Starting with commit a799c2bd29
("x86/setup: Consolidate early memory reservations")
memory reservations have been moved earlier during the boot process,
before the execution of the Kernel Address Space Layout Randomization code.
setup_arch() calls the iscsi_ibft's find_ibft_region() function
to find and reserve the memory dedicated to the iBFT and this function
also saves a virtual pointer to the iBFT table for later use.
The problem is that if KALSR is active, the physical memory gets
remapped somewhere else in the virtual address space and the pointer is
no longer valid, this will cause a kernel panic when the iscsi driver tries
to dereference it.
iBFT detected.
BUG: unable to handle page fault for address: ffff888000099fd8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
..snip..
Call Trace:
? ibft_create_kobject+0x1d2/0x1d2 [iscsi_ibft]
do_one_initcall+0x44/0x1d0
? kmem_cache_alloc_trace+0x119/0x220
do_init_module+0x5c/0x270
__do_sys_init_module+0x12e/0x1b0
do_syscall_64+0x40/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fix this bug by saving the address of the physical location
of the ibft; later the driver will use isa_bus_to_virt() to get
the correct virtual address.
N.B. On each reboot KASLR randomizes the virtual addresses so
assuming phys_to_virt before KASLR does its deed is incorrect.
Simplify the code by renaming find_ibft_region()
to reserve_ibft_region() and remove all the wrappers.
Signed-off-by: Maurizio Lombardi <mlombard@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad@kernel.org>
Use the existing PR_GET/SET_SPECULATION_CTRL API to expose the L1D flush
capability. For L1D flushing PR_SPEC_FORCE_DISABLE and
PR_SPEC_DISABLE_NOEXEC are not supported.
Enabling L1D flush does not check if the task is running on an SMT enabled
core, rather a check is done at runtime (at the time of flush), if the task
runs on a SMT sibling then the task is sent a SIGBUS which is executed
before the task returns to user space or to a guest.
This is better than the other alternatives of:
a. Ensuring strict affinity of the task (hard to enforce without further
changes in the scheduler)
b. Silently skipping flush for tasks that move to SMT enabled cores.
Hook up the core prctl and implement the x86 specific parts which in turn
makes it functional.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balbir Singh <sblbir@amazon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210108121056.21940-5-sblbir@amazon.com
The goal of this is to allow tasks that want to protect sensitive
information, against e.g. the recently found snoop assisted data sampling
vulnerabilites, to flush their L1D on being switched out. This protects
their data from being snooped or leaked via side channels after the task
has context switched out.
This could also be used to wipe L1D when an untrusted task is switched in,
but that's not a really well defined scenario while the opt-in variant is
clearly defined.
The mechanism is default disabled and can be enabled on the kernel command
line.
Prepare for the actual prctl based opt-in:
1) Provide the necessary setup functionality similar to the other
mitigations and enable the static branch when the command line option
is set and the CPU provides support for hardware assisted L1D
flushing. Software based L1D flush is not supported because it's CPU
model specific and not really well defined.
This does not come with a sysfs file like the other mitigations
because it is not bound to any specific vulnerability.
Support has to be queried via the prctl(2) interface.
2) Add TIF_SPEC_L1D_FLUSH next to L1D_SPEC_IB so the two bits can be
mangled into the mm pointer in one go which allows to reuse the
existing mechanism in switch_mm() for the conditional IBPB speculation
barrier efficiently.
3) Add the L1D flush specific functionality which flushes L1D when the
outgoing task opted in.
Also check whether the incoming task has requested L1D flush and if so
validate that it is not accidentaly running on an SMT sibling as this
makes the whole excercise moot because SMT siblings share L1D which
opens tons of other attack vectors. If that happens schedule task work
which signals the incoming task on return to user/guest with SIGBUS as
this is part of the paranoid L1D flush contract.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balbir Singh <sblbir@amazon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210108121056.21940-1-sblbir@amazon.com
A new field smt_active in cpuinfo_x86 identifies if the current core/cpu
is in SMT mode or not.
This is helpful when the system has some of its cores with threads offlined
and can be used for cases where action is taken based on the state of SMT.
The upcoming support for paranoid L1D flush will make use of this information.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balbir Singh <sblbir@amazon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210108121056.21940-2-sblbir@amazon.com
Pull x86 jump label fix from Thomas Gleixner:
"A single fix for jump labels to prevent the compiler from agressive
un-inlining which results in a section mismatch"
* tag 'locking-urgent-2021-07-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
jump_labels: Mark __jump_label_transform() as __always_inlined to work around aggressive compiler un-inlining
drm-misc-next for v5.15-rc1:
UAPI Changes:
- Remove sysfs stats for dma-buf attachments, as it causes a performance regression.
