For each memory location KernelMemorySanitizer maintains two types of
metadata:
1. The so-called shadow of that location - а byte:byte mapping describing
whether or not individual bits of memory are initialized (shadow is 0)
or not (shadow is 1).
2. The origins of that location - а 4-byte:4-byte mapping containing
4-byte IDs of the stack traces where uninitialized values were
created.
Each struct page now contains pointers to two struct pages holding KMSAN
metadata (shadow and origins) for the original struct page. Utility
routines in mm/kmsan/core.c and mm/kmsan/shadow.c handle the metadata
creation, addressing, copying and checking. mm/kmsan/report.c performs
error reporting in the cases an uninitialized value is used in a way that
leads to undefined behavior.
KMSAN compiler instrumentation is responsible for tracking the metadata
along with the kernel memory. mm/kmsan/instrumentation.c provides the
implementation for instrumentation hooks that are called from files
compiled with -fsanitize=kernel-memory.
To aid parameter passing (also done at instrumentation level), each
task_struct now contains a struct kmsan_task_state used to track the
metadata of function parameters and return values for that task.
Finally, this patch provides CONFIG_KMSAN that enables KMSAN, and declares
CFLAGS_KMSAN, which are applied to files compiled with KMSAN. The
KMSAN_SANITIZE:=n Makefile directive can be used to completely disable
KMSAN instrumentation for certain files.
Similarly, KMSAN_ENABLE_CHECKS:=n disables KMSAN checks and makes newly
created stack memory initialized.
Users can also use functions from include/linux/kmsan-checks.h to mark
certain memory regions as uninitialized or initialized (this is called
"poisoning" and "unpoisoning") or check that a particular region is
initialized.
Link: https://lkml.kernel.org/r/20220915150417.722975-12-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The new hugetlb vma lock is used to address this race:
Faulting thread Unsharing thread
... ...
ptep = huge_pte_offset()
or
ptep = huge_pte_alloc()
...
i_mmap_lock_write
lock page table
ptep invalid <------------------------ huge_pmd_unshare()
Could be in a previously unlock_page_table
sharing process or worse i_mmap_unlock_write
...
The vma_lock is used as follows:
- During fault processing. The lock is acquired in read mode before
doing a page table lock and allocation (huge_pte_alloc). The lock is
held until code is finished with the page table entry (ptep).
- The lock must be held in write mode whenever huge_pmd_unshare is
called.
Lock ordering issues come into play when unmapping a page from all
vmas mapping the page. The i_mmap_rwsem must be held to search for the
vmas, and the vma lock must be held before calling unmap which will
call huge_pmd_unshare. This is done today in:
- try_to_migrate_one and try_to_unmap_ for page migration and memory
error handling. In these routines we 'try' to obtain the vma lock and
fail to unmap if unsuccessful. Calling routines already deal with the
failure of unmapping.
- hugetlb_vmdelete_list for truncation and hole punch. This routine
also tries to acquire the vma lock. If it fails, it skips the
unmapping. However, we can not have file truncation or hole punch
fail because of contention. After hugetlb_vmdelete_list, truncation
and hole punch call remove_inode_hugepages. remove_inode_hugepages
checks for mapped pages and call hugetlb_unmap_file_page to unmap them.
hugetlb_unmap_file_page is designed to drop locks and reacquire in the
correct order to guarantee unmap success.
Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing
synchronization") added code to take i_mmap_rwsem in read mode for the
duration of fault processing. However, this has been shown to cause
performance/scaling issues. Revert the code and go back to only taking
the semaphore in huge_pmd_share during the fault path.
Keep the code that takes i_mmap_rwsem in write mode before calling
try_to_unmap as this is required if huge_pmd_unshare is called.
NOTE: Reverting this code does expose the following race condition.
Faulting thread Unsharing thread
... ...
ptep = huge_pte_offset()
or
ptep = huge_pte_alloc()
...
i_mmap_lock_write
lock page table
ptep invalid <------------------------ huge_pmd_unshare()
Could be in a previously unlock_page_table
sharing process or worse i_mmap_unlock_write
...
ptl = huge_pte_lock(ptep)
get/update pte
set_pte_at(pte, ptep)
It is unknown if the above race was ever experienced by a user. It was
discovered via code inspection when initially addressed.
