Commit b1529a41f7 "ocfs2: should reclaim the inode if
'__ocfs2_mknod_locked' returns an error" tried to reclaim the claimed
inode if __ocfs2_mknod_locked() fails later. But this introduce a race,
the freed bit may be reused immediately by another thread, which will
update dinode, e.g. i_generation. Then iput this inode will lead to BUG:
inode->i_generation != le32_to_cpu(fe->i_generation)
We could make this inode as bad, but we did want to do operations like
wipe in some cases. Since the claimed inode bit can only affect that an
dinode is missing and will return back after fsck, it seems not a big
problem. So just leave it as is by revert the reclaim logic.
Link: https://lkml.kernel.org/r/20221017130227.234480-1-joseph.qi@linux.alibaba.com
Fixes: b1529a41f7 ("ocfs2: should reclaim the inode if '__ocfs2_mknod_locked' returns an error")
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reported-by: Yan Wang <wangyan122@huawei.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move setgid handling out of individual filesystems and into the VFS
itself to stop the proliferation of setgid inheritance bugs.
Creating files that have both the S_IXGRP and S_ISGID bit raised in
directories that themselves have the S_ISGID bit set requires additional
privileges to avoid security issues.
When a filesystem creates a new inode it needs to take care that the
caller is either in the group of the newly created inode or they have
CAP_FSETID in their current user namespace and are privileged over the
parent directory of the new inode. If any of these two conditions is
true then the S_ISGID bit can be raised for an S_IXGRP file and if not
it needs to be stripped.
However, there are several key issues with the current implementation:
* S_ISGID stripping logic is entangled with umask stripping.
If a filesystem doesn't support or enable POSIX ACLs then umask
stripping is done directly in the vfs before calling into the
filesystem.
If the filesystem does support POSIX ACLs then unmask stripping may be
done in the filesystem itself when calling posix_acl_create().
Since umask stripping has an effect on S_ISGID inheritance, e.g., by
stripping the S_IXGRP bit from the file to be created and all relevant
filesystems have to call posix_acl_create() before inode_init_owner()
where we currently take care of S_ISGID handling S_ISGID handling is
order dependent. IOW, whether or not you get a setgid bit depends on
POSIX ACLs and umask and in what order they are called.
Note that technically filesystems are free to impose their own
ordering between posix_acl_create() and inode_init_owner() meaning
that there's additional ordering issues that influence S_SIGID
inheritance.
* Filesystems that don't rely on inode_init_owner() don't get S_ISGID
stripping logic.
While that may be intentional (e.g. network filesystems might just
defer setgid stripping to a server) it is often just a security issue.
This is not just ugly it's unsustainably messy especially since we do
still have bugs in this area years after the initial round of setgid
bugfixes.
So the current state is quite messy and while we won't be able to make
it completely clean as posix_acl_create() is still a filesystem specific
call we can improve the S_SIGD stripping situation quite a bit by
hoisting it out of inode_init_owner() and into the vfs creation
operations. This means we alleviate the burden for filesystems to handle
S_ISGID stripping correctly and can standardize the ordering between
S_ISGID and umask stripping in the vfs.
We add a new helper vfs_prepare_mode() so S_ISGID handling is now done
in the VFS before umask handling. This has S_ISGID handling is
unaffected unaffected by whether umask stripping is done by the VFS
itself (if no POSIX ACLs are supported or enabled) or in the filesystem
in posix_acl_create() (if POSIX ACLs are supported).
The vfs_prepare_mode() helper is called directly in vfs_*() helpers that
create new filesystem objects. We need to move them into there to make
sure that filesystems like overlayfs hat have callchains like:
sys_mknod()
-> do_mknodat(mode)
-> .mknod = ovl_mknod(mode)
-> ovl_create(mode)
-> vfs_mknod(mode)
get S_ISGID stripping done when calling into lower filesystems via
vfs_*() creation helpers. Moving vfs_prepare_mode() into e.g.
vfs_mknod() takes care of that. This is in any case semantically cleaner
because S_ISGID stripping is VFS security requirement.
Security hooks so far have seen the mode with the umask applied but
without S_ISGID handling done. The relevant hooks are called outside of
vfs_*() creation helpers so by calling vfs_prepare_mode() from vfs_*()
helpers the security hooks would now see the mode without umask
stripping applied. For now we fix this by passing the mode with umask
settings applied to not risk any regressions for LSM hooks. IOW, nothing
changes for LSM hooks. It is worth pointing out that security hooks
never saw the mode that is seen by the filesystem when actually creating
the file. They have always been completely misplaced for that to work.
