There are root complexes that are able to optimize their
performance when incoming data is multiple full cache lines.
PCI write end padding is the device's ability to pad the ending of
incoming packets (scatter) to full cache line such that the last
upstream write generated by an incoming packet will be a full cache
line.
Add a relevant entry to ib_device_cap_flags to report such capability
of an RDMA device.
Add the QP and WQ create flags:
* A QP/WQ created with a scatter end padding flag will cause
HW to pad the last upstream write generated by a packet to cache line.
User should consider several factors before activating this feature:
- In case of high CPU memory load (which may cause PCI back pressure in
turn), if a large percent of the writes are partial cache line, this
feature should be checked as an optional solution.
- This feature might reduce performance if most packets are between one
and two cache lines and PCIe throughput has reached its maximum
capacity. E.g. 65B packet from the network port will lead to 128B
write on PCIe, which may cause traffic on PCIe to reach high
throughput.
Signed-off-by: Noa Osherovich <noaos@mellanox.com>
Reviewed-by: Majd Dibbiny <majd@mellanox.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The RDMA/umem uses generic RB-trees macros to generate various ib_umem
access functions. The generation is performed with INTERVAL_TREE_DEFINE
macro, which allows one of two modes: declare all functions as static or
declare none of the function to be static.
The second mode of operation produces the following sparse errors:
drivers/infiniband/core/umem_rbtree.c:69:1:
warning: symbol 'rbt_ib_umem_iter_first' was not declared.
Should it be static?
drivers/infiniband/core/umem_rbtree.c:69:1:
warning: symbol 'rbt_ib_umem_iter_next' was not declared.
Should it be static?
Code relocation together with declaration of such functions to be
"static" solves the issue.
Because there is no need to have separate file for two functions,
let's consolidate umem_rtree.c and umem_odp.c into one file.
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
IB device index is nldev's handler and it should be checked always.
Fixes: c3f66f7b00 ("RDMA/netlink: Implement nldev port doit callback")
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Acked-by: Doug Ledford <dledford@redhat.com>
[ Applying directly, since Doug fried his SSD's and is rebuilding - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In recent code, two path record entries are alwasy cleared while
allocated could be either one or two path record entries.
This leads to zero out of unallocated memory.
This fix initializes alternative path record only when alternative path
is set.
While we are at it, path record allocation doesn't check for OPA
alternative path, but rest of the code checks for OPA alternative path.
Path record allocation code doesn't check for OPA alternative LID.
This can further lead to memory corruption when only one path record is
allocated, but there is actually alternative OPA path record present in CM
request.
Cc: <stable@vger.kernel.org> # v4.12+
Fixes: 9fdca4da4d ("IB/SA: Split struct sa_path_rec based on IB and ROCE specific fields")
Signed-off-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Moni Shoua <monis@mellanox.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Make these structures const as they are either passed to the functions
having the argument as const or stored as a reference in the "ci_type"
const field of a config_item structure.
Signed-off-by: Bhumika Goyal <bhumirks@gmail.com>
Acked-by: Doug Ledford <dledford@redhat.com>
Reviewed-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The early for-next branch was based on v4.14-rc2, while the shared pull
request I got from Mellanox used a v4.14-rc4 base. I'm making the
branch that was the shared Mellanox pull request the new for-next branch
and merging the early for-next branch into it.
Signed-off-by: Doug Ledford <dledford@redhat.com>
The IB/core provides address resolution service and invokes callback
handler when address resolve request completes of requester in worker
thread context.
Such caller might allocate or free memory in callback handler
depending on the completion status to make further progress or to
terminate a connection. Most ULPs resolve route which involves
allocating route entry and path record elements in callback event handler.
It has been noticed that WQ_MEM_RECLAIM flag should not be used for
workers that tend to allocate memory in this [1] thread discussion.
In order to mitigate this situation, WQ_MEM_RECLAIM flag was dropped for
other such WQs in this [2] patch.
