Things can go wrong if fault_around_bytes will be changed under
do_fault_around(): between fault_around_mask() and fault_around_pages().
Let's read fault_around_bytes only once during do_fault_around() and
calculate mask based on the reading.
Note: fault_around_bytes can only be updated via debug interface. Also
I've tried but was not able to trigger a bad behaviour without the
patch. So I would not consider this patch as urgent.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a comment describing the circumstances in which
__lock_page_or_retry() will or will not release the mmap_sem when
returning 0.
Add comments to lock_page_or_retry()'s callers (filemap_fault(),
do_swap_page()) noting the impact on VM_FAULT_RETRY returns.
Add comments on up the call tree, particularly replacing the false "We
return with mmap_sem still held" comments.
Signed-off-by: Paul Cassella <cassella@cray.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Otherwise we may not notice that pte was softdirty because
pte_mksoft_dirty helper _returns_ new pte but doesn't modify the
argument.
In case if page fault happend on dirty filemapping the newly created pte
may loose softdirty bit thus if a userspace program is tracking memory
changes with help of a memory tracker (CONFIG_MEM_SOFT_DIRTY) it might
miss modification of a memory page (which in worts case may lead to data
inconsistency).
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 71e3aac072 ("thp: transparent hugepage core") adds
copy_pte_range prototype to huge_mm.h. I'm not sure why (or if) this
function have been used outside of memory.c, but it currently isn't.
This patch makes copy_pte_range() static again.
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use ACCESS_ONCE() in handle_pte_fault() when getting the entry or
orig_pte upon which all subsequent decisions and pte_same() tests will
be made.
I have no evidence that its lack is responsible for the mm/filemap.c:202
BUG_ON(page_mapped(page)) in __delete_from_page_cache() found by
trinity, and I am not optimistic that it will fix it. But I have found
no other explanation, and ACCESS_ONCE() here will surely not hurt.
If gcc does re-access the pte before passing it down, then that would be
disastrous for correct page fault handling, and certainly could explain
the page_mapped() BUGs seen (concurrent fault causing page to be mapped
in a second time on top of itself: mapcount 2 for a single pte).
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_fault_around() expects fault_around_bytes rounded down to nearest page
order. Instead of calling rounddown_pow_of_two every time in
fault_around_pages()/fault_around_mask() we could do round down when user
changes fault_around_bytes via debugfs interface.
This also fixes bug when user set fault_around_bytes to 0. Result of
rounddown_pow_of_two(0) is not defined, therefore fault_around_bytes == 0
doesn't work without this patch.
Let's set fault_around_bytes to PAGE_SIZE if user sets to something less
than PAGE_SIZE
[akpm@linux-foundation.org: tweak code layout]
Fixes: a9b0f861("mm: nominate faultaround area in bytes rather than page order")
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [3.15.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ingo Korb reported that "repeated mapping of the same file on tmpfs
using remap_file_pages sometimes triggers a BUG at mm/filemap.c:202 when
the process exits".
He bisected the bug to d7c1755179 ("mm: implement ->map_pages for
shmem/tmpfs"), although the bug was actually added by commit
8c6e50b029 ("mm: introduce vm_ops->map_pages()").
The problem is caused by calling do_fault_around for a _non-linear_
fault. In this case pgoff is shifted and might become negative during
calculation.
Faulting around non-linear page-fault makes no sense and breaks the
logic in do_fault_around because pgoff is shifted.
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Reported-by: Ingo Korb <ingo.korb@tu-dortmund.de>
Tested-by: Ingo Korb <ingo.korb@tu-dortmund.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Ning Qu <quning@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [3.15.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some clarification on how faultaround works.
[akpm@linux-foundation.org: tweak comment text]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is evidencs that the faultaround feature is less relevant on
architectures with page size bigger then 4k. Which makes sense since page
fault overhead per byte of mapped area should be less there.
Let's rework the feature to specify faultaround area in bytes instead of
page order. It's 64 kilobytes for now.
The patch effectively disables faultaround on architectures with page size
>= 64k (like ppc64).
It's possible that some other size of faultaround area is relevant for a
platform. We can expose `fault_around_bytes' variable to arch-specific
code once such platforms will be found.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Hugh Dickins <hughd@google.com>
Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/memory.c is overloaded: over 4k lines. get_user_pages() code is
pretty much self-contained let's move it to separate file.
No other changes made.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
_PAGE_NUMA is currently an alias of _PROT_PROTNONE to trap NUMA hinting
faults on x86. Care is taken such that _PAGE_NUMA is used only in
situations where the VMA flags distinguish between NUMA hinting faults
and prot_none faults. This decision was x86-specific and conceptually
it is difficult requiring special casing to distinguish between PROTNONE
and NUMA ptes based on context.
Fundamentally, we only need the _PAGE_NUMA bit to tell the difference
between an entry that is really unmapped and a page that is protected
for NUMA hinting faults as if the PTE is not present then a fault will
be trapped.
Swap PTEs on x86-64 use the bits after _PAGE_GLOBAL for the offset.
This patch shrinks the maximum possible swap size and uses the bit to
uniquely distinguish between NUMA hinting ptes and swap ptes.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steven Noonan <steven@uplinklabs.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Changing PTEs and PMDs to pte_numa & pmd_numa is done with the
mmap_sem held for reading, which means a pmd can be instantiated
and turned into a numa one while __handle_mm_fault() is examining
the value of old_pmd.
If that happens, __handle_mm_fault() should just return and let
the page fault retry, instead of throwing an oops. This is
handled by the test for pmd_trans_huge(*pmd) below.
Signed-off-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Sunil Pandey <sunil.k.pandey@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-mm@kvack.org
Cc: lwoodman@redhat.com
Cc: dave.hansen@intel.com
Link: http://lkml.kernel.org/r/20140429153615.2d72098e@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The mmu-gather operation 'tlb_flush_mmu()' has done two things: the
actual tlb flush operation, and the batched freeing of the pages that
the TLB entries pointed at.
This splits the operation into separate phases, so that the forced
batched flushing done by zap_pte_range() can now do the actual TLB flush
while still holding the page table lock, but delay the batched freeing
of all the pages to after the lock has been dropped.
This in turn allows us to avoid a race condition between
set_page_dirty() (as called by zap_pte_range() when it finds a dirty
shared memory pte) and page_mkclean(): because we now flush all the
dirty page data from the TLB's while holding the pte lock,
page_mkclean() will be held up walking the (recently cleaned) page
tables until after the TLB entries have been flushed from all CPU's.
Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
fixup_user_fault() is used by the futex code when the direct user access
fails, and the futex code wants it to either map in the page in a usable
form or return an error. It relied on handle_mm_fault() to map the
page, and correctly checked the error return from that, but while that
does map the page, it doesn't actually guarantee that the page will be
mapped with sufficient permissions to be then accessed.
So do the appropriate tests of the vma access rights by hand.
[ Side note: arguably handle_mm_fault() could just do that itself, but
we have traditionally done it in the caller, because some callers -
notably get_user_pages() - have been able to access pages even when
they are mapped with PROT_NONE. Maybe we should re-visit that design
decision, but in the meantime this is the minimal patch. ]
Found by Dave Jones running his trinity tool.
Reported-by: Dave Jones <davej@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's only one caller of set_page_dirty_balance() and that will call it
with page_mkwrite == 0.
The page_mkwrite argument was unused since commit b827e496c8 "mm: close
page_mkwrite races".
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_newpage_charge is used only for charging anonymous memory so
it is better to rename it to mem_cgroup_charge_anon.
mem_cgroup_cache_charge is used for file backed memory so rename it to
mem_cgroup_charge_file.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here's new version of faultaround patchset. It took a while to tune it
and collect performance data.