Previous merge is not in a rc kernel yet, so no userspace regression possible.
Cross-subsystem Changes:
- Sanitize user input in kyro's viewport ioctl.
- Use refcount_t in fb_info->count
- Assorted fixes to dma-buf.
- Extend x86 efifb handling to all archs.
- Fix neofb divide by 0.
- Document corpro,gm7123 bridge dt bindings.
Core Changes:
- Slightly rework drm master handling.
- Cleanup vgaarb handling.
- Assorted fixes.
Driver Changes:
- Add support for ws2401 panel.
- Assorted fixes to stm, ast, bochs.
- Demidlayer ingenic irq.
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/2d0d2fe8-01fc-e216-c3fd-38db9e69944e@linux.intel.com
The x86 architecture has generic support to register a system framebuffer
platform device. It either registers a "simple-framebuffer" if the config
option CONFIG_X86_SYSFB is enabled, or a legacy VGA/VBE/EFI FB device.
But the code is generic enough to be reused by other architectures and can
be moved out of the arch/x86 directory.
This will allow to also support the simple{fb,drm} drivers on non-x86 EFI
platforms, such as aarch64 where these drivers are only supported with DT.
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20210625130947.1803678-2-javierm@redhat.com
We have a number of systems industry-wide that have a subset of their
functionality that works as follows:
1. Receive a message from local kmsg, serial console, or netconsole;
2. Apply a set of rules to classify the message;
3. Do something based on this classification (like scheduling a
remediation for the machine), rinse, and repeat.
As a couple of examples of places we have this implemented just inside
Facebook, although this isn't a Facebook-specific problem, we have this
inside our netconsole processing (for alarm classification), and as part
of our machine health checking. We use these messages to determine
fairly important metrics around production health, and it's important
that we get them right.
While for some kinds of issues we have counters, tracepoints, or metrics
with a stable interface which can reliably indicate the issue, in order
to react to production issues quickly we need to work with the interface
which most kernel developers naturally use when developing: printk.
Most production issues come from unexpected phenomena, and as such
usually the code in question doesn't have easily usable tracepoints or
other counters available for the specific problem being mitigated. We
have a number of lines of monitoring defence against problems in
production (host metrics, process metrics, service metrics, etc), and
where it's not feasible to reliably monitor at another level, this kind
of pragmatic netconsole monitoring is essential.
As one would expect, monitoring using printk is rather brittle for a
number of reasons -- most notably that the message might disappear
entirely in a new version of the kernel, or that the message may change
in some way that the regex or other classification methods start to
silently fail.
One factor that makes this even harder is that, under normal operation,
many of these messages are never expected to be hit. For example, there
may be a rare hardware bug which one wants to detect if it was to ever
happen again, but its recurrence is not likely or anticipated. This
precludes using something like checking whether the printk in question
was printed somewhere fleetwide recently to determine whether the
message in question is still present or not, since we don't anticipate
that it should be printed anywhere, but still need to monitor for its
future presence in the long-term.
This class of issue has happened on a number of occasions, causing
unhealthy machines with hardware issues to remain in production for
longer than ideal. As a recent example, some monitoring around
blk_update_request fell out of date and caused semi-broken machines to
remain in production for longer than would be desirable.
Searching through the codebase to find the message is also extremely
fragile, because many of the messages are further constructed beyond
their callsite (eg. btrfs_printk and other module-specific wrappers,
each with their own functionality). Even if they aren't, guessing the
format and formulation of the underlying message based on the aesthetics
of the message emitted is not a recipe for success at scale, and our
previous issues with fleetwide machine health checking demonstrate as
much.
This provides a solution to the issue of silently changed or deleted
printks: we record pointers to all printk format strings known at
compile time into a new .printk_index section, both in vmlinux and
modules. At runtime, this can then be iterated by looking at
<debugfs>/printk/index/<module>, which emits the following format, both
readable by humans and able to be parsed by machines:
$ head -1 vmlinux; shuf -n 5 vmlinux
# <level[,flags]> filename:line function "format"
<5> block/blk-settings.c:661 disk_stack_limits "%s: Warning: Device %s is misaligned\n"
<4> kernel/trace/trace.c:8296 trace_create_file "Could not create tracefs '%s' entry\n"
<6> arch/x86/kernel/hpet.c:144 _hpet_print_config "hpet: %s(%d):\n"
<6> init/do_mounts.c:605 prepare_namespace "Waiting for root device %s...\n"
<6> drivers/acpi/osl.c:1410 acpi_no_auto_serialize_setup "ACPI: auto-serialization disabled\n"
This mitigates the majority of cases where we have a highly-specific
printk which we want to match on, as we can now enumerate and check
whether the format changed or the printk callsite disappeared entirely
in userspace. This allows us to catch changes to printks we monitor
earlier and decide what to do about it before it becomes problematic.
