Recently, we reworked a lot of code to consistentlt pass ESR_ELx as a
64-bit quantity. However, we missed that this can be passed into die()
and __die() as the 'err' parameter where it is truncated to a 32-bit
int.
As notify_die() already takes 'err' as a long, this patch changes die()
and __die() to also take 'err' as a long, ensuring that the full value
of ESR_ELx is retained.
At the same time, die() is updated to consistently log 'err' as a
zero-padded 64-bit quantity.
Subsequent patches will pass the ESR_ELx value to die() for a number of
exceptions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently arm64 supports per-CPU IRQ stack, but softirqs
are still handled in the task context.
Since any call to local_bh_enable() at any level in the task's
call stack may trigger a softirq processing run, which could
potentially cause a task stack overflow if the combined stack
footprints exceed the stack's size, let's run these softirqs
on the IRQ stack as well.
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220815124739.15948-1-zhengqi.arch@bytedance.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently unwind_next_frame_record() has an optional callback to convert
the address space of the FP. This is necessary for the NVHE unwinder,
which tracks the stacks in the hyp VA space, but accesses the frame
records in the kernel VA space.
This is a bit unfortunate since it clutters unwind_next_frame_record(),
which will get in the way of future rework.
Instead, this patch changes the NVHE unwinder to track the stacks in the
kernel's VA space and translate to FP prior to calling
unwind_next_frame_record(). This removes the need for the translate_fp()
callback, as all unwinders consistently track stacks in the native
address space of the unwinder.
At the same time, this patch consolidates the generation of the stack
addresses behind the stackinfo_get_*() helpers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-10-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently we call an on_accessible_stack() callback for each step of the
unwinder, requiring redundant work to be performed in the core of the
unwind loop (e.g. disabling preemption around accesses to per-cpu
variables containing stack boundaries). To prevent unwind loops which go
through a stack multiple times, we have to track the set of unwound
stacks, requiring a stack_type enum which needs to cater for all the
stacks of all possible callees. To prevent loops within a stack, we must
track the prior FP values.
This patch reworks the unwinder to minimize the work in the core of the
unwinder, and to remove the need for the stack_type enum. The set of
accessible stacks (and their boundaries) are determined at the start of
the unwind, and the current stack is tracked during the unwind, with
completed stacks removed from the set of accessible stacks. This makes
the boundary checks more accurate (e.g. detecting overlapped frame
records), and removes the need for separate tracking of the prior FP and
visited stacks.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In subsequent patches we'll want to acquire the stack boundaries
ahead-of-time, and we'll need to be able to acquire the relevant
stack_info regardless of whether we have an object the happens to be on
the stack.
This patch replaces the on_XXX_stack() helpers with stackinfo_get_XXX()
helpers, with the caller being responsible for the checking whether an
object is on a relevant stack. For the moment this is moved into the
on_accessible_stack() functions, making these slightly larger;
subsequent patches will remove the on_accessible_stack() functions and
simplify the logic.
The on_irq_stack() and on_task_stack() helpers are kept as these are
used by IRQ entry sequences and stackleak respectively. As they're only
used as predicates, the stack_info pointer parameter is removed in both
cases.
As the on_accessible_stack() functions are always passed a non-NULL info
pointer, these now update info unconditionally. When updating the type
to STACK_TYPE_UNKNOWN, the low/high bounds are also modified, but as
these will not be consumed this should have no adverse affect.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The unwind_next_common() function unwinds a single frame record. There
are other unwind steps (e.g. unwinding through trampolines) which are
handled in the regular kernel unwinder, and in future there may be other
common unwind helpers.
Clarify the purpose of unwind_next_common() by renaming it to
unwind_next_frame_record(). At the same time, add commentary, and delete
the redundant comment at the top of asm/stacktrace/common.h.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The naming for fractional versions fields in ID_AA64PFR1_EL1 does not align
with that in the architecture, lacking underscores and using upper case
where the architecture uses lower case. In preparation for automatic
generation of defines bring the code in sync with the architecture, no
functional change.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-18-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation for converting the ID_AA64MMFR1_EL1 system register
defines to automatic generation, rename them to follow the conventions
used by other automatically generated registers:
* Add _EL1 in the register name.
* Rename fields to match the names in the ARM ARM:
* LOR -> LO
* HPD -> HPDS
* VHE -> VH
* HADBS -> HAFDBS
* SPECSEI -> SpecSEI
* VMIDBITS -> VMIDBits
There should be no functional change as a result of this patch.
