Simplify the four functions that handle {kernel,user} {rd,wr}msr, there
is still some repetition between the two instances of rdmsr but the
whole business of calling kvm_inject_gp and kvm_skip_emulated_instruction
can be unified nicely.
Because complete_emulated_wrmsr now becomes essentially a call to
kvm_complete_insn_gp, remove complete_emulated_msr.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_cpu_accept_dm_intr and kvm_vcpu_ready_for_interrupt_injection are
a hodge-podge of conditions, hacked together to get something that
more or less works. But what is actually needed is much simpler;
in both cases the fundamental question is, do we have a place to stash
an interrupt if userspace does KVM_INTERRUPT?
In userspace irqchip mode, that is !vcpu->arch.interrupt.injected.
Currently kvm_event_needs_reinjection(vcpu) covers it, but it is
unnecessarily restrictive.
In split irqchip mode it's a bit more complicated, we need to check
kvm_apic_accept_pic_intr(vcpu) (the IRQ window exit is basically an INTACK
cycle and thus requires ExtINTs not to be masked) as well as
!pending_userspace_extint(vcpu). However, there is no need to
check kvm_event_needs_reinjection(vcpu), since split irqchip keeps
pending ExtINT state separate from event injection state, and checking
kvm_cpu_has_interrupt(vcpu) is wrong too since ExtINT has higher
priority than APIC interrupts. In fact the latter fixes a bug:
when userspace requests an IRQ window vmexit, an interrupt in the
local APIC can cause kvm_cpu_has_interrupt() to be true and thus
kvm_vcpu_ready_for_interrupt_injection() to return false. When this
happens, vcpu_run does not exit to userspace but the interrupt window
vmexits keep occurring. The VM loops without any hope of making progress.
Once we try to fix these with something like
return kvm_arch_interrupt_allowed(vcpu) &&
- !kvm_cpu_has_interrupt(vcpu) &&
- !kvm_event_needs_reinjection(vcpu) &&
- kvm_cpu_accept_dm_intr(vcpu);
+ (!lapic_in_kernel(vcpu)
+ ? !vcpu->arch.interrupt.injected
+ : (kvm_apic_accept_pic_intr(vcpu)
+ && !pending_userspace_extint(v)));
we realize two things. First, thanks to the previous patch the complex
conditional can reuse !kvm_cpu_has_extint(vcpu). Second, the interrupt
window request in vcpu_enter_guest()
bool req_int_win =
dm_request_for_irq_injection(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu);
should be kept in sync with kvm_vcpu_ready_for_interrupt_injection():
it is unnecessary to ask the processor for an interrupt window
if we would not be able to return to userspace. Therefore,
kvm_cpu_accept_dm_intr(vcpu) is basically !kvm_cpu_has_extint(vcpu)
ANDed with the existing check for masked ExtINT. It all makes sense:
- we can accept an interrupt from userspace if there is a place
to stash it (and, for irqchip split, ExtINTs are not masked).
Interrupts from userspace _can_ be accepted even if right now
EFLAGS.IF=0.
- in order to tell userspace we will inject its interrupt ("IRQ
window open" i.e. kvm_vcpu_ready_for_interrupt_injection), both
KVM and the vCPU need to be ready to accept the interrupt.
... and this is what the patch implements.
Reported-by: David Woodhouse <dwmw@amazon.co.uk>
Analyzed-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nikos Tsironis <ntsironis@arrikto.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Tested-by: David Woodhouse <dwmw@amazon.co.uk>
On emulated VM-entry and VM-exit, update the CPUID bits that reflect
CR4.OSXSAVE and CR4.PKE.
This fixes a bug where the CPUID bits could continue to reflect L2 CR4
values after emulated VM-exit to L1. It also fixes a related bug where
the CPUID bits could continue to reflect L1 CR4 values after emulated
VM-entry to L2. The latter bug is mainly relevant to SVM, wherein
CPUID is not a required intercept. However, it could also be relevant
to VMX, because the code to conditionally update these CPUID bits
assumes that the guest CPUID and the guest CR4 are always in sync.