First patch adds new callback ->map_pages to vm_operations_struct.
->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from
"pgoff" till "max_pgoff". ->map_pages() is called with page table
locked and must not block. If it's not possible to reach a page without
blocking, filesystem should skip it. Filesystem should use do_set_pte()
to setup page table entry. Pointer to entry associated with offset
"pgoff" is passed in "pte" field in vm_fault structure. Pointers to
entries for other offsets should be calculated relative to "pte".
Currently VM use ->map_pages only on read page fault path. We try to
map FAULT_AROUND_PAGES a time. FAULT_AROUND_PAGES is 16 for now.
Performance data for different FAULT_AROUND_ORDER is below.
TODO:
- implement ->map_pages() for shmem/tmpfs;
- modify get_user_pages() to be able to use ->map_pages() and implement
mmap(MAP_POPULATE|MAP_NONBLOCK) on top.
=========================================================================
Tested on 4-socket machine (120 threads) with 128GiB of RAM.
Few real-world workloads. The sweet spot for FAULT_AROUND_ORDER here is
somewhere between 3 and 5. Let's say 4 :)
Linux build (make -j60)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 283,301,572 247,151,987 212,215,789 204,772,882 199,568,944 194,703,779 193,381,485
time, seconds 151.227629483 153.920996480 151.356125472 150.863792049 150.879207877 151.150764954 151.450962358
Linux rebuild (make -j60)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 5,396,854 4,148,444 2,855,286 2,577,282 2,361,957 2,169,573 2,112,643
time, seconds 27.404543757 27.559725591 27.030057426 26.855045126 26.678618635 26.974523490 26.761320095
Git test suite (make -j60 test)
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
minor-faults 129,591,823 99,200,751 66,106,718 57,606,410 51,510,808 45,776,813 44,085,515
time, seconds 66.087215026 64.784546905 64.401156567 65.282708668 66.034016829 66.793780811 67.237810413
Two synthetic tests: access every word in file in sequential/random order.
It doesn't improve much after FAULT_AROUND_ORDER == 4.
Sequential access 16GiB file
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
1 thread
minor-faults 4,195,437 2,098,275 525,068 262,251 131,170 32,856 8,282
time, seconds 7.250461742 6.461711074 5.493859139 5.488488147 5.707213983 5.898510832 5.109232856
8 threads
minor-faults 33,557,540 16,892,728 4,515,848 2,366,999 1,423,382 442,732 142,339
time, seconds 16.649304881 9.312555263 6.612490639 6.394316732 6.669827501 6.75078944 6.371900528
32 threads
minor-faults 134,228,222 67,526,810 17,725,386 9,716,537 4,763,731 1,668,921 537,200
time, seconds 49.164430543 29.712060103 12.938649729 10.175151004 11.840094583 9.594081325 9.928461797
60 threads
minor-faults 251,687,988 126,146,952 32,919,406 18,208,804 10,458,947 2,733,907 928,217
time, seconds 86.260656897 49.626551828 22.335007632 17.608243696 16.523119035 16.339489186 16.326390902
120 threads
minor-faults 503,352,863 252,939,677 67,039,168 35,191,827 19,170,091 4,688,357 1,471,862
time, seconds 124.589206333 79.757867787 39.508707872 32.167281632 29.972989292 28.729834575 28.042251622
Random access 1GiB file
1 thread
minor-faults 262,636 132,743 34,369 17,299 8,527 3,451 1,222
time, seconds 15.351890914 16.613802482 16.569227308 15.179220992 16.557356122 16.578247824 15.365266994
8 threads
minor-faults 2,098,948 1,061,871 273,690 154,501 87,110 25,663 7,384
time, seconds 15.040026343 15.096933500 14.474757288 14.289129964 14.411537468 14.296316837 14.395635804
32 threads
minor-faults 8,390,734 4,231,023 1,054,432 528,847 269,242 97,746 26,881
time, seconds 20.430433109 21.585235358 22.115062928 14.872878951 14.880856305 14.883370649 14.821261690
60 threads
minor-faults 15,733,258 7,892,809 1,973,393 988,266 594,789 164,994 51,691
time, seconds 26.577302548 25.692397770 18.728863715 20.153026398 21.619101933 17.745086260 17.613215273
120 threads
minor-faults 31,471,111 15,816,616 3,959,209 1,978,685 1,008,299 264,635 96,010
time, seconds 41.835322703 40.459786095 36.085306105 35.313894834 35.814445675 36.552633793 34.289210594
Touch only one page in page table in 16GiB file
FAULT_AROUND_ORDER Baseline 1 3 4 5 7 9
1 thread
minor-faults 8,372 8,324 8,270 8,260 8,249 8,239 8,237
time, seconds 0.039892712 0.045369149 0.051846126 0.063681685 0.079095975 0.17652406 0.541213386
8 threads
minor-faults 65,731 65,681 65,628 65,620 65,608 65,599 65,596
time, seconds 0.124159196 0.488600638 0.156854426 0.191901957 0.242631486 0.543569456 1.677303984
32 threads
minor-faults 262,388 262,341 262,285 262,276 262,266 262,257 263,183
time, seconds 0.452421421 0.488600638 0.565020946 0.648229739 0.789850823 1.651584361 5.000361559
60 threads
minor-faults 491,822 491,792 491,723 491,711 491,701 491,691 491,825
time, seconds 0.763288616 0.869620515 0.980727360 1.161732354 1.466915814 3.04041448 9.308612938
120 threads
minor-faults 983,466 983,655 983,366 983,372 983,363 984,083 984,164
time, seconds 1.595846553 1.667902182 2.008959376 2.425380942 2.941368804 5.977807890 18.401846125
This patch (of 2):
Introduce new vm_ops callback ->map_pages() and uses it for mapping easy
accessible pages around fault address.
On read page fault, if filesystem provides ->map_pages(), we try to map up
to FAULT_AROUND_PAGES pages around page fault address in hope to reduce
number of minor page faults.
We call ->map_pages first and use ->fault() as fallback if page by the
offset is not ready to be mapped (cold page cache or something).
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The described issue now occurs inside mmap_region(). And unfortunately
is still valid.
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_user_pages(write=1, force=1) has always had odd behaviour on write-
protected shared mappings: although it demands FMODE_WRITE-access to the
underlying object (do_mmap_pgoff sets neither VM_SHARED nor VM_MAYWRITE
without that), it ends up with do_wp_page substituting private anonymous
Copied-On-Write pages for the shared file pages in the area.
That was long ago intentional, as a safety measure to prevent ptrace
setting a breakpoint (or POKETEXT or POKEDATA) from inadvertently
corrupting the underlying executable. Yet exec and dynamic loaders open
the file read-only, and use MAP_PRIVATE rather than MAP_SHARED.
The traditional odd behaviour still causes surprises and bugs in mm, and
is probably not what any caller wants - even the comment on the flag
says "You do not want this" (although it's undoubtedly necessary for
overriding userspace protections in some contexts, and good when !write).
Let's stop doing that. But it would be dangerous to remove the long-
standing safety at this stage, so just make get_user_pages(write,force)
fail with EFAULT when applied to a write-protected shared area.
Infiniband may in future want to force write through to underlying
object: we can add another FOLL_flag later to enable that if required.
Odd though the old behaviour was, there is no doubt that we may turn out
to break userspace with this change, and have to revert it quickly.