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-11-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For some reason we refer to ID_AA64MMFR0_EL1.ASIDBits as ASID. Add BITS
into the name, bringing the naming into sync with DDI0487H.a. Due to the
large amount of MixedCase in this register which isn't really consistent
with either the kernel style or the majority of the architecture the use of
upper case is preserved. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-10-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
For some reason we refer to ID_AA64MMFR0_EL1.BigEnd as BIGENDEL. Remove the
EL from the name, bringing the naming into sync with DDI0487H.a. Due to the
large amount of MixedCase in this register which isn't really consistent
with either the kernel style or the majority of the architecture the use of
upper case is preserved. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Link: https://lore.kernel.org/r/20220905225425.1871461-9-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If allocating memory for the target SVE state in za_set() fails we clear
TIF_SME for the ptracing task which is obviously not correct. If we are
here we know that the target task already had neither TIF_SVE nor
TIF_SME set since we only need to allocate if either the target had not
used either SVE or SME and had no need to allocate state before or we
just changed the vector length with vec_set_vector_length() which clears
TIF_ for us on allocation failure so just remove the clear entirely.
Reported-by: Wang ShaoBo <bobo.shaobowang@huawei.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220902132802.39682-1-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
SVE has a separate identification register indicating support for BFloat16
operations. Add a hwcap identifying support for EBF16 in this register,
mirroring what we did for the non-SVE case.
While there is currently an architectural requirement for BF16 support to
be the same in SVE and non-SVE contexts there are separate identification
registers this separate hwcap helps avoid issues if that requirement were
to be relaxed in the future, we have already chosen to have a separate
capability for base BF16 support.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220829154815.832347-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The 32-bit ARM kernel implements fixups on behalf of user space when
using LDM/STM or LDRD/STRD instructions on addresses that are not 32-bit
aligned. This is not something that is supported by the architecture,
but was done anyway to increase compatibility with user space software,
which mostly targeted x86 at the time and did not care about aligned
accesses.
This feature is one of the remaining impediments to being able to switch
to 64-bit kernels on 64-bit capable hardware running 32-bit user space,
so let's implement it for the arm64 compat layer as well.
Note that the intent is to implement the exact same handling of
misaligned multi-word loads and stores as the 32-bit kernel does,
including what appears to be missing support for user space programs
that rely on SETEND to switch to a different byte order and back. Also,
like the 32-bit ARM version, we rely on the faulting address reported by
the CPU to infer the memory address, instead of decoding the instruction
fully to obtain this information.
This implementation is taken from the 32-bit ARM tree, with all pieces
removed that deal with instructions other than LDRD/STRD and LDM/STM, or
that deal with alignment exceptions taken in kernel mode.
Cc: debian-arm@lists.debian.org
Cc: Vagrant Cascadian <vagrant@debian.org>
Cc: Riku Voipio <riku.voipio@iki.fi>
Cc: Steve McIntyre <steve@einval.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20220701135322.3025321-1-ardb@kernel.org
[catalin.marinas@arm.com: change the option to 'default n']
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Even non-KASLR kernels can be built as relocatable, to work around
broken bootloaders that violate the rules regarding physical placement
of the kernel image - in this case, the physical offset modulo 2 MiB is
used as the KASLR offset, and all absolute symbol references are fixed
up in the usual way. This workaround is enabled by default.
CONFIG_RELOCATABLE can also be disabled entirely, in which case the
relocation code and the code that captures the offset are omitted from
the build. However, since commit aacd149b62 ("arm64: head: avoid
relocating the kernel twice for KASLR"), this code got out of sync, and
we still add the offset to the kernel virtual address before populating
the page tables even though we never capture it. This means we add a
bogus value instead, breaking the boot entirely.
Fixes: aacd149b62 ("arm64: head: avoid relocating the kernel twice for KASLR")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Link: https://lore.kernel.org/r/20220827070904.2216989-1-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Currently as part of handling a SME access trap we flush the SVE register
state. This is not needed and would corrupt register state if the task has
access to the SVE registers already. For non-streaming mode accesses the
required flushing will be done in the SVE access trap. For streaming
mode SVE register accesses the architecture guarantees that the register
state will be flushed when streaming mode is entered or exited so there is
no need for us to do so. Simply remove the register initialisation.