Fixes: 8eb3f87d90 ("KVM: nVMX: fix guest CR4 loading when emulating L2 to L1 exit")
Fixes: 2acf923e38 ("KVM: VMX: Enable XSAVE/XRSTOR for guest")
Fixes: b9baba8614 ("KVM, pkeys: expose CPUID/CR4 to guest")
Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Ricardo Koller <ricarkol@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Cc: Haozhong Zhang <haozhong.zhang@intel.com>
Cc: Dexuan Cui <dexuan.cui@intel.com>
Cc: Huaitong Han <huaitong.han@intel.com>
Message-Id: <20201029170648.483210-1-jmattson@google.com>
This patch is heavily based on previous work from Lei Cao
<lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1]
KVM currently uses large bitmaps to track dirty memory. These bitmaps
are copied to userspace when userspace queries KVM for its dirty page
information. The use of bitmaps is mostly sufficient for live
migration, as large parts of memory are be dirtied from one log-dirty
pass to another. However, in a checkpointing system, the number of
dirty pages is small and in fact it is often bounded---the VM is
paused when it has dirtied a pre-defined number of pages. Traversing a
large, sparsely populated bitmap to find set bits is time-consuming,
as is copying the bitmap to user-space.
A similar issue will be there for live migration when the guest memory
is huge while the page dirty procedure is trivial. In that case for
each dirty sync we need to pull the whole dirty bitmap to userspace
and analyse every bit even if it's mostly zeros.
The preferred data structure for above scenarios is a dense list of
guest frame numbers (GFN). This patch series stores the dirty list in
kernel memory that can be memory mapped into userspace to allow speedy
harvesting.
This patch enables dirty ring for X86 only. However it should be
easily extended to other archs as well.
[1] https://patchwork.kernel.org/patch/10471409/
Signed-off-by: Lei Cao <lei.cao@stratus.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012222.5767-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Originally, we have three code paths that can dirty a page without
vcpu context for X86:
- init_rmode_identity_map
- init_rmode_tss
- kvmgt_rw_gpa
init_rmode_identity_map and init_rmode_tss will be setup on
destination VM no matter what (and the guest cannot even see them), so
it does not make sense to track them at all.
To do this, allow __x86_set_memory_region() to return the userspace
address that just allocated to the caller. Then in both of the
functions we directly write to the userspace address instead of
calling kvm_write_*() APIs.
Another trivial change is that we don't need to explicitly clear the
identity page table root in init_rmode_identity_map() because no
matter what we'll write to the whole page with 4M huge page entries.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20201001012044.5151-4-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_GET_SUPPORTED_HV_CPUID is a vCPU ioctl but its output is now
independent from vCPU and in some cases VMMs may want to use it as a system
ioctl instead. In particular, QEMU doesn CPU feature expansion before any
vCPU gets created so KVM_GET_SUPPORTED_HV_CPUID can't be used.
Convert KVM_GET_SUPPORTED_HV_CPUID to 'dual' system/vCPU ioctl with the
same meaning.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200929150944.1235688-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework the common CR4 and SREGS checks to return a bool instead of an
int, i.e. true/false instead of 0/-EINVAL, and add "is" to the name to
clarify the polarity of the return value (which is effectively inverted
by this change).
No functional changed intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-6-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split out VMX's checks on CR4.VMXE to a dedicated hook, .is_valid_cr4(),
and invoke the new hook from kvm_valid_cr4(). This fixes an issue where
KVM_SET_SREGS would return success while failing to actually set CR4.
Fixing the issue by explicitly checking kvm_x86_ops.set_cr4()'s return
in __set_sregs() is not a viable option as KVM has already stuffed a
variety of vCPU state.
Note, kvm_valid_cr4() and is_valid_cr4() have different return types and
inverted semantics. This will be remedied in a future patch.
Fixes: 5e1746d620 ("KVM: nVMX: Allow setting the VMXE bit in CR4")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201007014417.29276-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV guests fail to boot on a system that supports the PCID feature.
While emulating the RSM instruction, KVM reads the guest CR3
and calls kvm_set_cr3(). If the vCPU is in the long mode,
kvm_set_cr3() does a sanity check for the CR3 value. In this case,
it validates whether the value has any reserved bits set. The
reserved bit range is 63:cpuid_maxphysaddr(). When AMD memory
encryption is enabled, the memory encryption bit is set in the CR3
value. The memory encryption bit may fall within the KVM reserved
bit range, causing the KVM emulation failure.
Introduce a new field cr3_lm_rsvd_bits in kvm_vcpu_arch which will
cache the reserved bits in the CR3 value. This will be initialized
to rsvd_bits(cpuid_maxphyaddr(vcpu), 63).