Similar problem might arise with address resolution path, though its not
yet noticed. The ib_addr workqueue is not memory reclaim path due to its
nature of invoking callback that might allocate memory or don't free any
memory under memory pressure.
[1] https://www.spinics.net/lists/linux-rdma/msg53239.html
[2] https://www.spinics.net/lists/linux-rdma/msg53416.html
Fixes: f54816261c ("IB/addr: Remove deprecated create_singlethread_workqueue")
Fixes: 5fff41e1f8 ("IB/core: Fix race condition in resolving IP to MAC")
Signed-off-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Daniel Jurgens <danielj@mellanox.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
This patch fixes the case where 'lifespan' entry of the hw_counters
is not writable. Currently write callback is not exposed for for
the hw_counters sysfs operation. Due to this, modifying lifespan
value results into permission denied error in below example.
echo 10 > /sys/class/infiniband/mlx5_0/ports/1/hw_counters/lifespan
-bash: /sys/class/infiniband/mlx5_0/ports/1/hw_counters/lifespan:
Permission denied
This patch adds the hook to modify any attribute which implements
store() operation.
Fixes: b40f4757da ("IB/core: Make device counter infrastructure dynamic")
Signed-off-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Mark Bloch <markb@mellanox.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Since IB/core resolves the destination mac address for user and kernel
consumers, avoid resolving in multiple provider drivers.
Only ib_core resolves DMAC now, therefore resolve_eth_dmac is removed as
exported symbol.
Signed-off-by: Parav Pandit <parav@mellanox.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Introduce rdma_create_user_ah API which allows passing udata to
provider driver and additionally which resolves DMAC for RoCE.
ib_resolve_eth_dmac() resolves destination mac address for unicast,
multicast, link local ipv4 mapped ipv6 and ipv6 destination gid entry.
This allows all RoCE provider drivers to avoid duplicating such code.
Such change brings consistency where IB core always resolves dmac and pass
it to RoCE provider drivers for user and kernel consumers, with this
ah_attr->roce.dmac is always an input field for provider drivers.
This uniformity avoids exporting ib_resolve_eth_dmac symbol to providers
or other modules. Therefore its removed as exported symbol at later in
the patch series.
Now uverbs and umad both makes use of rdma_create_user_ah API which
fixes the issue where umad has invalid DMAC for address.
Signed-off-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Daniel Jurgens <danielj@mellanox.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
This patch reduces the number of #ifdefs and also avoids that
smatch reports the following:
drivers/infiniband/core/uverbs_ioctl.c:276: ib_uverbs_cmd_verbs() warn: if statement not indented
drivers/infiniband/core/uverbs_ioctl.c:280: ib_uverbs_cmd_verbs() warn: possible memory leak of 'ctx'
drivers/infiniband/core/uverbs_ioctl.c:315: ib_uverbs_cmd_verbs() warn: if statement not indented
References: commit fac9658cab ("IB/core: Add new ioctl interface")
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Acked-by: Matan Barak <matanb@mellanox.com>
Cc: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
According to the C standard the behavior of computations with
integer operands is as follows:
* A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting
unsigned integer type is reduced modulo the number that is one
greater than the largest value that can be represented by the
resulting type.
* The behavior for signed integer underflow and overflow is
undefined.
Hence only use unsigned integers when checking for integer
overflow.
This patch is what I came up with after having analyzed the
following smatch warnings:
drivers/infiniband/core/cma.c:3448: cma_resolve_ib_udp() warn: signed overflow undefined. 'offset + conn_param->private_data_len < conn_param->private_data_len'
drivers/infiniband/core/cma.c:3505: cma_connect_ib() warn: signed overflow undefined. 'offset + conn_param->private_data_len < conn_param->private_data_len'
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Acked-by: Sean Hefty <sean.hefty@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Avoid that gcc 7 reports the following warning when building with W=1:
warning: this statement may fall through [-Wimplicit-fallthrough=]
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Acked-by: Sean Hefty <sean.hefty@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
prot_sg_cnt cannot be zero as a previous check on ret (from which
prot_sg_cnt is assigned) returns -ENOMEM if is it zero. Since
it cannot be zero we can simplify the code by removing the non
-zero check on prot_sg_cnt and redundant else statement.
