang <zy107165@alibaba-inc.com>
Fixes: 1be0e61c1f
Cc: stable@vger.kernel.org
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
vmx_complete_interrupts() assumes that the exception is always injected,
so it can be dropped by kvm_clear_exception_queue(). However,
an exception cannot be injected immediately if it is: 1) originally
destined to a nested guest; 2) trapped to cause a vmexit; 3) happening
right after VMLAUNCH/VMRESUME, i.e. when nested_run_pending is true.
This patch applies to exceptions the same algorithm that is used for
NMIs, replacing exception.reinject with "exception.injected" (equivalent
to nmi_injected).
exception.pending now represents an exception that is queued and whose
side effects (e.g., update RFLAGS.RF or DR7) have not been applied yet.
If exception.pending is true, the exception might result in a nested
vmexit instead, too (in which case the side effects must not be applied).
exception.injected instead represents an exception that is going to be
injected into the guest at the next vmentry.
Reported-by: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch exposes 5 level page table feature to the VM.
At the same time, the canonical virtual address checking is
extended to support both 48-bits and 57-bits address width.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extends the shadow paging code, so that 5 level shadow page
table can be constructed if VM is running in 5 level paging
mode.
Also extends the ept code, so that 5 level ept table can be
constructed if maxphysaddr of VM exceeds 48 bits. Unlike the
shadow logic, KVM should still use 4 level ept table for a VM
whose physical address width is less than 48 bits, even when
the VM is running in 5 level paging mode.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
[Unconditionally reset the MMU context in kvm_cpuid_update.
Changing MAXPHYADDR invalidates the reserved bit bitmasks.
- Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now we have 4 level page table and 5 level page table in 64 bits
long mode, let's rename the PT64_ROOT_LEVEL to PT64_ROOT_4LEVEL,
then we can use PT64_ROOT_5LEVEL for 5 level page table, it's
helpful to make the code more clear.
Also PT64_ROOT_MAX_LEVEL is defined as 4, so that we can just
redefine it to 5 whenever a replacement is needed for 5 level
paging.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, KVM uses CR3_L_MODE_RESERVED_BITS to check the
reserved bits in CR3. Yet the length of reserved bits in
guest CR3 should be based on the physical address width
exposed to the VM. This patch changes CR3 check logic to
calculate the reserved bits at runtime.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a guest causes a page fault which requires emulation, the
vcpu->arch.gpa_available flag is set to indicate that cr2 contains a
valid GPA.
Currently, emulator_read_write_onepage() makes use of gpa_available flag
to avoid a guest page walk for a known MMIO regions. Lets not limit
the gpa_available optimization to just MMIO region. The patch extends
the check to avoid page walk whenever gpa_available flag is set.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
[Fix EPT=0 according to Wanpeng Li's fix, plus ensure VMX also uses the
new code. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Moved "ret < 0" to the else brach, as per David's review. - Radim]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This is the same as commit 147277540b ("kvm: svm: Add support for
additional SVM NPF error codes", 2016-11-23), but for Intel processors.
In this case, the exit qualification field's bit 8 says whether the
EPT violation occurred while translating the guest's final physical
address or rather while translating the guest page tables.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
get_cpl requires vcpu_load, so we must cache the result (whether the
vcpu was preempted when its cpl=0) in kvm_vcpu_arch.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Update the KVM support to work with SME. The VMCB has a number of fields
where physical addresses are used and these addresses must contain the
memory encryption mask in order to properly access the encrypted memory.
Also, use the memory encryption mask when creating and using the nested
page tables.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: kasan-dev@googlegroups.com
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/89146eccfa50334409801ff20acd52a90fb5efcf.1500319216.git.thomas.lendacky@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Hyper-V identifies vCPUs by Virtual Processor Index, which can be
queried via HV_X64_MSR_VP_INDEX msr. It is defined by the spec as a
sequential number which can't exceed the maximum number of vCPUs per VM.
APIC ids can be sparse and thus aren't a valid replacement for VP
indices.
Current KVM uses its internal vcpu index as VP_INDEX. However, to make
it predictable and persistent across VM migrations, the userspace has to
control the value of VP_INDEX.
This patch achieves that, by storing vp_index explicitly on vcpu, and
allowing HV_X64_MSR_VP_INDEX to be set from the host side. For
compatibility it's initialized to KVM vcpu index. Also a few variables
are renamed to make clear distinction betweed this Hyper-V vp_index and
KVM vcpu_id (== APIC id). Besides, a new capability,
KVM_CAP_HYPERV_VP_INDEX, is added to allow the userspace to skip
attempting msr writes where unsupported, to avoid spamming error logs.
Signed-off-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Adds another flag bit (bit 2) to MSR_KVM_ASYNC_PF_EN. If bit 2 is 1,
async page faults are delivered to L1 as #PF vmexits; if bit 2 is 0,
kvm_can_do_async_pf returns 0 if in guest mode.
This is similar to what svm.c wanted to do all along, but it is only
enabled for Linux as L1 hypervisor. Foreign hypervisors must never
receive async page faults as vmexits, because they'd probably be very
confused about that.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>