Issue a WARN_ON_ONCE to help debug the changed case (easily triggered by
userspace, so only once to prevent spamming the logs); and delay a few
associated cleanups until this change is proved.
get_user_pages callers who might see trouble from this change:
ptrace poking, or writing to /proc/<pid>/mem
drivers/infiniband/
drivers/media/v4l2-core/
drivers/gpu/drm/exynos/exynos_drm_gem.c
drivers/staging/tidspbridge/core/tiomap3430.c
if they ever apply get_user_pages to write-protected shared mappings
of an object which was opened for writing.
I went to apply the same change to mm/nommu.c, but retreated. NOMMU has
no place for COW, and its VM_flags conventions are not the same: I'd be
more likely to screw up NOMMU than make an improvement there.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two functions which need to call vm_ops->page_mkwrite():
do_shared_fault() and do_wp_page(). We can consolidate preparation
code.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce do_shared_fault(). The function does what do_fault() does for
write faults to shared mappings
Unlike do_fault(), do_shared_fault() is relatively clean and
straight-forward.
Old do_fault() is not needed anymore. Let it die.
[lliubbo@gmail.com: fix NULL pointer dereference]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce do_cow_fault(). The function does what do_fault() does for
write page faults to private mappings.
Unlike do_fault(), do_read_fault() is relatively clean and
straight-forward.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce do_read_fault(). The function does what do_fault() does for
read page faults.
Unlike do_fault(), do_read_fault() is pretty clean and straightforward.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extract code to vm_ops->do_fault() and basic error handling to separate
function. The code will be reused.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current __do_fault() is awful and unmaintainable. These patches try to
sort it out by split __do_fault() into three destinct codepaths:
- to handle read page fault;
- to handle write page fault to private mappings;
- to handle write page fault to shared mappings;
I also found page refcount leak in PageHWPoison() path of __do_fault().
This patch (of 7):
do_fault() is unused: no reason for underscores.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mark functions as static in memory.c because they are not used outside
this file.
This eliminates the following warnings in mm/memory.c:
mm/memory.c:3530:5: warning: no previous prototype for `numa_migrate_prep' [-Wmissing-prototypes]
mm/memory.c:3545:5: warning: no previous prototype for `do_numa_page' [-Wmissing-prototypes]
Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Masayoshi Mizuma reported a bug with the hang of an application under
the memcg limit. It happens on write-protection fault to huge zero page
If we successfully allocate a huge page to replace zero page but hit the
memcg limit we need to split the zero page with split_huge_page_pmd()
and fallback to small pages.
The other part of the problem is that VM_FAULT_OOM has special meaning
in do_huge_pmd_wp_page() context. __handle_mm_fault() expects the page
to be split if it sees VM_FAULT_OOM and it will will retry page fault
handling. This causes an infinite loop if the page was not split.
do_huge_pmd_wp_zero_page_fallback() can return VM_FAULT_OOM if it failed
to allocate one small page, so fallback to small pages will not help.
The solution for this part is to replace VM_FAULT_OOM with
VM_FAULT_FALLBACK is fallback required.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bad_page() is cool in that it prints out a bunch of data about the page.
But, I can never remember which page flags are good and which are bad,
or whether ->index or ->mapping is required to be NULL.
This patch allows bad/dump_page() callers to specify a string about why
they are dumping the page and adds explanation strings to a number of
places. It also adds a 'bad_flags' argument to bad_page(), which it
then dumps out separately from the flags which are actually set.
This way, the messages will show specifically why the page was bad,
*specifically* which flags it is complaining about, if it was a page
flag combination which was the problem.
[akpm@linux-foundation.org: switch to pr_alert]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64
is 72 bytes. For page->ptl they will be allocated from kmalloc-96 slab,
so we loose 24 on each. An average system can easily allocate few tens
thousands of page->ptl and overhead is significant.
Let's create a separate slab for page->ptl allocation to solve this.
To make sure that it really works this time, some numbers from my test
machine (just booted, no load):
Before:
# grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
kmalloc-96 31987 32190 128 30 1 : tunables 120 60 8 : slabdata 1073 1073 92
After:
# grep '^\(kmalloc-96\|page->ptl\)' /proc/slabinfo
page->ptl 27516 28143 72 53 1 : tunables 120 60 8 : slabdata 531 531 9
kmalloc-96 3853 5280 128 30 1 : tunables 120 60 8 : slabdata 176 176 0
Note that the patch is useful not only for debug case, but also for
PREEMPT_RT, where spinlock_t is always bloated.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Record actively mapped pages and provide an api for asserting a given
page is dma inactive before execution proceeds. Placing
debug_dma_assert_idle() in cow_user_page() flagged the violation of the
dma-api in the NET_DMA implementation (see commit 7787380336 "net_dma:
mark broken").
The implementation includes the capability to count, in a limited way,
repeat mappings of the same page that occur without an intervening
unmap. This 'overlap' counter is limited to the few bits of tag space
in a radix tree. This mechanism is added to mitigate false negative
cases where, for example, a page is dma mapped twice and
debug_dma_assert_idle() is called after the page is un-mapped once.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Vinod Koul <vinod.koul@intel.com>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: James Bottomley <JBottomley@Parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add calls to the new mmu_notifier_invalidate_range() function to all
places in the VMM that need it.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Jay Cornwall <Jay.Cornwall@amd.com>
Cc: Oded Gabbay <Oded.Gabbay@amd.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
Commit 597d795a2a ('mm: do not allocate page->ptl dynamically, if
spinlock_t fits to long') restructures some allocators that are compiled
even if USE_SPLIT_PTLOCKS arn't used. It results in compilation
failure:
mm/memory.c:4282:6: error: 'struct page' has no member named 'ptl'
mm/memory.c:4288:12: error: 'struct page' has no member named 'ptl'
Add in the missing ifdef.
Fixes: 597d795a2a ('mm: do not allocate page->ptl dynamically, if spinlock_t fits to long')
Signed-off-by: Olof Johansson <olof@lixom.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In struct page we have enough space to fit long-size page->ptl there,
but we use dynamically-allocated page->ptl if size(spinlock_t) is larger
than sizeof(int).
It hurts 64-bit architectures with CONFIG_GENERIC_LOCKBREAK, where
sizeof(spinlock_t) == 8, but it easily fits into struct page.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit ea1e7ed337.
Al points out that while the commit *does* actually create a separate
slab for the page->ptl allocation, that slab is never actually used, and
the code continues to use kmalloc/kfree.
Damien Wyart points out that the original patch did have the conversion
to use kmem_cache_alloc/free, so it got lost somewhere on its way to me.
Revert the half-arsed attempt that didn't do anything. If we really do
want the special slab (remember: this is all relevant just for debug
builds, so it's not necessarily all that critical) we might as well redo
the patch fully.
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC are enabled spinlock_t on x86_64
is 72 bytes. For page->ptl they will be allocated from kmalloc-96 slab,
so we loose 24 on each. An average system can easily allocate few tens
thousands of page->ptl and overhead is significant.
Let's create a separate slab for page->ptl allocation to solve this.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use kernel/bounds.c to convert build-time spinlock_t size check into a
preprocessor symbol and apply that to properly separate the page::ptl
situation.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If split page table lock is in use, we embed the lock into struct page
of table's page. We have to disable split lock, if spinlock_t is too
big be to be embedded, like when DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC
enabled.
This patch add support for dynamic allocation of split page table lock
if we can't embed it to struct page.
page->ptl is unsigned long now and we use it as spinlock_t if
sizeof(spinlock_t) <= sizeof(long), otherwise it's pointer to spinlock_t.