Fixes: 8bd7f91c03 ("arm64/sme: Implement traps and syscall handling for SME")
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220817182324.638214-5-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Currently when taking a SME access trap we allocate storage for the SVE
register state in order to be able to handle storage of streaming mode SVE.
Due to the original usage in a purely SVE context the SVE register state
allocation this also flushes the register state for SVE if storage was
already allocated but in the SME context this is not desirable. For a SME
access trap to be taken the task must not be in streaming mode so either
there already is SVE register state present for regular SVE mode which would
be corrupted or the task does not have TIF_SVE and the flush is redundant.
Fix this by adding a flag to sve_alloc() indicating if we are in a SVE
context and need to flush the state. Freshly allocated storage is always
zeroed either way.
Fixes: 8bd7f91c03 ("arm64/sme: Implement traps and syscall handling for SME")
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220817182324.638214-4-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
When handling a signal delivered to a context with streaming mode enabled
we will disable streaming mode for the signal handler, when doing so we
should also flush the saved FPSIMD register state like exiting streaming
mode in the hardware would do so that if that state is reloaded we get the
same behaviour. Without this we will reload whatever the last FPSIMD state
that was saved for the task was.
Fixes: 40a8e87bb3 ("arm64/sme: Disable ZA and streaming mode when handling signals")
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220817182324.638214-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
The signal code has a limit of 64K on the size of a stack frame that it
will generate, if this limit is exceeded then a process will be killed if
it receives a signal. Unfortunately with the advent of SME this limit is
too small - the maximum possible size of the ZA register alone is 64K. This
is not an issue for practical systems at present but is easily seen using
virtual platforms.
Raise the limit to 256K, this is substantially more than could be used by
any current architecture extension.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220817182324.638214-2-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Though acpi_find_last_cache_level() always returned signed value and the
document states it will return any errors caused by lack of a PPTT table,
it never returned negative values before.
Commit 0c80f9e165 ("ACPI: PPTT: Leave the table mapped for the runtime usage")
however changed it by returning -ENOENT if no PPTT was found. The value
returned from acpi_find_last_cache_level() is then assigned to unsigned
fw_level.
It will result in the number of cache leaves calculated incorrectly as
a huge value which will then cause the following warning from __alloc_pages
as the order would be great than MAX_ORDER because of incorrect and huge
cache leaves value.
| WARNING: CPU: 0 PID: 1 at mm/page_alloc.c:5407 __alloc_pages+0x74/0x314
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-10393-g7c2a8d3ac4c0 #73
| pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : __alloc_pages+0x74/0x314
| lr : alloc_pages+0xe8/0x318
| Call trace:
| __alloc_pages+0x74/0x314
| alloc_pages+0xe8/0x318
| kmalloc_order_trace+0x68/0x1dc
| __kmalloc+0x240/0x338
| detect_cache_attributes+0xe0/0x56c
| update_siblings_masks+0x38/0x284
| store_cpu_topology+0x78/0x84
| smp_prepare_cpus+0x48/0x134
| kernel_init_freeable+0xc4/0x14c
| kernel_init+0x2c/0x1b4
| ret_from_fork+0x10/0x20
Fix the same by changing fw_level to be signed integer and return the
error from init_cache_level() early in case of error.
Reported-and-Tested-by: Bruno Goncalves <bgoncalv@redhat.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Link: https://lore.kernel.org/r/20220808084640.3165368-1-sudeep.holla@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The AMU counter AMEVCNTR01 (constant counter) should increment at the same
rate as the system counter. On affected Cortex-A510 cores, AMEVCNTR01
increments incorrectly giving a significantly higher output value. This
results in inaccurate task scheduler utilization tracking and incorrect
feedback on CPU frequency.
Work around this problem by returning 0 when reading the affected counter
in key locations that results in disabling all users of this counter from
using it either for frequency invariance or as FFH reference counter. This
effect is the same to firmware disabling affected counters.
Details on how the two features are affected by this erratum:
- AMU counters will not be used for frequency invariance for affected
CPUs and CPUs in the same cpufreq policy. AMUs can still be used for
frequency invariance for unaffected CPUs in the system. Although
unlikely, if no alternative method can be found to support frequency
invariance for affected CPUs (cpufreq based or solution based on
platform counters) frequency invariance will be disabled. Please check
the chapter on frequency invariance at
Documentation/scheduler/sched-capacity.rst for details of its effect.