The following filesystems use inode_init_owner() and thus relied on
S_ISGID stripping: spufs, 9p, bfs, btrfs, ext2, ext4, f2fs, hfsplus,
hugetlbfs, jfs, minix, nilfs2, ntfs3, ocfs2, omfs, overlayfs, ramfs,
reiserfs, sysv, ubifs, udf, ufs, xfs, zonefs, bpf, tmpfs.
All of the above filesystems end up calling inode_init_owner() when new
filesystem objects are created through the ->mkdir(), ->mknod(),
->create(), ->tmpfile(), ->rename() inode operations.
Since directories always inherit the S_ISGID bit with the exception of
xfs when irix_sgid_inherit mode is turned on S_ISGID stripping doesn't
apply. The ->symlink() and ->link() inode operations trivially inherit
the mode from the target and the ->rename() inode operation inherits the
mode from the source inode. All other creation inode operations will get
S_ISGID handling via vfs_prepare_mode() when called from their relevant
vfs_*() helpers.
In addition to this there are filesystems which allow the creation of
filesystem objects through ioctl()s or - in the case of spufs -
circumventing the vfs in other ways. If filesystem objects are created
through ioctl()s the vfs doesn't know about it and can't apply regular
permission checking including S_ISGID logic. Therfore, a filesystem
relying on S_ISGID stripping in inode_init_owner() in their ioctl()
callpath will be affected by moving this logic into the vfs. We audited
those filesystems:
* btrfs allows the creation of filesystem objects through various
ioctls(). Snapshot creation literally takes a snapshot and so the mode
is fully preserved and S_ISGID stripping doesn't apply.
Creating a new subvolum relies on inode_init_owner() in
btrfs_new_subvol_inode() but only creates directories and doesn't
raise S_ISGID.
* ocfs2 has a peculiar implementation of reflinks. In contrast to e.g.
xfs and btrfs FICLONE/FICLONERANGE ioctl() that is only concerned with
the actual extents ocfs2 uses a separate ioctl() that also creates the
target file.
Iow, ocfs2 circumvents the vfs entirely here and did indeed rely on
inode_init_owner() to strip the S_ISGID bit. This is the only place
where a filesystem needs to call mode_strip_sgid() directly but this
is self-inflicted pain.
* spufs doesn't go through the vfs at all and doesn't use ioctl()s
either. Instead it has a dedicated system call spufs_create() which
allows the creation of filesystem objects. But spufs only creates
directories and doesn't allo S_SIGID bits, i.e. it specifically only
allows 0777 bits.
* bpf uses vfs_mkobj() but also doesn't allow S_ISGID bits to be created.
The patch will have an effect on ext2 when the EXT2_MOUNT_GRPID mount
option is used, on ext4 when the EXT4_MOUNT_GRPID mount option is used,
and on xfs when the XFS_FEAT_GRPID mount option is used. When any of
these filesystems are mounted with their respective GRPID option then
newly created files inherit the parent directories group
unconditionally. In these cases non of the filesystems call
inode_init_owner() and thus did never strip the S_ISGID bit for newly
created files. Moving this logic into the VFS means that they now get
the S_ISGID bit stripped. This is a user visible change. If this leads
to regressions we will either need to figure out a better way or we need
to revert. However, given the various setgid bugs that we found just in
the last two years this is a regression risk we should take.
Associated with this change is a new set of fstests to enforce the
semantics for all new filesystems.
Link: https://lore.kernel.org/ceph-devel/20220427092201.wvsdjbnc7b4dttaw@wittgenstein [1]
Link: e014f37db1 ("xfs: use setattr_copy to set vfs inode attributes") [2]
Link: 01ea173e10 ("xfs: fix up non-directory creation in SGID directories") [3]
Link: fd84bfdddd ("ceph: fix up non-directory creation in SGID directories") [4]
Link: https://lore.kernel.org/r/1657779088-2242-3-git-send-email-xuyang2018.jy@fujitsu.com
Suggested-by: Dave Chinner <david@fromorbit.com>
Suggested-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-and-Tested-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Yang Xu <xuyang2018.jy@fujitsu.com>
[<brauner@kernel.org>: rewrote commit message]
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Use the fileattr API to let the VFS handle locking, permission checking and
conversion.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Cc: Joel Becker <jlbec@evilplan.org>
Extend some inode methods with an additional user namespace argument. A
filesystem that is aware of idmapped mounts will receive the user
namespace the mount has been marked with. This can be used for
additional permission checking and also to enable filesystems to
translate between uids and gids if they need to. We have implemented all
relevant helpers in earlier patches.
