Pull seccomp updates from Kees Cook:
"These are x86-specific, but I carried these since they're also
seccomp-specific.
This flips the defaults for spec_store_bypass_disable and
spectre_v2_user from "seccomp" to "prctl", as enough time has passed
to allow system owners to have updated the defensive stances of their
various workloads, and it's long overdue to unpessimize seccomp
threads.
Extensive rationale and details are in Andrea's main patch.
Summary:
- set spec_store_bypass_disable & spectre_v2_user to prctl (Andrea Arcangeli)"
* tag 'seccomp-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
x86: deduplicate the spectre_v2_user documentation
x86: change default to spec_store_bypass_disable=prctl spectre_v2_user=prctl
Pull x86 fpu updates from Thomas Gleixner:
- Cleanup of extable fixup handling to be more robust, which in turn
allows to make the FPU exception fixups more robust as well.
- Change the return code for signal frame related failures from
explicit error codes to a boolean fail/success as that's all what the
calling code evaluates.
- A large refactoring of the FPU code to prepare for adding AMX
support:
- Distangle the public header maze and remove especially the
misnomed kitchen sink internal.h which is despite it's name
included all over the place.
- Add a proper abstraction for the register buffer storage (struct
fpstate) which allows to dynamically size the buffer at runtime
by flipping the pointer to the buffer container from the default
container which is embedded in task_struct::tread::fpu to a
dynamically allocated container with a larger register buffer.
- Convert the code over to the new fpstate mechanism.
- Consolidate the KVM FPU handling by moving the FPU related code
into the FPU core which removes the number of exports and avoids
adding even more export when AMX has to be supported in KVM.
This also removes duplicated code which was of course
unnecessary different and incomplete in the KVM copy.
- Simplify the KVM FPU buffer handling by utilizing the new
fpstate container and just switching the buffer pointer from the
user space buffer to the KVM guest buffer when entering
vcpu_run() and flipping it back when leaving the function. This
cuts the memory requirements of a vCPU for FPU buffers in half
and avoids pointless memory copy operations.
This also solves the so far unresolved problem of adding AMX
support because the current FPU buffer handling of KVM inflicted
a circular dependency between adding AMX support to the core and
to KVM. With the new scheme of switching fpstate AMX support can
be added to the core code without affecting KVM.
- Replace various variables with proper data structures so the
extra information required for adding dynamically enabled FPU
features (AMX) can be added in one place
- Add AMX (Advanced Matrix eXtensions) support (finally):
AMX is a large XSTATE component which is going to be available with
Saphire Rapids XEON CPUs. The feature comes with an extra MSR
(MSR_XFD) which allows to trap the (first) use of an AMX related
instruction, which has two benefits:
1) It allows the kernel to control access to the feature
2) It allows the kernel to dynamically allocate the large register
state buffer instead of burdening every task with the the extra
8K or larger state storage.
It would have been great to gain this kind of control already with
AVX512.
The support comes with the following infrastructure components:
1) arch_prctl() to
- read the supported features (equivalent to XGETBV(0))
- read the permitted features for a task
- request permission for a dynamically enabled feature
Permission is granted per process, inherited on fork() and
cleared on exec(). The permission policy of the kernel is
restricted to sigaltstack size validation, but the syscall
obviously allows further restrictions via seccomp etc.
2) A stronger sigaltstack size validation for sys_sigaltstack(2)
which takes granted permissions and the potentially resulting
larger signal frame into account. This mechanism can also be used
to enforce factual sigaltstack validation independent of dynamic
features to help with finding potential victims of the 2K
sigaltstack size constant which is broken since AVX512 support
was added.
3) Exception handling for #NM traps to catch first use of a extended
feature via a new cause MSR. If the exception was caused by the
use of such a feature, the handler checks permission for that
feature. If permission has not been granted, the handler sends a
SIGILL like the #UD handler would do if the feature would have
been disabled in XCR0. If permission has been granted, then a new
fpstate which fits the larger buffer requirement is allocated.
In the unlikely case that this allocation fails, the handler
sends SIGSEGV to the task. That's not elegant, but unavoidable as
the other discussed options of preallocation or full per task
permissions come with their own set of horrors for kernel and/or
userspace. So this is the lesser of the evils and SIGSEGV caused
by unexpected memory allocation failures is not a fundamentally
new concept either.
When allocation succeeds, the fpstate properties are filled in to
reflect the extended feature set and the resulting sizes, the
fpu::fpstate pointer is updated accordingly and the trap is
disarmed for this task permanently.
4) Enumeration and size calculations
5) Trap switching via MSR_XFD
The XFD (eXtended Feature Disable) MSR is context switched with
the same life time rules as the FPU register state itself. The
mechanism is keyed off with a static key which is default
disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
CPUs the overhead is limited by comparing the tasks XFD value
with a per CPU shadow variable to avoid redundant MSR writes. In
case of switching from a AMX using task to a non AMX using task
or vice versa, the extra MSR write is obviously inevitable.
All other places which need to be aware of the variable feature
sets and resulting variable sizes are not affected at all because
they retrieve the information (feature set, sizes) unconditonally
from the fpstate properties.
6) Enable the new AMX states
Note, this is relatively new code despite the fact that AMX support
is in the works for more than a year now.
The big refactoring of the FPU code, which allowed to do a proper
integration has been started exactly 3 weeks ago. Refactoring of the
existing FPU code and of the original AMX patches took a week and has
been subject to extensive review and testing. The only fallout which
has not been caught in review and testing right away was restricted
to AMX enabled systems, which is completely irrelevant for anyone
outside Intel and their early access program. There might be dragons
lurking as usual, but so far the fine grained refactoring has held up
and eventual yet undetected fallout is bisectable and should be
easily addressable before the 5.16 release. Famous last words...