The spinlock_t allocated in pgtable_page_ctor() for PTE table and in
pgtable_pmd_page_ctor() for PMD table. All other helpers converted to
support dynamically allocated page->ptl.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge first patch-bomb from Andrew Morton:
"Quite a lot of other stuff is banked up awaiting further
next->mainline merging, but this batch contains:
- Lots of random misc patches
- OCFS2
- Most of MM
- backlight updates
- lib/ updates
- printk updates
- checkpatch updates
- epoll tweaking
- rtc updates
- hfs
- hfsplus
- documentation
- procfs
- update gcov to gcc-4.7 format
- IPC"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (269 commits)
ipc, msg: fix message length check for negative values
ipc/util.c: remove unnecessary work pending test
devpts: plug the memory leak in kill_sb
./Makefile: export initial ramdisk compression config option
init/Kconfig: add option to disable kernel compression
drivers: w1: make w1_slave::flags long to avoid memory corruption
drivers/w1/masters/ds1wm.cuse dev_get_platdata()
drivers/memstick/core/ms_block.c: fix unreachable state in h_msb_read_page()
drivers/memstick/core/mspro_block.c: fix attributes array allocation
drivers/pps/clients/pps-gpio.c: remove redundant of_match_ptr
kernel/panic.c: reduce 1 byte usage for print tainted buffer
gcov: reuse kbasename helper
kernel/gcov/fs.c: use pr_warn()
kernel/module.c: use pr_foo()
gcov: compile specific gcov implementation based on gcc version
gcov: add support for gcc 4.7 gcov format
gcov: move gcov structs definitions to a gcc version specific file
kernel/taskstats.c: return -ENOMEM when alloc memory fails in add_del_listener()
kernel/taskstats.c: add nla_nest_cancel() for failure processing between nla_nest_start() and nla_nest_end()
kernel/sysctl_binary.c: use scnprintf() instead of snprintf()
...
Pull vfs updates from Al Viro:
"All kinds of stuff this time around; some more notable parts:
- RCU'd vfsmounts handling
- new primitives for coredump handling
- files_lock is gone
- Bruce's delegations handling series
- exportfs fixes
plus misc stuff all over the place"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (101 commits)
ecryptfs: ->f_op is never NULL
locks: break delegations on any attribute modification
locks: break delegations on link
locks: break delegations on rename
locks: helper functions for delegation breaking
locks: break delegations on unlink
namei: minor vfs_unlink cleanup
locks: implement delegations
locks: introduce new FL_DELEG lock flag
vfs: take i_mutex on renamed file
vfs: rename I_MUTEX_QUOTA now that it's not used for quotas
vfs: don't use PARENT/CHILD lock classes for non-directories
vfs: pull ext4's double-i_mutex-locking into common code
exportfs: fix quadratic behavior in filehandle lookup
exportfs: better variable name
exportfs: move most of reconnect_path to helper function
exportfs: eliminate unused "noprogress" counter
exportfs: stop retrying once we race with rename/remove
exportfs: clear DISCONNECTED on all parents sooner
exportfs: more detailed comment for path_reconnect
...
The callers of free_pgd_range() and hugetlb_free_pgd_range() don't hold
page table locks. The comments seems to be obsolete, so let's remove
them.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Resolve cherry-picking conflicts:
Conflicts:
mm/huge_memory.c
mm/memory.c
mm/mprotect.c
See this upstream merge commit for more details:
52469b4fcd Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are three callers of task_numa_fault():
- do_huge_pmd_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_pmd_numa_page():
Accounts not at all when the page isn't migrated, otherwise
accounts against the node we migrated towards.
This seems wrong to me; all three sites should have the same
sementaics, furthermore we should accounts against where the page
really is, we already know where the task is.
So modify all three sites to always account; we did after all receive
the fault; and always account to where the page is after migration,
regardless of success.
They all still differ on when they clear the PTE/PMD; ideally that
would get sorted too.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 3812c8c8f3 ("mm: memcg: do not trap chargers with full
callstack on OOM") assumed that only a few places that can trigger a
memcg OOM situation do not return VM_FAULT_OOM, like optional page cache
readahead. But there are many more and it's impractical to annotate
them all.
First of all, we don't want to invoke the OOM killer when the failed
allocation is gracefully handled, so defer the actual kill to the end of
the fault handling as well. This simplifies the code quite a bit for
added bonus.
Second, since a failed allocation might not be the abrupt end of the
fault, the memcg OOM handler needs to be re-entrant until the fault
finishes for subsequent allocation attempts. If an allocation is
attempted after the task already OOMed, allow it to bypass the limit so
that it can quickly finish the fault and invoke the OOM killer.
Reported-by: azurIt <azurit@pobox.sk>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If page migration is turned on in config and the page is migrating, we
may lose the soft dirty bit. If fork and mprotect are called on
migrating pages (once migration is complete) pages do not obtain the
soft dirty bit in the correspond pte entries. Fix it adding an
appropriate test on swap entries.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adjust numa_scan_period in task_numa_placement, depending on how much
useful work the numa code can do. The more local faults there are in a
given scan window the longer the period (and hence the slower the scan rate)
during the next window. If there are excessive shared faults then the scan
period will decrease with the amount of scaling depending on whether the
ratio of shared/private faults. If the preferred node changes then the
scan rate is reset to recheck if the task is properly placed.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-59-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Due to the way the pid is truncated, and tasks are moved between
CPUs by the scheduler, it is possible for the current task_numa_fault
to group together tasks that do not actually share memory together.
This patch adds a few easy sanity checks to task_numa_fault, joining
tasks together if they share the same tsk->mm, or if the fault was on
a page with an elevated mapcount, in a shared VMA.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-57-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With the THP migration races closed it is still possible to occasionally
see corruption. The problem is related to handling PMD pages in batch.
When a page fault is handled it can be assumed that the page being
faulted will also be flushed from the TLB. The same flushing does not
happen when handling PMD pages in batch. Fixing is straight forward but
there are a number of reasons not to
1. Multiple TLB flushes may have to be sent depending on what pages get
migrated
2. The handling of PMDs in batch means that faults get accounted to
the task that is handling the fault. While care is taken to only
mark PMDs where the last CPU and PID match it can still have problems
due to PID truncation when matching PIDs.
3. Batching on the PMD level may reduce faults but setting pmd_numa
requires taking a heavy lock that can contend with THP migration
and handling the fault requires the release/acquisition of the PTL
for every page migrated. It's still pretty heavy.
PMD batch handling is not something that people ever have been happy
with. This patch removes it and later patches will deal with the
additional fault overhead using more installigent migrate rate adaption.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-48-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
And here's a little something to make sure not the whole world ends up
in a single group.
As while we don't migrate shared executable pages, we do scan/fault on
them. And since everybody links to libc, everybody ends up in the same
group.
Suggested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-47-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While parallel applications tend to align their data on the cache
boundary, they tend not to align on the page or THP boundary.
Consequently tasks that partition their data can still "false-share"
pages presenting a problem for optimal NUMA placement.
This patch uses NUMA hinting faults to chain tasks together into
numa_groups. As well as storing the NID a task was running on when
accessing a page a truncated representation of the faulting PID is
stored. If subsequent faults are from different PIDs it is reasonable
to assume that those two tasks share a page and are candidates for
being grouped together. Note that this patch makes no scheduling
decisions based on the grouping information.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the per page last fault tracking to use cpu,pid instead of
nid,pid. This will allow us to try and lookup the alternate task more
easily. Note that even though it is the cpu that is store in the page
flags that the mpol_misplaced decision is still based on the node.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de
[ Fixed build failure on 32-bit systems. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults that
are private to a task and those that are shared. If treated identically
there is a risk that shared pages bounce between nodes depending on
the order they are referenced by tasks. Ultimately what is desirable is
that task private pages remain local to the task while shared pages are
interleaved between sharing tasks running on different nodes to give good
average performance. This is further complicated by THP as even
applications that partition their data may not be partitioning on a huge
page boundary.
