The first_index/last_index parameters in zap_details are actually only
used in unmap_mapping_range_tree(). At the meantime, this function is
only called by unmap_mapping_pages() once.
Instead of passing these two variables through the whole stack of page
zapping code, remove them from zap_details and let them simply be
parameters of unmap_mapping_range_tree(), which is inlined.
Link: https://lkml.kernel.org/r/20210915181535.11238-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Liam Howlett <liam.howlett@oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pte_unmap_same() will always unmap the pte pointer. After the unmap,
vmf->pte will not be valid any more, we should clear it.
It was safe only because no one is accessing vmf->pte after
pte_unmap_same() returns, since the only caller of pte_unmap_same() (so
far) is do_swap_page(), where vmf->pte will in most cases be overwritten
very soon.
Directly pass in vmf into pte_unmap_same() and then we can also avoid
the long parameter list too, which should be a nice cleanup.
Link: https://lkml.kernel.org/r/20210915181533.11188-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Liam Howlett <liam.howlett@oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: A few cleanup patches around zap, shmem and uffd", v4.
IMHO all of them are very nice cleanups to existing code already,
they're all small and self-contained. They'll be needed by uffd-wp
coming series.
This patch (of 4):
It was conditionally done previously, as there's one shmem special case
that we use SetPageDirty() instead. However that's not necessary and it
should be easier and cleaner to do it unconditionally in
mfill_atomic_install_pte().
The most recent discussion about this is here, where Hugh explained the
history of SetPageDirty() and why it's possible that it's not required
at all:
https://lore.kernel.org/lkml/alpine.LSU.2.11.2104121657050.1097@eggly.anvils/
Currently mfill_atomic_install_pte() has three callers:
1. shmem_mfill_atomic_pte
2. mcopy_atomic_pte
3. mcontinue_atomic_pte
After the change: case (1) should have its SetPageDirty replaced by the
dirty bit on pte (so we unify them together, finally), case (2) should
have no functional change at all as it has page_in_cache==false, case
(3) may add a dirty bit to the pte. However since case (3) is
UFFDIO_CONTINUE for shmem, it's merely 100% sure the page is dirty after
all because UFFDIO_CONTINUE normally requires another process to modify
the page cache and kick the faulted thread, so should not make a real
difference either.
This should make it much easier to follow on which case will set dirty
for uffd, as we'll simply set it all now for all uffd related ioctls.
Meanwhile, no special handling of SetPageDirty() if there's no need.
Link: https://lkml.kernel.org/r/20210915181456.10739-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210915181456.10739-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Annotating a pointer from __user to kernel and then back again might
confuse sparse. In copy_huge_page_from_user() it can be avoided by
removing the intermediate variable since it is never used.
Link: https://lkml.kernel.org/r/20210914150820.19326-1-amit.kachhap@arm.com
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The variable mm->total_vm could be accessed concurrently during mmaping
and system accounting as noticed by KCSAN,
BUG: KCSAN: data-race in __acct_update_integrals / mmap_region
read-write to 0xffffa40267bd14c8 of 8 bytes by task 15609 on cpu 3:
mmap_region+0x6dc/0x1400
do_mmap+0x794/0xca0
vm_mmap_pgoff+0xdf/0x150
ksys_mmap_pgoff+0xe1/0x380
do_syscall_64+0x37/0x50
entry_SYSCALL_64_after_hwframe+0x44/0xa9
read to 0xffffa40267bd14c8 of 8 bytes by interrupt on cpu 2:
__acct_update_integrals+0x187/0x1d0
acct_account_cputime+0x3c/0x40
update_process_times+0x5c/0x150
tick_sched_timer+0x184/0x210
__run_hrtimer+0x119/0x3b0
hrtimer_interrupt+0x350/0xaa0
__sysvec_apic_timer_interrupt+0x7b/0x220
asm_call_irq_on_stack+0x12/0x20
sysvec_apic_timer_interrupt+0x4d/0x80
asm_sysvec_apic_timer_interrupt+0x12/0x20
smp_call_function_single+0x192/0x2b0
perf_install_in_context+0x29b/0x4a0
__se_sys_perf_event_open+0x1a98/0x2550
__x64_sys_perf_event_open+0x63/0x70
do_syscall_64+0x37/0x50
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Reported by Kernel Concurrency Sanitizer on:
CPU: 2 PID: 15610 Comm: syz-executor.3 Not tainted 5.10.0+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
Ubuntu-1.8.2-1ubuntu1 04/01/2014
In vm_stat_account which called by mmap_region, increase total_vm, and
__acct_update_integrals may read total_vm at the same time. This will
cause a data race which lead to undefined behaviour. To avoid potential
bad read/write, volatile property and barrier are both used to avoid
undefined behaviour.
Link: https://lkml.kernel.org/r/20210913105550.1569419-1-liupeng256@huawei.com
Signed-off-by: Peng Liu <liupeng256@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory cgroup charging allows killed or exiting tasks to exceed the hard
limit. It is assumed that the amount of the memory charged by those
tasks is bound and most of the memory will get released while the task
is exiting. This is resembling a heuristic for the global OOM situation
when tasks get access to memory reserves. There is no global memory
shortage at the memcg level so the memcg heuristic is more relieved.
The above assumption is overly optimistic though. E.g. vmalloc can
scale to really large requests and the heuristic would allow that. We
used to have an early break in the vmalloc allocator for killed tasks
but this has been reverted by commit b8c8a338f7 ("Revert "vmalloc:
back off when the current task is killed""). There are likely other
similar code paths which do not check for fatal signals in an
allocation&charge loop. Also there are some kernel objects charged to a
memcg which are not bound to a process life time.
It has been observed that it is not really hard to trigger these
bypasses and cause global OOM situation.
One potential way to address these runaways would be to limit the amount
of excess (similar to the global OOM with limited oom reserves). This
is certainly possible but it is not really clear how much of an excess
is desirable and still protects from global OOMs as that would have to
consider the overall memcg configuration.
This patch is addressing the problem by removing the heuristic
altogether. Bypass is only allowed for requests which either cannot
fail or where the failure is not desirable while excess should be still
limited (e.g. atomic requests). Implementation wise a killed or dying
task fails to charge if it has passed the OOM killer stage. That should
give all forms of reclaim chance to restore the limit before the failure
(ENOMEM) and tell the caller to back off.
In addition, this patch renames should_force_charge() helper to
task_is_dying() because now its use is not associated witch forced
charging.
This patch depends on pagefault_out_of_memory() to not trigger
out_of_memory(), because then a memcg failure can unwind to VM_FAULT_OOM
and cause a global OOM killer.