Detected by CoverityScan, COD#1357188 ("Logically dead code")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Commit 1a1c116f3d removes nlmsg_len calculation in
ibnl_put_attr causing netlink messages to be rejected due
to incorrect length.
Add nlmsg_end after all attributes are appended to calculate
the nlmsg_len.
Fixes: 1a1c116f3d ("RDMA/netlink: Simplify the put_msg and put_attr")
Signed-off-by: Shiraz Saleem <shiraz.saleem@intel.com>
Signed-off-by: Tatyana Nikolova <tatyana.e.nikolova@intel.com>
Reviewed-by: Leon Romanovsky <leonro@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
After changing INIT_UDATA_BUF_OR_NULL() to an inline function,
this does the same change to INIT_UDATA for consistency.
I'm keeping it separate as this part is much larger and
we wouldn't want to backport this to stable kernels if we
ever want to address the gcc warnings by backporting the
first patch.
Again, using an inline function gives us better type
safety here among other issues with macros. I'm using
u64_to_user_ptr() to convert the user pointer to simplify
the logic rather than adding lots of new type casts.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Doug Ledford <dledford@redhat.com>
We get a harmless warning about the fact that we use the result of a
multiplication as a condition:
drivers/infiniband/core/uverbs_main.c: In function 'ib_uverbs_write':
drivers/infiniband/core/uverbs_main.c:787:40: error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
drivers/infiniband/core/uverbs_main.c:787:117: error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
drivers/infiniband/core/uverbs_main.c:790:50: error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
drivers/infiniband/core/uverbs_main.c:790:151: error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
This avoids the problem by using an inline function in place of
the macro.
Fixes: a96e4e2ffe ("IB/uverbs: New macro to set pointers to NULL if length is 0 in INIT_UDATA()")
Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://patchwork.kernel.org/patch/9940777/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Doug Ledford <dledford@redhat.com>
When security_ib_alloc_security fails, qp->qp_sec memory is freed.
However ib_destroy_qp still tries to access this memory which result
in kernel crash. So its initialized to NULL to avoid such access.
Fixes: d291f1a652 ("IB/core: Enforce PKey security on QPs")
Signed-off-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Daniel Jurgens <danielj@mellanox.com>
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The tag matching functionality is implemented by mlx5 driver
by extending XRQ, however this internal kernel information was
exposed to user space applications with *xrq* name instead of *tm*.
This patch renames *xrq* to *tm* to handle that.
Fixes: 8d50505ada ("IB/uverbs: Expose XRQ capabilities")
Signed-off-by: Leon Romanovsky <leonro@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Pull rdma fixes from Doug Ledford:
- Smattering of miscellanous fixes
- A five patch series for i40iw that had a patch (5/5) that was larger
than I would like, but I took it because it's needed for large scale
users
- An 8 patch series for bnxt_re that landed right as I was leaving on
PTO and so had to wait until now...they are all appropriate fixes for
-rc IMO
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (22 commits)
bnxt_re: Don't issue cmd to delete GID for QP1 GID entry before the QP is destroyed
bnxt_re: Fix memory leak in FRMR path
bnxt_re: Remove RTNL lock dependency in bnxt_re_query_port
bnxt_re: Fix race between the netdev register and unregister events
bnxt_re: Free up devices in module_exit path
bnxt_re: Fix compare and swap atomic operands
bnxt_re: Stop issuing further cmds to FW once a cmd times out
bnxt_re: Fix update of qplib_qp.mtu when modified
i40iw: Add support for port reuse on active side connections
i40iw: Add missing VLAN priority
i40iw: Call i40iw_cm_disconn on modify QP to disconnect
i40iw: Prevent multiple netdev event notifier registrations
i40iw: Fail open if there are no available MSI-X vectors
RDMA/vmw_pvrdma: Fix reporting correct opcodes for completion
IB/bnxt_re: Fix frame stack compilation warning
IB/mlx5: fix debugfs cleanup
IB/ocrdma: fix incorrect fall-through on switch statement
IB/ipoib: Suppress the retry related completion errors
iw_cxgb4: remove the stid on listen create failure
iw_cxgb4: drop listen destroy replies if no ep found
...