To start with, this patch assumes that multi-threaded or multi-process
applications partition their data and that in general the private accesses
are more important for cpu->memory locality in the general case. Also,
no new infrastructure is required to treat private pages properly but
interleaving for shared pages requires additional infrastructure.
To detect private accesses the pid of the last accessing task is required
but the storage requirements are a high. This patch borrows heavily from
Ingo Molnar's patch "numa, mm, sched: Implement last-CPU+PID hash tracking"
to encode some bits from the last accessing task in the page flags as
well as the node information. Collisions will occur but it is better than
just depending on the node information. Node information is then used to
determine if a page needs to migrate. The PID information is used to detect
private/shared accesses. The preferred NUMA node is selected based on where
the maximum number of approximately private faults were measured. Shared
faults are not taken into consideration for a few reasons.
First, if there are many tasks sharing the page then they'll all move
towards the same node. The node will be compute overloaded and then
scheduled away later only to bounce back again. Alternatively the shared
tasks would just bounce around nodes because the fault information is
effectively noise. Either way accounting for shared faults the same as
private faults can result in lower performance overall.
The second reason is based on a hypothetical workload that has a small
number of very important, heavily accessed private pages but a large shared
array. The shared array would dominate the number of faults and be selected
as a preferred node even though it's the wrong decision.
The third reason is that multiple threads in a process will race each
other to fault the shared page making the fault information unreliable.
Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Fix complication error when !NUMA_BALANCING. ]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-30-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently automatic NUMA balancing is unable to distinguish between false
shared versus private pages except by ignoring pages with an elevated
page_mapcount entirely. This avoids shared pages bouncing between the
nodes whose task is using them but that is ignored quite a lot of data.
This patch kicks away the training wheels in preparation for adding support
for identifying shared/private pages is now in place. The ordering is so
that the impact of the shared/private detection can be easily measured. Note
that the patch does not migrate shared, file-backed within vmas marked
VM_EXEC as these are generally shared library pages. Migrating such pages
is not beneficial as there is an expectation they are read-shared between
caches and iTLB and iCache pressure is generally low.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-28-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults
that are private to a task and those that are shared. This patch prepares
infrastructure for separately accounting shared and private faults by
allocating the necessary buffers and passing in relevant information. For
now, all faults are treated as private and detection will be introduced
later.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-26-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The zero page is not replicated between nodes and is often shared between
processes. The data is read-only and likely to be cached in local CPUs
if heavily accessed meaning that the remote memory access cost is less
of a concern. This patch prevents trapping faults on the zero pages. For
tasks using the zero page this will reduce the number of PTE updates,
TLB flushes and hinting faults.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Correct use of is_huge_zero_page]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-13-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are three callers of task_numa_fault():
- do_huge_pmd_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_pmd_numa_page():
Accounts not at all when the page isn't migrated, otherwise
accounts against the node we migrated towards.
This seems wrong to me; all three sites should have the same
sementaics, furthermore we should accounts against where the page
really is, we already know where the task is.
So modify all three sites to always account; we did after all receive
the fault; and always account to where the page is after migration,
regardless of success.
They all still differ on when they clear the PTE/PMD; ideally that
would get sorted too.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The memcg OOM handling is incredibly fragile and can deadlock. When a
task fails to charge memory, it invokes the OOM killer and loops right
there in the charge code until it succeeds. Comparably, any other task
that enters the charge path at this point will go to a waitqueue right
then and there and sleep until the OOM situation is resolved. The problem
is that these tasks may hold filesystem locks and the mmap_sem; locks that
the selected OOM victim may need to exit.
For example, in one reported case, the task invoking the OOM killer was
about to charge a page cache page during a write(), which holds the
i_mutex. The OOM killer selected a task that was just entering truncate()
and trying to acquire the i_mutex:
OOM invoking task:
mem_cgroup_handle_oom+0x241/0x3b0
mem_cgroup_cache_charge+0xbe/0xe0
add_to_page_cache_locked+0x4c/0x140
add_to_page_cache_lru+0x22/0x50
grab_cache_page_write_begin+0x8b/0xe0
ext3_write_begin+0x88/0x270
generic_file_buffered_write+0x116/0x290
__generic_file_aio_write+0x27c/0x480
generic_file_aio_write+0x76/0xf0 # takes ->i_mutex
do_sync_write+0xea/0x130
vfs_write+0xf3/0x1f0
sys_write+0x51/0x90
system_call_fastpath+0x18/0x1d
OOM kill victim:
do_truncate+0x58/0xa0 # takes i_mutex
do_last+0x250/0xa30
path_openat+0xd7/0x440
do_filp_open+0x49/0xa0
do_sys_open+0x106/0x240
sys_open+0x20/0x30
system_call_fastpath+0x18/0x1d
The OOM handling task will retry the charge indefinitely while the OOM
killed task is not releasing any resources.
A similar scenario can happen when the kernel OOM killer for a memcg is
disabled and a userspace task is in charge of resolving OOM situations.
In this case, ALL tasks that enter the OOM path will be made to sleep on
the OOM waitqueue and wait for userspace to free resources or increase
the group's limit. But a userspace OOM handler is prone to deadlock
itself on the locks held by the waiting tasks. For example one of the
sleeping tasks may be stuck in a brk() call with the mmap_sem held for
writing but the userspace handler, in order to pick an optimal victim,
may need to read files from /proc/<pid>, which tries to acquire the same
mmap_sem for reading and deadlocks.
This patch changes the way tasks behave after detecting a memcg OOM and
makes sure nobody loops or sleeps with locks held:
1. When OOMing in a user fault, invoke the OOM killer and restart the
fault instead of looping on the charge attempt. This way, the OOM
victim can not get stuck on locks the looping task may hold.
2. When OOMing in a user fault but somebody else is handling it
(either the kernel OOM killer or a userspace handler), don't go to
sleep in the charge context. Instead, remember the OOMing memcg in
the task struct and then fully unwind the page fault stack with
-ENOMEM. pagefault_out_of_memory() will then call back into the
memcg code to check if the -ENOMEM came from the memcg, and then
either put the task to sleep on the memcg's OOM waitqueue or just
restart the fault. The OOM victim can no longer get stuck on any
lock a sleeping task may hold.
Debugged by Michal Hocko.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: azurIt <azurit@pobox.sk>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
System calls and kernel faults (uaccess, gup) can handle an out of memory
situation gracefully and just return -ENOMEM.
Enable the memcg OOM killer only for user faults, where it's really the
only option available.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: azurIt <azurit@pobox.sk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extend move_pages() to handle vma with VM_HUGETLB set. We will be able to
migrate hugepage with move_pages(2) after applying the enablement patch
which comes later in this series.
We avoid getting refcount on tail pages of hugepage, because unlike thp,
hugepage is not split and we need not care about races with splitting.
And migration of larger (1GB for x86_64) hugepage are not enabled.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pgtable related functions are mostly in pgtable-generic.c.
So move remaining functions from memory.c to pgtable-generic.c.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ben Tebulin reported:
"Since v3.7.2 on two independent machines a very specific Git
repository fails in 9/10 cases on git-fsck due to an SHA1/memory
failures. This only occurs on a very specific repository and can be
reproduced stably on two independent laptops. Git mailing list ran
out of ideas and for me this looks like some very exotic kernel issue"
and bisected the failure to the backport of commit 53a59fc67f ("mm:
limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT").
That commit itself is not actually buggy, but what it does is to make it
much more likely to hit the partial TLB invalidation case, since it
introduces a new case in tlb_next_batch() that previously only ever
happened when running out of memory.