If the architecture has any special bits(like AMD SEV encryption bit)
that needs to be masked from the reserved bits, should be cleared
in vendor specific kvm_x86_ops.vcpu_after_set_cpuid handler.
Fixes: a780a3ea62 ("KVM: X86: Fix reserved bits check for MOV to CR3")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <160521947657.32054.3264016688005356563.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Windows2016 guest tries to enable LBR by setting the corresponding bits
in MSR_IA32_DEBUGCTLMSR. KVM does not emulate MSR_IA32_DEBUGCTLMSR and
spams the host kernel logs with error messages like:
kvm [...]: vcpu1, guest rIP: 0xfffff800a8b687d3 kvm_set_msr_common: MSR_IA32_DEBUGCTLMSR 0x1, nop"
This patch fixes this by enabling error logging only with
'report_ignored_msrs=1'.
Signed-off-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Message-Id: <20201105153932.24316-1-pankaj.gupta.linux@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME)
emulation in helper fn", 2020-10-21) subtly changed the behavior of guest
writes to MSR_KVM_SYSTEM_TIME(_NEW). Restore the previous behavior; update
the masterclock any time the guest uses a different msr than before.
Fixes: 5b9bb0ebbc ("kvm: x86: encapsulate wrmsr(MSR_KVM_SYSTEM_TIME) emulation in helper fn", 2020-10-21)
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-6-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make the paravirtual cpuid enforcement mechanism idempotent to ioctl()
ordering by updating pv_cpuid.features whenever userspace requests the
capability. Extract this update out of kvm_update_cpuid_runtime() into a
new helper function and move its other call site into
kvm_vcpu_after_set_cpuid() where it more likely belongs.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-5-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
commit 66570e966d ("kvm: x86: only provide PV features if enabled in
guest's CPUID") only protects against disallowed guest writes to KVM
paravirtual msrs, leaving msr reads unchecked. Fix this by enforcing
KVM_CPUID_FEATURES for msr reads as well.
Fixes: 66570e966d ("kvm: x86: only provide PV features if enabled in guest's CPUID")
Signed-off-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Message-Id: <20201027231044.655110-4-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Recent introduction of the userspace msr filtering added code that uses
negative error codes for cases that result in either #GP delivery to
the guest, or handled by the userspace msr filtering.
This breaks an assumption that a negative error code returned from the
msr emulation code is a semi-fatal error which should be returned
to userspace via KVM_RUN ioctl and usually kill the guest.
Fix this by reusing the already existing KVM_MSR_RET_INVALID error code,
and by adding a new KVM_MSR_RET_FILTERED error code for the
userspace filtered msrs.
Fixes: 291f35fb2c1d1 ("KVM: x86: report negative values from wrmsr emulation to userspace")
Reported-by: Qian Cai <cai@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201101115523.115780-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The newly introduced kvm_msr_ignored_check() tries to print error or
debug messages via vcpu_*() macros, but those may cause Oops when NULL
vcpu is passed for KVM_GET_MSRS ioctl.
Fix it by replacing the print calls with kvm_*() macros.
(Note that this will leave vcpu argument completely unused in the
function, but I didn't touch it to make the fix as small as
possible. A clean up may be applied later.)
Fixes: 12bc2132b1 ("KVM: X86: Do the same ignore_msrs check for feature msrs")
BugLink: https://bugzilla.suse.com/show_bug.cgi?id=1178280
Cc: <stable@vger.kernel.org>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Message-Id: <20201030151414.20165-1-tiwai@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return 1 on errors that are caused by wrong guest behavior
(which will inject #GP to the guest)
And return a negative error value on issues that are
the kernel's fault (e.g -ENOMEM)
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201001112954.6258-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The current limit for guest CPUID leaves (KVM_MAX_CPUID_ENTRIES, 80)
is reported to be insufficient but before we bump it let's switch to
allocating vcpu->arch.cpuid_entries[] array dynamically. Currently,
'struct kvm_cpuid_entry2' is 40 bytes so vcpu->arch.cpuid_entries is
3200 bytes which accounts for 1/4 of the whole 'struct kvm_vcpu_arch'
but having it pre-allocated (for all vCPUs which we also pre-allocate)
gives us no real benefits.
Another plus of the dynamic allocation is that we now do kvm_check_cpuid()
check before we assign anything to vcpu->arch.cpuid_nent/cpuid_entries so
no changes are made in case the check fails.