There is no additional runtime cost for printk callers or printk itself,
and the assembly generated is exactly the same.
Signed-off-by: Chris Down <chris@chrisdown.name>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Tested-by: Petr Mladek <pmladek@suse.com>
Reported-by: kernel test robot <lkp@intel.com>
Acked-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Acked-by: Jessica Yu <jeyu@kernel.org> # for module.{c,h}
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/e42070983637ac5e384f17fbdbe86d19c7b212a5.1623775748.git.chris@chrisdown.name
Commit dce7cd6275 ("x86/hyperv: Allow guests to enable InvariantTSC")
added the support for HV_X64_MSR_TSC_INVARIANT_CONTROL. Setting bit 0
of this synthetic MSR will allow hyper-v guests to report invariant TSC
CPU feature through CPUID. This comment adds this explanation to the code
and mentions where the Intel's generic platform init code reads this
feature bit from CPUID. The comment will help developers understand how
the two parts of the initialization (hyperV specific and non-hyperV
specific generic hw init) are related.
Signed-off-by: Ani Sinha <ani@anisinha.ca>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20210716133245.3272672-1-ani@anisinha.ca
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Architecture independent Hyper-V code calls various arch-specific handlers
when needed. To aid in supporting multiple architectures, provide weak
defaults that can be overridden by arch-specific implementations where
appropriate. But when arch-specific overrides aren't needed or haven't
been implemented yet for a particular architecture, these stubs reduce
the amount of clutter under arch/.
No functional change.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1626287687-2045-3-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
The code to allocate and initialize the hv_vp_index array is
architecture neutral. Similarly, the code to allocate and
populate the hypercall input and output arg pages is architecture
neutral. Move both sets of code out from arch/x86 and into
utility functions in drivers/hv/hv_common.c that can be shared
by Hyper-V initialization on ARM64.
No functional changes. However, the allocation of the hypercall
input and output arg pages is done differently so that the
size is always the Hyper-V page size, even if not the same as
the guest page size (such as with ARM64's 64K page size).
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1626287687-2045-2-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Marking TSC as unstable has a side effect of marking sched_clock as
unstable when TSC is still being used as the sched_clock. This is not
desirable. Hyper-V ultimately uses a paravirtualized clock source that
provides a stable scheduler clock even on systems without TscInvariant
CPU capability. Hence, mark_tsc_unstable() call should be called _after_
scheduler clock has been changed to the paravirtualized clocksource. This
will prevent any unwanted manipulation of the sched_clock. Only TSC will
be correctly marked as unstable.
Signed-off-by: Ani Sinha <ani@anisinha.ca>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20210713030522.1714803-1-ani@anisinha.ca
Signed-off-by: Wei Liu <wei.liu@kernel.org>
In randconfig testing, certain UBSAN and CC Kconfig combinations
with GCC 10.3.0:
CONFIG_X86_32=y
CONFIG_CC_OPTIMIZE_FOR_SIZE=y
CONFIG_UBSAN=y
# CONFIG_UBSAN_TRAP is not set
# CONFIG_UBSAN_BOUNDS is not set
CONFIG_UBSAN_SHIFT=y
# CONFIG_UBSAN_DIV_ZERO is not set
CONFIG_UBSAN_UNREACHABLE=y
CONFIG_UBSAN_BOOL=y
# CONFIG_UBSAN_ENUM is not set
# CONFIG_UBSAN_ALIGNMENT is not set
# CONFIG_UBSAN_SANITIZE_ALL is not set
... produce this build warning (and build error if
CONFIG_SECTION_MISMATCH_WARN_ONLY=y is set):
WARNING: modpost: vmlinux.o(.text+0x4c1cc): Section mismatch in reference from the function __jump_label_transform() to the function .init.text:text_poke_early()
The function __jump_label_transform() references
the function __init text_poke_early().
This is often because __jump_label_transform lacks a __init
annotation or the annotation of text_poke_early is wrong.
ERROR: modpost: Section mismatches detected.
The problem is that __jump_label_transform() gets uninlined by GCC,
despite there being only a single local scope user of the 'static inline'
function.
Mark the function __always_inline instead, to work around this compiler
bug/artifact.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fpu updates from Thomas Gleixner:
"Fixes and improvements for FPU handling on x86:
- Prevent sigaltstack out of bounds writes.