The real bug is that the TLB gather virtual memory range setup is subtly
buggered. It was introduced in commit 597e1c3580 ("mm/mmu_gather:
enable tlb flush range in generic mmu_gather"), and the range handling
was already fixed at least once in commit e6c495a96c ("mm: fix the TLB
range flushed when __tlb_remove_page() runs out of slots"), but that fix
was not complete.
The problem with the TLB gather virtual address range is that it isn't
set up by the initial tlb_gather_mmu() initialization (which didn't get
the TLB range information), but it is set up ad-hoc later by the
functions that actually flush the TLB. And so any such case that forgot
to update the TLB range entries would potentially miss TLB invalidates.
Rather than try to figure out exactly which particular ad-hoc range
setup was missing (I personally suspect it's the hugetlb case in
zap_huge_pmd(), which didn't have the same logic as zap_pte_range()
did), this patch just gets rid of the problem at the source: make the
TLB range information available to tlb_gather_mmu(), and initialize it
when initializing all the other tlb gather fields.
This makes the patch larger, but conceptually much simpler. And the end
result is much more understandable; even if you want to play games with
partial ranges when invalidating the TLB contents in chunks, now the
range information is always there, and anybody who doesn't want to
bother with it won't introduce subtle bugs.
Ben verified that this fixes his problem.
Reported-bisected-and-tested-by: Ben Tebulin <tebulin@googlemail.com>
Build-testing-by: Stephen Rothwell <sfr@canb.auug.org.au>
Build-testing-by: Richard Weinberger <richard.weinberger@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andy reported that if file page get reclaimed we lose the soft-dirty bit
if it was there, so save _PAGE_BIT_SOFT_DIRTY bit when page address get
encoded into pte entry. Thus when #pf happens on such non-present pte
we can restore it back.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andy Lutomirski reported that if a page with _PAGE_SOFT_DIRTY bit set
get swapped out, the bit is getting lost and no longer available when
pte read back.
To resolve this we introduce _PTE_SWP_SOFT_DIRTY bit which is saved in
pte entry for the page being swapped out. When such page is to be read
back from a swap cache we check for bit presence and if it's there we
clear it and restore the former _PAGE_SOFT_DIRTY bit back.
One of the problem was to find a place in pte entry where we can save
the _PTE_SWP_SOFT_DIRTY bit while page is in swap. The _PAGE_PSE was
chosen for that, it doesn't intersect with swap entry format stored in
pte.
Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the next commit this function will be used in the uio subsystem
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
These VM_<READfoo> macros aren't used very often and three of them
aren't used at all.
Expand the ones that are used in-place, and remove all the now unused
#define VM_<foo> macros.
VM_READHINTMASK, VM_NormalReadHint and VM_ClearReadHint were added just
before 2.4 and appears have never been used.
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now all references to num_physpages have been removed, so kill it.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zap_pte_range loops from @addr to @end. In the middle, if it runs out of
batching slots, TLB entries needs to be flushed for @start to @interim,
NOT @interim to @end.
Since ARC port doesn't use page free batching I can't test it myself but
this seems like the right thing to do.
Observed this when working on a fix for the issue at thread:
http://www.spinics.net/lists/linux-arch/msg21736.html
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
(*->vm_end - *->vm_start) >> PAGE_SHIFT operation is implemented
as a inline funcion vma_pages() in linux/mm.h, so using it.
Signed-off-by: Libin <huawei.libin@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull voluntary preemption fixes from Ingo Molnar:
"This tree contains a speedup which is achieved through better
might_sleep()/might_fault() preemption point annotations for uaccess
functions, by Michael S Tsirkin:
1. The only reason uaccess routines might sleep is if they fault.
Make this explicit for all architectures.
2. A voluntary preemption point in uaccess functions means compiler
can't inline them efficiently, this breaks assumptions that they
are very fast and small that e.g. net code seems to make. Remove
this preemption point so behaviour matches with what callers
assume.
3. Accesses (e.g through socket ops) to kernel memory with KERNEL_DS
like net/sunrpc does will never sleep. Remove an unconditinal
might_sleep() in the might_fault() inline in kernel.h (used when
PROVE_LOCKING is not set).
4. Accesses with pagefault_disable() return EFAULT but won't cause
caller to sleep. Check for that and thus avoid might_sleep() when
PROVE_LOCKING is set.
These changes offer a nice speedup for CONFIG_PREEMPT_VOLUNTARY=y
kernels, here's a network bandwidth measurement between a virtual
machine and the host:
before:
incoming: 7122.77 Mb/s
outgoing: 8480.37 Mb/s
after:
incoming: 8619.24 Mb/s [ +21.0% ]
outgoing: 9455.42 Mb/s [ +11.5% ]
I kept these changes in a separate tree, separate from scheduler
changes, because it's a mixed MM and scheduler topic"
* 'sched-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
mm, sched: Allow uaccess in atomic with pagefault_disable()
mm, sched: Drop voluntary schedule from might_fault()
x86: uaccess s/might_sleep/might_fault/
tile: uaccess s/might_sleep/might_fault/
powerpc: uaccess s/might_sleep/might_fault/
mn10300: uaccess s/might_sleep/might_fault/
microblaze: uaccess s/might_sleep/might_fault/
m32r: uaccess s/might_sleep/might_fault/
frv: uaccess s/might_sleep/might_fault/
arm64: uaccess s/might_sleep/might_fault/
asm-generic: uaccess s/might_sleep/might_fault/
Since the introduction of preemptible mmu_gather TLB fast mode has been
broken. TLB fast mode relies on there being absolutely no concurrency;
it frees pages first and invalidates TLBs later.
However now we can get concurrency and stuff goes *bang*.
This patch removes all tlb_fast_mode() code; it was found the better
option vs trying to patch the hole by entangling tlb invalidation with
the scheduler.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Reported-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This changes might_fault() so that it does not
trigger a false positive diagnostic for e.g. the following
sequence:
spin_lock_irqsave()
pagefault_disable()
copy_to_user()
pagefault_enable()
spin_unlock_irqrestore()
In particular vhost wants to do this, to call
socket ops from under a lock.
There are 3 cases to consider:
- CONFIG_PROVE_LOCKING - might_fault is non-inline
so it's easy to move the in_atomic test to fix
up the false positive warning.
- CONFIG_DEBUG_ATOMIC_SLEEP - might_fault
is currently inline, but we are calling a
non-inline __might_sleep anyway,
so let's use the non-line version of might_fault
that does the right thing.
- !CONFIG_DEBUG_ATOMIC_SLEEP && !CONFIG_PROVE_LOCKING
__might_sleep is a nop so might_fault is a nop.
Make this explicit.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1369577426-26721-11-git-send-email-mst@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
might_fault() is called from functions like copy_to_user()
which most callers expect to be very fast, like a couple of
instructions.
So functions like memcpy_toiovec() call them many times in a loop.
But might_fault() calls might_sleep() and with CONFIG_PREEMPT_VOLUNTARY
this results in a function call.
Let's not do this - just call __might_sleep() that produces
a diagnostic for sleep within atomic, but drop
might_preempt().
Here's a test sending traffic between the VM and the host,
host is built with CONFIG_PREEMPT_VOLUNTARY:
before:
incoming: 7122.77 Mb/s
outgoing: 8480.37 Mb/s
after:
incoming: 8619.24 Mb/s
outgoing: 9455.42 Mb/s
As a side effect, this fixes an issue pointed
out by Ingo: might_fault might schedule differently
depending on PROVE_LOCKING. Now there's no
preemption point in both cases, so it's consistent.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1369577426-26721-10-git-send-email-mst@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently the memory barrier in __do_huge_pmd_anonymous_page doesn't
work. Because lru_cache_add_lru uses pagevec so it could miss spinlock
easily so above rule was broken so user might see inconsistent data.