Many thanks to Chang Bae and Dave Hansen for working hard on this and
also to the various test teams at Intel who reserved extra capacity
to follow the rapid development of this closely which provides the
confidence level required to offer this rather large update for
inclusion into 5.16-rc1
* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
Documentation/x86: Add documentation for using dynamic XSTATE features
x86/fpu: Include vmalloc.h for vzalloc()
selftests/x86/amx: Add context switch test
selftests/x86/amx: Add test cases for AMX state management
x86/fpu/amx: Enable the AMX feature in 64-bit mode
x86/fpu: Add XFD handling for dynamic states
x86/fpu: Calculate the default sizes independently
x86/fpu/amx: Define AMX state components and have it used for boot-time checks
x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
x86/fpu/xstate: Add fpstate_realloc()/free()
x86/fpu/xstate: Add XFD #NM handler
x86/fpu: Update XFD state where required
x86/fpu: Add sanity checks for XFD
x86/fpu: Add XFD state to fpstate
x86/msr-index: Add MSRs for XFD
x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
x86/fpu: Reset permission and fpstate on exec()
x86/fpu: Prepare fpu_clone() for dynamically enabled features
x86/fpu/signal: Prepare for variable sigframe length
x86/signal: Use fpu::__state_user_size for sigalt stack validation
...
Pull scheduler updates from Thomas Gleixner:
- Revert the printk format based wchan() symbol resolution as it can
leak the raw value in case that the symbol is not resolvable.
- Make wchan() more robust and work with all kind of unwinders by
enforcing that the task stays blocked while unwinding is in progress.
- Prevent sched_fork() from accessing an invalid sched_task_group
- Improve asymmetric packing logic
- Extend scheduler statistics to RT and DL scheduling classes and add
statistics for bandwith burst to the SCHED_FAIR class.
- Properly account SCHED_IDLE entities
- Prevent a potential deadlock when initial priority is assigned to a
newly created kthread. A recent change to plug a race between cpuset
and __sched_setscheduler() introduced a new lock dependency which is
now triggered. Break the lock dependency chain by moving the priority
assignment to the thread function.
- Fix the idle time reporting in /proc/uptime for NOHZ enabled systems.
- Improve idle balancing in general and especially for NOHZ enabled
systems.
- Provide proper interfaces for live patching so it does not have to
fiddle with scheduler internals.
- Add cluster aware scheduling support.
- A small set of tweaks for RT (irqwork, wait_task_inactive(), various
scheduler options and delaying mmdrop)
- The usual small tweaks and improvements all over the place
* tag 'sched-core-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (69 commits)
sched/fair: Cleanup newidle_balance
sched/fair: Remove sysctl_sched_migration_cost condition
sched/fair: Wait before decaying max_newidle_lb_cost
sched/fair: Skip update_blocked_averages if we are defering load balance
sched/fair: Account update_blocked_averages in newidle_balance cost
x86: Fix __get_wchan() for !STACKTRACE
sched,x86: Fix L2 cache mask
sched/core: Remove rq_relock()
sched: Improve wake_up_all_idle_cpus() take #2
irq_work: Also rcuwait for !IRQ_WORK_HARD_IRQ on PREEMPT_RT
irq_work: Handle some irq_work in a per-CPU thread on PREEMPT_RT
irq_work: Allow irq_work_sync() to sleep if irq_work() no IRQ support.
sched/rt: Annotate the RT balancing logic irqwork as IRQ_WORK_HARD_IRQ
sched: Add cluster scheduler level for x86
sched: Add cluster scheduler level in core and related Kconfig for ARM64
topology: Represent clusters of CPUs within a die
sched: Disable -Wunused-but-set-variable
sched: Add wrapper for get_wchan() to keep task blocked
x86: Fix get_wchan() to support the ORC unwinder
proc: Use task_is_running() for wchan in /proc/$pid/stat
...
Stephen Rothwell reported the following warning was introduced by commit
c0baf9ac0b ("docs: Document the FAN_FS_ERROR event").
Documentation/admin-guide/filesystem-monitoring.rst:60: WARNING:
Definition list ends without a blank line; unexpected unindent.
Link: https://lore.kernel.org/r/87y26camhe.fsf@collabora.com
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com>
Signed-off-by: Jan Kara <jack@suse.cz>
KVM/arm64 updates for Linux 5.16
- More progress on the protected VM front, now with the full
fixed feature set as well as the limitation of some hypercalls
after initialisation.
- Cleanup of the RAZ/WI sysreg handling, which was pointlessly
complicated
- Fixes for the vgic placement in the IPA space, together with a
bunch of selftests
- More memcg accounting of the memory allocated on behalf of a guest
- Timer and vgic selftests
- Workarounds for the Apple M1 broken vgic implementation
- KConfig cleanups
- New kvmarm.mode=none option, for those who really dislike us
Some applications map the same memory area for DMA multiple times while
also mapping significant amounts of memory. With our current DMA code
these applications will run out of DMA addresses after mapping half of
the available memory because the number of DMA mappings is constrained
by the number of concurrently active DMA addresses we support which in
turn is limited by the minimum of hardware constraints and high_memory.
Limiting the number of active DMA addresses to high_memory is only
a heuristic to save memory used by the iommu_bitmap and DMA page tables
however. This was added under the assumption that it rarely makes sense
to DMA map more than system memory.
To accommodate special applications which insist on double mapping, which
works on other platforms, allow specifying a factor of how many times
installed memory is available as DMA address space. Use 0 as a special
value to apply no constraints beyond what hardware dictates at the
expense of significantly more memory use.
Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com>
Reviewed-by: Pierre Morel <pmorel@linux.ibm.com>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
For historical reasons MINSIGSTKSZ is a constant which became already too
small with AVX512 support.
Add a mechanism to enforce strict checking of the sigaltstack size against
the real size of the FPU frame.
The strict check can be enabled via a config option and can also be
controlled via the kernel command line option 'strict_sas_size' independent
of the config switch.