- Given that FFH can be used to fetch either the core or constant counter
values, restrictions are lifted regarding any of these counters
returning a valid (!0) value. Therefore FFH is considered supported
if there is a least one CPU that support AMUs, independent of any
counters being disabled or affected by this erratum. Clarifying
comments are now added to the cpc_ffh_supported(), cpu_read_constcnt()
and cpu_read_corecnt() functions.
The above is achieved through adding a new erratum: ARM64_ERRATUM_2457168.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20220819103050.24211-1-ionela.voinescu@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Commit aacd149b62 ("arm64: head: avoid relocating the kernel twice for
KASLR") adds the new file arch/arm64/kernel/pi/kaslr_early.c with a small
code part guarded by '#ifdef CONFIG_ARCH_RANDOM'.
Concurrently, commit 9592eef7c1 ("random: remove CONFIG_ARCH_RANDOM")
removes the config CONFIG_ARCH_RANDOM and turns all '#ifdef
CONFIG_ARCH_RANDOM' code parts into unconditional code parts, which is
generally safe to do.
Remove a needless ifdef guard after the ARCH_RANDOM removal.
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220721100433.18286-1-lukas.bulwahn@gmail.com
Signed-off-by: Will Deacon <will@kernel.org>
arm64's method of defining a default cpu topology requires only minimal
changes to apply to RISC-V also. The current arm64 implementation exits
early in a uniprocessor configuration by reading MPIDR & claiming that
uniprocessor can rely on the default values.
This is appears to be a hangover from prior to '3102bc0e6ac7 ("arm64:
topology: Stop using MPIDR for topology information")', because the
current code just assigns default values for multiprocessor systems.
With the MPIDR references removed, store_cpu_topolgy() can be moved to
the common arch_topology code.
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Pull misc updates from Andrew Morton:
"Updates to various subsystems which I help look after. lib, ocfs2,
fatfs, autofs, squashfs, procfs, etc. A relatively small amount of
material this time"
* tag 'mm-nonmm-stable-2022-08-06-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (72 commits)
scripts/gdb: ensure the absolute path is generated on initial source
MAINTAINERS: kunit: add David Gow as a maintainer of KUnit
mailmap: add linux.dev alias for Brendan Higgins
mailmap: update Kirill's email
profile: setup_profiling_timer() is moslty not implemented
ocfs2: fix a typo in a comment
ocfs2: use the bitmap API to simplify code
ocfs2: remove some useless functions
lib/mpi: fix typo 'the the' in comment
proc: add some (hopefully) insightful comments
bdi: remove enum wb_congested_state
kernel/hung_task: fix address space of proc_dohung_task_timeout_secs
lib/lzo/lzo1x_compress.c: replace ternary operator with min() and min_t()
squashfs: support reading fragments in readahead call
squashfs: implement readahead
squashfs: always build "file direct" version of page actor
Revert "squashfs: provide backing_dev_info in order to disable read-ahead"
fs/ocfs2: Fix spelling typo in comment
ia64: old_rr4 added under CONFIG_HUGETLB_PAGE
proc: fix test for "vsyscall=xonly" boot option
...
Pull kvm updates from Paolo Bonzini:
"Quite a large pull request due to a selftest API overhaul and some
patches that had come in too late for 5.19.
ARM:
- Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
- Rework of the sysreg access from userspace, with a complete rewrite
of the vgic-v3 view to allign with the rest of the infrastructure
- Disagregation of the vcpu flags in separate sets to better track
their use model.
