One of the new features of GICv4.1 is to allow virtual SGIs to be
directly signaled to a VPE. For that, the ITS has grown a new
64kB page containing only a single register that is used to
signal a SGI to a given VPE.
Add a second mapping covering this new 64kB range, and take this
opportunity to limit the original mapping to 64kB, which is enough
to cover the span of the ITS registers.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20200304203330.4967-8-maz@kernel.org
The GICv4.1 spec says that it is CONTRAINED UNPREDICTABLE to write to
any of the GICR_INV{LPI,ALL}R registers if GICR_SYNCR.Busy == 1.
To deal with it, we must ensure that only a single invalidation can
happen at a time for a given redistributor. Add a per-RD lock to that
effect and take it around the invalidation/syncr-read to deal with this.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20200304203330.4967-6-maz@kernel.org
Before GICv4.1, all operations would be serialized with the affinity
changes by virtue of using the same ITS command queue. With v4.1, things
change, as invalidations (and a number of other operations) are issued
using the redistributor MMIO frame.
We must thus make sure that these redistributor accesses cannot race
against aginst the affinity change, or we may end-up talking to the
wrong redistributor.
To ensure this, we expand the irq_to_cpuid() helper to take a spinlock
when the LPI is mapped to a vLPI (a new per-VPE lock) on each operation
that requires mutual exclusion.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20200304203330.4967-4-maz@kernel.org
In a system that is only sparsly populated with CPUs, we can end-up with
redistributors structures that are not initialized. Let's make sure we
don't try and access those when iterating over them (in this case when
checking we have a L2 VPE table).
Fixes: 4e6437f12d ("irqchip/gic-v4.1: Ensure L2 vPE table is allocated at RD level")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20200304203330.4967-3-maz@kernel.org
The GICv3 ITS driver assumes that once it has latched on a page size for
a given BASER register, it can use the same page size as the maximum
page size for all subsequent BASER registers.
Although it worked so far, nothing in the architecture guarantees this,
and Nianyao Tang hit this problem on some undisclosed implementation.
Let's bite the bullet and probe the the supported page size on all BASER
registers before starting to populate the tables. This simplifies the
setup a bit, at the expense of a few additional MMIO accesses.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reported-by: Nianyao Tang <tangnianyao@huawei.com>
Tested-by: Nianyao Tang <tangnianyao@huawei.com>
Link: https://lore.kernel.org/r/1584089195-63897-1-git-send-email-zhangshaokun@hisilicon.com
In order to allow the GICv4 code to link properly on 32bit ARM,
make sure we don't use 64bit divisions when it isn't strictly
necessary.
Fixes: 4e6437f12d ("irqchip/gic-v4.1: Ensure L2 vPE table is allocated at RD level")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In GICv4, we will ensure that level2 vPE table memory is allocated
for the specified vpe_id on all v4 ITS, in its_alloc_vpe_table().
This still works well for the typical GICv4.1 implementation, where
the new vPE table is shared between the ITSs and the RDs.
To make it explicit, let us introduce allocate_vpe_l2_table() to
make sure that the L2 tables are allocated on all v4.1 RDs. We're
likely not need to allocate memory in it because the vPE table is
shared and (L2 table is) already allocated at ITS level, except
for the case where the ITS doesn't share anything (say SVPET == 0,
practically unlikely but architecturally allowed).
The implementation of allocate_vpe_l2_table() is mostly copied from
its_alloc_table_entry().
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200206075711.1275-4-yuzenghui@huawei.com
Currently, we will not set vpe_l1_page for the current RD if we can
inherit the vPE configuration table from another RD (or ITS), which
results in an inconsistency between RDs within the same CommonLPIAff
group.
Let's rename it to vpe_l1_base to indicate the base address of the
vPE configuration table of this RD, and set it properly for *all*
v4.1 redistributors.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200206075711.1275-3-yuzenghui@huawei.com
It looks like an obvious mistake to use its_mapc_cmd descriptor when
building the INVALL command block. It so far worked by luck because
both its_mapc_cmd.col and its_invall_cmd.col sit at the same offset of
the ITS command descriptor, but we should not rely on it.
Fixes: cc2d3216f5 ("irqchip: GICv3: ITS command queue")
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20191202071021.1251-1-yuzenghui@huawei.com
Just like for GICv4.0, each VPE has its own doorbell interrupt, and
thus an irqchip that manages them. Since the doorbell management is
quite different on GICv4.1, let's introduce an almost empty irqchip
the will get populated over the next new patches.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-10-maz@kernel.org
With GICv4.1, VMOVP is extended to allow a default doorbell to be
specified, as well as a validity bit for this doorbell. As an added
bonus, VMOVP isn't required anymore of moving a VPE between
redistributors that share the same affinity.
Let's add this support to the VMOVP builder, and make sure we don't
issue the command if we don't really need to.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-9-maz@kernel.org
The infamous VPE proxy device isn't used with GICv4.1 because:
- we can invalidate any LPI from the DirectLPI MMIO interface
- the ITS and redistributors understand the life cycle of
the doorbell, so we don't need to enable/disable it all
the time
So let's escape early from the proxy related functions.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-8-maz@kernel.org
The ITS VMAPP command gains some new fields with GICv4.1:
- a default doorbell, which allows a single doorbell to be used for
all the VLPIs routed to a given VPE
- a pointer to the configuration table (instead of having it in a register
that gets context switched)
- a flag indicating whether this is the first map or the last unmap for
this particular VPE
- a flag indicating whether the pending table is known to be zeroed, or not
Plumb in the new fields in the VMAPP builder, and add the map/unmap
refcounting so that the ITS can do the right thing.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-7-maz@kernel.org
GICv4.1 defines a new VPE table that is potentially shared between
both the ITSs and the redistributors, following complicated affinity
rules.