Enabling it might break existing applications which allocate a too small
sigaltstack but 'work' because they never get a signal delivered. Though it
can be handy to filter out binaries which are not yet aware of
AT_MINSIGSTKSZ.
Also the upcoming support for dynamically enabled FPU features requires a
strict sanity check to ensure that:
- Enabling of a dynamic feature, which changes the sigframe size fits
into an enabled sigaltstack
- Installing a too small sigaltstack after a dynamic feature has been
added is not possible.
Implement the base check which is controlled by config and command line
options.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-3-chang.seok.bae@intel.com
Currently, the NX huge page recovery thread wakes up every minute and
zaps 1/nx_huge_pages_recovery_ratio of the total number of split NX
huge pages at a time. This is intended to ensure that only a
relatively small number of pages get zapped at a time. But for very
large VMs (or more specifically, VMs with a large number of
executable pages), a period of 1 minute could still result in this
number being too high (unless the ratio is changed significantly,
but that can result in split pages lingering on for too long).
This change makes the period configurable instead of fixing it at
1 minute. Users of large VMs can then adjust the period and/or the
ratio to reduce the number of pages zapped at one time while still
maintaining the same overall duration for cycling through the
entire list. By default, KVM derives a period from the ratio such
that a page will remain on the list for 1 hour on average.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20211020010627.305925-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
adjust current v*pr_info() calls to fit an overview..detail scheme:
1- module level activity: add/remove, etc
2- command ingest, splitting, summary of effects.
per >control write
3- command parsing: op, flags, search terms
4- per-site change msg
can yield ~3k x 2 logs per echo "+p;-p" > command.
Summarize these 4 levels in MODULE_PARM_DESC, and update verbose=3 in Doc.
2- is new, to isolate a problem where a stress-test script (which
feeds ~4kb multi-command strings) would produce short writes,
truncating last command and causing parsing errors, which confused
test results. The script fix was to use syswrite, to deliver full
proper commands.
4- gets per-callsite "changed:" pr-infos, which are very noisy during
stress tests, and formerly obscured v1-3 messages, and overwhelmed the
static-key workload being tested.
The verbose parameter has previously seen adjustment:
commit 481c0e33f1 ("dyndbg: refine debug verbosity; 1 is basic, 2 more chatty")
The script driving these adjustments is:
!/usr/bin/perl -w
=for Doc
1st purpose was to benchmark the effect of wildcard queries on query
performance; if wildcards are risk free cheap enough, we can deploy
them in the (floating) format search. 1st finding: wildcards take 2x
as long to process.
2nd purpose was to benchmark real static-key changes VS simple flag
changes. Found ~100x decrease for the hard work.
The script maximizes workload per >control by packing it a ~4kb
string of "+p; -p;" commands; this uncovered some broken stuff.
The 85th query failed, and appears to be truncated, so is gramatically
incorrect. Its either an error here, or in the kernel. Its not
happening atm, retest.
Plot thickens: fail only happens doing +-p, not +-mf, likely load
dependent. Error remains consistent. Looks like a short write,
longer on writer than kernel-reader. Try syswrite on handle to
control this. That fixed short write.
=cut
use Getopt::Std;
getopts('vN:k:', \my %opts) or die <<EOH;
$0 options:
-v verbose
-k=n kernel dyndbg verbosity
-N=n number of loops.. tbrc
EOH
$opts{N} //= 10; # !undef, 0 tests too long.
my $ctrl = '/proc/dynamic_debug/control';
vx($opts{k}) if defined $opts{k}; # works on -k0
open(my $CTL, '>', $ctrl) or die "cant open $ctrl for writing: $!\n";
sub vx {
my $arg = shift;
my $cmd = "echo $arg > /sys/module/dynamic_debug/parameters/verbose";
system($cmd);
warn("vx problem: rc:$? err:$! qry: $cmd\n") if ($?);
}
sub qryOK {
my $qry = shift;
print "syntax test: <\n$qry>\n" if $opts{v};
my $bytes = syswrite $CTL, $qry;
printf "short read: $bytes / %d\n", length $qry if $bytes < length $qry;
if ($?) {
warn "rc:$? err:$! qry: $qry\n";
return 0;
}
return 1;
}
sub build_queries {
my ($cmd, $flags, $ct) = @_;
# build experiment and reference queries
my $cycle = " $cmd +$flags # on ; $cmd -$flags # off \n";
my $ref = " +$flags ; -$flags \n";
my $len = length $cycle;
my $max = int(4096 / $len); # break/fit to buffer size
$ct |= $max;
print "qry: ct:$max x << \n$cycle >>\n";
return unless qryOK($ref);
return unless qryOK($cycle);
my $wild = $cycle x $ct;
my $empty = $ref x $ct;
printf "len: %d, %d\n", length $wild, length $empty;
return { trial => $wild,
ref => $empty,
probe => $cycle,
zero => $ref,
count => $ct,
max => $max
};
}
my $query_set = build_queries(' file "*" module "*" func "*" ', "mf");
qryOK($query_set->{zero});
qryOK($query_set->{probe});
qryOK($query_set->{ref});
qryOK($query_set->{trial});
use Benchmark;
sub dobatch {
my ($cmd, $flags, $reps, $ct) = @_;
$reps ||= $opts{N};
my $qs = build_queries($cmd, $flags, $ct);
timethese($reps,
{
wildcards => sub {
syswrite $CTL, $qs->{trial};
},
no_search => sub {
syswrite $CTL, $qs->{ref};
}
}
);
}
sub bench_static_key_toggle {
vx 0;
dobatch(' file "*" module "*" func "*" ', "mf");
dobatch(' file "*" module "*" func "*" ', "p");
}
sub bench_verbose_levels {
for my $i (0..4) {
vx $i;
dobatch(' file "*" module "*" func "*" ', "mf");
}
}
bench_static_key_toggle();
__END__
Heres how the test-script runs:
:: verbose=3 parsing info
[ 48.401646] dyndbg: query 95: "file "*" module "*" func "*" -mf # off " mod:*
[ 48.402040] dyndbg: split into words: "file" "*" "module" "*" "func" "*" "-mf"
[ 48.402456] dyndbg: op='-'
[ 48.402615] dyndbg: flags=0x6
[ 48.402779] dyndbg: *flagsp=0x0 *maskp=0xfffffff9
[ 48.403033] dyndbg: parsed: func="*" file="*" module="*" format="" lineno=0-0
[ 48.403674] dyndbg: applied: func="*" file="*" module="*" format="" lineno=0-0
:: verbose=2 >control summary.
