Pull block updates from Jens Axboe:
"Here are the core block changes for 5.19. This contains:
- blk-throttle accounting fix (Laibin)
- Series removing redundant assignments (Michal)
- Expose bio cache via the bio_set, so that DM can use it (Mike)
- Finish off the bio allocation interface cleanups by dealing with
the weirdest member of the family. bio_kmalloc combines a kmalloc
for the bio and bio_vecs with a hidden bio_init call and magic
cleanup semantics (Christoph)
- Clean up the block layer API so that APIs consumed by file systems
are (almost) only struct block_device based, so that file systems
don't have to poke into block layer internals like the
request_queue (Christoph)
- Clean up the blk_execute_rq* API (Christoph)
- Clean up various lose end in the blk-cgroup code to make it easier
to follow in preparation of reworking the blkcg assignment for bios
(Christoph)
- Fix use-after-free issues in BFQ when processes with merged queues
get moved to different cgroups (Jan)
- BFQ fixes (Jan)
- Various fixes and cleanups (Bart, Chengming, Fanjun, Julia, Ming,
Wolfgang, me)"
* tag 'for-5.19/block-2022-05-22' of git://git.kernel.dk/linux-block: (83 commits)
blk-mq: fix typo in comment
bfq: Remove bfq_requeue_request_body()
bfq: Remove superfluous conversion from RQ_BIC()
bfq: Allow current waker to defend against a tentative one
bfq: Relax waker detection for shared queues
blk-cgroup: delete rcu_read_lock_held() WARN_ON_ONCE()
blk-throttle: Set BIO_THROTTLED when bio has been throttled
blk-cgroup: Remove unnecessary rcu_read_lock/unlock()
blk-cgroup: always terminate io.stat lines
block, bfq: make bfq_has_work() more accurate
block, bfq: protect 'bfqd->queued' by 'bfqd->lock'
block: cleanup the VM accounting in submit_bio
block: Fix the bio.bi_opf comment
block: reorder the REQ_ flags
blk-iocost: combine local_stat and desc_stat to stat
block: improve the error message from bio_check_eod
block: allow passing a NULL bdev to bio_alloc_clone/bio_init_clone
block: remove superfluous calls to blkcg_bio_issue_init
kthread: unexport kthread_blkcg
blk-cgroup: cleanup blkcg_maybe_throttle_current
...
Currently, trace point mm_page_alloc_zone_locked() doesn't show correct
information.
First, when alloc_flag has ALLOC_HARDER/ALLOC_CMA, page can be allocated
from MIGRATE_HIGHATOMIC/MIGRATE_CMA. Nevertheless, tracepoint use
requested migration type not MIGRATE_HIGHATOMIC and MIGRATE_CMA.
Second, after commit 44042b4498 ("mm/page_alloc: allow high-order pages
to be stored on the per-cpu lists") percpu-list can store high order
pages. But trace point determine whether it is a refiil of percpu-list by
comparing requested order and 0.
To handle these problems, make mm_page_alloc_zone_locked() only be called
by __rmqueue_smallest with correct migration type. With a new argument
called percpu_refill, it can show roughly whether it is a refill of
percpu-list.
Link: https://lkml.kernel.org/r/20220512025307.57924-1-vvghjk1234@gmail.com
Signed-off-by: Wonhyuk Yang <vvghjk1234@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Baik Song An <bsahn@etri.re.kr>
Cc: Hong Yeon Kim <kimhy@etri.re.kr>
Cc: Taeung Song <taeung@reallinux.co.kr>
Cc: <linuxgeek@linuxgeek.io>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The rmap locks(i_mmap_rwsem and anon_vma->root->rwsem) could be contended
under memory pressure if processes keep working on their vmas(e.g., fork,
mmap, munmap). It makes reclaim path stuck. In our real workload traces,
we see kswapd is waiting the lock for 300ms+(worst case, a sec) and it
makes other processes entering direct reclaim, which were also stuck on
the lock.
This patch makes lru aging path try_lock mode like shink_page_list so the
reclaim context will keep working with next lru pages without being stuck.
if it found the rmap lock contended, it rotates the page back to head of
lru in both active/inactive lrus to make them consistent behavior, which
is basic starting point rather than adding more heristic.
Since this patch introduces a new "contended" field as out-param along
with try_lock in-param in rmap_walk_control, it's not immutable any longer
if the try_lock is set so remove const keywords on rmap related functions.
Since rmap walking is already expensive operation, I doubt the const
would help sizable benefit( And we didn't have it until 5.17).
In a heavy app workload in Android, trace shows following statistics. It
almost removes rmap lock contention from reclaim path.