As requested we simply extend the exisiting inode method instead of
introducing new ones. This is a little more code churn but it's mostly
mechanical and doesnt't leave us with additional inode methods.
Link: https://lore.kernel.org/r/20210121131959.646623-25-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The inode_owner_or_capable() helper determines whether the caller is the
owner of the inode or is capable with respect to that inode. Allow it to
handle idmapped mounts. If the inode is accessed through an idmapped
mount it according to the mount's user namespace. Afterwards the checks
are identical to non-idmapped mounts. If the initial user namespace is
passed nothing changes so non-idmapped mounts will see identical
behavior as before.
Similarly, allow the inode_init_owner() helper to handle idmapped
mounts. It initializes a new inode on idmapped mounts by mapping the
fsuid and fsgid of the caller from the mount's user namespace. If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-7-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Under some conditions, the directory cannot be deleted. The specific
scenarios are as follows: (for example, /mnt/ocfs2 is the mount point)
1. Create the /mnt/ocfs2/p_dir directory. At this time, the i_nlink
corresponding to the inode of the /mnt/ocfs2/p_dir directory is equal
to 2.
2. During the process of creating the /mnt/ocfs2/p_dir/s_dir
directory, if the call to the inc_nlink function in ocfs2_mknod
succeeds, the functions such as ocfs2_init_acl,
ocfs2_init_security_set, and ocfs2_dentry_attach_lock fail. At this
time, the i_nlink corresponding to the inode of the /mnt/ocfs2/p_dir
directory is equal to 3, but /mnt/ocfs2/p_dir/s_dir is not added to the
/mnt/ocfs2/p_dir directory entry.
3. Delete the /mnt/ocfs2/p_dir directory (rm -rf /mnt/ocfs2/p_dir).
At this time, it is found that the i_nlink corresponding to the inode
corresponding to the /mnt/ocfs2/p_dir directory is equal to 3.
Therefore, the /mnt/ocfs2/p_dir directory cannot be deleted.
Signed-off-by: Jian wang <wangjian161@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jun Piao <piaojun@huawei.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Link: http://lkml.kernel.org/r/a44f6666-bbc4-405e-0e6c-0f4e922eeef6@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation inc
59 temple place suite 330 boston ma 021110 1307 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 84 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190524100844.756442981@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull more vfs updates from Al Viro:
">rename2() work from Miklos + current_time() from Deepa"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fs: Replace current_fs_time() with current_time()
fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
fs: Replace CURRENT_TIME with current_time() for inode timestamps
fs: proc: Delete inode time initializations in proc_alloc_inode()
vfs: Add current_time() api
vfs: add note about i_op->rename changes to porting
fs: rename "rename2" i_op to "rename"
vfs: remove unused i_op->rename
fs: make remaining filesystems use .rename2
libfs: support RENAME_NOREPLACE in simple_rename()
fs: support RENAME_NOREPLACE for local filesystems
ncpfs: fix unused variable warning
CURRENT_TIME macro is not appropriate for filesystems as it
doesn't use the right granularity for filesystem timestamps.
Use current_time() instead.
CURRENT_TIME is also not y2038 safe.
This is also in preparation for the patch that transitions
vfs timestamps to use 64 bit time and hence make them
y2038 safe. As part of the effort current_time() will be
extended to do range checks. Hence, it is necessary for all
file system timestamps to use current_time(). Also,
current_time() will be transitioned along with vfs to be
y2038 safe.
Note that whenever a single call to current_time() is used
to change timestamps in different inodes, it is because they
share the same time granularity.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Felipe Balbi <balbi@kernel.org>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This is trivial to do:
- add flags argument to foo_rename()
- check if flags is zero
- assign foo_rename() to .rename2 instead of .rename
This doesn't mean it's impossible to support RENAME_NOREPLACE for these
filesystems, but it is not trivial, like for local filesystems.
RENAME_NOREPLACE must guarantee atomicity (i.e. it shouldn't be possible
for a file to be created on one host while it is overwritten by rename on
another host).