~300k site matches/changes per 4kb command
[ 48.404063] dyndbg: processed 96 queries, with 296160 matches, 0 errs
:: 2 queries against each other, no-search vs all-wildcard-search
qry: ct:48 x <<
file "*" module "*" func "*" +mf # on ; file "*" module "*" func "*" -mf # off
>>
len: 4080, 576
Benchmark: timing 10 iterations of no_search, wildcards...
no_search: 0 wallclock secs ( 0.00 usr + 0.03 sys = 0.03 CPU) @ 333.33/s (n=10)
(warning: too few iterations for a reliable count)
wildcards: 0 wallclock secs ( 0.00 usr + 0.09 sys = 0.09 CPU) @ 111.11/s (n=10)
(warning: too few iterations for a reliable count)
:: 2 queries, both doing real work / changing stati-key states.
qry: ct:49 x <<
file "*" module "*" func "*" +p # on ; file "*" module "*" func "*" -p # off
>>
len: 4067, 490
Benchmark: timing 10 iterations of no_search, wildcards...
no_search: 20 wallclock secs ( 0.00 usr + 20.36 sys = 20.36 CPU) @ 0.49/s (n=10)
wildcards: 21 wallclock secs ( 0.00 usr + 21.08 sys = 21.08 CPU) @ 0.47/s (n=10)
bash-5.1#
Thats 150k static-key-toggles / sec
~600x slower than simple flags
on qemu --smp 3 run
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Link: https://lore.kernel.org/r/20211019210746.185307-1-jim.cromie@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Both ACPI and DT provide the ability to describe additional layers of
topology between that of individual cores and higher level constructs
such as the level at which the last level cache is shared.
In ACPI this can be represented in PPTT as a Processor Hierarchy
Node Structure [1] that is the parent of the CPU cores and in turn
has a parent Processor Hierarchy Nodes Structure representing
a higher level of topology.
For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each
cluster has 4 cpus. All clusters share L3 cache data, but each cluster
has local L3 tag. On the other hand, each clusters will share some
internal system bus.
+-----------------------------------+ +---------+
| +------+ +------+ +--------------------------+ |
| | CPU0 | | cpu1 | | +-----------+ | |
| +------+ +------+ | | | | |
| +----+ L3 | | |
| +------+ +------+ cluster | | tag | | |
| | CPU2 | | CPU3 | | | | | |
| +------+ +------+ | +-----------+ | |
| | | |
+-----------------------------------+ | |
+-----------------------------------+ | |
| +------+ +------+ +--------------------------+ |
| | | | | | +-----------+ | |
| +------+ +------+ | | | | |
| | | L3 | | |
| +------+ +------+ +----+ tag | | |
| | | | | | | | | |
| +------+ +------+ | +-----------+ | |
| | | |
+-----------------------------------+ | L3 |
| data |
+-----------------------------------+ | |
| +------+ +------+ | +-----------+ | |
| | | | | | | | | |
| +------+ +------+ +----+ L3 | | |
| | | tag | | |
| +------+ +------+ | | | | |
| | | | | | +-----------+ | |
| +------+ +------+ +--------------------------+ |
+-----------------------------------| | |
+-----------------------------------| | |
| +------+ +------+ +--------------------------+ |
| | | | | | +-----------+ | |
| +------+ +------+ | | | | |
| +----+ L3 | | |
| +------+ +------+ | | tag | | |
| | | | | | | | | |
| +------+ +------+ | +-----------+ | |
| | | |
+-----------------------------------+ | |
+-----------------------------------+ | |
| +------+ +------+ +--------------------------+ |
| | | | | | +-----------+ | |
| +------+ +------+ | | | | |
| | | L3 | | |
| +------+ +------+ +---+ tag | | |
| | | | | | | | | |
| +------+ +------+ | +-----------+ | |
| | | |
+-----------------------------------+ | |
+-----------------------------------+ | |
| +------+ +------+ +--------------------------+ |
| | | | | | +-----------+ | |
| +------+ +------+ | | | | |
| | | L3 | | |
| +------+ +------+ +--+ tag | | |
| | | | | | | | | |
| +------+ +------+ | +-----------+ | |
| | +---------+
+-----------------------------------+
That means spreading tasks among clusters will bring more bandwidth
while packing tasks within one cluster will lead to smaller cache
synchronization latency. So both kernel and userspace will have
a chance to leverage this topology to deploy tasks accordingly to
achieve either smaller cache latency within one cluster or an even
distribution of load among clusters for higher throughput.
This patch exposes cluster topology to both kernel and userspace.
Libraried like hwloc will know cluster by cluster_cpus and related
sysfs attributes. PoC of HWLOC support at [2].
Note this patch only handle the ACPI case.
Special consideration is needed for SMT processors, where it is
necessary to move 2 levels up the hierarchy from the leaf nodes
(thus skipping the processor core level).
Note that arm64 / ACPI does not provide any means of identifying
a die level in the topology but that may be unrelate to the cluster
level.
