When we are converting local data to an extent format as a result of
adding an attribute, the type of data contained in the local fork
determines the behaviour that needs to occur.
xfs_bmap_add_attrfork_local() already handles the directory data
case specially by using S_ISDIR() and calling out to
xfs_dir2_sf_to_block(), but with verifiers we now need to handle
each different type of metadata specially and different metadata
formats require different verifiers (and eventually block header
initialisation).
There is only a single place that we add and attribute fork to
the inode, but that is in the attribute code and it knows nothing
about the specific contents of the data fork. It is only the case of
local data that is the issue here, so adding code to hadnle this
case in the attribute specific code is wrong. Hence we are really
stuck trying to detect the data fork contents in
xfs_bmap_add_attrfork_local() and performing the correct callout
there.
Luckily the current cases can be determined by S_IS* macros, and we
can push the work off to data specific callouts, but each of those
callouts does a lot of work in common with
xfs_bmap_local_to_extents(). The only reason that this fails for
symlinks right now is is that xfs_bmap_local_to_extents() assumes
the data fork contains extent data, and so attaches a a bmap extent
data verifier to the buffer and simply copies the data fork
information straight into it.
To fix this, allow us to pass a "formatting" callback into
xfs_bmap_local_to_extents() which is responsible for setting the
buffer type, initialising it and copying the data fork contents over
to the new buffer. This allows callers to specify how they want to
format the new buffer (which is necessary for the upcoming CRC
enabled metadata blocks) and hence make xfs_bmap_local_to_extents()
useful for any type of data fork content.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The stack_switch check currently occurs in __xfs_bmapi_allocate,
which means the stack switch only occurs when xfs_bmapi_allocate()
is called in a loop. Pull the check up before the loop in
xfs_bmapi_write() such that the first iteration of the loop has
consistent behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Commit 408cc4e97a
added memset(0, ...) to allocation args structures,
so there is no need to explicitly set any of the fields
to 0 after that.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.
This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.
We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.
This patch also fixes a directory block readahead verifier issue
it exposed.
This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Metadata buffers that are read from disk have write verifiers
already attached to them, but newly allocated buffers do not. Add
appropriate write verifiers to all new metadata buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add an btree block verify callback function and pass it into the
buffer read functions. Because each different btree block type
requires different verification, add a function to the ops structure
that is called from the generic code.
Also, propagate the verification callback functions through the
readahead functions, and into the external bmap and bulkstat inode
readahead code that uses the generic btree buffer read functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
It is a complex wrapper around VFS functions, but there are VFS
functions that provide exactly the same functionality. Call the VFS
functions directly and remove the unnecessary indirection and
complexity.
We don't need to care about clearing the XFS_ITRUNCATED flag, as
that is done during .writepages. Hence is cleared by the VFS
writeback path if there is anything to write back during the flush.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Andrew Dahl <adahl@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Switching stacks are xfs_alloc_vextent can cause deadlocks when we
run out of worker threads on the allocation workqueue. This can
occur because xfs_bmap_btalloc can make multiple calls to
xfs_alloc_vextent() and even if xfs_alloc_vextent() fails it can
return with the AGF locked in the current allocation transaction.
If we then need to make another allocation, and all the allocation
worker contexts are exhausted because the are blocked waiting for
the AGF lock, holder of the AGF cannot get it's xfs-alloc_vextent
work completed to release the AGF. Hence allocation effectively
deadlocks.
To avoid this, move the stack switch one layer up to
xfs_bmapi_allocate() so that all of the allocation attempts in a
single switched stack transaction occur in a single worker context.
This avoids the problem of an allocation being blocked waiting for
a worker thread whilst holding the AGF.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Certain allocation paths through xfs_bmapi_write() are in situations
where we have limited stack available. These are almost always in
the buffered IO writeback path when convertion delayed allocation
extents to real extents.
The current stack switch occurs for userdata allocations, which
means we also do stack switches for preallocation, direct IO and
unwritten extent conversion, even those these call chains have never
been implicated in a stack overrun.
Hence, let's target just the single stack overun offended for stack
switches. To do that, introduce a XFS_BMAPI_STACK_SWITCH flag that
the caller can pass xfs_bmapi_write() to indicate it should switch
stacks if it needs to do allocation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Zero the kernel stack space that makes up the xfs_alloc_arg structures.
Signed-off-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS_MAXIOFFSET() is just a simple macro that resolves to
mp->m_maxioffset. It doesn't need to exist, and it just makes the
code unnecessarily loud and shouty.
Make it quiet and easy to read.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfstest 270 was causing quota reservations way beyond what was sane
(ten to hundreds of TB) for a 4GB filesystem. There's a sign problem
in the error handling path of xfs_bmapi_reserve_delalloc() because
xfs_trans_unreserve_quota_nblks() simple negates the value passed -
which doesn't work for an unsigned variable. This causes
reservations of close to 2^32 block instead of removing a
reservation of a handful of blocks.