Pull nfsd updates from Bruce Fields:
"More RDMA work and some op-structure constification from Chuck Lever,
and a small cleanup to our xdr encoding"
* tag 'nfsd-4.14' of git://linux-nfs.org/~bfields/linux:
svcrdma: Estimate Send Queue depth properly
rdma core: Add rdma_rw_mr_payload()
svcrdma: Limit RQ depth
svcrdma: Populate tail iovec when receiving
nfsd: Incoming xdr_bufs may have content in tail buffer
svcrdma: Clean up svc_rdma_build_read_chunk()
sunrpc: Const-ify struct sv_serv_ops
nfsd: Const-ify NFSv4 encoding and decoding ops arrays
sunrpc: Const-ify instances of struct svc_xprt_ops
nfsd4: individual encoders no longer see error cases
nfsd4: skip encoder in trivial error cases
nfsd4: define ->op_release for compound ops
nfsd4: opdesc will be useful outside nfs4proc.c
nfsd4: move some nfsd4 op definitions to xdr4.h
The fix in the parent made me look at that function, and react to how
illogical and illegible the array initializer was.
Use named array indexes to make it clearer what is going on, and make
the initializer not depend silently on the exact index numbers.
[ The initializer now also shows an odd inconsistency in the naming:
note the IWCM vs IWPM.. - Linus ]
Cc: Leon Romanovsky <leonro@mellanox.com>
Cc: Doug Ledford <dledford@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The netlink message sent with type == 0, which doesn't have any client
behind it, caused to the overflow in max_num_ops array.
Fix it by declaring zero number of ops for the first client.
Fixes: c9901724a2 ("RDMA/netlink: Remove netlink clients infrastructure")
Signed-off-by: Leon Romanovsky <leon@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The amount of payload per MR depends on device capabilities and
the memory registration mode in use. The new rdma_rw API hides both,
making it difficult for ULPs to determine how large their transport
send queues need to be.
Expose the MR payload information via a new API.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Pull rdma updates from Doug Ledford:
"This is a big pull request.
Of note is that I'm sending you the new ioctl API for the rdma
subsystem. We put it up on linux-api@, but didn't get much response.
The API is complex, but it solves two different problems in one go:
1) The bi-directional nature of the RDMA file write calls, which
created the security hole we had to handle (and for which the fix
is now causing problems for systems in production, we were a bit
over zealous in the fix and the ability to open a device, then
fork, then create new queue pairs on the device and use them is
broken).
2) The bloat caused by different vendors implementing extensions to
the base verbs API. Each vendor's hardware is slightly different,
and the hardware might be suitable for one extension but not
another.
By the time we add generic extensions for all the different ways
that the different hardware can offload things, the API becomes
bloated. Things like our completion structs have started to exceed
a cache line in size because of all the elements needed to support
this. That in turn shows up heavily in the performance graphs with
a noticable drop in performance on 100Gigabit links as our
completion structs go from occupying one cache line to 1+.
This API makes things like the completion structs modular in a
very similar way to netlink so that your structs can only include
the items needed for the offloads/features you are actually using
on a given queue pair. In that way we support everything, but only
use what we need, and our structs stay smaller.
The ioctl API is better explained by the posting on linux-api@ than I
can explain it here, so I'll just leave it at that.
The rest of the pull request is typical stuff.