[1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node
structure (Type 0)
[2] https://github.com/hisilicon/hwloc/tree/linux-cluster
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Tian Tao <tiantao6@hisilicon.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
Jim pointed out that using $module.dyndbg= is always a more flexible
choice for using dynamic debug on the command line. The $module.dyndbg
style is checked at boot and handles if $module is a builtin. If it is
actually a loadable module, it is handled again later when the module is
loaded.
If you just use dyndbg="module $module +p" dynamic debug is only enabled
when $module is a builtin.
It was recommended to illustrate wildcard usage as well.
Suggested-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: Andrew Halaney <ahalaney@redhat.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Link: https://lore.kernel.org/r/1634139622-20667-4-git-send-email-jbaron@akamai.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull cgroup fixes from Tejun Heo:
"All documentation / comment updates"
* 'for-5.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroupv2, docs: fix misinformation in "device controller" section
cgroup/cpuset: Change references of cpuset_mutex to cpuset_rwsem
docs/cgroup: remove some duplicate words
* kvm-arm64/pkvm/restrict-hypercalls:
: .
: Restrict the use of some hypercalls as well as kexec once
: the protected KVM mode has been initialised.
: .
Documentation: admin-guide: Document side effects when pKVM is enabled
Signed-off-by: Marc Zyngier <maz@kernel.org>
Recent changes to KVM for arm64 has made it impossible for the host to
hibernate or use kexec when protected mode is enabled via the kernel
command line.
There are people who rely on kexec (for example, developers who use kexec
as a quick way to test a new kernel), let's document this change in
behaviour, so it doesn't catch them by surprise and we have a place to
point people to if it does.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211011153835.291147-1-alexandru.elisei@arm.com
Although KVM can be compiled out of the kernel, it cannot be disabled
at runtime. Allow this possibility by introducing a new mode that
will prevent KVM from initialising.
This is useful in the (limited) circumstances where you don't want
KVM to be available (what is wrong with you?), or when you want
to install another hypervisor instead (good luck with that).
Reviewed-by: David Brazdil <dbrazdil@google.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andrew Scull <ascull@google.com>
Link: https://lore.kernel.org/r/20211001170553.3062988-1-maz@kernel.org
Pull xen fixes from Juergen Gross:
- fix two minor issues in the Xen privcmd driver plus a cleanup patch
for that driver
- fix multiple issues related to running as PVH guest and some related
earlyprintk fixes for other Xen guest types
- fix an issue introduced in 5.15 the Xen balloon driver
* tag 'for-linus-5.15b-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/balloon: fix cancelled balloon action
xen/x86: adjust data placement
x86/PVH: adjust function/data placement
xen/x86: hook up xen_banner() also for PVH
xen/x86: generalize preferred console model from PV to PVH Dom0
xen/x86: make "earlyprintk=xen" work for HVM/PVH DomU
xen/x86: allow "earlyprintk=xen" to work for PV Dom0
xen/x86: make "earlyprintk=xen" work better for PVH Dom0
xen/x86: allow PVH Dom0 without XEN_PV=y
xen/x86: prevent PVH type from getting clobbered
xen/privcmd: drop "pages" parameter from xen_remap_pfn()
xen/privcmd: fix error handling in mmap-resource processing
xen/privcmd: replace kcalloc() by kvcalloc() when allocating empty pages
Add MIPI CCS compliant devices, a few Sony IMX, Hynix Hi-846 and
Omnivision ov13b10 sensors and the DW9768 lens driver to the list of
supported devices. Also drop SMIA since as a standard it is obsolete.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Switch the kernel default of SSBD and STIBP to the ones with
CONFIG_SECCOMP=n (i.e. spec_store_bypass_disable=prctl
spectre_v2_user=prctl) even if CONFIG_SECCOMP=y.
Several motivations listed below:
- If SMT is enabled the seccomp jail can still attack the rest of the
system even with spectre_v2_user=seccomp by using MDS-HT (except on
XEON PHI where MDS can be tamed with SMT left enabled, but that's a
special case). Setting STIBP become a very expensive window dressing
after MDS-HT was discovered.
- The seccomp jail cannot attack the kernel with spectre-v2-HT
regardless (even if STIBP is not set), but with MDS-HT the seccomp
jail can attack the kernel too.
- With spec_store_bypass_disable=prctl the seccomp jail can attack the
other userland (guest or host mode) using spectre-v2-HT, but the
userland attack is already mitigated by both ASLR and pid namespaces
for host userland and through virt isolation with libkrun or
kata. (if something if somebody is worried about spectre-v2-HT it's
best to mount proc with hidepid=2,gid=proc on workstations where not
all apps may run under container runtimes, rather than slowing down
all seccomp jails, but the best is to add pid namespaces to the
seccomp jail). As opposed MDS-HT is not mitigated and the seccomp
jail can still attack all other host and guest userland if SMT is
enabled even with spec_store_bypass_disable=seccomp.
- If full security is required then MDS-HT must also be mitigated with
nosmt and then spectre_v2_user=prctl and spectre_v2_user=seccomp
would become identical.
- Setting spectre_v2_user=seccomp is overall lower priority than to
setting javascript.options.wasm false in about:config to protect
against remote wasm MDS-HT, instead of worrying about Spectre-v2-HT
and STIBP which again is already statistically well mitigated by
other means in userland and it's fully mitigated in kernel with
retpolines (unlike the wasm assist call with MDS-HT).
- SSBD is needed to prevent reading the JIT memory and the primary
user being the OpenJDK. However the primary user of SSBD wouldn't be
covered by spec_store_bypass_disable=seccomp because it doesn't use
seccomp and the primary user also explicitly declined to set
PR_SET_SPECULATION_CTRL+PR_SPEC_STORE_BYPASS despite it easily
could. In fact it would need to set it only when the sandboxing
mechanism is enabled for javaws applets, but it still declined it by
declaring security within the same user address space as an
untenable objective for their JIT, even in the sandboxing case where
performance would be a lesser concern (for the record: I kind of
disagree in not setting PR_SPEC_STORE_BYPASS in the sandbox case and
I prefer to run javaws through a wrapper that sets
PR_SPEC_STORE_BYPASS if I need). In turn it can be inferred that
even if the primary user of SSBD would use seccomp, they would
invoke it with SECCOMP_FILTER_FLAG_SPEC_ALLOW by now.
