Wp-gpios property can be used on NVMEM nodes and the same property can
be also used on MTD NAND nodes. In case of the wp-gpios property is
defined at NAND level node, the GPIO management is done at NAND driver
level. Write protect is disabled when the driver is probed or resumed
and is enabled when the driver is released or suspended.
When no partitions are defined in the NAND DT node, then the NAND DT node
will be passed to NVMEM framework. If wp-gpios property is defined in
this node, the GPIO resource is taken twice and the NAND controller
driver fails to probe.
It would be possible to set config->wp_gpio at MTD level before calling
nvmem_register function but NVMEM framework will toggle this GPIO on
each write when this GPIO should only be controlled at NAND level driver
to ensure that the Write Protect has not been enabled.
A way to fix this conflict is to add a new boolean flag in nvmem_config
named ignore_wp. In case ignore_wp is set, the GPIO resource will
be managed by the provider.
Fixes: 2a127da461 ("nvmem: add support for the write-protect pin")
Cc: stable@vger.kernel.org
Signed-off-by: Christophe Kerello <christophe.kerello@foss.st.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20220220151432.16605-2-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In the existing design, we do not create a instance per nvmem cell consumer
but we directly refer cell from nvmem cell list that are added to provider.
However this design has some limitations when consumers want to assign name
or connection id the nvmem cell instance, ex: via "nvmem-cell-names" or
id in nvmem_cell_get(id).
Having a name associated with nvmem cell consumer instance will help
provider drivers in performing post processing of nvmem cell data if required
before data is seen by the consumers. This is pretty normal with some vendors
storing nvmem cells like mac-address in a vendor specific data layouts that
are not directly usable by the consumer drivers.
With this patch nvmem cell will be created dynamically during nvmem_cell_get
and destroyed in nvmem_cell_put, allowing consumers to associate name with
nvmem cell consumer instance.
With this patch a new struct nvmem_cell_entry replaces struct nvmem_cell
for storing nvmem cell information within the core.
This patch does not change nvmem-consumer interface based on nvmem_cell.
Tested-by: Joakim Zhang <qiangqing.zhang@nxp.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20211013131957.30271-2-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic
*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we
subtract one from that making a large number that is then shifted more than the
number of bits that fit into an unsigned long.
UBSAN reports this problem:
UBSAN: shift-out-of-bounds in drivers/nvmem/core.c:1386:8
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 6 PID: 7 Comm: kworker/u16:0 Not tainted 5.15.0-rc3+ #9
Hardware name: Google Lazor (rev3+) with KB Backlight (DT)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
dump_backtrace+0x0/0x170
show_stack+0x24/0x30
dump_stack_lvl+0x64/0x7c
dump_stack+0x18/0x38
ubsan_epilogue+0x10/0x54
__ubsan_handle_shift_out_of_bounds+0x180/0x194
__nvmem_cell_read+0x1ec/0x21c
nvmem_cell_read+0x58/0x94
nvmem_cell_read_variable_common+0x4c/0xb0
nvmem_cell_read_variable_le_u32+0x40/0x100
a6xx_gpu_init+0x170/0x2f4
adreno_bind+0x174/0x284
component_bind_all+0xf0/0x264
msm_drm_bind+0x1d8/0x7a0
try_to_bring_up_master+0x164/0x1ac
__component_add+0xbc/0x13c
component_add+0x20/0x2c
dp_display_probe+0x340/0x384
platform_probe+0xc0/0x100
really_probe+0x110/0x304
__driver_probe_device+0xb8/0x120
driver_probe_device+0x4c/0xfc
__device_attach_driver+0xb0/0x128
bus_for_each_drv+0x90/0xdc
__device_attach+0xc8/0x174
device_initial_probe+0x20/0x2c
bus_probe_device+0x40/0xa4
deferred_probe_work_func+0x7c/0xb8
process_one_work+0x128/0x21c
process_scheduled_works+0x40/0x54
worker_thread+0x1ec/0x2a8
kthread+0x138/0x158
ret_from_fork+0x10/0x20
Fix it by making sure there are any bits to mask out.
Fixes: 69aba7948c ("nvmem: Add a simple NVMEM framework for consumers")
Cc: Douglas Anderson <dianders@chromium.org>
Cc: stable@vger.kernel.org
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20211013124511.18726-1-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
qfprom_disable_fuse_blowing() disables a bunch of resources,
and then does a few register writes in the 'conf' address
space.
It works perhaps because the resources are needed only for the
'raw' register space writes, and that the 'conf' space allows
read/writes regardless.
However that makes the code look confusing, so just move the
register writes before turning off the resources in the
function.