Fix the same problem in the other xfs_trans_unreserve_quota_nblks()
callers where unsigned integer variables are used, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The only thing left in xfs_rw.h is a function prototype for an inode
function. Move that to xfs_inode.h, and kill xfs_rw.h.
Also move the function implementing the prototype from xfs_rw.c to
xfs_inode.c so we only have one function left in xfs_rw.c
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
This is the only remaining useful function in xfs_rw.h, so move it
to a header file responsible for block mapping functions that the
callers already include. Soon we can get rid of xfs_rw.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When we are doing speculative delayed allocation beyond EOF,
conversion of the region allocated beyond EOF is dependent on the
largest free space extent available. If the largest free extent is
smaller than the delalloc range, then after allocation we leave
a delalloc extent that starts beyond EOF. This extent cannot *ever*
be converted by flushing data, and so will remain there until either
the EOF moves into the extent or it is truncated away.
Hence if xfs_getbmap() runs on such an inode and is asked to return
extents beyond EOF, it will assert fail on this extent even though
there is nothing xfs_getbmap() can do to convert it to a real
extent. Hence we should simply report these delalloc extents rather
than assert that there should be none.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To fix the deadlock caused by repeatedly calling xfs_rtfree_extent
- removed xfs_ilock() and xfs_trans_ijoin() from xfs_rtfree_extent(),
instead added asserts that the inode is locked and has an inode_item
attached to it.
- in xfs_bunmapi() when dealing with an inode with the rt flag
call xfs_ilock() and xfs_trans_ijoin() so that the
reference count is bumped on the inode and attached it to the
transaction before calling into xfs_bmap_del_extent, similar to
what we do in xfs_bmap_rtalloc.
Signed-off-by: Kamal Dasu <kdasu.kdev@gmail.com>
Reviewed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_getbmap uses for a large buffer for extents, which is kmalloc'd.
This can fail after the system has been running for some time as it
is a high order allocation. Add a fallback to vmalloc so that it
doesn't require contiguous memory and so won't randomly fail on
files with large extent lists.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no fundamental need to keep an in-memory inode size copy in the XFS
inode. We already have the on-disk value in the dinode, and the separate
in-memory copy that we need for regular files only in the XFS inode.
Remove the xfs_inode i_size field and change the XFS_ISIZE macro to use the
VFS inode i_size field for regular files. Switch code that was directly
accessing the i_size field in the xfs_inode to XFS_ISIZE, or in cases where
we are limited to regular files direct access of the VFS inode i_size field.
This also allows dropping some fairly complicated code in the write path
which dealt with keeping the xfs_inode i_size uptodate with the VFS i_size
that is getting updated inside ->write_end.
Note that we do not bother resetting the VFS i_size when truncating a file
that gets freed to zero as there is no point in doing so because the VFS inode
is no longer in use at this point. Just relax the assert in xfs_ifree to
only check the on-disk size instead.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
We spent a lot of effort to maintain this field, but it always equals to the
fork size divided by the constant size of an extent. The prime use of it is
to assert that the two stay in sync. Just divide the fork size by the extent
size in the few places that we actually use it and remove the overhead
of maintaining it. Also introduce a few helpers to consolidate the places
where we actually care about the value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
When testing the new xfstests --large-fs option that does very large
file preallocations, this assert was tripped deep in
xfs_alloc_vextent():
XFS: Assertion failed: args->minlen <= args->maxlen, file: fs/xfs/xfs_alloc.c, line: 2239
The allocation was trying to allocate a zero length extent because
the lower 32 bits of the allocation length was zero. The remaining
length of the allocation to be done was an exact multiple of 2^32 -
the first case I saw was at 496TB remaining to be allocated.
This turns out to be an overflow when converting the allocation
length (a 64 bit quantity) into the extent length to allocate (a 32
bit quantity), and it requires the length to be allocated an exact
multiple of 2^32 blocks to trip the assert.
Fix it by limiting the extent lenth to allocate to MAXEXTLEN.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There is no reason to keep a reference to the inode even if we unlock
it during transaction commit because we never drop a reference between
the ijoin and commit. Also use this fact to merge xfs_trans_ijoin_ref
back into xfs_trans_ijoin - the third argument decides if an unlock
is needed now.
I'm actually starting to wonder if allowing inodes to be unlocked
at transaction commit really is worth the effort. The only real
benefit is that they can be unlocked earlier when commiting a
synchronous transactions, but that could be solved by doing the
log force manually after the unlock, too.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Fix a case in xfs_bmap_add_extent_unwritten_real where we aren't
passing the returned error on.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
All the parameters passed to xfs_bmap_add_extent_hole_real() are in
the xfs_bmalloca structure now. Just pass the bmalloca parameter to
the function instead of 8 separate parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
All the parameters passed to xfs_bmap_add_extent_delay_real() are in
the xfs_bmalloca structure now. Just pass the bmalloca parameter to
the function instead of 8 separate parameters.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Rather than passing the firstblock and freelist structure around,
embed it into the bmalloca structure and remove it from the function
parameters.