- runc/crun already set SECCOMP_FILTER_FLAG_SPEC_ALLOW by default, k8s
and podman have a default json seccomp allowlist that cannot be
slowed down, so for the #1 seccomp user this change is already a
noop.
- systemd/sshd or other apps that use seccomp, if they really need
STIBP or SSBD, they need to explicitly set the
PR_SET_SPECULATION_CTRL by now. The stibp/ssbd seccomp blind
catch-all approach was done probably initially with a wishful
thinking objective to pretend to have a peace of mind that it could
magically fix it all. That was wishful thinking before MDS-HT was
discovered, but after MDS-HT has been discovered it become just
window dressing.
- For qemu "-sandbox" seccomp jail it wouldn't make sense to set STIBP
or SSBD. SSBD doesn't help with KVM because there's no JIT (if it's
needed with TCG it should be an opt-in with
PR_SET_SPECULATION_CTRL+PR_SPEC_STORE_BYPASS and it shouldn't
slowdown KVM for nothing). For qemu+KVM STIBP would be even more
window dressing than it is for all other apps, because in the
qemu+KVM case there's not only the MDS attack to worry about with
SMT enabled. Even after disabling SMT, there's still a theoretical
spectre-v2 attack possible within the same thread context from guest
mode to host ring3 that the host kernel retpoline mitigation has no
theoretical chance to mitigate. On some kernels a
ibrs-always/ibrs-retpoline opt-in model is provided that will
enabled IBRS in the qemu host ring3 userland which fixes this
theoretical concern. Only after enabling IBRS in the host userland
it would then make sense to proceed and worry about STIBP and an
attack on the other host userland, but then again SMT would need to
be disabled for full security anyway, so that would render STIBP
again a noop.
- last but not the least: the lack of "spec_store_bypass_disable=prctl
spectre_v2_user=prctl" means the moment a guest boots and
sshd/systemd runs, the guest kernel will write to SPEC_CTRL MSR
which will make the guest vmexit forever slower, forcing KVM to
issue a very slow rdmsr instruction at every vmexit. So the end
result is that SPEC_CTRL MSR is only available in GCE. Most other
public cloud providers don't expose SPEC_CTRL, which means that not
only STIBP/SSBD isn't available, but IBPB isn't available either
(which would cause no overhead to the guest or the hypervisor
because it's write only and requires no reading during vmexit). So
the current default already net loss in security (missing IBPB)
which means most public cloud providers cannot achieve a fully
secure guest with nosmt (and nosmt is enough to fully mitigate
MDS-HT). It also means GCE and is unfairly penalized in performance
because it provides the option to enable full security in the guest
as an opt-in (i.e. nosmt and IBPB). So this change will allow all
cloud providers to expose SPEC_CTRL without incurring into any
hypervisor slowdown and at the same time it will remove the unfair
penalization of GCE performance for doing the right thing and it'll
allow to get full security with nosmt with IBPB being available (and
STIBP becoming meaningless).
Example to put things in prospective: the STIBP enabled in seccomp has
never been about protecting apps using seccomp like sshd from an
attack from a malicious userland, but to the contrary it has always
been about protecting the system from an attack from sshd, after a
successful remote network exploit against sshd. In fact initially it
wasn't obvious STIBP would work both ways (STIBP was about preventing
the task that runs with STIBP to be attacked with spectre-v2-HT, but
accidentally in the STIBP case it also prevents the attack in the
other direction). In the hypothetical case that sshd has been remotely
exploited the last concern should be STIBP being set, because it'll be
still possible to obtain info even from the kernel by using MDS if
nosmt wasn't set (and if it was set, STIBP is a noop in the first
place). As opposed kernel cannot leak anything with spectre-v2 HT
because of retpolines and the userland is mitigated by ASLR already
and ideally PID namespaces too. If something it'd be worth checking if
sshd run the seccomp thread under pid namespaces too if available in
the running kernel. SSBD also would be a noop for sshd, since sshd
uses no JIT. If sshd prefers to keep doing the STIBP window dressing
exercise, it still can even after this change of defaults by opting-in
with PR_SPEC_INDIRECT_BRANCH.
Ultimately setting SSBD and STIBP by default for all seccomp jails is
a bad sweet spot and bad default with more cons than pros that end up
reducing security in the public cloud (by giving an huge incentive to
not expose SPEC_CTRL which would be needed to get full security with
IBPB after setting nosmt in the guest) and by excessively hurting
performance to more secure apps using seccomp that end up having to
opt out with SECCOMP_FILTER_FLAG_SPEC_ALLOW.
The following is the verified result of the new default with SMT
enabled:
(gdb) print spectre_v2_user_stibp
$1 = SPECTRE_V2_USER_PRCTL
(gdb) print spectre_v2_user_ibpb
$2 = SPECTRE_V2_USER_PRCTL
(gdb) print ssb_mode
$3 = SPEC_STORE_BYPASS_PRCTL
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20201104235054.5678-1-aarcange@redhat.com
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/lkml/AAA2EF2C-293D-4D5B-BFA6-FF655105CD84@redhat.com
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/lkml/c0722838-06f7-da6b-138f-e0f26362f16a@redhat.com
Modify the scaler subdevice to accept setting the resolution of the source
pad (previously the source resolution would always be 3 times the sink for
both dimensions). Now any resolution can be set at src (even smaller ones)
and the sink video will be scaled to match it.