In subsequent patches, a new synchronization mechanism will be added to
coordinate pmd sharing and eliminate this race.
Link: https://lkml.kernel.org/r/20220914221810.95771-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "hugetlb: Use new vma lock for huge pmd sharing
synchronization", v2.
hugetlb fault scalability regressions have recently been reported [1].
This is not the first such report, as regressions were also noted when
commit c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing
synchronization") was added [2] in v5.7. At that time, a proposal to
address the regression was suggested [3] but went nowhere.
The regression and benefit of this patch series is not evident when
using the vm_scalability benchmark reported in [2] on a recent kernel.
Results from running,
"./usemem -n 48 --prealloc --prefault -O -U 3448054972"
48 sample Avg
next-20220913 next-20220913 next-20220913
unmodified revert i_mmap_sema locking vma sema locking, this series
-----------------------------------------------------------------------------
498150 KB/s 501934 KB/s 504793 KB/s
The recent regression report [1] notes page fault and fork latency of
shared hugetlb mappings. To measure this, I created two simple programs:
1) map a shared hugetlb area, write fault all pages, unmap area
Do this in a continuous loop to measure faults per second
2) map a shared hugetlb area, write fault a few pages, fork and exit
Do this in a continuous loop to measure forks per second
These programs were run on a 48 CPU VM with 320GB memory. The shared
mapping size was 250GB. For comparison, a single instance of the program
was run. Then, multiple instances were run in parallel to introduce
lock contention. Changing the locking scheme results in a significant
performance benefit.
test instances unmodified revert vma
--------------------------------------------------------------------------
faults per sec 1 393043 395680 389932
faults per sec 24 71405 81191 79048
forks per sec 1 2802 2747 2725
forks per sec 24 439 536 500
Combined faults 24 1621 68070 53662
Combined forks 24 358 67 142
Combined test is when running both faulting program and forking program
simultaneously.
Patches 1 and 2 of this series revert c0d0381ade and 87bf91d39b which
depends on c0d0381ade. Acquisition of i_mmap_rwsem is still required in
the fault path to establish pmd sharing, so this is moved back to
huge_pmd_share. With c0d0381ade reverted, this race is exposed:
Faulting thread Unsharing thread
... ...
ptep = huge_pte_offset()
or
ptep = huge_pte_alloc()
...
i_mmap_lock_write
lock page table
ptep invalid <------------------------ huge_pmd_unshare()
Could be in a previously unlock_page_table
sharing process or worse i_mmap_unlock_write
...
ptl = huge_pte_lock(ptep)
get/update pte
set_pte_at(pte, ptep)
Reverting 87bf91d39b exposes races in page fault/file truncation. When
the new vma lock is put to use in patch 8, this will handle the fault/file
truncation races. This is explained in patch 9 where code associated with
these races is cleaned up.
Patches 3 - 5 restructure existing code in preparation for using the new
vma lock (rw semaphore) for pmd sharing synchronization. The idea is that
this semaphore will be held in read mode for the duration of fault
processing, and held in write mode for unmap operations which may call
huge_pmd_unshare. Acquiring i_mmap_rwsem is also still required to
synchronize huge pmd sharing. However it is only required in the fault
path when setting up sharing, and will be acquired in huge_pmd_share().
Patch 6 adds the new vma lock and all supporting routines, but does not
actually change code to use the new lock.
Patch 7 refactors code in preparation for using the new lock. And, patch
8 finally adds code to make use of this new vma lock. Unfortunately, the
fault code and truncate/hole punch code would naturally take locks in the
opposite order which could lead to deadlock. Since the performance of
page faults is more important, the truncation/hole punch code is modified
to back out and take locks in the correct order if necessary.