Link: https://lkml.kernel.org/r/8f5cebbb-06da-4902-91f0-6566fc4b4203@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Any allocation failure during the #PF path will return with VM_FAULT_OOM
which in turn results in pagefault_out_of_memory. This can happen for 2
different reasons. a) Memcg is out of memory and we rely on
mem_cgroup_oom_synchronize to perform the memcg OOM handling or b)
normal allocation fails.
The latter is quite problematic because allocation paths already trigger
out_of_memory and the page allocator tries really hard to not fail
allocations. Anyway, if the OOM killer has been already invoked there
is no reason to invoke it again from the #PF path. Especially when the
OOM condition might be gone by that time and we have no way to find out
other than allocate.
Moreover if the allocation failed and the OOM killer hasn't been invoked
then we are unlikely to do the right thing from the #PF context because
we have already lost the allocation context and restictions and
therefore might oom kill a task from a different NUMA domain.
This all suggests that there is no legitimate reason to trigger
out_of_memory from pagefault_out_of_memory so drop it. Just to be sure
that no #PF path returns with VM_FAULT_OOM without allocation print a
warning that this is happening before we restart the #PF.
[VvS: #PF allocation can hit into limit of cgroup v1 kmem controller.
This is a local problem related to memcg, however, it causes unnecessary
global OOM kills that are repeated over and over again and escalate into a
real disaster. This has been broken since kmem accounting has been
introduced for cgroup v1 (3.8). There was no kmem specific reclaim for
the separate limit so the only way to handle kmem hard limit was to return
with ENOMEM. In upstream the problem will be fixed by removing the
outdated kmem limit, however stable and LTS kernels cannot do it and are
still affected. This patch fixes the problem and should be backported
into stable/LTS.]
Link: https://lkml.kernel.org/r/f5fd8dd8-0ad4-c524-5f65-920b01972a42@virtuozzo.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memcg: prohibit unconditional exceeding the limit of dying tasks", v3.
Memory cgroup charging allows killed or exiting tasks to exceed the hard
limit. It can be misused and allowed to trigger global OOM from inside
a memcg-limited container. On the other hand if memcg fails allocation,
called from inside #PF handler it triggers global OOM from inside
pagefault_out_of_memory().
To prevent these problems this patchset:
(a) removes execution of out_of_memory() from
pagefault_out_of_memory(), becasue nobody can explain why it is
necessary.
(b) allow memcg to fail allocation of dying/killed tasks.
This patch (of 3):
Any allocation failure during the #PF path will return with VM_FAULT_OOM
which in turn results in pagefault_out_of_memory which in turn executes
out_out_memory() and can kill a random task.
An allocation might fail when the current task is the oom victim and
there are no memory reserves left. The OOM killer is already handled at
the page allocator level for the global OOM and at the charging level
for the memcg one. Both have much more information about the scope of
allocation/charge request. This means that either the OOM killer has
been invoked properly and didn't lead to the allocation success or it
has been skipped because it couldn't have been invoked. In both cases
triggering it from here is pointless and even harmful.
It makes much more sense to let the killed task die rather than to wake
up an eternally hungry oom-killer and send him to choose a fatter victim
for breakfast.
Link: https://lkml.kernel.org/r/0828a149-786e-7c06-b70a-52d086818ea3@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The non-memcg-aware lru is always skiped when traversing the global lru
list, which is not efficient. We can only add the memcg-aware lru to
the global lru list instead to make traversing more efficient.
Link: https://lkml.kernel.org/r/20211025124353.55781-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now the kmem states is only used to indicate whether the kmem is
offline. However, we can set ->kmemcg_id to -1 to indicate whether the
kmem is offline. Finally, we can remove the kmem states to simplify the
code.
Link: https://lkml.kernel.org/r/20211025125259.56624-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since slab objects and kmem pages are charged to object cgroup instead
of memory cgroup, memcg_reparent_objcgs() will reparent this cgroup and
all its descendants to its parent cgroup. This already makes further
list_lru_add()'s add elements to the parent's list. So it is
unnecessary to change kmemcg_id of an offline cgroup to its parent's id.
It just wastes CPU cycles. Just remove the redundant code.
Link: https://lkml.kernel.org/r/20211025125102.56533-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 2788cf0c40 ("memcg: reparent list_lrus and free kmemcg_id
on css offline"), ->nr_items can be negative during memory cgroup
reparenting. In this case, list_lru_count_one() will return an unusual
and huge value, which can surprise users. At least for now it hasn't
affected any users. But it is better to let list_lru_count_ont()
returns zero when ->nr_items is negative.
Link: https://lkml.kernel.org/r/20211025124910.56433-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit e5bc3af773 ("rcu: Consolidate PREEMPT and !PREEMPT
synchronize_rcu()"), the critical section of spin lock can serve as an
RCU read-side critical section which already allows readers that hold
nlru->lock to avoid taking rcu lock. So just remove holding lock.
Link: https://lkml.kernel.org/r/20211025124534.56345-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The deprecation process of kmem.limit_in_bytes started with the commit
0158115f70 ("memcg, kmem: deprecate kmem.limit_in_bytes") which also
explains in detail the motivation behind the deprecation. To summarize,
it is the unexpected behavior on hitting the kmem limit. This patch
moves the deprecation process to the next stage by disallowing to set
the kmem limit. In future we might just remove the kmem.limit_in_bytes
file completely.
[akpm@linux-foundation.org: s/ENOTSUPP/EOPNOTSUPP/]
[arnd@arndb.de: mark cancel_charge() inline]
Link: https://lkml.kernel.org/r/20211022070542.679839-1-arnd@kernel.org
Link: https://lkml.kernel.org/r/20211019153408.2916808-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As noted in the "Deprecated Interfaces, Language Features, Attributes,
and Conventions" documentation [1], size calculations (especially
multiplication) should not be performed in memory allocator (or similar)
function arguments due to the risk of them overflowing.
This could lead to values wrapping around and a smaller allocation being
made than the caller was expecting. Using those allocations could lead
to linear overflows of heap memory and other misbehaviors.
So, use the struct_size() helper to do the arithmetic instead of the
argument "size + count * size" in the kvmalloc() functions.
Also, take the opportunity to refactor the memcpy() call to use the
flex_array_size() helper.
This code was detected with the help of Coccinelle and audited and fixed
manually.
[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
Link: https://lkml.kernel.org/r/20211017105929.9284-1-len.baker@gmx.com
Signed-off-by: Len Baker <len.baker@gmx.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit d648bcc7fe ("mm: kmem: make memcg_kmem_enabled()
irreversible"), the only thing memcg_free_kmem() does is to call
memcg_offline_kmem() when the memcg is still online which can happen
when online_css() fails due to -ENOMEM.