Test example: With the vimc module up (using the default vimc topology)
media-ctl -d platform:vimc -V '"Sensor A":0[fmt:SBGGR8_1X8/640x480]'
media-ctl -d platform:vimc -V '"Debayer A":0[fmt:SBGGR8_1X8/640x480]'
media-ctl -d platform:vimc -V '"Scaler":0[fmt:RGB888_1X24/640x480]'
media-ctl -d platform:vimc -V '"Scaler":0[crop:(100,50)/400x150]'
media-ctl -d platform:vimc -V '"Scaler":1[fmt:RGB888_1X24/300x700]'
v4l2-ctl -z platform:vimc -d "RGB/YUV Capture" -v width=300,height=700
v4l2-ctl -z platform:vimc -d "Raw Capture 0" -v pixelformat=BA81
v4l2-ctl --stream-mmap --stream-count=10 -z platform:vimc -d "RGB/YUV Capture" \
--stream-to=test.raw
The result will be a cropped stream that can be checked with the command
ffplay -loglevel warning -v info -f rawvideo -pixel_format rgb24 \
-video_size "300x700" test.raw
Co-developed-by: Gabriela Bittencourt <gabrielabittencourt00@gmail.com>
Signed-off-by: Gabriela Bittencourt <gabrielabittencourt00@gmail.com>
Co-developed-by: Gabriel Francisco Mandaji <gfmandaji@gmail.com>
Signed-off-by: Gabriel Francisco Mandaji <gfmandaji@gmail.com>
Signed-off-by: Pedro Terra <pedro@terraco.de>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Use the header-rows option of the flat-table directive in order to have
the first row displayed as a header. Also capitalize these headers.
These changes make the tables easier to read.
Signed-off-by: Nícolas F. R. A. Prado <nfraprado@collabora.com>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
The V4L2_PIX_FMT_HM12 format is actually a simple NV12 tiled format,
with 16x16 linear tiles. Rename the format and move its documentation
together with the other tiled NV12 formats.
Keep V4L2_PIX_FMT_HM12 for application compatibility.
Signed-off-by: Ezequiel Garcia <ezequiel@collabora.com>
Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Commit 7ac592aa35 ("sched: prctl() core-scheduling interface")
made use of enum pid_type in prctl's arg4; this type and the associated
enumeration definitions are not exposed to userspace. Christian
has suggested to provide additional macro definitions that convey
the meaning of the type argument more in alignment with its actual
usage, and this patch does exactly that.
Link: https://lore.kernel.org/r/20210825170613.GA3884@asgard.redhat.com
Suggested-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Eugene Syromiatnikov <esyr@redhat.com>
Complements: 7ac592aa35 ("sched: prctl() core-scheduling interface")
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Hotmail was rejected by the mailing list, switched to gmail to resend.
1. Clarify cgroup BPF program type and attach type;
2. Fix file path broken.
Signed-off-by: ArthurChiao <arthurchiao@hotmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When I tried to add some new entries to cgroup-v2.rst, I found that
the description of memory.events had some repetitive words, so I
tried to delete them.
Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Merge patch series from Nick Desaulniers to update the minimum gcc
version to 5.1.
This is some of the left-overs from the merge window that I didn't want
to deal with yesterday, so it comes in after -rc1 but was sent before.
Gcc-4.9 support has been an annoyance for some time, and with -Werror I
had the choice of applying a fairly big patch from Kees Cook to remove a
fair number of initializer warnings (still leaving some), or this patch
series from Nick that just removes the source of the problem.
The initializer cleanups might still be worth it regardless, but
honestly, I preferred just tackling the problem with gcc-4.9 head-on.
We've been more aggressiuve about no longer having to care about
compilers that were released a long time ago, and I think it's been a
good thing.
I added a couple of patches on top to sort out a few left-overs now that
we no longer support gcc-4.x.
As noted by Arnd, as a result of this minimum compiler version upgrade
we can probably change our use of '--std=gnu89' to '--std=gnu11', and
finally start using local loop declarations etc. But this series does
_not_ yet do that.
Link: https://lore.kernel.org/all/20210909182525.372ee687@canb.auug.org.au/
Link: https://lore.kernel.org/lkml/CAK7LNASs6dvU6D3jL2GG3jW58fXfaj6VNOe55NJnTB8UPuk2pA@mail.gmail.com/
Link: https://github.com/ClangBuiltLinux/linux/issues/1438
* emailed patches from Nick Desaulniers <ndesaulniers@google.com>:
Drop some straggling mentions of gcc-4.9 as being stale
compiler_attributes.h: drop __has_attribute() support for gcc4
vmlinux.lds.h: remove old check for GCC 4.9
compiler-gcc.h: drop checks for older GCC versions
Makefile: drop GCC < 5 -fno-var-tracking-assignments workaround
arm64: remove GCC version check for ARCH_SUPPORTS_INT128
powerpc: remove GCC version check for UPD_CONSTR
riscv: remove Kconfig check for GCC version for ARCH_RV64I
Kconfig.debug: drop GCC 5+ version check for DWARF5
mm/ksm: remove old GCC 4.9+ check
compiler.h: drop fallback overflow checkers
Documentation: raise minimum supported version of GCC to 5.1
Fix up the admin-guide README file to the new gcc-5.1 requirement, and
remove a stale comment about gcc support for the __assume_aligned__
attribute.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull more tracing updates from Steven Rostedt:
- Add migrate-disable counter to tracing header
- Fix error handling in event probes
- Fix missed unlock in osnoise in error path
- Fix merge issue with tools/bootconfig
- Clean up bootconfig data when init memory is removed
- Fix bootconfig to loop only on subkeys
- Have kernel command lines override bootconfig options
- Increase field counts for synthetic events
- Have histograms dynamic allocate event elements to save space
- Fixes in testing and documentation
* tag 'trace-v5.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing/boot: Fix to loop on only subkeys
selftests/ftrace: Exclude "(fault)" in testing add/remove eprobe events
tracing: Dynamically allocate the per-elt hist_elt_data array
tracing: synth events: increase max fields count
tools/bootconfig: Show whole test command for each test case
bootconfig: Fix missing return check of xbc_node_compose_key function
tools/bootconfig: Fix tracing_on option checking in ftrace2bconf.sh
docs: bootconfig: Add how to use bootconfig for kernel parameters
init/bootconfig: Reorder init parameter from bootconfig and cmdline
init: bootconfig: Remove all bootconfig data when the init memory is removed
tracing/osnoise: Fix missed cpus_read_unlock() in start_per_cpu_kthreads()
tracing: Fix some alloc_event_probe() error handling bugs
tracing: Add migrate-disabled counter to tracing output.
