We use some of the lower bits of the retire function pointer for
potential flags, which is quite thorny, since the caller needs to
remember to give the function the correct alignment with
__i915_active_call, otherwise we might incorrectly unpack the pointer
and jump to some garbage address later. Instead of all this let's just
pass the flags along as a separate parameter.
Suggested-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Suggested-by: Daniel Vetter <daniel@ffwll.ch>
References: ca419f407b ("drm/i915: Fix crash in auto_retire")
References: d8e44e4dd2 ("drm/i915/overlay: Fix active retire callback alignment")
References: fd5f262db1 ("drm/i915/selftests: Fix active retire callback alignment")
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Matthew Brost <matthew.brost@intel.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20210504164136.96456-1-matthew.auld@intel.com
As the engine->kernel_context is used within the engine-pm barrier, we
have to be careful when emitting requests outside of the barrier, as the
strict timeline locking rules do not apply. Instead, we must ensure the
engine_park() cannot be entered as we build the request, which is
simplest by taking an explicit engine-pm wakeref around the request
construction.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191125105858.1718307-1-chris@chris-wilson.co.uk
Forgo the struct_mutex serialisation for i915_active, and interpose its
own mutex handling for active/retire.
This is a multi-layered sleight-of-hand. First, we had to ensure that no
active/retire callbacks accidentally inverted the mutex ordering rules,
nor assumed that they were themselves serialised by struct_mutex. More
challenging though, is the rule over updating elements of the active
rbtree. Instead of the whole i915_active now being serialised by
struct_mutex, allocations/rotations of the tree are serialised by the
i915_active.mutex and individual nodes are serialised by the caller
using the i915_timeline.mutex (we need to use nested spinlocks to
interact with the dma_fence callback lists).
The pain point here is that instead of a single mutex around execbuf, we
now have to take a mutex for active tracker (one for each vma, context,
etc) and a couple of spinlocks for each fence update. The improvement in
fine grained locking allowing for multiple concurrent clients
(eventually!) should be worth it in typical loads.
v2: Add some comments that barely elucidate anything :(
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-6-chris@chris-wilson.co.uk
The request->timeline is only valid until the request is retired (i.e.
before it is completed). Upon retiring the request, the context may be
unpinned and freed, and along with it the timeline may be freed. We
therefore need to be very careful when chasing rq->timeline that the
pointer does not disappear beneath us. The vast majority of users are in
a protected context, either during request construction or retirement,
where the timeline->mutex is held and the timeline cannot disappear. It
is those few off the beaten path (where we access a second timeline) that
need extra scrutiny -- to be added in the next patch after first adding
the warnings about dangerous access.
One complication, where we cannot use the timeline->mutex itself, is
during request submission onto hardware (under spinlocks). Here, we want
to check on the timeline to finalize the breadcrumb, and so we need to
impose a second rule to ensure that the request->timeline is indeed
valid. As we are submitting the request, it's context and timeline must
be pinned, as it will be used by the hardware. Since it is pinned, we
know the request->timeline must still be valid, and we cannot submit the
idle barrier until after we release the engine->active.lock, ergo while
submitting and holding that spinlock, a second thread cannot release the
timeline.
v2: Don't be lazy inside selftests; hold the timeline->mutex for as long
as we need it, and tidy up acquiring the timeline with a bit of
refactoring (i915_active_add_request)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
Start acquiring the logical intel_context and using that as our primary
means for request allocation. This is the initial step to allow us to
avoid requiring struct_mutex for request allocation along the
perma-pinned kernel context, but it also provides a foundation for
breaking up the complex request allocation to handle different scenarios
inside execbuf.
For the purpose of emitting a request from inside retirement (see the
next patch for engine power management), we also need to lift control
over the timeline mutex to the caller.
v2: Note that the request carries the active reference upon construction.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-4-chris@chris-wilson.co.uk
At a few points in our uABI, we check to see if the driver is wedged and
report -EIO back to the user in that case. However, as we perform the
check and reset asynchronously (where once before they were both
serialised by the struct_mutex), we may instead see the temporary wedging
used to cancel inflight rendering to avoid a deadlock during reset
(caused by either us timing out in our reset handler,
i915_wedge_on_timeout or with malice aforethought in intel_reset_prepare
for a stuck modeset). If we suspect this is the case, that is we see a
wedged driver *and* reset in progress, then wait until the reset is
resolved before reporting upon the wedged status.
v2: might_sleep() (Mika)
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=109580
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190220145637.23503-1-chris@chris-wilson.co.uk
We currently track GPU memory usage inside VMA, such that we never
release memory used by the GPU until after it has finished accessing it.
However, we may want to track other resources aside from VMA, or we may
want to split a VMA into multiple independent regions and track each
separately. For this purpose, generalise our request tracking (akin to
struct reservation_object) so that we can embed it into other objects.
v2: Tweak error handling during selftest setup.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190205130005.2807-2-chris@chris-wilson.co.uk