- A fix for the GICv2-on-v3 selftest
- A small set of cosmetic fixes
RISC-V:
- Track ISA extensions used by Guest using bitmap
- Added system instruction emulation framework
- Added CSR emulation framework
- Added gfp_custom flag in struct kvm_mmu_memory_cache
- Added G-stage ioremap() and iounmap() functions
- Added support for Svpbmt inside Guest
s390:
- add an interface to provide a hypervisor dump for secure guests
- improve selftests to use TAP interface
- enable interpretive execution of zPCI instructions (for PCI
passthrough)
- First part of deferred teardown
- CPU Topology
- PV attestation
- Minor fixes
x86:
- Permit guests to ignore single-bit ECC errors
- Intel IPI virtualization
- Allow getting/setting pending triple fault with
KVM_GET/SET_VCPU_EVENTS
- PEBS virtualization
- Simplify PMU emulation by just using PERF_TYPE_RAW events
- More accurate event reinjection on SVM (avoid retrying
instructions)
- Allow getting/setting the state of the speaker port data bit
- Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls
are inconsistent
- "Notify" VM exit (detect microarchitectural hangs) for Intel
- Use try_cmpxchg64 instead of cmpxchg64
- Ignore benign host accesses to PMU MSRs when PMU is disabled
- Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
- Allow NX huge page mitigation to be disabled on a per-vm basis
- Port eager page splitting to shadow MMU as well
- Enable CMCI capability by default and handle injected UCNA errors
- Expose pid of vcpu threads in debugfs
- x2AVIC support for AMD
- cleanup PIO emulation
- Fixes for LLDT/LTR emulation
- Don't require refcounted "struct page" to create huge SPTEs
- Miscellaneous cleanups:
- MCE MSR emulation
- Use separate namespaces for guest PTEs and shadow PTEs bitmasks
- PIO emulation
- Reorganize rmap API, mostly around rmap destruction
- Do not workaround very old KVM bugs for L0 that runs with nesting enabled
- new selftests API for CPUID
Generic:
- Fix races in gfn->pfn cache refresh; do not pin pages tracked by
the cache
- new selftests API using struct kvm_vcpu instead of a (vm, id)
tuple"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits)
selftests: kvm: set rax before vmcall
selftests: KVM: Add exponent check for boolean stats
selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test
selftests: KVM: Check stat name before other fields
KVM: x86/mmu: remove unused variable
RISC-V: KVM: Add support for Svpbmt inside Guest/VM
RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap()
RISC-V: KVM: Add G-stage ioremap() and iounmap() functions
KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache
RISC-V: KVM: Add extensible CSR emulation framework
RISC-V: KVM: Add extensible system instruction emulation framework
RISC-V: KVM: Factor-out instruction emulation into separate sources
RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run
RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function
RISC-V: KVM: Fix variable spelling mistake
RISC-V: KVM: Improve ISA extension by using a bitmap
KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs()
KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog
KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
KVM: x86: Do not block APIC write for non ICR registers
...
Pull driver core / kernfs updates from Greg KH:
"Here is the set of driver core and kernfs changes for 6.0-rc1.
The "biggest" thing in here is some scalability improvements for
kernfs for large systems. Other than that, included in here are:
- arch topology and cache info changes that have been reviewed and
discussed a lot.
- potential error path cleanup fixes
- deferred driver probe cleanups
- firmware loader cleanups and tweaks
- documentation updates
- other small things
All of these have been in the linux-next tree for a while with no
reported problems"
* tag 'driver-core-6.0-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (63 commits)
docs: embargoed-hardware-issues: fix invalid AMD contact email
firmware_loader: Replace kmap() with kmap_local_page()
sysfs docs: ABI: Fix typo in comment
kobject: fix Kconfig.debug "its" grammar
kernfs: Fix typo 'the the' in comment
docs: driver-api: firmware: add driver firmware guidelines. (v3)
arch_topology: Fix cache attributes detection in the CPU hotplug path
ACPI: PPTT: Leave the table mapped for the runtime usage
cacheinfo: Use atomic allocation for percpu cache attributes
drivers/base: fix userspace break from using bin_attributes for cpumap and cpulist
MAINTAINERS: Change mentions of mpm to olivia
docs: ABI: sysfs-devices-soc: Update Lee Jones' email address
docs: ABI: sysfs-class-pwm: Update Lee Jones' email address
Documentation/process: Add embargoed HW contact for LLVM
Revert "kernfs: Change kernfs_notify_list to llist."
ACPI: Remove the unused find_acpi_cpu_cache_topology()
arch_topology: Warn that topology for nested clusters is not supported
arch_topology: Add support for parsing sockets in /cpu-map
arch_topology: Set cluster identifier in each core/thread from /cpu-map
arch_topology: Limit span of cpu_clustergroup_mask()
...
Pull RCU updates from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offload updates, perhaps most notably a new
RCU_NOCB_CPU_DEFAULT_ALL Kconfig option that causes all CPUs to be
offloaded at boot time, regardless of kernel boot parameters.