Pull more ACPI updates from Rafael Wysocki:
"These add ACPI support to the PCI VMD driver, improve suspend-to-idle
support for AMD platforms and update documentation.
Specifics:
- Add ACPI support to the PCI VMD driver (Rafael Wysocki)
- Rearrange suspend-to-idle support code to reflect the platform
firmware expectations on some AMD platforms (Mario Limonciello)
- Make SSDT overlays documentation follow the code documented by it
more closely (Andy Shevchenko)"
* tag 'acpi-5.15-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI: PM: s2idle: Run both AMD and Microsoft methods if both are supported
Documentation: ACPI: Align the SSDT overlays file with the code
PCI: VMD: ACPI: Make ACPI companion lookup work for VMD bus
Merge more updates from Andrew Morton:
"147 patches, based on 7d2a07b769.
Subsystems affected by this patch series: mm (memory-hotplug, rmap,
ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
selftests, ipc, and scripts"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
scripts: check_extable: fix typo in user error message
mm/workingset: correct kernel-doc notations
ipc: replace costly bailout check in sysvipc_find_ipc()
selftests/memfd: remove unused variable
Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
configs: remove the obsolete CONFIG_INPUT_POLLDEV
prctl: allow to setup brk for et_dyn executables
pid: cleanup the stale comment mentioning pidmap_init().
kernel/fork.c: unexport get_{mm,task}_exe_file
coredump: fix memleak in dump_vma_snapshot()
fs/coredump.c: log if a core dump is aborted due to changed file permissions
nilfs2: use refcount_dec_and_lock() to fix potential UAF
nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
nilfs2: fix NULL pointer in nilfs_##name##_attr_release
nilfs2: fix memory leak in nilfs_sysfs_create_device_group
trap: cleanup trap_init()
init: move usermodehelper_enable() to populate_rootfs()
...
Pull iommu updates from Joerg Roedel:
- New DART IOMMU driver for Apple Silicon M1 chips
- Optimizations for iommu_[map/unmap] performance
- Selective TLB flush support for the AMD IOMMU driver to make it more
efficient on emulated IOMMUs
- Rework IOVA setup and default domain type setting to move more code
out of IOMMU drivers and to support runtime switching between certain
types of default domains
- VT-d Updates from Lu Baolu:
- Update the virtual command related registers
- Enable Intel IOMMU scalable mode by default
- Preset A/D bits for user space DMA usage
- Allow devices to have more than 32 outstanding PRs
- Various cleanups
- ARM SMMU Updates from Will Deacon:
SMMUv3:
- Minor optimisation to avoid zeroing struct members on CMD submission
- Increased use of batched commands to reduce submission latency
- Refactoring in preparation for ECMDQ support
SMMUv2:
- Fix races when probing devices with identical StreamIDs
- Optimise walk cache flushing for Qualcomm implementations
- Allow deep sleep states for some Qualcomm SoCs with shared clocks
- Various smaller optimizations, cleanups, and fixes
* tag 'iommu-updates-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (85 commits)
iommu/io-pgtable: Abstract iommu_iotlb_gather access
iommu/arm-smmu: Fix missing unlock on error in arm_smmu_device_group()
iommu/vt-d: Add present bit check in pasid entry setup helpers
iommu/vt-d: Use pasid_pte_is_present() helper function
iommu/vt-d: Drop the kernel doc annotation
iommu/vt-d: Allow devices to have more than 32 outstanding PRs
iommu/vt-d: Preset A/D bits for user space DMA usage
iommu/vt-d: Enable Intel IOMMU scalable mode by default
iommu/vt-d: Refactor Kconfig a bit
iommu/vt-d: Remove unnecessary oom message
iommu/vt-d: Update the virtual command related registers
iommu: Allow enabling non-strict mode dynamically
iommu: Merge strictness and domain type configs
iommu: Only log strictness for DMA domains
iommu: Expose DMA domain strictness via sysfs
iommu: Express DMA strictness via the domain type
iommu/vt-d: Prepare for multiple DMA domain types
iommu/arm-smmu: Prepare for multiple DMA domain types
iommu/amd: Prepare for multiple DMA domain types
iommu: Introduce explicit type for non-strict DMA domains
...
Merge misc updates from Andrew Morton:
"173 patches.
Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
oom-kill, migration, ksm, percpu, vmstat, and madvise)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
mm/madvise: add MADV_WILLNEED to process_madvise()
mm/vmstat: remove unneeded return value
mm/vmstat: simplify the array size calculation
mm/vmstat: correct some wrong comments
mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
selftests: vm: add COW time test for KSM pages
selftests: vm: add KSM merging time test
mm: KSM: fix data type
selftests: vm: add KSM merging across nodes test
selftests: vm: add KSM zero page merging test
selftests: vm: add KSM unmerge test
selftests: vm: add KSM merge test
mm/migrate: correct kernel-doc notation
mm: wire up syscall process_mrelease
mm: introduce process_mrelease system call
memblock: make memblock_find_in_range method private
mm/mempolicy.c: use in_task() in mempolicy_slab_node()
mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
mm/mempolicy: advertise new MPOL_PREFERRED_MANY
mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
...