However, the name memcg_free_kmem() is confusing and it is more clear
and straight forward to call memcg_offline_kmem() directly from
mem_cgroup_css_free().
Link: https://lkml.kernel.org/r/20211005202450.11775-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg stats can be flushed in multiple context and potentially in
parallel too. For example multiple parallel user space readers for
memcg stats will contend on the rstat locks with each other. There is
no need for that. We just need one flusher and everyone else can
benefit.
In addition after aa48e47e39 ("memcg: infrastructure to flush memcg
stats") the kernel periodically flush the memcg stats from the root, so,
the other flushers will potentially have much less work to do.
Link: https://lkml.kernel.org/r/20211001190040.48086-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Michal Koutný" <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
At the moment, the kernel flushes the memcg stats on every refault and
also on every reclaim iteration. Although rstat maintains per-cpu
update tree but on the flush the kernel still has to go through all the
cpu rstat update tree to check if there is anything to flush. This
patch adds the tracking on the stats update side to make flush side more
clever by skipping the flush if there is no update.
The stats update codepath is very sensitive performance wise for many
workloads and benchmarks. So, we can not follow what the commit
aa48e47e39 ("memcg: infrastructure to flush memcg stats") did which
was triggering async flush through queue_work() and caused a lot
performance regression reports. That got reverted by the commit
1f828223b7 ("memcg: flush lruvec stats in the refault").
In this patch we kept the stats update codepath very minimal and let the
stats reader side to flush the stats only when the updates are over a
specific threshold. For now the threshold is (nr_cpus * CHARGE_BATCH).
To evaluate the impact of this patch, an 8 GiB tmpfs file is created on
a system with swap-on-zram and the file was pushed to swap through
memory.force_empty interface. On reading the whole file, the memcg stat
flush in the refault code path is triggered. With this patch, we
observed 63% reduction in the read time of 8 GiB file.
Link: https://lkml.kernel.org/r/20211001190040.48086-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: "Michal Koutný" <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is unused after the rework of commit f5df8635c5 ("mm: use
find_get_incore_page in memcontrol").
Link: https://lkml.kernel.org/r/20210916193014.80129-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of calling put_page() one page at a time, pop pages off the list
if their refcount was too high and pass the remainder to
put_unref_page_list(). This should be a speed improvement, but I have
no measurements to support that. Current callers do not care about
performance, but I hope to add some which do.
Link: https://lkml.kernel.org/r/20211007192138.561673-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This one is just a minor nuisance for people going through /proc/swaps
if any of their swapareas is bigger than, or equal to 1073741824 pages
(4TB).
seq_printf() format string casts as uint the conversion from pages to
KB, and that will overflow in the aforementioned case.
Albeit being almost unthinkable that someone would actually set up such
big of a single swaparea, there is a ticket recently filed against RHEL:
https://bugzilla.redhat.com/show_bug.cgi?id=2008812
Given that all other codesites that use format strings for the same swap
pages-to-KB conversion do cast it as ulong, this patch just follows
suit.
Link: https://lkml.kernel.org/r/20211006184011.2579054-1-aquini@redhat.com
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The request_queue pointer returned from bdev_get_queue() shall never be
NULL, so the null check is unnecessary, just remove it.
Link: https://lkml.kernel.org/r/20210917082111.33923-1-vulab@iscas.ac.cn
Signed-off-by: Xu Wang <vulab@iscas.ac.cn>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 6401c4eb57 ("mm: gup: fix potential pgmap refcnt leak in
__gup_device_huge()") simplified the return paths, but didn't go quite
far enough, as discussed in [1].
Remove the "ret" variable entirely, because there is enough information
already available to provide the return value.
[1] https://lore.kernel.org/r/CAHk-=wgQTRX=5SkCmS+zfmpqubGHGJvXX_HgnPG8JSpHKHBMeg@mail.gmail.com
Link: https://lkml.kernel.org/r/20210904004224.86391-1-jhubbard@nvidia.com
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fast path here is not needing any writeback, yet we spend time
setting up the xarray lookup data upfront. Move the part that actually
needs to iterate the address space mapping into a separate helper,
saving ~30% of the time here.
Link: https://lkml.kernel.org/r/49f67983-b802-8929-edab-d807f745c9ca@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is not safe to check page->index without holding the page lock. It
can be changed if the page is moved between the swap cache and the page
cache for a shmem file, for example. There is a VM_BUG_ON below which
checks page->index is correct after taking the page lock.
Link: https://lkml.kernel.org/r/20210818144932.940640-1-willy@infradead.org
Fixes: 5c211ba29d ("mm: add and use find_lock_entries")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reported-by: <syzbot+c87be4f669d920c76330@syzkaller.appspotmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We always go through i_size_read(), and we rarely end up needing it.
Push the read to down where we need to check it, which avoids it for
most cases.
It looks like we can even remove this check entirely, which might be
worth pursuing. But at least this takes it out of the hot path.
Link: https://lkml.kernel.org/r/6b67981f-57d4-c80e-bc07-6020aa601381@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Acked-by: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move grabbing and releasing the bdi refcount out of the common
wb_init/wb_exit helpers into code that is only used for the non-default
memcg driven bdi_writeback structures.
[hch@lst.de: add comment]
Link: https://lkml.kernel.org/r/20211027074207.GA12793@lst.de
[akpm@linux-foundation.org: fix typo]
Link: https://lkml.kernel.org/r/20211021124441.668816-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "simplify bdi unregistation".
This series simplifies the BDI code to get rid of the magic
auto-unregister feature that hid a recent block layer refcounting bug.
This patch (of 5):
To wind down the magic auto-unregister semantics we'll need to push this
into modular code.
Link: https://lkml.kernel.org/r/20211021124441.668816-1-hch@lst.de
Link: https://lkml.kernel.org/r/20211021124441.668816-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Vignesh Raghavendra <vigneshr@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I have noticed that the previous macro is #ifndef CONFIG_SPARSEMEM. I
think the comment of #else should be CONFIG_SPARSEMEM.
Link: https://lkml.kernel.org/r/20211008140312.6492-1-zhangyinan2019@email.szu.edu.cn
Signed-off-by: Yinan Zhang <zhangyinan2019@email.szu.edu.cn>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __Pxxx/__Sxxx macros are only for protection_map[] init. All usage
of them in linux should come from protection_map array.
Because a lot of architectures would re-initilize protection_map[]
array, eg: x86-mem_encrypt, m68k-motorola, mips, arm, sparc.