Martin Liu reported:
Before:
max_dur(ms) min_dur(ms) max-min(dur)ms avg_dur(ms) sum_dur(ms) count blocked_function
1632 0 1631 151.542173 31672 209 page_lock_anon_vma_read
601 0 601 145.544681 28817 198 rmap_walk_file
After:
max_dur(ms) min_dur(ms) max-min(dur)ms avg_dur(ms) sum_dur(ms) count blocked_function
NaN NaN NaN NaN NaN 0.0 NaN
0 0 0 0.127645 1 12 rmap_walk_file
[minchan@kernel.org: add comment, per Matthew]
Link: https://lkml.kernel.org/r/YnNqeB5tUf6LZ57b@google.com
Link: https://lkml.kernel.org/r/20220510215423.164547-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Martin Liu <liumartin@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Applications can currently escape their cgroup memory containment when
zswap is enabled. This patch adds per-cgroup tracking and limiting of
zswap backend memory to rectify this.
The existing cgroup2 memory.stat file is extended to show zswap statistics
analogous to what's in meminfo and vmstat. Furthermore, two new control
files, memory.zswap.current and memory.zswap.max, are added to allow
tuning zswap usage on a per-workload basis. This is important since not
all workloads benefit from zswap equally; some even suffer compared to
disk swap when memory contents don't compress well. The optimal size of
the zswap pool, and the threshold for writeback, also depends on the size
of the workload's warm set.
The implementation doesn't use a traditional page_counter transaction.
zswap is unconventional as a memory consumer in that we only know the
amount of memory to charge once expensive compression has occurred. If
zwap is disabled or the limit is already exceeded we obviously don't want
to compress page upon page only to reject them all. Instead, the limit is
checked against current usage, then we compress and charge. This allows
some limit overrun, but not enough to matter in practice.
[hannes@cmpxchg.org: fix for CONFIG_SLOB builds]
Link: https://lkml.kernel.org/r/YnwD14zxYjUJPc2w@cmpxchg.org
[hannes@cmpxchg.org: opt out of cgroups v1]
Link: https://lkml.kernel.org/r/Yn6it9mBYFA+/lTb@cmpxchg.org
Link: https://lkml.kernel.org/r/20220510152847.230957-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- CONFIG_ZRAM: Zram is a user-facing feature, whereas zsmalloc is
not. Don't make the user chase down a technical dependency like
that, just select it in automatically when zram is requested. The
CONFIG_CRYPTO dependency is redundant due to more specific deps.
- CONFIG_ZPOOL: This is not a user-facing feature. Hide the symbol and
have it selected in as needed.
- CONFIG_ZSWAP: Select CRYPTO instead of depend. Common pattern.
- Make the ZSWAP suboptions and their descriptions (compression,
allocation backend) a bit more straight-forward for the user.
Link: https://lkml.kernel.org/r/20220510152847.230957-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The readonly FS THP relies on khugepaged to collapse THP for suitable
vmas. But the behavior is inconsistent for "always" mode
(https://lore.kernel.org/linux-mm/00f195d4-d039-3cf2-d3a1-a2c88de397a0@suse.cz/).
The "always" mode means THP allocation should be tried all the time and
khugepaged should try to collapse THP all the time. Of course the
allocation and collapse may fail due to other factors and conditions.
Currently file THP may not be collapsed by khugepaged even though all the
conditions are met. That does break the semantics of "always" mode.
So make sure readonly FS vmas are registered to khugepaged to fix the
break.
Register suitable vmas in common mmap path, that could cover both readonly
FS vmas and shmem vmas, so remove the khugepaged calls in shmem.c.
Still need to keep the khugepaged call in vma_merge() since vma_merge() is
called in a lot of places, for example, madvise, mprotect, etc.
Link: https://lkml.kernel.org/r/20220510203222.24246-9-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Vlastmil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Song Liu <song@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
randomize_page is an mm function. It is documented like one. It contains
the history of one. It has the naming convention of one. It looks
just like another very similar function in mm, randomize_stack_top().
And it has always been maintained and updated by mm people. There is no
need for it to be in random.c. In the "which shape does not look like
the other ones" test, pointing to randomize_page() is correct.
So move randomize_page() into mm/util.c, right next to the similar
randomize_stack_top() function.
This commit contains no actual code changes.
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
We run a lot of automated tests when building our software and run into
OOM scenarios when the tests run unbounded. v1 memcg exports
memcg->watermark as "memory.max_usage_in_bytes" in sysfs. We use this
metric to heuristically limit the number of tests that can run in parallel
based on per test historical data.
This metric is currently not exported for v2 memcg and there is no other
easy way of getting this information. getrusage() syscall returns
"ru_maxrss" which can be used as an approximation but that's the max RSS
of a single child process across all children instead of the aggregated
max for all child processes. The only work around is to periodically poll
"memory.current" but that's not practical for short-lived one-off cgroups.