Opportunistically remove unneeded 'out' labels from
kvm_vcpu_ioctl_set_cpuid()/kvm_vcpu_ioctl_set_cpuid2() and return
directly whenever possible.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20201001130541.1398392-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
KVM unconditionally provides PV features to the guest, regardless of the
configured CPUID. An unwitting guest that doesn't check
KVM_CPUID_FEATURES before use could access paravirt features that
userspace did not intend to provide. Fix this by checking the guest's
CPUID before performing any paravirtual operations.
Introduce a capability, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, to gate the
aforementioned enforcement. Migrating a VM from a host w/o this patch to
a host with this patch could silently change the ABI exposed to the
guest, warranting that we default to the old behavior and opt-in for
the new one.
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Oliver Upton <oupton@google.com>
Change-Id: I202a0926f65035b872bfe8ad15307c026de59a98
Message-Id: <20200818152429.1923996-4-oupton@google.com>
Reviewed-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allowing userspace to intercept reads to x2APIC MSRs when APICV is
fully enabled for the guest simply can't work. But more in general,
the LAPIC could be set to in-kernel after the MSR filter is setup
and allowing accesses by userspace would be very confusing.
We could in principle allow userspace to intercept reads and writes to TPR,
and writes to EOI and SELF_IPI, but while that could be made it work, it
would still be silly.
Cc: Alexander Graf <graf@amazon.com>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rework the resetting of the MSR bitmap for x2APIC MSRs to ignore userspace
filtering. Allowing userspace to intercept reads to x2APIC MSRs when
APICV is fully enabled for the guest simply can't work; the LAPIC and thus
virtual APIC is in-kernel and cannot be directly accessed by userspace.
To keep things simple we will in fact forbid intercepting x2APIC MSRs
altogether, independent of the default_allow setting.
Cc: Alexander Graf <graf@amazon.com>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20201005195532.8674-3-sean.j.christopherson@intel.com>
[Modified to operate even if APICv is disabled, adjust documentation. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM special-cases writes to MSR_IA32_TSC so that all CPUs have
the same base for the TSC. This logic is complicated, and we
do not want it to have any effect once the VM is started.
In particular, if any guest started to synchronize its TSCs
with writes to MSR_IA32_TSC rather than MSR_IA32_TSC_ADJUST,
the additional effect of kvm_write_tsc code would be uncharted
territory.
Therefore, this patch makes writes to MSR_IA32_TSC behave
essentially the same as writes to MSR_IA32_TSC_ADJUST when
they come from the guest. A new selftest (which passes
both before and after the patch) checks the current semantics
of writes to MSR_IA32_TSC and MSR_IA32_TSC_ADJUST originating
from both the host and the guest.
Upcoming work to remove the special side effects
of host-initiated writes to MSR_IA32_TSC and MSR_IA32_TSC_ADJUST
will be able to build onto this test, adjusting the host side
to use the new APIs and achieve the same effect.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It's not desireable to have all MSRs always handled by KVM kernel space. Some
MSRs would be useful to handle in user space to either emulate behavior (like
uCode updates) or differentiate whether they are valid based on the CPU model.
To allow user space to specify which MSRs it wants to see handled by KVM,
this patch introduces a new ioctl to push filter rules with bitmaps into
KVM. Based on these bitmaps, KVM can then decide whether to reject MSR access.
With the addition of KVM_CAP_X86_USER_SPACE_MSR it can also deflect the
denied MSR events to user space to operate on.
If no filter is populated, MSR handling stays identical to before.
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20200925143422.21718-8-graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the following commits we will add pieces of MSR filtering.
To ensure that code compiles even with the feature half-merged, let's add
a few stubs and struct definitions before the real patches start.
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20200925143422.21718-4-graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSRs are weird. Some of them are normal control registers, such as EFER.
Some however are registers that really are model specific, not very
interesting to virtualization workloads, and not performance critical.
Others again are really just windows into package configuration.
Out of these MSRs, only the first category is necessary to implement in
kernel space. Rarely accessed MSRs, MSRs that should be fine tunes against
certain CPU models and MSRs that contain information on the package level
are much better suited for user space to process. However, over time we have
accumulated a lot of MSRs that are not the first category, but still handled
by in-kernel KVM code.
This patch adds a generic interface to handle WRMSR and RDMSR from user
space. With this, any future MSR that is part of the latter categories can
be handled in user space.
