In an effort to get more useful out of "possible memory
allocation deadlock" messages, print the size of the
requested allocation, and dump the stack if the xfs error
level is tuned high.
The stack dump is implemented in define_xfs_printk_level()
for error levels >= LOGLEVEL_ERR, partly because it
seems generically useful, and also because kmem.c has
no knowledge of xfs error level tunables or other such bits,
it's very kmem-specific.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This patch adds comm name and pid to warning messages printed by
kmem_alloc(), kmem_zone_alloc() and xfs_buf_allocate_memory().
This will help telling which memory allocations (e.g. kernel worker
threads, OOM victim tasks, neither) are stalling because these functions
are passing __GFP_NOWARN which suppresses not only backtrace but comm name
and pid.
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Change kmem_free to use kvfree() generic function, remove the
duplicated code.
Signed-off-by: Yalin Wang <yalin.wang@sonymobile.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The typedef for timespecs and nanotime() are completely unnecessary,
and delay() can be moved to fs/xfs/linux.h, which means this file
can go away.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we map pages in the buffer cache, we can do so in GFP_NOFS
contexts. However, the vmap interfaces do not provide any method of
communicating this information to memory reclaim, and hence we get
lockdep complaining about it regularly and occassionally see hangs
that may be vmap related reclaim deadlocks. We can also see these
same problems from anywhere where we use vmalloc for a large buffer
(e.g. attribute code) inside a transaction context.
A typical lockdep report shows up as a reclaim state warning like so:
[14046.101458] =================================
[14046.102850] [ INFO: inconsistent lock state ]
[14046.102850] 3.14.0-rc4+ #2 Not tainted
[14046.102850] ---------------------------------
[14046.102850] inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage.
[14046.102850] kswapd0/14 [HC0[0]:SC0[0]:HE1:SE1] takes:
[14046.102850] (&xfs_dir_ilock_class){++++?+}, at: [<791a04bb>] xfs_ilock+0xff/0x16a
[14046.102850] {RECLAIM_FS-ON-W} state was registered at:
[14046.102850] [<7904cdb1>] mark_held_locks+0x81/0xe7
[14046.102850] [<7904d390>] lockdep_trace_alloc+0x5c/0xb4
[14046.102850] [<790c2c28>] kmem_cache_alloc_trace+0x2b/0x11e
[14046.102850] [<790ba7f4>] vm_map_ram+0x119/0x3e6
[14046.102850] [<7914e124>] _xfs_buf_map_pages+0x5b/0xcf
[14046.102850] [<7914ed74>] xfs_buf_get_map+0x67/0x13f
[14046.102850] [<7917506f>] xfs_attr_rmtval_set+0x396/0x4d5
[14046.102850] [<7916e8bb>] xfs_attr_leaf_addname+0x18f/0x37d
[14046.102850] [<7916ed9e>] xfs_attr_set_int+0x2f5/0x3e8
[14046.102850] [<7916eefc>] xfs_attr_set+0x6b/0x74
[14046.102850] [<79168355>] xfs_xattr_set+0x61/0x81
[14046.102850] [<790e5b10>] generic_setxattr+0x59/0x68
[14046.102850] [<790e4c06>] __vfs_setxattr_noperm+0x58/0xce
[14046.102850] [<790e4d0a>] vfs_setxattr+0x8e/0x92
[14046.102850] [<790e4ddd>] setxattr+0xcf/0x159
[14046.102850] [<790e5423>] SyS_lsetxattr+0x88/0xbb
[14046.102850] [<79268438>] sysenter_do_call+0x12/0x36
Now, we can't completely remove these traces - mainly because
vm_map_ram() will do GFP_KERNEL allocation and that generates the
above warning before we get into the reclaim code, but we can turn
them all into false positive warnings.
To do that, use the method that DM and other IO context code uses to
avoid this problem: there is a process flag to tell memory reclaim
not to do IO that we can set appropriately. That prevents GFP_KERNEL
context reclaim being done from deep inside the vmalloc code in
places we can't directly pass a GFP_NOFS context to. That interface
has a pair of wrapper functions: memalloc_noio_save() and
memalloc_noio_restore().
Adding them around vm_map_ram and the vzalloc call in
kmem_alloc_large() will prevent deadlocks and most lockdep reports
for this issue. Also, convert the vzalloc() call in
kmem_alloc_large() to use __vmalloc() so that we can pass the
correct gfp context to the data page allocation routine inside
__vmalloc() so that it is clear that GFP_NOFS context is important
to this vmalloc call.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Introduce flag KM_ZERO which is used to alloc zeroed entry, and convert
kmem_{zone_}zalloc to call kmem_{zone_}alloc() with KM_ZERO directly,
in order to avoid the setting to zero step.
And following Dave's suggestion, make kmem_{zone_}zalloc static inline
into kmem.h as they're now just a simple wrapper.
V2:
Make kmem_{zone_}zalloc static inline into kmem.h as Dave suggested.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
We have quite a few places now where we do:
x = kmem_zalloc(large size)
if (!x)
x = kmem_zalloc_large(large size)
and do a similar dance when freeing the memory. kmem_free() already
does the correct freeing dance, and kmem_zalloc_large() is only ever
called in these constructs, so just factor it all into
kmem_zalloc_large() and kmem_free().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>