I was not first person who pointed out the problem. Mel and Peter
pointed out a few months ago and Peter pointed out further that even
spin_lock/unlock can't make sure of it:
http://marc.info/?t=134333512700004
In particular:
*A = a;
LOCK
UNLOCK
*B = b;
may occur as:
LOCK, STORE *B, STORE *A, UNLOCK
At last, Hugh pointed out that even we don't need memory barrier in
there because __SetPageUpdate already have done it from Nick's commit
0ed361dec3 ("mm: fix PageUptodate data race") explicitly.
So this patch fixes comment on THP and adds same comment for
do_anonymous_page, too because everybody except Hugh was missing that.
It means we need a comment about that.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the new vsprintf extension to avoid any possible
message interleaving.
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Various drivers end up replicating the code to mmap() their memory
buffers into user space, and our core memory remapping function may be
very flexible but it is unnecessarily complicated for the common cases
to use.
Our internal VM uses pfn's ("page frame numbers") which simplifies
things for the VM, and allows us to pass physical addresses around in a
denser and more efficient format than passing a "phys_addr_t" around,
and having to shift it up and down by the page size. But it just means
that drivers end up doing that shifting instead at the interface level.
It also means that drivers end up mucking around with internal VM things
like the vma details (vm_pgoff, vm_start/end) way more than they really
need to.
So this just exports a function to map a certain physical memory range
into user space (using a phys_addr_t based interface that is much more
natural for a driver) and hides all the complexity from the driver.
Some drivers will still end up tweaking the vm_page_prot details for
things like prefetching or cacheability etc, but that's actually
relevant to the driver, rather than caring about what the page offset of
the mapping is into the particular IO memory region.
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch attempts to fix:
https://bugzilla.kernel.org/show_bug.cgi?id=56461
The symptom is a crash and messages like this:
chrome: Corrupted page table at address 34a03000
*pdpt = 0000000000000000 *pde = 0000000000000000
Bad pagetable: 000f [#1] PREEMPT SMP
Ingo guesses this got introduced by commit 611ae8e3f5 ("x86/tlb:
enable tlb flush range support for x86") since that code started to free
unused pagetables.
On x86-32 PAE kernels, that new code has the potential to free an entire
PMD page and will clear one of the four page-directory-pointer-table
(aka pgd_t entries).
The hardware aggressively "caches" these top-level entries and invlpg
does not actually affect the CPU's copy. If we clear one we *HAVE* to
do a full TLB flush, otherwise we might continue using a freed pmd page.
(note, we do this properly on the population side in pud_populate()).
This patch tracks whenever we clear one of these entries in the 'struct
mmu_gather', and ensures that we follow up with a full tlb flush.
BTW, I disassembled and checked that:
if (tlb->fullmm == 0)
and
if (!tlb->fullmm && !tlb->need_flush_all)
generate essentially the same code, so there should be zero impact there
to the !PAE case.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Artem S Tashkinov <t.artem@mailcity.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lockdep, but it's a mechanical change.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQIcBAABAgAGBQJRJAcuAAoJENkgDmzRrbjxsw0P/3eXb+LddYnx0V0uHYdKpCUf
4vdW7X0fX3Z+aUK69IWRL/6ahoO4TpaHYGHBDjEoivyQ0GDq14X7JNWsYYt3LdMf
3wmDgRc2cn/mZOJbFeVpNV8ox5l/xc0CUvV+iQ8tMjfQItXMXgWUFZKMECsXKSO6
eex3lrw9M2jAX2uL8LQPp9W8xtKu24nSZRC6tH5riE/8fCzi1cZPPAqfxP5c8Lee
ZXtbCRSyAFENZLpKyMe1PC7HvtJyi5NDn9xwOQiXULZV/VOlvP94DGBLIKCM/6dn
4QvZxpG0P0uOlpCgRAVLyh/z7g4XY4VF/fHopLCmEcqLsvgD+V2LQpQ9zWUalLPC
Z+pUpz2vu0gIddPU1nR8R6oGpEdJ8O12aJle62p/RSXWZGx12qUQ+Tamu0tgKcv1
AsiJfbUGNDYfxgU6sHsoQjl2f68LTVckCU1C1LqEbW/S104EIORtGx30CHM4LRiO
32kDC5TtgYDBKQAIqJ4bL48ZMh+9W3uX40p7xzOI5khHQjvswUKa3jcxupU0C1uv
lx8KXo7pn8WT33QGysWC782wJCgJuzSc2vRn+KQoqoynuHGM6agaEtR59gil3QWO
rQEcxH63BBRDgHlg4FM9IkJwwsnC3PWKL8gbX0uAWXAPMbgapJkuuGZAwt0WDGVK
+GszxsFkCjlW0mK0egTb
=tiSY
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module update from Rusty Russell:
"The sweeping change is to make add_taint() explicitly indicate whether
to disable lockdep, but it's a mechanical change."
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux:
MODSIGN: Add option to not sign modules during modules_install
MODSIGN: Add -s <signature> option to sign-file
MODSIGN: Specify the hash algorithm on sign-file command line
MODSIGN: Simplify Makefile with a Kconfig helper
module: clean up load_module a little more.
modpost: Ignore ARC specific non-alloc sections
module: constify within_module_*
taint: add explicit flag to show whether lock dep is still OK.
module: printk message when module signature fail taints kernel.
I dislike the way in which "swapcache" gets used in do_swap_page():
there is always a page from swapcache there (even if maybe uncached by
the time we lock it), but tests are made according to "swapcache".
Rework that with "page != swapcache", as has been done in unuse_pte().
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In "ksm: remove old stable nodes more thoroughly" I said that I'd never
seen its WARN_ON_ONCE(page_mapped(page)). True at the time of writing,
but it soon appeared once I tried fuller tests on the whole series.
It turned out to be due to the KSM page migration itself: unmerge_and_
remove_all_rmap_items() failed to locate and replace all the KSM pages,
because of that hiatus in page migration when old pte has been replaced
by migration entry, but not yet by new pte. follow_page() finds no page
at that instant, but a KSM page reappears shortly after, without a
fault.
Add FOLL_MIGRATION flag, so follow_page() can do migration_entry_wait()
for KSM's break_cow(). I'd have preferred to avoid another flag, and do
it every time, in case someone else makes the same easy mistake; but did
not find another transgressor (the common get_user_pages() is of course
safe), and cannot be sure that every follow_page() caller is prepared to
sleep - ia64's xencomm_vtop()? Now, THP's wait_split_huge_page() can
already sleep there, since anon_vma locking was changed to mutex, but
maybe that's somehow excluded.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change adds a follow_page_mask function which is equivalent to
follow_page, but with an extra page_mask argument.
follow_page_mask sets *page_mask to HPAGE_PMD_NR - 1 when it encounters
a THP page, and to 0 in other cases.
__get_user_pages() makes use of this in order to accelerate populating
THP ranges - that is, when both the pages and vmas arrays are NULL, we
don't need to iterate HPAGE_PMD_NR times to cover a single THP page (and
we also avoid taking mm->page_table_lock that many times).
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use long type for page counts in mm_populate() so as to avoid integer
overflow when running the following test code:
int main(void) {
void *p = mmap(NULL, 0x100000000000, PROT_READ,
MAP_PRIVATE | MAP_ANON, -1, 0);
printf("p: %p\n", p);
mlockall(MCL_CURRENT);
printf("done\n");
return 0;
}
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Switching merge_across_nodes after running KSM is liable to oops on stale
nodes still left over from the previous stable tree. It's not something
that people will often want to do, but it would be lame to demand a reboot
when they're trying to determine which merge_across_nodes setting is best.