This is useful to battery-powered systems such as ChromeOS and
Android. In addition, a new RCU_NOCB_CPU_CB_BOOST kernel boot
parameter prevents offloaded callbacks from interfering with
real-time workloads and with energy-efficiency mechanisms
- Polled grace-period updates, perhaps most notably making these APIs
account for both normal and expedited grace periods
- Tasks RCU updates, perhaps most notably reducing the CPU overhead of
RCU tasks trace grace periods by more than a factor of two on a
system with 15,000 tasks.
The reduction is expected to increase with the number of tasks, so it
seems reasonable to hypothesize that a system with 150,000 tasks
might see a 20-fold reduction in CPU overhead
- Torture-test updates
- Updates that merge RCU's dyntick-idle tracking into context tracking,
thus reducing the overhead of transitioning to kernel mode from
either idle or nohz_full userspace execution for kernels that track
context independently of RCU.
This is expected to be helpful primarily for kernels built with
CONFIG_NO_HZ_FULL=y
* tag 'rcu.2022.07.26a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (98 commits)
rcu: Add irqs-disabled indicator to expedited RCU CPU stall warnings
rcu: Diagnose extended sync_rcu_do_polled_gp() loops
rcu: Put panic_on_rcu_stall() after expedited RCU CPU stall warnings
rcutorture: Test polled expedited grace-period primitives
rcu: Add polled expedited grace-period primitives
rcutorture: Verify that polled GP API sees synchronous grace periods
rcu: Make Tiny RCU grace periods visible to polled APIs
rcu: Make polled grace-period API account for expedited grace periods
rcu: Switch polled grace-period APIs to ->gp_seq_polled
rcu/nocb: Avoid polling when my_rdp->nocb_head_rdp list is empty
rcu/nocb: Add option to opt rcuo kthreads out of RT priority
rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()
rcu/nocb: Add an option to offload all CPUs on boot
rcu/nocb: Fix NOCB kthreads spawn failure with rcu_nocb_rdp_deoffload() direct call
rcu/nocb: Invert rcu_state.barrier_mutex VS hotplug lock locking order
rcu/nocb: Add/del rdp to iterate from rcuog itself
rcu/tree: Add comment to describe GP-done condition in fqs loop
rcu: Initialize first_gp_fqs at declaration in rcu_gp_fqs()
rcu/kvfree: Remove useless monitor_todo flag
rcu: Cleanup RCU urgency state for offline CPU
...
Pull random number generator updates from Jason Donenfeld:
"Though there's been a decent amount of RNG-related development during
this last cycle, not all of it is coming through this tree, as this
cycle saw a shift toward tackling early boot time seeding issues,
which took place in other trees as well.
Here's a summary of the various patches:
- The CONFIG_ARCH_RANDOM .config option and the "nordrand" boot
option have been removed, as they overlapped with the more widely
supported and more sensible options, CONFIG_RANDOM_TRUST_CPU and
"random.trust_cpu". This change allowed simplifying a bit of arch
code.
- x86's RDRAND boot time test has been made a bit more robust, with
RDRAND disabled if it's clearly producing bogus results. This would
be a tip.git commit, technically, but I took it through random.git
to avoid a large merge conflict.
- The RNG has long since mixed in a timestamp very early in boot, on
the premise that a computer that does the same things, but does so
starting at different points in wall time, could be made to still
produce a different RNG state. Unfortunately, the clock isn't set
early in boot on all systems, so now we mix in that timestamp when
the time is actually set.
- User Mode Linux now uses the host OS's getrandom() syscall to
generate a bootloader RNG seed and later on treats getrandom() as
the platform's RDRAND-like faculty.
- The arch_get_random_{seed_,}_long() family of functions is now
arch_get_random_{seed_,}_longs(), which enables certain platforms,
such as s390, to exploit considerable performance advantages from
requesting multiple CPU random numbers at once, while at the same
time compiling down to the same code as before on platforms like
x86.
- A small cleanup changing a cmpxchg() into a try_cmpxchg(), from
Uros.
- A comment spelling fix"
More info about other random number changes that come in through various
architecture trees in the full commentary in the pull request:
https://lore.kernel.org/all/20220731232428.2219258-1-Jason@zx2c4.com/
* tag 'random-6.0-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random:
random: correct spelling of "overwrites"
random: handle archrandom with multiple longs
um: seed rng using host OS rng
random: use try_cmpxchg in _credit_init_bits
timekeeping: contribute wall clock to rng on time change
x86/rdrand: Remove "nordrand" flag in favor of "random.trust_cpu"
random: remove CONFIG_ARCH_RANDOM