Using __P000 is not rigorous.
Link: https://lkml.kernel.org/r/20210924060821.1138281-1-guoren@kernel.org
Signed-off-by: Guo Ren <guoren@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As it's trying to cover the whole vma anyways, use direct vm_pgoff value
and vma_pages() rather than linear_page_index.
Link: https://lkml.kernel.org/r/20210917164756.8586-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If an object is allocated on a tail page of a multi-page slab, kasan
will get the wrong tag because page->s_mem is NULL for tail pages. I'm
not quite sure what the user-visible effect of this might be.
Link: https://lkml.kernel.org/r/20211001024105.3217339-1-willy@infradead.org
Fixes: 7f94ffbc4c ("kasan: add hooks implementation for tag-based mode")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a variant of kasan_record_aux_stack() that does not do any
memory allocation through stackdepot. This will permit using it in
contexts that cannot allocate any memory.
Link: https://lkml.kernel.org/r/20210913112609.2651084-6-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Taras Madan <tarasmadan@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Not required at all, and having this causes a huge kernel rebuild as
soon as something in dax.h changes.
Link: https://lkml.kernel.org/r/20210921082253.1859794-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
TRANSPARENT_HUGEPAGE:
There are potential non-deterministic delays to an RT thread if a
critical memory region is not THP-aligned and a non-RT buffer is
located in the same hugepage-aligned region. It's also possible for an
unrelated thread to migrate pages belonging to an RT task incurring
unexpected page faults due to memory defragmentation even if
khugepaged is disabled.
Regular HUGEPAGEs are not affected by this can be used.
NUMA_BALANCING:
There is a non-deterministic delay to mark PTEs PROT_NONE to gather
NUMA fault samples, increased page faults of regions even if mlocked
and non-deterministic delays when migrating pages.
[Mel Gorman worded 99% of the commit description].
Link: https://lore.kernel.org/all/20200304091159.GN3818@techsingularity.net/
Link: https://lore.kernel.org/all/20211026165100.ahz5bkx44lrrw5pt@linutronix.de/
Link: https://lkml.kernel.org/r/20211028143327.hfbxjze7palrpfgp@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 0ad9500e16 ("slub: prefetch next freelist pointer in
slab_alloc()") introduced prefetch_freepointer() because when other
cpu(s) freed objects into a page that current cpu owns, the freelist
link is hot on cpu(s) which freed objects and possibly very cold on
current cpu.
But if freelist link chain is hot on cpu(s) which freed objects, it's
better to invalidate that chain because they're not going to access
again within a short time.
So use prefetchw instead of prefetch. On supported architectures like
x86 and arm, it invalidates other copied instances of a cache line when
prefetching it.
Before:
Time: 91.677
Performance counter stats for 'hackbench -g 100 -l 10000':
1462938.07 msec cpu-clock # 15.908 CPUs utilized
18072550 context-switches # 12.354 K/sec
1018814 cpu-migrations # 696.416 /sec
104558 page-faults # 71.471 /sec
1580035699271 cycles # 1.080 GHz (54.51%)
2003670016013 instructions # 1.27 insn per cycle (54.31%)
5702204863 branch-misses (54.28%)
643368500985 cache-references # 439.778 M/sec (54.26%)
18475582235 cache-misses # 2.872 % of all cache refs (54.28%)
642206796636 L1-dcache-loads # 438.984 M/sec (46.87%)
18215813147 L1-dcache-load-misses # 2.84% of all L1-dcache accesses (46.83%)
653842996501 dTLB-loads # 446.938 M/sec (46.63%)
3227179675 dTLB-load-misses # 0.49% of all dTLB cache accesses (46.85%)
537531951350 iTLB-loads # 367.433 M/sec (54.33%)
114750630 iTLB-load-misses # 0.02% of all iTLB cache accesses (54.37%)
630135543177 L1-icache-loads # 430.733 M/sec (46.80%)
22923237620 L1-icache-load-misses # 3.64% of all L1-icache accesses (46.76%)
91.964452802 seconds time elapsed
43.416742000 seconds user
1422.441123000 seconds sys
After:
Time: 90.220
Performance counter stats for 'hackbench -g 100 -l 10000':
1437418.48 msec cpu-clock # 15.880 CPUs utilized
17694068 context-switches # 12.310 K/sec
958257 cpu-migrations # 666.651 /sec
100604 page-faults # 69.989 /sec
1583259429428 cycles # 1.101 GHz (54.57%)
2004002484935 instructions # 1.27 insn per cycle (54.37%)
5594202389 branch-misses (54.36%)
643113574524 cache-references # 447.409 M/sec (54.39%)
18233791870 cache-misses # 2.835 % of all cache refs (54.37%)
640205852062 L1-dcache-loads # 445.386 M/sec (46.75%)
17968160377 L1-dcache-load-misses # 2.81% of all L1-dcache accesses (46.79%)
651747432274 dTLB-loads # 453.415 M/sec (46.59%)
3127124271 dTLB-load-misses # 0.48% of all dTLB cache accesses (46.75%)
535395273064 iTLB-loads # 372.470 M/sec (54.38%)
113500056 iTLB-load-misses # 0.02% of all iTLB cache accesses (54.35%)
628871845924 L1-icache-loads # 437.501 M/sec (46.80%)
22585641203 L1-icache-load-misses # 3.59% of all L1-icache accesses (46.79%)
90.514819303 seconds time elapsed
43.877656000 seconds user
1397.176001000 seconds sys
Link: https://lkml.org/lkml/2021/10/8/598=20
Link: https://lkml.kernel.org/r/20211011144331.70084-1-42.hyeyoo@gmail.com
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The defaults are determined based on object size and can go up to 30 for
objects smaller than 256 bytes. Before the previous patch changed the
accounting, this could have made cpu partial list contain up to 30
pages. After that patch, only up to 2 pages with default allocation
order.
Very short lists limit the usefulness of the whole concept of cpu
partial lists, so this patch aims at a more reasonable default under the
new accounting. The defaults are quadrupled, except for object size >=
PAGE_SIZE where it's doubled. This makes the lists grow up to 10 pages
in practice.
A quick test of booting a kernel under virtme with 4GB RAM and 8 vcpus
shows the following slab memory usage after boot:
Before previous patch (using page->pobjects):
Slab: 36732 kB
SReclaimable: 14836 kB
SUnreclaim: 21896 kB
After previous patch (using page->pages):
Slab: 34720 kB
SReclaimable: 13716 kB
SUnreclaim: 21004 kB
After this patch (using page->pages, higher defaults):
Slab: 35252 kB
SReclaimable: 13944 kB
SUnreclaim: 21308 kB
In the same setup, I also ran 5 times:
hackbench -l 16000 -g 16
Differences in time were in the noise, we can compare slub stats as
given by slabinfo -r skbuff_head_cache (the other cache heavily used by
hackbench, kmalloc-cg-512 looks similar). Negligible stats left out for
brevity.