Updates for 4.14 kernel merge window
- Lots of hfi1 driver updates (mixed with a few qib and core updates
as well)
- rxe updates
- various mlx updates
- Set default roce type to RoCEv2
- Several larger fixes for bnxt_re that were too big for -rc
- Several larger fixes for qedr that, likewise, were too big for -rc
- Misc core changes
- Make the hns_roce driver compilable on arches other than aarch64 so
we can more easily debug build issues related to it
- Add rdma-netlink infrastructure updates
- Add automatic IRQ affinity infrastructure
- Add 32bit lid support
- Lots of misc fixes across the subsystem from random people
- Autoloading of RDMA netlink modules
- PCI pool cleanups from Romain Perier
- mlx5 driver feature additions and fixes
- Hardware tag matchine feature
- Fix sleeping in atomic when resolving roce ah
- Add experimental ioctl interface as posted to linux-api@"
* tag 'for-linus-ioctl' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (328 commits)
IB/core: Expose ioctl interface through experimental Kconfig
IB/core: Assign root to all drivers
IB/core: Add completion queue (cq) object actions
IB/core: Add legacy driver's user-data
IB/core: Export ioctl enum types to user-space
IB/core: Explicitly destroy an object while keeping uobject
IB/core: Add macros for declaring methods and attributes
IB/core: Add uverbs merge trees functionality
IB/core: Add DEVICE object and root tree structure
IB/core: Declare an object instead of declaring only type attributes
IB/core: Add new ioctl interface
RDMA/vmw_pvrdma: Fix a signedness
RDMA/vmw_pvrdma: Report network header type in WC
IB/core: Add might_sleep() annotation to ib_init_ah_from_wc()
IB/cm: Fix sleeping in atomic when RoCE is used
IB/core: Add support to finalize objects in one transaction
IB/core: Add a generic way to execute an operation on a uobject
Documentation: Hardware tag matching
IB/mlx5: Support IB_SRQT_TM
net/mlx5: Add XRQ support
...
Add CONFIG_INFINIBAND_EXP_USER_ACCESS that enables the ioctl
interface. This interface is experimental and is subject to change.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
In order to use the parsing tree, we need to assign the root
to all drivers. Currently, we just assign the default parsing
tree via ib_uverbs_add_one. The driver could override this by
assigning a parsing tree prior to registering the device.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Adding CQ ioctl actions:
1. create_cq
2. destroy_cq
This requires adding the following:
1. A specification describing the method
a. Handler
b. Attributes specification
Each attribute is one of the following:
a. PTR_IN - input data
Note: This could be encoded inlined for
data < 64bit
b. PTR_OUT - response data
c. IDR - idr based object
d. FD - fd based object
Blobs attributes (clauses a and b) contain their type,
while objects specifications (clauses c and d)
contains the expected object type (for example, the
given id should be UVERBS_TYPE_PD) and the required
access (READ, WRITE, NEW or DESTROY). If a NEW is
required, the new object's id will be assigned to this
attribute. All attributes could get UA_FLAGS
attribute. Currently we support stating that an
attribute is mandatory or that the specification size
corresponds to a lower bound (and that this attribute
could be extended).
We currently add both default attributes and the two
generic UHW_IN and UHW_OUT driver specific attributes.
2. Handler
A handler gets a uverbs_attr_bundle. The handler developer uses
uverbs_attr_get to fetch an attribute of a given id.
Each of these attribute groups correspond to the specification
group defined in the action (clauses 1.b and 1.c respectively).
The indices of these arrays corresponds to the attribute ids
declared in the specifications (clause 2).
The handler is quite simple. It assumes the infrastructure fetched
all objects and locked, created or destroyed them as required by
the specification. Pointer (or blob) attributes were validated to
match their required sizes. After the handler finished, the
infrastructure commits or rollbacks the objects.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
In this phase, we don't want to change all the drivers to use
flexible driver's specific attributes. Therefore, we add two default
attributes: UHW_IN and UHW_OUT. These attributes are optional in some
methods and they encode the driver specific command data. We add
a function that extract this data and creates the legacy udata over
it.