Furthermore, it allows us to replace the existing "ignore_msrs" logic with
something that applies per-VM rather than on the full system. That way you
can run productive VMs in parallel to experimental ones where you don't care
about proper MSR handling.
Signed-off-by: Alexander Graf <graf@amazon.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200925143422.21718-3-graf@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the "shared_msrs" mechanism, which is used to defer restoring
MSRs that are only consumed when running in userspace, to a more banal
but less likely to be confusing "user_return_msrs".
The "shared" nomenclature is confusing as it's not obvious who is
sharing what, e.g. reasonable interpretations are that the guest value
is shared by vCPUs in a VM, or that the MSR value is shared/common to
guest and host, both of which are wrong.
"shared" is also misleading as the MSR value (in hardware) is not
guaranteed to be shared/reused between VMs (if that's indeed the correct
interpretation of the name), as the ability to share values between VMs
is simply a side effect (albiet a very nice side effect) of deferring
restoration of the host value until returning from userspace.
"user_return" avoids the above confusion by describing the mechanism
itself instead of its effects.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923180409.32255-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add RIP to the kvm_entry tracepoint to help debug if the kvm_exit
tracepoint is disabled or if VM-Enter fails, in which case the kvm_exit
tracepoint won't be hit.
Read RIP from within the tracepoint itself to avoid a potential VMREAD
and retpoline if the guest's RIP isn't available.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923201349.16097-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the existing kvm_x86_ops.need_emulation_on_page_fault() with a
more generic is_emulatable(), and unconditionally call the new function
in x86_emulate_instruction().
KVM will use the generic hook to support multiple security related
technologies that prevent emulation in one way or another. Similar to
the existing AMD #NPF case where emulation of the current instruction is
not possible due to lack of information, AMD's SEV-ES and Intel's SGX
and TDX will introduce scenarios where emulation is impossible due to
the guest's register state being inaccessible. And again similar to the
existing #NPF case, emulation can be initiated by kvm_mmu_page_fault(),
i.e. outside of the control of vendor-specific code.
While the cause and architecturally visible behavior of the various
cases are different, e.g. SGX will inject a #UD, AMD #NPF is a clean
resume or complete shutdown, and SEV-ES and TDX "return" an error, the
impact on the common emulation code is identical: KVM must stop
emulation immediately and resume the guest.
Query is_emulatable() in handle_ud() as well so that the
force_emulation_prefix code doesn't incorrectly modify RIP before
calling emulate_instruction() in the absurdly unlikely scenario that
KVM encounters forced emulation in conjunction with "do not emulate".
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200915232702.15945-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR reads/writes should always access the L1 state, since the (nested)
hypervisor should intercept all the msrs it wants to adjust, and these
that it doesn't should be read by the guest as if the host had read it.
However IA32_TSC is an exception. Even when not intercepted, guest still
reads the value + TSC offset.
The write however does not take any TSC offset into account.
This is documented in Intel's SDM and seems also to happen on AMD as well.
This creates a problem when userspace wants to read the IA32_TSC value and then
write it. (e.g for migration)
In this case it reads L2 value but write is interpreted as an L1 value.
To fix this make the userspace initiated reads of IA32_TSC return L1 value
as well.
Huge thanks to Dave Gilbert for helping me understand this very confusing
semantic of MSR writes.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200921103805.9102-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
INVPCID instruction handling is mostly same across both VMX and
SVM. So, move the code to common x86.c.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <159985255212.11252.10322694343971983487.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handling of kvm_read/write_guest_virt*() errors can be moved to common
code. The same code can be used by both VMX and SVM.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <159985254493.11252.6603092560732507607.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The kick after setting KVM_REQ_PENDING_TIMER is used to handle the timer
fires on a different pCPU which vCPU is running on. This kick costs about
1000 clock cycles and we don't need this when injecting already-expired
timer or when using the VMX preemption timer because
kvm_lapic_expired_hv_timer() is called from the target vCPU.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1599731444-3525-6-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reset the MMU context during kvm_set_cr4() if SMAP or PKE is toggled.
Recent commits to (correctly) not reload PDPTRs when SMAP/PKE are
toggled inadvertantly skipped the MMU context reset due to the mask
of bits that triggers PDPTR loads also being used to trigger MMU context
resets.