Before previous patch (using page->pobjects):
Objects: 1408, Memory Total: 401408 Used : 304128
Slab Perf Counter Alloc Free %Al %Fr
--------------------------------------------------
Fastpath 469952498 5946606 91 1
Slowpath 42053573 506059465 8 98
Page Alloc 41093 41044 0 0
Add partial 18 21229327 0 4
Remove partial 20039522 36051 3 0
Cpu partial list 4686640 24767229 0 4
RemoteObj/SlabFrozen 16 124027841 0 24
Total 512006071 512006071
Flushes 18
Slab Deactivation Occurrences %
-------------------------------------------------
Slab empty 4993 0%
Deactivation bypass 24767229 99%
Refilled from foreign frees 21972674 88%
After previous patch (using page->pages):
Objects: 480, Memory Total: 131072 Used : 103680
Slab Perf Counter Alloc Free %Al %Fr
--------------------------------------------------
Fastpath 473016294 5405653 92 1
Slowpath 38989777 506600418 7 98
Page Alloc 32717 32701 0 0
Add partial 3 22749164 0 4
Remove partial 11371127 32474 2 0
Cpu partial list 11686226 23090059 2 4
RemoteObj/SlabFrozen 2 67541803 0 13
Total 512006071 512006071
Flushes 3
Slab Deactivation Occurrences %
-------------------------------------------------
Slab empty 227 0%
Deactivation bypass 23090059 99%
Refilled from foreign frees 27585695 119%
After this patch (using page->pages, higher defaults):
Objects: 896, Memory Total: 229376 Used : 193536
Slab Perf Counter Alloc Free %Al %Fr
--------------------------------------------------
Fastpath 473799295 4980278 92 0
Slowpath 38206776 507025793 7 99
Page Alloc 32295 32267 0 0
Add partial 11 23291143 0 4
Remove partial 5815764 31278 1 0
Cpu partial list 18119280 23967320 3 4
RemoteObj/SlabFrozen 10 76974794 0 15
Total 512006071 512006071
Flushes 11
Slab Deactivation Occurrences %
-------------------------------------------------
Slab empty 989 0%
Deactivation bypass 23967320 99%
Refilled from foreign frees 32358473 135%
As expected, memory usage dropped significantly with change of
accounting, increasing the defaults increased it, but not as much. The
number of page allocation/frees dropped significantly with the new
accounting, but didn't increase with the higher defaults.
Interestingly, the number of fasthpath allocations increased, as well as
allocations from the cpu partial list, even though it's shorter.
Link: https://lkml.kernel.org/r/20211012134651.11258-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With CONFIG_SLUB_CPU_PARTIAL enabled, SLUB keeps a percpu list of
partial slabs that can be promoted to cpu slab when the previous one is
depleted, without accessing the shared partial list. A slab can be
added to this list by 1) refill of an empty list from get_partial_node()
- once we really have to access the shared partial list, we acquire
multiple slabs to amortize the cost of locking, and 2) first free to a
previously full slab - instead of putting the slab on a shared partial
list, we can more cheaply freeze it and put it on the per-cpu list.
To control how large a percpu partial list can grow for a kmem cache,
set_cpu_partial() calculates a target number of free objects on each
cpu's percpu partial list, and this can be also set by the sysfs file
cpu_partial.
However, the tracking of actual number of objects is imprecise, in order
to limit overhead from cpu X freeing an objects to a slab on percpu
partial list of cpu Y. Basically, the percpu partial slabs form a
single linked list, and when we add a new slab to the list with current
head "oldpage", we set in the struct page of the slab we're adding:
page->pages = oldpage->pages + 1; // this is precise
page->pobjects = oldpage->pobjects + (page->objects - page->inuse);
page->next = oldpage;
Thus the real number of free objects in the slab (objects - inuse) is
only determined at the moment of adding the slab to the percpu partial
list, and further freeing doesn't update the pobjects counter nor
propagate it to the current list head. As Jann reports [1], this can
easily lead to large inaccuracies, where the target number of objects
(up to 30 by default) can translate to the same number of (empty) slab
pages on the list. In case 2) above, we put a slab with 1 free object
on the list, thus only increase page->pobjects by 1, even if there are
subsequent frees on the same slab. Jann has noticed this in practice
and so did we [2] when investigating significant increase of kmemcg
usage after switching from SLAB to SLUB.
While this is no longer a problem in kmemcg context thanks to the
accounting rewrite in 5.9, the memory waste is still not ideal and it's
questionable whether it makes sense to perform free object count based
control when object counts can easily become so much inaccurate. So
this patch converts the accounting to be based on number of pages only
(which is precise) and removes the page->pobjects field completely.
This is also ultimately simpler.
To retain the existing set_cpu_partial() heuristic, first calculate the
target number of objects as previously, but then convert it to target
number of pages by assuming the pages will be half-filled on average.
This assumption might obviously also be inaccurate in practice, but
cannot degrade to actual number of pages being equal to the target
number of objects.
We could also skip the intermediate step with target number of objects
and rewrite the heuristic in terms of pages. However we still have the
sysfs file cpu_partial which uses number of objects and could break
existing users if it suddenly becomes number of pages, so this patch
doesn't do that.
In practice, after this patch the heuristics limit the size of percpu
partial list up to 2 pages. In case of a reported regression (which
would mean some workload has benefited from the previous imprecise
object based counting), we can tune the heuristics to get a better
compromise within the new scheme, while still avoid the unexpectedly
long percpu partial lists.
[1] https://lore.kernel.org/linux-mm/CAG48ez2Qx5K1Cab-m8BdSibp6wLTip6ro4=-umR7BLsEgjEYzA@mail.gmail.com/
[2] https://lore.kernel.org/all/2f0f46e8-2535-410a-1859-e9cfa4e57c18@suse.cz/
==========
Evaluation
==========
Mel was kind enough to run v1 through mmtests machinery for netperf
(localhost) and hackbench and, for most significant results see below.
So there are some apparent regressions, especially with hackbench, which
I think ultimately boils down to having shorter percpu partial lists on
average and some benchmarks benefiting from longer ones. Monitoring
slab usage also indicated less memory usage by slab. Based on that, the
following patch will bump the defaults to allow longer percpu partial
lists than after this patch.