Driver's data should start from UVERBS_UDATA_DRIVER_DATA_FLAG. This
turns on the first bit of the namespace, indicating this attribute
belongs to the driver's namespace.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
When some objects are destroyed, we need to extract their status at
destruction. After object's destruction, this status
(e.g. events_reported) relies in the uobject. In order to have the
latest and correct status, the underlying object should be destroyed,
but we should keep the uobject alive and read this information off the
uobject. We introduce a rdma_explicit_destroy function. This function
destroys the class type object (for example, the IDR class type which
destroys the underlying object as well) and then convert the uobject
to be of a null class type. This uobject will then be destroyed as any
other uobject once uverbs_finalize_object[s] is called.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Different drivers support different features and even subset of the
common uverbs implementation. Currently, this is handled as bitmask
in every driver that represents which kind of methods it supports, but
doesn't go down to attributes granularity. Moreover, drivers might
want to add their specific types, methods and attributes to let
their user-space counter-parts be exposed to some more efficient
abstractions. It means that existence of different features is
validated syntactically via the parsing infrastructure rather than
using a complex in-handler logic.
In order to do that, we allow defining features and abstractions
as parsing trees. These per-feature parsing tree could be merged
to an efficient (perfect-hash based) parsing tree, which is later
used by the parsing infrastructure.
To sum it up, this makes a parse tree unique for a device and
represents only the features this particular device supports.
This is done by having a root specification tree per feature.
Before a device registers itself as an IB device, it merges
all these trees into one parsing tree. This parsing tree
is used to parse all user-space commands.
A future user-space application could read this parse tree. This
tree represents which objects, methods and attributes are
supported by this device.
This is based on the idea of
Jason Gunthorpe <jgunthorpe@obsidianresearch.com>
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
This adds the DEVICE object. This object supports creating the context
that all objects are created from. Moreover, it supports executing
methods which are related to the device itself, such as QUERY_DEVICE.
This is a singleton object (per file instance).
All standard objects are put in the root structure. This root will later
on be used in drivers as the source for their whole parsing tree.
Later on, when new features are added, these drivers could mix this root
with other customized objects.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Switch all uverbs_type_attrs_xxxx with DECLARE_UVERBS_OBJECT
macros. This will be later used in order to embed the object
specific methods in the objects as well.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
In this ioctl interface, processing the command starts from
properties of the command and fetching the appropriate user objects
before calling the handler.
Parsing and validation is done according to a specifier declared by
the driver's code. In the driver, all supported objects are declared.
These objects are separated to different object namepsaces. Dividing
objects to namespaces is done at initialization by using the higher
bits of the object ids. This initialization can mix objects declared
in different places to one parsing tree using in this ioctl interface.
For each object we list all supported methods. Similarly to objects,
methods are separated to method namespaces too. Namespacing is done
similarly to the objects case. This could be used in order to add
methods to an existing object.
Each method has a specific handler, which could be either a default
handler or a driver specific handler.
Along with the handler, a bunch of attributes are specified as well.
Similarly to objects and method, attributes are namespaced and hashed
by their ids at initialization too. All supported attributes are
subject to automatic fetching and validation. These attributes include
the command, response and the method's related objects' ids.
When these entities (objects, methods and attributes) are used, the
high bits of the entities ids are used in order to calculate the hash
bucket index. Then, these high bits are masked out in order to have a
zero based index. Since we use these high bits for both bucketing and
namespacing, we get a compact representation and O(1) array access.
This is mandatory for efficient dispatching.
Each attribute has a type (PTR_IN, PTR_OUT, IDR and FD) and a length.
Attributes could be validated through some attributes, like:
(*) Minimum size / Exact size
(*) Fops for FD
(*) Object type for IDR
If an IDR/fd attribute is specified, the kernel also states the object
type and the required access (NEW, WRITE, READ or DESTROY).