To make things more confusing, the programming of this table at
the redistributor level is reusing the GICv4.0 GICR_VPROPBASER register
for something completely different.
The code flow is somewhat complexified by the need to respect the
affinities required by the HW, meaning that tables can either be
inherited from a previously discovered ITS or redistributor.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191224111055.11836-6-maz@kernel.org
When updating an LPI configuration, get_vlpi_map() may be passed a
irq_data structure relative to an ITS domain (the normal case) or one
that is relative to the core GICv3 domain in the case of a GICv4
doorbell.
In the latter case, special care must be take not to dereference
the irq_chip data as an its_dev structure, as that isn't what is
stored there. Instead, check *first* whether the IRQ is forwarded
to a vcpu, and only then try to obtain the vlpi mapping.
Fixes: c1d4d5cd20 ("irqchip/gic-v3-its: Add its_vlpi_map helpers")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20200122085609.658-1-yuzenghui@huawei.com
We have so far always injected/cleared VLPIs using either
INT+SYNC or CLEAR+SYNC sequences, but that's pretty wrong
for two reasons:
- SYNC only synchronises physical LPIs
- The collection ID that for the associated LPI doesn't match
the redistributor the vPE is associated with
Instead, send an {INT,CLEAR}+VSYNC for forwarded LPIs, ensuring
that the ITS synchronises against the virtual pending table.
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20191108165805.3071-10-maz@kernel.org
We have so far alwways invalidated VLPIs usinc an INV+SYNC
sequence, but that's pretty wrong for two reasons:
- SYNC only synchronises physical LPIs
- The collection ID that for the associated LPI doesn't match
the redistributor the vPE is associated with
Instead, send an INV+VSYNC for forwarded LPIs, ensuring that
the ITS can properly synchronise the invalidation of VLPIs.
Fixes: 015ec0386a ("irqchip/gic-v3-its: Add VLPI configuration handling")
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20191108165805.3071-9-maz@kernel.org
We allocate the collection mapping on device creation, but somehow
free it on the irqdomain free path, which is pretty inconsistent
and has led to bugs in the past.
Move it to the point where we teardown the device, making the
alloc/free symetric.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191108165805.3071-2-maz@kernel.org
On a system without Single VMOVP support (say GITS_TYPER.VMOVP == 0),
we will map vPEs only on ITSs that will actually control interrupts
for the given VM. And when moving a vPE, the VMOVP command will be
issued only for those ITSs.
But when issuing VMOVPs we seemed fail to present the exact ITSList
to ITSs who are actually included in the synchronization operation.
The its_list_map we're currently using includes all ITSs in the system,
even though some of them don't have the corresponding vPE mapping at all.
Introduce get_its_list() to get the per-VM its_list_map, to indicate
which ITSs have vPE mappings for the given VM, and use this map as
the expected ITSList when building VMOVP. This is hopefully a performance
gain not to do some synchronization with those unsuspecting ITSs.
And initialize the whole command descriptor to zero at beginning, since
the seq_num and its_list should be RES0 when GITS_TYPER.VMOVP == 1.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/1571802386-2680-1-git-send-email-yuzenghui@huawei.com
When allocating a range of LPIs for a Multi-MSI capable device,
this allocation extended to the closest power of 2.
But on the release path, the interrupts are released one by
one. This results in not releasing the "extra" range, leaking
the its_device. Trying to reprobe the device will then fail.
Fix it by releasing the LPIs the same way we allocate them.
Fixes: 8208d1708b ("irqchip/gic-v3-its: Align PCI Multi-MSI allocation on their size")
Reported-by: Jiaxing Luo <luojiaxing@huawei.com>
Tested-by: John Garry <john.garry@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/f5e948aa-e32f-3f74-ae30-31fee06c2a74@huawei.com
We try to find a free LPI region in device's lpi_map and allocate them
(set them to 1) when we want to allocate LPIs for this device. This is
what bitmap_find_free_region() has done for us. The following set_bit
is redundant and a bit confusing (since we only set_bit against the first
allocated LPI idx). Remove it, and make the set_bit explicit by comment.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Do not expose the ITS' VA (it appears in debugfs). Instead, record
the PA, which at least can be used to precisely identify the associated
irqchip and domain.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Pull irqchip fixes from Marc Zyngier:
A small bunch of fixes from the irqchip department:
- Fix a couple of UAF on error paths (RZA1, GICv3 ITS)
- Fix iMX GPCv2 trigger setting
- Add missing of_node_put on error path in MBIGEN
- Add another bunch of /* fall-through */ to silence warnings
Pull irq fixes from Ingo Molnar:
"Diverse irqchip driver fixes"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqchip/gic-v3-its: Fix command queue pointer comparison bug
irqchip/mips-gic: Use the correct local interrupt map registers
irqchip/ti-sci-inta: Fix kernel crash if irq_create_fwspec_mapping fail
irqchip/irq-csky-mpintc: Support auto irq deliver to all cpus