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Rajendra Nayak <rnayak@codeaurora.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20210806085947.22682-3-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull char / misc driver updates from Greg KH:
"Here is the big set of char / misc and other driver subsystem updates
for 5.14-rc1. Included in here are:
- habanalabs driver updates
- fsl-mc driver updates
- comedi driver updates
- fpga driver updates
- extcon driver updates
- interconnect driver updates
- mei driver updates
- nvmem driver updates
- phy driver updates
- pnp driver updates
- soundwire driver updates
- lots of other tiny driver updates for char and misc drivers
This is looking more and more like the "various driver subsystems
mushed together" tree...
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (292 commits)
mcb: Use DEFINE_RES_MEM() helper macro and fix the end address
PNP: moved EXPORT_SYMBOL so that it immediately followed its function/variable
bus: mhi: pci-generic: Add missing 'pci_disable_pcie_error_reporting()' calls
bus: mhi: Wait for M2 state during system resume
bus: mhi: core: Fix power down latency
intel_th: Wait until port is in reset before programming it
intel_th: msu: Make contiguous buffers uncached
intel_th: Remove an unused exit point from intel_th_remove()
stm class: Spelling fix
nitro_enclaves: Set Bus Master for the NE PCI device
misc: ibmasm: Modify matricies to matrices
misc: vmw_vmci: return the correct errno code
siox: Simplify error handling via dev_err_probe()
fpga: machxo2-spi: Address warning about unused variable
lkdtm/heap: Add init_on_alloc tests
selftests/lkdtm: Enable various testable CONFIGs
lkdtm: Add CONFIG hints in errors where possible
lkdtm: Enable DOUBLE_FAULT on all architectures
lkdtm/heap: Add vmalloc linear overflow test
lkdtm/bugs: XFAIL UNALIGNED_LOAD_STORE_WRITE
...
Until now, the of_node of the parent device is used. Some devices
provide more than just the nvmem provider. To avoid name space clashes,
add a way to allow specifying the nvmem cells in subnodes. Consider the
following example:
flash@0 {
compatible = "jedec,spi-nor";
partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;
partition@0 {
reg = <0x000000 0x010000>;
};
};
otp {
compatible = "user-otp";
#address-cells = <1>;
#size-cells = <1>;
serial-number@0 {
reg = <0x0 0x8>;
};
};
};
There the nvmem provider might be the MTD partition or the OTP region of
the flash.
Add a new config->of_node parameter, which if set, will be used instead
of the parent's of_node.
Signed-off-by: Michael Walle <michael@walle.cc>
Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20210424110608.15748-2-michael@walle.cc
The shifting of the u8 integer buf[3] by 24 bits to the left will
be promoted to a 32 bit signed int and then sign-extended to a
u64. In the event that the top bit of buf[3] is set then all
then all the upper 32 bits of the u64 end up as also being set
because of the sign-extension. Fix this by casting buf[i] to
a u64 before the shift.
Fixes: a28e824fb8 ("nvmem: core: Add functions to make number reading easy")
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Addresses-Coverity: ("Unintended sign extension")
Link: https://lore.kernel.org/r/20210330111241.19401-8-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Sometimes the clients of nvmem just want to get a number out of
nvmem. They don't want to think about exactly how many bytes the nvmem
cell took up. They just want the number. Let's make it easy.
In general this concept is useful because nvmem space is precious and
usually the fewest bits are allocated that will hold a given value on
a given system. However, even though small numbers might be fine on
one system that doesn't mean that logically the number couldn't be
bigger. Imagine nvmem containing a max frequency for a component. On
one system perhaps that fits in 16 bits. On another system it might
fit in 32 bits. The code reading this number doesn't care--it just
wants the number.
We'll provide two functions: nvmem_cell_read_variable_le_u32() and
nvmem_cell_read_variable_le_u64().
Comparing these to the existing functions like nvmem_cell_read_u32():
* These new functions have no problems if the value was stored in
nvmem in fewer bytes. It's OK to use these function as long as the
value stored will fit in 32-bits (or 64-bits).
* These functions avoid problems that the earlier APIs had with bit
offsets. For instance, you can't use nvmem_cell_read_u32() to read a
value has nbits=32 and bit_offset=4 because the nvmem cell must be
at least 5 bytes big to hold this value. The new API accounts for
this and works fine.
* These functions make it very explicit that they assume that the
number was stored in little endian format. The old functions made
this assumption whenever bit_offset was non-zero (see
nvmem_shift_read_buffer_in_place()) but didn't whenever the
bit_offset was zero.
NOTE: it's assumed that we don't need an 8-bit or 16-bit version of
this function. The 32-bit version of the function can be used to read
8-bit or 16-bit data.
At the moment, I'm only adding the "unsigned" versions of these
functions, but if it ends up being useful someone could add a "signed"
version that did 2's complement sign extension.
At the moment, I'm only adding the "little endian" versions of these
functions. Adding the "big endian" version would require adding "big
endian" support to nvmem_shift_read_buffer_in_place().
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20210330111241.19401-7-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>