Filesystems converted:
9p, afs, ceph, coda, ecryptfs, kernfs, lustre, ncpfs, nfs, ocfs2, orangefs.
After this, we can get rid of the duplicate interfaces for rename.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: David Howells <dhowells@redhat.com> [AFS]
Acked-by: Mike Marshall <hubcap@omnibond.com>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jan Harkes <jaharkes@cs.cmu.edu>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Commit 702e5bc68a ("ocfs2: use generic posix ACL infrastructure")
refactored code to use posix_acl_create. The problem with this function
is that it is not mindful of the cluster wide inode lock making it
unsuitable for use with ocfs2 inode creation with ACLs. For example,
when used in ocfs2_mknod, this function can cause deadlock as follows.
The parent dir inode lock is taken when calling posix_acl_create ->
get_acl -> ocfs2_iop_get_acl which takes the inode lock again. This can
cause deadlock if there is a blocked remote lock request waiting for the
lock to be downconverted. And same deadlock happened in ocfs2_reflink.
This fix is to revert back using ocfs2_init_acl.
Fixes: 702e5bc68a ("ocfs2: use generic posix ACL infrastructure")
Signed-off-by: Tariq Saeed <tariq.x.saeed@oracle.com>
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In ocfs2_orphan_del, currently it finds and deletes entry first, and
then access orphan dir dinode. This will have a problem once
ocfs2_journal_access_di fails. In this case, entry will be removed from
orphan dir, but in deed the inode hasn't been deleted successfully. In
other words, the file is missing but not actually deleted. So we should
access orphan dinode first like unlink and rename.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Reviewed-by: Jiufei Xue <xuejiufei@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs RCU symlink updates from Al Viro:
"Replacement of ->follow_link/->put_link, allowing to stay in RCU mode
even if the symlink is not an embedded one.
No changes since the mailbomb on Jan 1"
* 'work.symlinks' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
switch ->get_link() to delayed_call, kill ->put_link()
kill free_page_put_link()
teach nfs_get_link() to work in RCU mode
teach proc_self_get_link()/proc_thread_self_get_link() to work in RCU mode
teach shmem_get_link() to work in RCU mode
teach page_get_link() to work in RCU mode
replace ->follow_link() with new method that could stay in RCU mode
don't put symlink bodies in pagecache into highmem
namei: page_getlink() and page_follow_link_light() are the same thing
ufs: get rid of ->setattr() for symlinks
udf: don't duplicate page_symlink_inode_operations
logfs: don't duplicate page_symlink_inode_operations
switch befs long symlinks to page_symlink_operations
kmap() in page_follow_link_light() needed to go - allowing to hold
an arbitrary number of kmaps for long is a great way to deadlocking
the system.
new helper (inode_nohighmem(inode)) needs to be used for pagecache
symlinks inodes; done for all in-tree cases. page_follow_link_light()
instrumented to yell about anything missed.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In ocfs2_mknod_locked if '__ocfs2_mknod_locke d' returns an error, we
should reclaim the inode successfully claimed above, otherwise, the
inode never be reused. The case is described below:
ocfs2_mknod
ocfs2_mknod_locked
ocfs2_claim_new_inode
Successfully claim the inode
__ocfs2_mknod_locked
ocfs2_journal_access_di
Failed because of -ENOMEM or other reasons, the inode
lockres has not been initialized yet.
iput(inode)
ocfs2_evict_inode
ocfs2_delete_inode
ocfs2_inode_lock
ocfs2_inode_lock_full_nested
__ocfs2_cluster_lock
Return -EINVAL because of the inode
lockres has not been initialized.
So the following operations are not performed
ocfs2_wipe_inode
ocfs2_remove_inode
ocfs2_free_dinode
ocfs2_free_suballoc_bits
Signed-off-by: Alex Chen <alex.chen@huawei.com>
Reviewed-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running dirop_fileop_racer we found a case that inode
can not removed.
Two nodes, say Node A and Node B, mount the same ocfs2 volume. Create
two dirs /race/1/ and /race/2/ in the filesystem.
Node A Node B
rm -r /race/2/
mv /race/1/ /race/2/
call ocfs2_unlink(), get
the EX mode of /race/2/
wait for B unlock /race/2/
decrease i_nlink of /race/2/ to 0,
and add inode of /race/2/ into
orphan dir, unlock /race/2/
got EX mode of /race/2/. because
/race/1/ is dir, so inc i_nlink
of /race/2/ and update into disk,
unlock /race/2/
because i_nlink of /race/2/
is not zero, this inode will
always remain in orphan dir
This patch fixes this case by test whether i_nlink of new dir is zero.