However the goal is certainly not such that we would limit the percpu
partial lists to 30 pages just because previously a specific alloc/free
pattern could lead to the limit of 30 objects translate to a limit to 30
pages - that would make little sense. This is a correctness patch, and
if a workload benefits from larger lists, the sysfs tuning knobs are
still there to allow that.
Netperf
2-socket Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz (20 cores, 40 threads per socket), 384GB RAM
TCP-RR:
hmean before 127045.79 after 121092.94 (-4.69%, worse)
stddev before 2634.37 after 1254.08
UDP-RR:
hmean before 166985.45 after 160668.94 ( -3.78%, worse)
stddev before 4059.69 after 1943.63
2-socket Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz (20 cores, 40 threads per socket), 512GB RAM
TCP-RR:
hmean before 84173.25 after 76914.72 ( -8.62%, worse)
UDP-RR:
hmean before 93571.12 after 96428.69 ( 3.05%, better)
stddev before 23118.54 after 16828.14
2-socket Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz (12 cores, 24 threads per socket), 64GB RAM
TCP-RR:
hmean before 49984.92 after 48922.27 ( -2.13%, worse)
stddev before 6248.15 after 4740.51
UDP-RR:
hmean before 61854.31 after 68761.81 ( 11.17%, better)
stddev before 4093.54 after 5898.91
other machines - within 2%
Hackbench
(results before and after the patch, negative % means worse)
2-socket AMD EPYC 7713 (64 cores, 128 threads per core), 256GB RAM
hackbench-process-sockets
Amean 1 0.5380 0.5583 ( -3.78%)
Amean 4 0.7510 0.8150 ( -8.52%)
Amean 7 0.7930 0.9533 ( -20.22%)
Amean 12 0.7853 1.1313 ( -44.06%)
Amean 21 1.1520 1.4993 ( -30.15%)
Amean 30 1.6223 1.9237 ( -18.57%)
Amean 48 2.6767 2.9903 ( -11.72%)
Amean 79 4.0257 5.1150 ( -27.06%)
Amean 110 5.5193 7.4720 ( -35.38%)
Amean 141 7.2207 9.9840 ( -38.27%)
Amean 172 8.4770 12.1963 ( -43.88%)
Amean 203 9.6473 14.3137 ( -48.37%)
Amean 234 11.3960 18.7917 ( -64.90%)
Amean 265 13.9627 22.4607 ( -60.86%)
Amean 296 14.9163 26.0483 ( -74.63%)
hackbench-thread-sockets
Amean 1 0.5597 0.5877 ( -5.00%)
Amean 4 0.7913 0.8960 ( -13.23%)
Amean 7 0.8190 1.0017 ( -22.30%)
Amean 12 0.9560 1.1727 ( -22.66%)
Amean 21 1.7587 1.5660 ( 10.96%)
Amean 30 2.4477 1.9807 ( 19.08%)
Amean 48 3.4573 3.0630 ( 11.41%)
Amean 79 4.7903 5.1733 ( -8.00%)
Amean 110 6.1370 7.4220 ( -20.94%)
Amean 141 7.5777 9.2617 ( -22.22%)
Amean 172 9.2280 11.0907 ( -20.18%)
Amean 203 10.2793 13.3470 ( -29.84%)
Amean 234 11.2410 17.1070 ( -52.18%)
Amean 265 12.5970 23.3323 ( -85.22%)
Amean 296 17.1540 24.2857 ( -41.57%)
2-socket Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz (20 cores, 40 threads
per socket), 384GB RAM
hackbench-process-sockets
Amean 1 0.5760 0.4793 ( 16.78%)
Amean 4 0.9430 0.9707 ( -2.93%)
Amean 7 1.5517 1.8843 ( -21.44%)
Amean 12 2.4903 2.7267 ( -9.49%)
Amean 21 3.9560 4.2877 ( -8.38%)
Amean 30 5.4613 5.8343 ( -6.83%)
Amean 48 8.5337 9.2937 ( -8.91%)
Amean 79 14.0670 15.2630 ( -8.50%)
Amean 110 19.2253 21.2467 ( -10.51%)
Amean 141 23.7557 25.8550 ( -8.84%)
Amean 172 28.4407 29.7603 ( -4.64%)
Amean 203 33.3407 33.9927 ( -1.96%)
Amean 234 38.3633 39.1150 ( -1.96%)
Amean 265 43.4420 43.8470 ( -0.93%)
Amean 296 48.3680 48.9300 ( -1.16%)
hackbench-thread-sockets
Amean 1 0.6080 0.6493 ( -6.80%)
Amean 4 1.0000 1.0513 ( -5.13%)
Amean 7 1.6607 2.0260 ( -22.00%)
Amean 12 2.7637 2.9273 ( -5.92%)
Amean 21 5.0613 4.5153 ( 10.79%)
Amean 30 6.3340 6.1140 ( 3.47%)
Amean 48 9.0567 9.5577 ( -5.53%)
Amean 79 14.5657 15.7983 ( -8.46%)
Amean 110 19.6213 21.6333 ( -10.25%)
Amean 141 24.1563 26.2697 ( -8.75%)
Amean 172 28.9687 30.2187 ( -4.32%)
Amean 203 33.9763 34.6970 ( -2.12%)
Amean 234 38.8647 39.3207 ( -1.17%)
Amean 265 44.0813 44.1507 ( -0.16%)
Amean 296 49.2040 49.4330 ( -0.47%)
2-socket Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz (20 cores, 40 threads
per socket), 512GB RAM
hackbench-process-sockets
Amean 1 0.5027 0.5017 ( 0.20%)
Amean 4 1.1053 1.2033 ( -8.87%)
Amean 7 1.8760 2.1820 ( -16.31%)
Amean 12 2.9053 3.1810 ( -9.49%)
Amean 21 4.6777 4.9920 ( -6.72%)
Amean 30 6.5180 6.7827 ( -4.06%)
Amean 48 10.0710 10.5227 ( -4.48%)
Amean 79 16.4250 17.5053 ( -6.58%)
Amean 110 22.6203 24.4617 ( -8.14%)
Amean 141 28.0967 31.0363 ( -10.46%)
Amean 172 34.4030 36.9233 ( -7.33%)
Amean 203 40.5933 43.0850 ( -6.14%)
Amean 234 46.6477 48.7220 ( -4.45%)
Amean 265 53.0530 53.9597 ( -1.71%)
Amean 296 59.2760 59.9213 ( -1.09%)
hackbench-thread-sockets
Amean 1 0.5363 0.5330 ( 0.62%)
Amean 4 1.1647 1.2157 ( -4.38%)
Amean 7 1.9237 2.2833 ( -18.70%)
Amean 12 2.9943 3.3110 ( -10.58%)
Amean 21 4.9987 5.1880 ( -3.79%)
Amean 30 6.7583 7.0043 ( -3.64%)
Amean 48 10.4547 10.8353 ( -3.64%)
Amean 79 16.6707 17.6790 ( -6.05%)
Amean 110 22.8207 24.4403 ( -7.10%)
Amean 141 28.7090 31.0533 ( -8.17%)
Amean 172 34.9387 36.8260 ( -5.40%)