How can this happen? We only permit switching merge_across_nodes when
pages_shared is 0, and usually set run 2 to force that beforehand, which
ought to unmerge everything: yet oopses still occur when you then run 1.
Three causes:
1. The old stable tree (built according to the inverse
merge_across_nodes) has not been fully torn down. A stable node
lingers until get_ksm_page() notices that the page it references no
longer references it: but the page is not necessarily freed as soon as
expected, particularly when swapcache.
Fix this with a pass through the old stable tree, applying
get_ksm_page() to each of the remaining nodes (most found stale and
removed immediately), with forced removal of any left over. Unless the
page is still mapped: I've not seen that case, it shouldn't occur, but
better to WARN_ON_ONCE and EBUSY than BUG.
2. __ksm_enter() has a nice little optimization, to insert the new mm
just behind ksmd's cursor, so there's a full pass for it to stabilize
(or be removed) before ksmd addresses it. Nice when ksmd is running,
but not so nice when we're trying to unmerge all mms: we were missing
those mms forked and inserted behind the unmerge cursor. Easily fixed
by inserting at the end when KSM_RUN_UNMERGE.
3. It is possible for a KSM page to be faulted back from swapcache
into an mm, just after unmerge_and_remove_all_rmap_items() scanned past
it. Fix this by copying on fault when KSM_RUN_UNMERGE: but that is
private to ksm.c, so dissolve the distinction between
ksm_might_need_to_copy() and ksm_does_need_to_copy(), doing it all in
the one call into ksm.c.
A long outstanding, unrelated bugfix sneaks in with that third fix:
ksm_does_need_to_copy() would copy from a !PageUptodate page (implying I/O
error when read in from swap) to a page which it then marks Uptodate. Fix
this case by not copying, letting do_swap_page() discover the error.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page->_last_nid fits into page->flags on 64-bit. The unlikely 32-bit
NUMA configuration with NUMA Balancing will still need an extra page
field. As Peter notes "Completely dropping 32bit support for
CONFIG_NUMA_BALANCING would simplify things, but it would also remove
the warning if we grow enough 64bit only page-flags to push the last-cpu
out."
[mgorman@suse.de: minor modifications]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Simon Jeons <simon.jeons@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In find_extend_vma(), we don't need mlock_vma_pages_range() to verify
the vma type - we know we're working with a stack. So, we can call
directly into __mlock_vma_pages_range(), and remove the last
make_pages_present() call site.
Note that we don't use mm_populate() here, so we can't release the
mmap_sem while allocating new stack pages. This is deemed acceptable,
because the stack vmas grow by a bounded number of pages at a time, and
these are anon pages so we don't have to read from disk to populate
them.
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Andy Lutomirski <luto@amacapital.net>
Cc: Greg Ungerer <gregungerer@westnet.com.au>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When ex-KSM pages are faulted from swap cache, the fault handler is not
capable of re-establishing anon_vma-spanning KSM pages. In this case, a
copy of the page is created instead, just like during a COW break.
These freshly made copies are known to be exclusive to the faulting VMA
and there is no reason to go look for this page in parent and sibling
processes during rmap operations.
Use page_add_new_anon_rmap() for these copies. This also puts them on
the proper LRU lists and marks them SwapBacked, so we can get rid of
doing this ad-hoc in the KSM copy code.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Simon Jeons <simon.jeons@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Satoru Moriya <satoru.moriya@hds.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix up all callers as they were before, with make one change: an
unsigned module taints the kernel, but doesn't turn off lockdep.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The check for a pmd being in the process of being split was dropped by
mistake by commit d10e63f294 ("mm: numa: Create basic numa page
hinting infrastructure"). Put it back.
Reported-by: Dave Jones <davej@redhat.com>
Debugged-by: Hillf Danton <dhillf@gmail.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Kirill Shutemov <kirill@shutemov.name>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit e303297e6c ("mm: extended batches for generic
mmu_gather") we are batching pages to be freed until either
tlb_next_batch cannot allocate a new batch or we are done.
This works just fine most of the time but we can get in troubles with
non-preemptible kernel (CONFIG_PREEMPT_NONE or CONFIG_PREEMPT_VOLUNTARY)
on large machines where too aggressive batching might lead to soft
lockups during process exit path (exit_mmap) because there are no
scheduling points down the free_pages_and_swap_cache path and so the
freeing can take long enough to trigger the soft lockup.
The lockup is harmless except when the system is setup to panic on
softlockup which is not that unusual.
The simplest way to work around this issue is to limit the maximum
number of batches in a single mmu_gather. 10k of collected pages should
be safe to prevent from soft lockups (we would have 2ms for one) even if
they are all freed without an explicit scheduling point.
This patch doesn't add any new explicit scheduling points because it
relies on zap_pmd_range during page tables zapping which calls
cond_resched per PMD.
The following lockup has been reported for 3.0 kernel with a huge
process (in order of hundreds gigs but I do know any more details).
BUG: soft lockup - CPU#56 stuck for 22s! [kernel:31053]
Modules linked in: af_packet nfs lockd fscache auth_rpcgss nfs_acl sunrpc mptctl mptbase autofs4 binfmt_misc dm_round_robin dm_multipath bonding cpufreq_conservative cpufreq_userspace cpufreq_powersave pcc_cpufreq mperf microcode fuse loop osst sg sd_mod crc_t10dif st qla2xxx scsi_transport_fc scsi_tgt netxen_nic i7core_edac iTCO_wdt joydev e1000e serio_raw pcspkr edac_core iTCO_vendor_support acpi_power_meter rtc_cmos hpwdt hpilo button container usbhid hid dm_mirror dm_region_hash dm_log linear uhci_hcd ehci_hcd usbcore usb_common scsi_dh_emc scsi_dh_alua scsi_dh_hp_sw scsi_dh_rdac scsi_dh dm_snapshot pcnet32 mii edd dm_mod raid1 ext3 mbcache jbd fan thermal processor thermal_sys hwmon cciss scsi_mod
Supported: Yes
CPU 56
Pid: 31053, comm: kernel Not tainted 3.0.31-0.9-default #1 HP ProLiant DL580 G7
RIP: 0010: _raw_spin_unlock_irqrestore+0x8/0x10
RSP: 0018:ffff883ec1037af0 EFLAGS: 00000206
RAX: 0000000000000e00 RBX: ffffea01a0817e28 RCX: ffff88803ffd9e80
RDX: 0000000000000200 RSI: 0000000000000206 RDI: 0000000000000206
RBP: 0000000000000002 R08: 0000000000000001 R09: ffff887ec724a400
R10: 0000000000000000 R11: dead000000200200 R12: ffffffff8144c26e
R13: 0000000000000030 R14: 0000000000000297 R15: 000000000000000e
FS: 00007ed834282700(0000) GS:ffff88c03f200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 000000000068b240 CR3: 0000003ec13c5000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kernel (pid: 31053, threadinfo ffff883ec1036000, task ffff883ebd5d4100)
Call Trace:
release_pages+0xc5/0x260
free_pages_and_swap_cache+0x9d/0xc0
tlb_flush_mmu+0x5c/0x80
tlb_finish_mmu+0xe/0x50
exit_mmap+0xbd/0x120
mmput+0x49/0x120
exit_mm+0x122/0x160
do_exit+0x17a/0x430
do_group_exit+0x3d/0xb0
get_signal_to_deliver+0x247/0x480
do_signal+0x71/0x1b0
do_notify_resume+0x98/0xb0
int_signal+0x12/0x17
DWARF2 unwinder stuck at int_signal+0x12/0x17
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org> [3.0+]
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>