Fixes: 427890aff8 ("kvm: x86: Toggling CR4.SMAP does not load PDPTEs in PAE mode")
Fixes: cb957adb4e ("kvm: x86: Toggling CR4.PKE does not load PDPTEs in PAE mode")
Cc: Jim Mattson <jmattson@google.com>
Cc: Peter Shier <pshier@google.com>
Cc: Oliver Upton <oupton@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200923215352.17756-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR reads/writes should always access the L1 state, since the (nested)
hypervisor should intercept all the msrs it wants to adjust, and these
that it doesn't should be read by the guest as if the host had read it.
However IA32_TSC is an exception. Even when not intercepted, guest still
reads the value + TSC offset.
The write however does not take any TSC offset into account.
This is documented in Intel's SDM and seems also to happen on AMD as well.
This creates a problem when userspace wants to read the IA32_TSC value and then
write it. (e.g for migration)
In this case it reads L2 value but write is interpreted as an L1 value.
To fix this make the userspace initiated reads of IA32_TSC return L1 value
as well.
Huge thanks to Dave Gilbert for helping me understand this very confusing
semantic of MSR writes.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20200921103805.9102-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch exposes allow_smaller_maxphyaddr to the user as a module parameter.
Since smaller physical address spaces are only supported on VMX, the
parameter is only exposed in the kvm_intel module.
For now disable support by default, and let the user decide if they want
to enable it.
Modifications to VMX page fault and EPT violation handling will depend
on whether that parameter is enabled.
Signed-off-by: Mohammed Gamal <mgamal@redhat.com>
Message-Id: <20200903141122.72908-1-mgamal@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even without in-kernel LAPIC we should allow writing '0' to
MSR_KVM_ASYNC_PF_EN as we're not enabling the mechanism. In
particular, QEMU with 'kernel-irqchip=off' fails to start
a guest with
qemu-system-x86_64: error: failed to set MSR 0x4b564d02 to 0x0
Fixes: 9d3c447c72 ("KVM: X86: Fix async pf caused null-ptr-deref")
Reported-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200911093147.484565-1-vkuznets@redhat.com>
[Actually commit the version proposed by Sean Christopherson. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM/arm64 fixes for Linux 5.9, take #1
- Multiple stolen time fixes, with a new capability to match x86
- Fix for hugetlbfs mappings when PUD and PMD are the same level
- Fix for hugetlbfs mappings when PTE mappings are enforced
(dirty logging, for example)
- Fix tracing output of 64bit values
Pull kvm fixes from Paolo Bonzini:
- PAE and PKU bugfixes for x86
- selftests fix for new binutils
- MMU notifier fix for arm64
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: arm64: Only reschedule if MMU_NOTIFIER_RANGE_BLOCKABLE is not set
KVM: Pass MMU notifier range flags to kvm_unmap_hva_range()
kvm: x86: Toggling CR4.PKE does not load PDPTEs in PAE mode
kvm: x86: Toggling CR4.SMAP does not load PDPTEs in PAE mode
KVM: x86: fix access code passed to gva_to_gpa
selftests: kvm: Use a shorter encoding to clear RAX
arm64 requires a vcpu fd (KVM_HAS_DEVICE_ATTR vcpu ioctl) to probe
support for steal-time. However this is unnecessary, as only a KVM
fd is required, and it complicates userspace (userspace may prefer
delaying vcpu creation until after feature probing). Introduce a cap
that can be checked instead. While x86 can already probe steal-time
support with a kvm fd (KVM_GET_SUPPORTED_CPUID), we add the cap there
too for consistency.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/20200804170604.42662-7-drjones@redhat.com
See the SDM, volume 3, section 4.4.1:
If PAE paging would be in use following an execution of MOV to CR0 or
MOV to CR4 (see Section 4.1.1) and the instruction is modifying any of
CR0.CD, CR0.NW, CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then
the PDPTEs are loaded from the address in CR3.
Fixes: b9baba8614 ("KVM, pkeys: expose CPUID/CR4 to guest")
Cc: Huaitong Han <huaitong.han@intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200817181655.3716509-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
See the SDM, volume 3, section 4.4.1:
If PAE paging would be in use following an execution of MOV to CR0 or
MOV to CR4 (see Section 4.1.1) and the instruction is modifying any of
CR0.CD, CR0.NW, CR0.PG, CR4.PAE, CR4.PGE, CR4.PSE, or CR4.SMEP; then
the PDPTEs are loaded from the address in CR3.
Fixes: 0be0226f07 ("KVM: MMU: fix SMAP virtualization")
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200817181655.3716509-2-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>