This also enables the minleft parameter to be set only once in
xfs_bmapi_write(), and the freelist cursor directly queried in
xfs_bmapi_allocate to clear it when the lowspace algorithm is
activated.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Rather that putting extent records on the stack and then pointing to
them in the bmalloca structure which is in the same stack frame, put
the extent records directly in the bmalloca structure. This reduces
the number of args that need to be passed around.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
All the variables xfs_bmap_isaeof() is passed are contained within
the xfs_bmalloca structure. Pass that instead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
There is no real need to the xfs_bmap_add_extent, as the callers
know what kind of extents they need to it. Removing it means
duplicating the extents to btree conversion logic in three places,
but overall it's still much simpler code and quite a bit less code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Add a common helper for finding the last extent in a file.
Largely based on a patch from Dave Chinner.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Now that all the read-only users of xfs_bmapi have been converted to
use xfs_bmapi_read(), we can remove all the read-only handling cases
from xfs_bmapi().
Once this is done, rename xfs_bmapi to xfs_bmapi_write to reflect
the fact it is for allocation only. This enables us to kill the
XFS_BMAPI_WRITE flag as well.
Also clean up xfs_bmapi_write to the style used in the newly added
xfs_bmapi_read/delay functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
To further improve the readability of xfs_bmapi(), factor the
unwritten extent conversion out into a separate function. This
removes large block of logic from the xfs_bmapi() code loop and
makes it easier to see the operational logic flow for xfs_bmapi().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
To further improve the readability of xfs_bmapi(), factor the extent
allocation out into a separate function. This removes a large block
of logic from the xfs_bmapi() code loop and makes it easier to see
the operational logic flow for xfs_bmapi().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
We can just call xfs_bmap_add_extent_hole_delay directly to add a
delayed allocated regions to the extent tree, instead of going
through all the complexities of xfs_bmap_add_extent that aren't
needed for this simple case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Delalloc reservations are much simpler than allocations, so give
them a separate bmapi-level interface. Using the previously added
xfs_bmapi_reserve_delalloc we get a function that is only minimally
more complicated than xfs_bmapi_read, which is far from the complexity
in xfs_bmapi. Also remove the XFS_BMAPI_DELAY code after switching
over the only user to xfs_bmapi_delay.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Move the reservation of delayed allocations, and addition of delalloc
regions to the extent trees into a new helper function. For now
this adds some twisted goto logic to xfs_bmapi, but that will be
cleaned up in the following patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Now we have xfs_bmapi_read, there is no need for xfs_bmapi_single().
Change the remaining caller over and kill the function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
xfs_bmapi() currently handles both extent map reading and
allocation. As a result, the code is littered with "if (wr)"
branches to conditionally do allocation operations if required.
This makes the code much harder to follow and causes significant
indent issues with the code.
Given that read mapping is much simpler than allocation, we can
split out read mapping from xfs_bmapi() and reuse the logic that
we have already factored out do do all the hard work of handling the
extent map manipulations. The results in a much simpler function for
the common extent read operations, and will allow the allocation
code to be simplified in another commit.
Once xfs_bmapi_read() is implemented, convert all the callers of
xfs_bmapi() that are only reading extents to use the new function.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
To further improve the readability of xfs_bmapi(), factor the pure
extent map manipulations out into separate functions. This removes
large blocks of logic from the xfs_bmapi() code loop and makes it
easier to see the operational logic flow for xfs_bmapi().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Instead of using a local variable that needs to updated when we modify
the extent map just check ifp->if_bytes directly where we use it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
We already have the worst case blocks reserved, so xfs_icsb_modify_counters
won't fail in xfs_bmap_add_extent_delay_real. In fact we've had an assert
to catch this case since day and it never triggered. So remove the code
to try smaller reservations, and just return the error for that case in
addition to keeping the assert.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Both xfs_bmap_add_extent_hole_delay and xfs_bmap_add_extent_hole_real
already contain code to handle the case where there is no extent to
merge with, which is effectively the same as the code duplicated here.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Currently xfs_attr_inactive causes a synchronous transactions if we are
removing a file that has any extents allocated to the attribute fork, and
thus makes XFS extremely slow at removing files with out of line extended
attributes. The code looks a like a relict from the days before the busy
extent list, but with the busy extent list we avoid reusing data and attr
extents that have been freed but not commited yet, so this code is just
as superflous as the synchronous transactions for data blocks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Bernd Schubert <bernd.schubert@itwm.fraunhofer.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Remove the definition and usages of the macro XFS_BUF_PTR.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>