Signed-off-by: Yiwen Jiang <jiangyiwen@huawei.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <joseph.qi@huawei.com>
Cc: Xue jiufei <xuejiufei@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_rename, it will lead to an inode with two entried(old and new) if
ocfs2_delete_entry(old) failed. Thus, filesystem will be inconsistent.
The case is described below:
ocfs2_rename
-> ocfs2_start_trans
-> ocfs2_add_entry(new)
-> ocfs2_delete_entry(old)
-> __ocfs2_journal_access *failed* because of -ENOMEM
-> ocfs2_commit_trans
So filesystem should be set to read-only at the moment.
Signed-off-by: Yiwen Jiang <jiangyiwen@huawei.com>
Cc: Joseph Qi <joseph.qi@huawei.com>
Cc: Joel Becker <jlbec@evilplan.org>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During direct io the inode will be added to orphan first and then
deleted from orphan. There is a race window that the orphan entry will
be deleted twice and thus trigger the BUG when validating
OCFS2_DIO_ORPHANED_FL in ocfs2_del_inode_from_orphan.
ocfs2_direct_IO_write
...
ocfs2_add_inode_to_orphan
>>>>>>>> race window.
1) another node may rm the file and then down, this node
take care of orphan recovery and clear flag
OCFS2_DIO_ORPHANED_FL.
2) since rw lock is unlocked, it may race with another
orphan recovery and append dio.
ocfs2_del_inode_from_orphan
So take inode mutex lock when recovering orphans and make rw unlock at the
end of aio write in case of append dio.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Reported-by: Yiwen Jiang <jiangyiwen@huawei.com>
Cc: Weiwei Wang <wangww631@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
dquot_initialize() can now return error. Handle it where possible.
Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com>
Signed-off-by: Jan Kara <jack@suse.com>
Once dio crashed it will leave an entry in orphan dir. And orphan scan
will take care of the clean up. There is a tiny race case that the same
entry will be truncated twice and then trigger the BUG in
ocfs2_del_inode_from_orphan.
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add functions to add inode to orphan dir and remove inode in orphan dir.
Here we do not call ocfs2_prepare_orphan_dir and ocfs2_orphan_add
directly. Because append O_DIRECT will add inode to orphan two and may
result in more than one orphan entry for the same inode.
[akpm@linux-foundation.org: avoid dynamic stack allocation]
Signed-off-by: Joseph Qi <joseph.qi@huawei.com>
Cc: Weiwei Wang <wangww631@huawei.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Xuejiufei <xuejiufei@huawei.com>
Cc: alex chen <alex.chen@huawei.com>
Cc: Fengguang Wu <fengguang.wu@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_link(), the parent directory inode passed to function
ocfs2_lookup_ino_from_name() is wrong. Parameter dir is the parent of
new_dentry not old_dentry. We should get old_dir from old_dentry and
lookup old_dentry in old_dir in case another node remove the old dentry.
With this change, hard linking works again, when paths are relative with
at least one subdirectory. This is how the problem was reproducable:
# mkdir a
# mkdir b
# touch a/test
# ln a/test b/test
ln: failed to create hard link `b/test' => `a/test': No such file or directory
However when creating links in the same dir, it worked well.
Now the link gets created.
Fixes: 0e048316ff ("ocfs2: check existence of old dentry in ocfs2_link()")
Signed-off-by: joyce.xue <xuejiufei@huawei.com>
Reported-by: Szabo Aron - UBIT <aron@ubit.hu>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Tested-by: Aron Szabo <aron@ubit.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
d_splice_alias() can return a valid dentry, NULL or an ERR_PTR.
Currently the code checks not for ERR_PTR and will cuase an oops in
ocfs2_dentry_attach_lock(). Fix this by using IS_ERR_OR_NULL().
Signed-off-by: Richard Weinberger <richard@nod.at>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the call to ocfs2_add_entry() failed in ocfs2_symlink() and
ocfs2_mknod(), iput() will not be called during dput(dentry) because no
d_instantiate(), and this will lead to umount hung.
Signed-off-by: jiangyiwen <jiangyiwen@huawei.com>
Cc: Joel Becker <jlbec@evilplan.org>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>