Hence, expose memcg->watermark as "memory.peak" for v2 memcg.
Link: https://lkml.kernel.org/r/20220507050916.GA13577@us192.sjc.aristanetworks.com
Signed-off-by: Ganesan Rajagopal <rganesan@arista.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We must add hugetlb_free_vmemmap=on (or "off") to the boot cmdline and
reboot the server to enable or disable the feature of optimizing vmemmap
pages associated with HugeTLB pages. However, rebooting usually takes a
long time. So add a sysctl to enable or disable the feature at runtime
without rebooting. Why we need this? There are 3 use cases.
1) The feature of minimizing overhead of struct page associated with
each HugeTLB is disabled by default without passing
"hugetlb_free_vmemmap=on" to the boot cmdline. When we (ByteDance)
deliver the servers to the users who want to enable this feature, they
have to configure the grub (change boot cmdline) and reboot the
servers, whereas rebooting usually takes a long time (we have thousands
of servers). It's a very bad experience for the users. So we need a
approach to enable this feature after rebooting. This is a use case in
our practical environment.
2) Some use cases are that HugeTLB pages are allocated 'on the fly'
instead of being pulled from the HugeTLB pool, those workloads would be
affected with this feature enabled. Those workloads could be
identified by the characteristics of they never explicitly allocating
huge pages with 'nr_hugepages' but only set 'nr_overcommit_hugepages'
and then let the pages be allocated from the buddy allocator at fault
time. We can confirm it is a real use case from the commit
099730d674. For those workloads, the page fault time could be ~2x
slower than before. We suspect those users want to disable this
feature if the system has enabled this before and they don't think the
memory savings benefit is enough to make up for the performance drop.
3) If the workload which wants vmemmap pages to be optimized and the
workload which wants to set 'nr_overcommit_hugepages' and does not want
the extera overhead at fault time when the overcommitted pages be
allocated from the buddy allocator are deployed in the same server.
The user could enable this feature and set 'nr_hugepages' and
'nr_overcommit_hugepages', then disable the feature. In this case, the
overcommited HugeTLB pages will not encounter the extra overhead at
fault time.
Link: https://lkml.kernel.org/r/20220512041142.39501-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Optimizing HugeTLB vmemmap pages is not compatible with allocating memmap
on hot added memory. If "hugetlb_free_vmemmap=on" and
memory_hotplug.memmap_on_memory" are both passed on the kernel command
line, optimizing hugetlb pages takes precedence. However, the global
variable memmap_on_memory will still be set to 1, even though we will not
try to allocate memmap on hot added memory.
Also introduce mhp_memmap_on_memory() helper to move the definition of
"memmap_on_memory" to the scope of CONFIG_MHP_MEMMAP_ON_MEMORY. In the
next patch, mhp_memmap_on_memory() will also be exported to be used in
hugetlb_vmemmap.c.
Link: https://lkml.kernel.org/r/20220512041142.39501-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "add hugetlb_optimize_vmemmap sysctl", v11.
This series aims to add hugetlb_optimize_vmemmap sysctl to enable or
disable the feature of optimizing vmemmap pages associated with HugeTLB
pages.
This patch (of 4):
If the size of "struct page" is not the power of two but with the feature
of minimizing overhead of struct page associated with each HugeTLB is
enabled, then the vmemmap pages of HugeTLB will be corrupted after
remapping (panic is about to happen in theory). But this only exists when
!CONFIG_MEMCG && !CONFIG_SLUB on x86_64. However, it is not a
conventional configuration nowadays. So it is not a real word issue, just
the result of a code review.
But we cannot prevent anyone from configuring that combined configure.
This hugetlb_optimize_vmemmap should be disable in this case to fix this
issue.
Link: https://lkml.kernel.org/r/20220512041142.39501-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20220512041142.39501-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The asynchronous zspage free worker tries to lock a zspage's entire page
list without defending against page migration. Since pages which haven't
yet been locked can concurrently migrate off the zspage page list while
lock_zspage() churns away, lock_zspage() can suffer from a few different
lethal races.
It can lock a page which no longer belongs to the zspage and unsafely
dereference page_private(), it can unsafely dereference a torn pointer to
the next page (since there's a data race), and it can observe a spurious
NULL pointer to the next page and thus not lock all of the zspage's pages
(since a single page migration will reconstruct the entire page list, and
create_page_chain() unconditionally zeroes out each list pointer in the
process).
Fix the races by using migrate_read_lock() in lock_zspage() to synchronize
with page migration.