All uobject/fd management is done automatically by the infrastructure,
meaning - the infrastructure will fail concurrent commands that at
least one of them requires concurrent access (WRITE/DESTROY),
synchronize actions with device removals (dissociate context events)
and take care of reference counting (increase/decrease) for concurrent
actions invocation. The reference counts on the actual kernel objects
shall be handled by the handlers.
objects
+--------+
| |
| | methods +--------+
| | ns method method_spec +-----+ |len |
+--------+ +------+[d]+-------+ +----------------+[d]+------------+ |attr1+-> |type |
| object +> |method+-> | spec +-> + attr_buckets +-> |default_chain+--> +-----+ |idr_type|
+--------+ +------+ |handler| | | +------------+ |attr2| |access |
| | | | +-------+ +----------------+ |driver chain| +-----+ +--------+
| | | | +------------+
| | +------+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+--------+
[d] = Hash ids to groups using the high order bits
The right types table is also chosen by using the high bits from
the ids. Currently we have either default or driver specific groups.
Once validation and object fetching (or creation) completed, we call
the handler:
int (*handler)(struct ib_device *ib_dev, struct ib_uverbs_file *ufile,
struct uverbs_attr_bundle *ctx);
ctx bundles attributes of different namespaces. Each element there
is an array of attributes which corresponds to one namespaces of
attributes. For example, in the usually used case:
ctx core
+----------------------------+ +------------+
| core: +---> | valid |
+----------------------------+ | cmd_attr |
| driver: | +------------+
|----------------------------+--+ | valid |
| | cmd_attr |
| +------------+
| | valid |
| | obj_attr |
| +------------+
|
| drivers
| +------------+
+> | valid |
| cmd_attr |
+------------+
| valid |
| cmd_attr |
+------------+
| valid |
| obj_attr |
+------------+
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
For RoCE, ib_init_ah_from_wc() can follow the path
ib_init_ah_from_wc() ->
rdma_addr_find_l2_eth_by_grh() ->
rdma_resolve_ip()
and rdma_resolve_ip() will sleep in kzalloc() and wait_for_completion().
However, developers will not see any warnings if they use ib_init_ah_from_wc()
in an atomic context and test only on IB, because the function doesn't
sleep in that case.
Add a might_sleep() so that lockdep will catch bugs no matter what hardware is
used to test.
Signed-off-by: Roland Dreier <roland@purestorage.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
A couple of places in the CM do
spin_lock_irq(&cm_id_priv->lock);
...
if (cm_alloc_response_msg(work->port, work->mad_recv_wc, &msg))
However when the underlying transport is RoCE, this leads to a sleeping function
being called with the lock held - the callchain is
cm_alloc_response_msg() ->
ib_create_ah_from_wc() ->
ib_init_ah_from_wc() ->
rdma_addr_find_l2_eth_by_grh() ->
rdma_resolve_ip()
and rdma_resolve_ip() starts out by doing
req = kzalloc(sizeof *req, GFP_KERNEL);
not to mention rdma_addr_find_l2_eth_by_grh() doing
wait_for_completion(&ctx.comp);
to wait for the task that rdma_resolve_ip() queues up.
Fix this by moving the AH creation out of the lock.
Signed-off-by: Roland Dreier <roland@purestorage.com>
Reviewed-by: Sean Hefty <sean.hefty@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
The new ioctl based infrastructure either commits or rollbacks
all objects of the method as one transaction. In order to do
that, we introduce a notion of dealing with a collection of
objects that are related to a specific method.
This also requires adding a notion of a method and attribute.
A method contains a hash of attributes, where each bucket
contains several attributes. The attributes are hashed according
to their namespace which resides in the four upper bits of the id.
For example, an object could be a CQ, which has an action of CREATE_CQ.
This action has multiple attributes. For example, the CQ's new handle
and the comp_channel. Each layer in this hierarchy - objects, methods
and attributes is split into namespaces. The basic example for that is
one namespace representing the default entities and another one
representing the driver specific entities.
When declaring these methods and attributes, we actually declare
their specifications. When a method is executed, we actually
allocates some space to hold auxiliary information. This auxiliary
information contains meta-data about the required objects, such
as pointers to their type information, pointers to the uobjects
themselves (if exist), etc.
The specification, along with the auxiliary information we allocated
and filled is given to the finalize_objects function.
Signed-off-by: Matan Barak <matanb@mellanox.com>
Reviewed-by: Yishai Hadas <yishaih@mellanox.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>