[1] https://lore.kernel.org/linux-mm/43faf292-245b-5db5-cce9-369d8fb6bd21@infradead.org/
[2] https://lore.kernel.org/lkml/20200622005551.GK5535@shao2-debian/
[3] https://lore.kernel.org/linux-mm/20200706202615.32111-1-mike.kravetz@oracle.com/
This patch (of 9):
Commit c0d0381ade ("hugetlbfs: use i_mmap_rwsem for more pmd sharing
synchronization") added code to take i_mmap_rwsem in read mode for the
duration of fault processing. The use of i_mmap_rwsem to prevent
fault/truncate races depends on this. However, this has been shown to
cause performance/scaling issues. As a result, that code will be
reverted. Since the use i_mmap_rwsem to address page fault/truncate races
depends on this, it must also be reverted.
In a subsequent patch, code will be added to detect the fault/truncate
race and back out operations as required.
Link: https://lkml.kernel.org/r/20220914221810.95771-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20220914221810.95771-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The name "check_free_page()" provides no information regarding its return
value when the page is indeed found to be bad.
Renaming it to "free_page_is_bad()" makes it clear that a `true' return
value means the page was bad.
And make it return a bool, not an int.
[akpm@linux-foundation.org: don't use bool as int]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: ke.wang <ke.wang@unisoc.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Zhaoyang Huang <huangzhaoyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When the 'kdamond_wait_activation()' function or 'after_sampling()' or
'after_aggregation()' DAMON callbacks return an error, it is unnecessary
to use bool 'done' to check if kdamond should be finished. This commit
simplifies the kdamond stop mechanism by removing 'done' and break the
while loop directly in the cases.
Link: https://lkml.kernel.org/r/1663060287-30201-4-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
DAMON_LRU_SORT receives monitoring attributes by parameters one by one to
separate variables, and then combines those into 'struct damon_attrs'.
This commit makes the module directly stores the parameter values to a
static 'struct damon_attrs' variable and use it to simplify the code.
Link: https://lkml.kernel.org/r/20220913174449.50645-9-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
DAMON_RECLAIM receives monitoring attributes by parameters one by one to
separate variables, and then combine those into 'struct damon_attrs'.
This commit makes the module directly stores the parameter values to a
static 'struct damon_attrs' variable and use it to simplify the code.
Link: https://lkml.kernel.org/r/20220913174449.50645-8-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
DAMON monitoring attributes are directly defined as fields of 'struct
damon_ctx'. This makes 'struct damon_ctx' a little long and complicated.
This commit defines and uses a struct, 'struct damon_attrs', which is
dedicated for only the monitoring attributes to make the purpose of the
five values clearer and simplify 'struct damon_ctx'.
Link: https://lkml.kernel.org/r/20220913174449.50645-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The 'struct damos' creation function, 'damon_new_scheme()', does
initialization of private fileds of 'struct damos_quota' in it. As its
verbose and makes the function unnecessarily long, this commit factors it
out to separate function.
Link: https://lkml.kernel.org/r/20220913174449.50645-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The function for new 'struct damos' creation, 'damon_new_scheme()', copies
each field of the struct one by one, though it could simply copied via
struct to struct. This commit replaces the unnecessarily verbose
field-to-field copies with struct-to-struct copies to make code simple and
short.
Link: https://lkml.kernel.org/r/20220913174449.50645-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/damon: cleanup code".
DAMON code was not so clean from the beginning, but it has been too much
nowadays, especially due to the duplicates in DAMON_RECLAIM and
DAMON_LRU_SORT. This patchset cleans some of the mess.
This patch (of 22):
The 'switch-case' statement in 'damon_va_apply_scheme()' function provides
a 'case' for every supported DAMOS action while all not-yet-supported
DAMOS actions fall through the 'default' case, and comment it so that
people can easily know which actions are supported. Its counterpart in
'paddr', 'damon_pa_apply_scheme()', however, doesn't. This commit makes
the 'paddr' side function follows the pattern of 'vaddr' for better
readability and consistency.
Link: https://lkml.kernel.org/r/20220913174449.50645-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220913174449.50645-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>