Link: https://lkml.kernel.org/r/20220509024703.243847-1-sultan@kerneltoast.com
Fixes: 77ff465799 ("zsmalloc: zs_page_migrate: skip unnecessary loops but not return -EBUSY if zspage is not inuse")
Signed-off-by: Sultan Alsawaf <sultan@kerneltoast.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit a4efc174b3 which introduced a regression issue
that when there're multiple processes allocating dma memory in parallel by
calling dma_alloc_coherent(), it may fail sometimes as follows:
Error log:
cma: cma_alloc: linux,cma: alloc failed, req-size: 148 pages, ret: -16
cma: number of available pages:
3@125+20@172+12@236+4@380+32@736+17@2287+23@2473+20@36076+99@40477+108@40852+44@41108+20@41196+108@41364+108@41620+
108@42900+108@43156+483@44061+1763@45341+1440@47712+20@49324+20@49388+5076@49452+2304@55040+35@58141+20@58220+20@58284+
7188@58348+84@66220+7276@66452+227@74525+6371@75549=> 33161 free of 81920 total pages
When issue happened, we saw there were still 33161 pages (129M) free CMA
memory and a lot available free slots for 148 pages in CMA bitmap that we
want to allocate.
When dumping memory info, we found that there was also ~342M normal
memory, but only 1352K CMA memory left in buddy system while a lot of
pageblocks were isolated.
Memory info log:
Normal free:351096kB min:30000kB low:37500kB high:45000kB reserved_highatomic:0KB
active_anon:98060kB inactive_anon:98948kB active_file:60864kB inactive_file:31776kB
unevictable:0kB writepending:0kB present:1048576kB managed:1018328kB mlocked:0kB
bounce:0kB free_pcp:220kB local_pcp:192kB free_cma:1352kB lowmem_reserve[]: 0 0 0
Normal: 78*4kB (UECI) 1772*8kB (UMECI) 1335*16kB (UMECI) 360*32kB (UMECI) 65*64kB (UMCI)
36*128kB (UMECI) 16*256kB (UMCI) 6*512kB (EI) 8*1024kB (UEI) 4*2048kB (MI) 8*4096kB (EI)
8*8192kB (UI) 3*16384kB (EI) 8*32768kB (M) = 489288kB
The root cause of this issue is that since commit a4efc174b3 ("mm/cma.c:
remove redundant cma_mutex lock"), CMA supports concurrent memory
allocation. It's possible that the memory range process A trying to alloc
has already been isolated by the allocation of process B during memory
migration.
The problem here is that the memory range isolated during one allocation
by start_isolate_page_range() could be much bigger than the real size we
want to alloc due to the range is aligned to MAX_ORDER_NR_PAGES.
Taking an ARMv7 platform with 1G memory as an example, when
MAX_ORDER_NR_PAGES is big (e.g. 32M with max_order 14) and CMA memory is
relatively small (e.g. 128M), there're only 4 MAX_ORDER slot, then it's
very easy that all CMA memory may have already been isolated by other
processes when one trying to allocate memory using dma_alloc_coherent().
Since current CMA code will only scan one time of whole available CMA
memory, then dma_alloc_coherent() may easy fail due to contention with
other processes.
This patch simply falls back to the original method that using cma_mutex
to make alloc_contig_range() run sequentially to avoid the issue.
Link: https://lkml.kernel.org/r/20220509094551.3596244-1-aisheng.dong@nxp.com
Link: https://lore.kernel.org/all/20220315144521.3810298-2-aisheng.dong@nxp.com/
Fixes: a4efc174b3 ("mm/cma.c: remove redundant cma_mutex lock")
Signed-off-by: Dong Aisheng <aisheng.dong@nxp.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [5.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pull misc fixes from Andrew Morton:
"Seven MM fixes, three of which address issues added in the most recent
merge window, four of which are cc:stable.
Three non-MM fixes, none very serious"
[ And yes, that's a real pull request from Andrew, not me creating a
branch from emailed patches. Woo-hoo! ]
* tag 'mm-hotfixes-stable-2022-05-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
MAINTAINERS: add a mailing list for DAMON development
selftests: vm: Makefile: rename TARGETS to VMTARGETS
mm/kfence: reset PG_slab and memcg_data before freeing __kfence_pool
mailmap: add entry for martyna.szapar-mudlaw@intel.com
arm[64]/memremap: don't abuse pfn_valid() to ensure presence of linear map
procfs: prevent unprivileged processes accessing fdinfo dir
mm: mremap: fix sign for EFAULT error return value
mm/hwpoison: use pr_err() instead of dump_page() in get_any_page()
mm/huge_memory: do not overkill when splitting huge_zero_page
Revert "mm/memory-failure.c: skip huge_zero_page in memory_failure()"