Amean 203 41.1567 43.0450 ( -4.59%)
Amean 234 47.3790 48.5307 ( -2.43%)
Amean 265 53.9543 54.6987 ( -1.38%)
Amean 296 60.0820 60.2163 ( -0.22%)
1-socket Intel(R) Xeon(R) CPU E3-1240 v5 @ 3.50GHz (4 cores, 8 threads),
32 GB RAM
hackbench-process-sockets
Amean 1 1.4760 1.5773 ( -6.87%)
Amean 3 3.9370 4.0910 ( -3.91%)
Amean 5 6.6797 6.9357 ( -3.83%)
Amean 7 9.3367 9.7150 ( -4.05%)
Amean 12 15.7627 16.1400 ( -2.39%)
Amean 18 23.5360 23.6890 ( -0.65%)
Amean 24 31.0663 31.3137 ( -0.80%)
Amean 30 38.7283 39.0037 ( -0.71%)
Amean 32 41.3417 41.6097 ( -0.65%)
hackbench-thread-sockets
Amean 1 1.5250 1.6043 ( -5.20%)
Amean 3 4.0897 4.2603 ( -4.17%)
Amean 5 6.7760 7.0933 ( -4.68%)
Amean 7 9.4817 9.9157 ( -4.58%)
Amean 12 15.9610 16.3937 ( -2.71%)
Amean 18 23.9543 24.3417 ( -1.62%)
Amean 24 31.4400 31.7217 ( -0.90%)
Amean 30 39.2457 39.5467 ( -0.77%)
Amean 32 41.8267 42.1230 ( -0.71%)
2-socket Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz (12 cores, 24 threads
per socket), 64GB RAM
hackbench-process-sockets
Amean 1 1.0347 1.0880 ( -5.15%)
Amean 4 1.7267 1.8527 ( -7.30%)
Amean 7 2.6707 2.8110 ( -5.25%)
Amean 12 4.1617 4.3383 ( -4.25%)
Amean 21 7.0070 7.2600 ( -3.61%)
Amean 30 9.9187 10.2397 ( -3.24%)
Amean 48 15.6710 16.3923 ( -4.60%)
Amean 79 24.7743 26.1247 ( -5.45%)
Amean 110 34.3000 35.9307 ( -4.75%)
Amean 141 44.2043 44.8010 ( -1.35%)
Amean 172 54.2430 54.7260 ( -0.89%)
Amean 192 60.6557 60.9777 ( -0.53%)
hackbench-thread-sockets
Amean 1 1.0610 1.1353 ( -7.01%)
Amean 4 1.7543 1.9140 ( -9.10%)
Amean 7 2.7840 2.9573 ( -6.23%)
Amean 12 4.3813 4.4937 ( -2.56%)
Amean 21 7.3460 7.5350 ( -2.57%)
Amean 30 10.2313 10.5190 ( -2.81%)
Amean 48 15.9700 16.5940 ( -3.91%)
Amean 79 25.3973 26.6637 ( -4.99%)
Amean 110 35.1087 36.4797 ( -3.91%)
Amean 141 45.8220 46.3053 ( -1.05%)
Amean 172 55.4917 55.7320 ( -0.43%)
Amean 192 62.7490 62.5410 ( 0.33%)
Link: https://lkml.kernel.org/r/20211012134651.11258-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Jann Horn <jannh@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit f227f0faf6 ("slub: fix unreclaimable slab stat for bulk
free"), the check for free nonslab page is replaced by VM_BUG_ON_PAGE,
which only check with CONFIG_DEBUG_VM enabled, but this config may
impact performance, so it only for debug.
Commit 0937502af7 ("slub: Add check for kfree() of non slab objects.")
add the ability, which should be needed in any configs to catch the
invalid free, they even could be potential issue, eg, memory corruption,
use after free and double free, so replace VM_BUG_ON_PAGE to
WARN_ON_ONCE, add object address printing to help use to debug the
issue.
Link: https://lkml.kernel.org/r/20210930070214.61499-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rienjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These lines are useless, so remove them.
Link: https://lkml.kernel.org/r/20210930034845.2539-1-shi_lei@massclouds.com
Fixes: 10befea91b ("mm: memcg/slab: use a single set of kmem_caches for all allocations")
Signed-off-by: Shi Lei <shi_lei@massclouds.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kunit test cases for 'damon_split_regions_of()' expects the number of
regions after calling the function will be same to their request
('nr_sub'). However, the requested number is just an upper-limit,
because the function randomly decides the size of each sub-region.
This fixes the wrong expectation.
Link: https://lkml.kernel.org/r/20211028090628.14948-1-sj@kernel.org
Fixes: 17ccae8bb5 ("mm/damon: add kunit tests")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently collapse_file does not explicitly check PG_writeback, instead,
page_has_private and try_to_release_page are used to filter writeback
pages. This does not work for xfs with blocksize equal to or larger
than pagesize, because in such case xfs has no page->private.
This makes collapse_file bail out early for writeback page. Otherwise,
xfs end_page_writeback will panic as follows.
page:fffffe00201bcc80 refcount:0 mapcount:0 mapping:ffff0003f88c86a8 index:0x0 pfn:0x84ef32
aops:xfs_address_space_operations [xfs] ino:30000b7 dentry name:"libtest.so"
flags: 0x57fffe0000008027(locked|referenced|uptodate|active|writeback)
raw: 57fffe0000008027 ffff80001b48bc28 ffff80001b48bc28 ffff0003f88c86a8
raw: 0000000000000000 0000000000000000 00000000ffffffff ffff0000c3e9a000
page dumped because: VM_BUG_ON_PAGE(((unsigned int) page_ref_count(page) + 127u <= 127u))
page->mem_cgroup:ffff0000c3e9a000
------------[ cut here ]------------
kernel BUG at include/linux/mm.h:1212!
Internal error: Oops - BUG: 0 [#1] SMP
Modules linked in:
BUG: Bad page state in process khugepaged pfn:84ef32
xfs(E)
page:fffffe00201bcc80 refcount:0 mapcount:0 mapping:0 index:0x0 pfn:0x84ef32
libcrc32c(E) rfkill(E) aes_ce_blk(E) crypto_simd(E) ...
CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Tainted: ...
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
Call trace:
end_page_writeback+0x1c0/0x214
iomap_finish_page_writeback+0x13c/0x204
iomap_finish_ioend+0xe8/0x19c
iomap_writepage_end_bio+0x38/0x50
bio_endio+0x168/0x1ec
blk_update_request+0x278/0x3f0
blk_mq_end_request+0x34/0x15c
virtblk_request_done+0x38/0x74 [virtio_blk]
blk_done_softirq+0xc4/0x110
__do_softirq+0x128/0x38c
__irq_exit_rcu+0x118/0x150
irq_exit+0x1c/0x30
__handle_domain_irq+0x8c/0xf0
gic_handle_irq+0x84/0x108
el1_irq+0xcc/0x180
arch_cpu_idle+0x18/0x40
default_idle_call+0x4c/0x1a0
cpuidle_idle_call+0x168/0x1e0
do_idle+0xb4/0x104
cpu_startup_entry+0x30/0x9c
secondary_start_kernel+0x104/0x180
Code: d4210000 b0006161 910c8021 94013f4d (d4210000)
---[ end trace 4a88c6a074082f8c ]---
Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt
Link: https://lkml.kernel.org/r/20211022023052.33114-1-rongwei.wang@linux.alibaba.com
Fixes: 99cb0dbd47 ("mm,thp: add read-only THP support for (non-shmem) FS")
Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Suggested-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Song Liu <song@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eric Dumazet reported a strange numa spreading info in [1], and found
commit 121e6f3258 ("mm/vmalloc: hugepage vmalloc mappings") introduced
this issue [2].
Dig into the difference before and after this patch, page allocation has
some difference:
before:
alloc_large_system_hash
__vmalloc
__vmalloc_node(..., NUMA_NO_NODE, ...)
__vmalloc_node_range
__vmalloc_area_node
alloc_page /* because NUMA_NO_NODE, so choose alloc_page branch */
alloc_pages_current
alloc_page_interleave /* can be proved by print policy mode */
after:
alloc_large_system_hash
__vmalloc
__vmalloc_node(..., NUMA_NO_NODE, ...)
__vmalloc_node_range
__vmalloc_area_node
alloc_pages_node /* choose nid by nuam_mem_id() */
__alloc_pages_node(nid, ....)
So after commit 121e6f3258 ("mm/vmalloc: hugepage vmalloc mappings"),
it will allocate memory in current node instead of interleaving allocate
memory.
Link: https://lore.kernel.org/linux-mm/CANn89iL6AAyWhfxdHO+jaT075iOa3XcYn9k6JJc7JR2XYn6k_Q@mail.gmail.com/ [1]
Link: https://lore.kernel.org/linux-mm/CANn89iLofTR=AK-QOZY87RdUZENCZUT4O6a0hvhu3_EwRMerOg@mail.gmail.com/ [2]
Link: https://lkml.kernel.org/r/20211021080744.874701-2-chenwandun@huawei.com
Fixes: 121e6f3258 ("mm/vmalloc: hugepage vmalloc mappings")
Signed-off-by: Chen Wandun <chenwandun@huawei.com>
Reported-by: Eric Dumazet <edumazet@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Quoting Dmitry:
"refcount_inc() needs to be done before fd_install(). After
fd_install() finishes, the fd can be used by userspace and
we can have secret data in memory before the refcount_inc().
A straightforward misuse where a user will predict the returned
fd in another thread before the syscall returns and will use it
to store secret data is somewhat dubious because such a user just
shoots themself in the foot.
But a more interesting misuse would be to close the predicted fd
and decrement the refcount before the corresponding refcount_inc,
this way one can briefly drop the refcount to zero while there are
other users of secretmem."
Move fd_install() after refcount_inc().
Link: https://lkml.kernel.org/r/20211021154046.880251-1-keescook@chromium.org
Link: https://lore.kernel.org/lkml/CACT4Y+b1sW6-Hkn8HQYw_SsT7X3tp-CJNh2ci0wG3ZnQz9jjig@mail.gmail.com
Fixes: 9a436f8ff6 ("PM: hibernate: disable when there are active secretmem users")
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jordy Zomer <jordy@pwning.systems>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Race between process_mrelease and exit_mmap, where free_pgtables is
called while __oom_reap_task_mm is in progress, leads to kernel crash
during pte_offset_map_lock call. oom-reaper avoids this race by setting
MMF_OOM_VICTIM flag and causing exit_mmap to take and release
mmap_write_lock, blocking it until oom-reaper releases mmap_read_lock.
Reusing MMF_OOM_VICTIM for process_mrelease would be the simplest way to
fix this race, however that would be considered a hack. Fix this race
by elevating mm->mm_users and preventing exit_mmap from executing until
process_mrelease is finished. Patch slightly refactors the code to
adapt for a possible mmget_not_zero failure.
This fix has considerable negative impact on process_mrelease
performance and will likely need later optimization.
Link: https://lkml.kernel.org/r/20211022014658.263508-1-surenb@google.com
Fixes: 884a7e5964 ("mm: introduce process_mrelease system call")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Christian Brauner <christian@brauner.io>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Jan Engelhardt <jengelh@inai.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When handling shmem page fault the THP with corrupted subpage could be
PMD mapped if certain conditions are satisfied. But kernel is supposed
to send SIGBUS when trying to map hwpoisoned page.
There are two paths which may do PMD map: fault around and regular
fault.
Before commit f9ce0be71d ("mm: Cleanup faultaround and finish_fault()
codepaths") the thing was even worse in fault around path. The THP
could be PMD mapped as long as the VMA fits regardless what subpage is
accessed and corrupted. After this commit as long as head page is not
corrupted the THP could be PMD mapped.
In the regular fault path the THP could be PMD mapped as long as the
corrupted page is not accessed and the VMA fits.
This loophole could be fixed by iterating every subpage to check if any
of them is hwpoisoned or not, but it is somewhat costly in page fault
path.
So introduce a new page flag called HasHWPoisoned on the first tail
page. It indicates the THP has hwpoisoned subpage(s). It is set if any
subpage of THP is found hwpoisoned by memory failure and after the
refcount is bumped successfully, then cleared when the THP is freed or
split.
The soft offline path doesn't need this since soft offline handler just
marks a subpage hwpoisoned when the subpage is migrated successfully.
But shmem THP didn't get split then migrated at all.
Link: https://lkml.kernel.org/r/20211020210755.23964-3-shy828301@gmail.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>