The kernel unconditionally writes the FPU state to the alternate
stack without checking whether the stack is large enough to
accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space
data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never
been updated despite the fact that the FPU state which is stored on
the signal stack has grown over time which causes trouble in the
field when AVX512 is available on a CPU. The kernel does not expose
the minimum requirements for the alternate stack size depending on
the available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well.
- A major cleanup of the x86 FPU code. The recent discoveries of
XSTATE related issues unearthed quite some inconsistencies,
duplicated code and other issues.
The fine granular overhaul addresses this, makes the code more
robust and maintainable, which allows to integrate upcoming XSTATE
related features in sane ways"
* tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again
x86/fpu/signal: Let xrstor handle the features to init
x86/fpu/signal: Handle #PF in the direct restore path
x86/fpu: Return proper error codes from user access functions
x86/fpu/signal: Split out the direct restore code
x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing()
x86/fpu/signal: Sanitize the xstate check on sigframe
x86/fpu/signal: Remove the legacy alignment check
x86/fpu/signal: Move initial checks into fpu__restore_sig()
x86/fpu: Mark init_fpstate __ro_after_init
x86/pkru: Remove xstate fiddling from write_pkru()
x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate()
x86/fpu: Remove PKRU handling from switch_fpu_finish()
x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
x86/fpu: Hook up PKRU into ptrace()
x86/fpu: Add PKRU storage outside of task XSAVE buffer
x86/fpu: Dont restore PKRU in fpregs_restore_userspace()
x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi()
x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs()
x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs()
...
Pull tracing updates from Steven Rostedt:
- Added option for per CPU threads to the hwlat tracer
- Have hwlat tracer handle hotplug CPUs
- New tracer: osnoise, that detects latency caused by interrupts,
softirqs and scheduling of other tasks.
- Added timerlat tracer that creates a thread and measures in detail
what sources of latency it has for wake ups.
- Removed the "success" field of the sched_wakeup trace event. This has
been hardcoded as "1" since 2015, no tooling should be looking at it
now. If one exists, we can revert this commit, fix that tool and try
to remove it again in the future.
- tgid mapping fixed to handle more than PID_MAX_DEFAULT pids/tgids.
- New boot command line option "tp_printk_stop", as tp_printk causes
trace events to write to console. When user space starts, this can
easily live lock the system. Having a boot option to stop just after
boot up is useful to prevent that from happening.
- Have ftrace_dump_on_oops boot command line option take numbers that
match the numbers shown in /proc/sys/kernel/ftrace_dump_on_oops.
- Bootconfig clean ups, fixes and enhancements.
- New ktest script that tests bootconfig options.
- Add tracepoint_probe_register_may_exist() to register a tracepoint
without triggering a WARN*() if it already exists. BPF has a path
from user space that can do this. All other paths are considered a
bug.
- Small clean ups and fixes
* tag 'trace-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (49 commits)
tracing: Resize tgid_map to pid_max, not PID_MAX_DEFAULT
tracing: Simplify & fix saved_tgids logic
treewide: Add missing semicolons to __assign_str uses
tracing: Change variable type as bool for clean-up
trace/timerlat: Fix indentation on timerlat_main()
trace/osnoise: Make 'noise' variable s64 in run_osnoise()
tracepoint: Add tracepoint_probe_register_may_exist() for BPF tracing
tracing: Fix spelling in osnoise tracer "interferences" -> "interference"
Documentation: Fix a typo on trace/osnoise-tracer
trace/osnoise: Fix return value on osnoise_init_hotplug_support
trace/osnoise: Make interval u64 on osnoise_main
trace/osnoise: Fix 'no previous prototype' warnings
tracing: Have osnoise_main() add a quiescent state for task rcu
seq_buf: Make trace_seq_putmem_hex() support data longer than 8
seq_buf: Fix overflow in seq_buf_putmem_hex()
trace/osnoise: Support hotplug operations
trace/hwlat: Support hotplug operations
trace/hwlat: Protect kdata->kthread with get/put_online_cpus
trace: Add timerlat tracer
trace: Add osnoise tracer
...
Merge more updates from Andrew Morton:
"190 patches.
Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
signals, exec, kcov, selftests, compress/decompress, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
ipc/util.c: use binary search for max_idx
ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
ipc: use kmalloc for msg_queue and shmid_kernel
ipc sem: use kvmalloc for sem_undo allocation
lib/decompressors: remove set but not used variabled 'level'
selftests/vm/pkeys: exercise x86 XSAVE init state
selftests/vm/pkeys: refill shadow register after implicit kernel write
selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
kcov: add __no_sanitize_coverage to fix noinstr for all architectures
exec: remove checks in __register_bimfmt()
x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
hfsplus: report create_date to kstat.btime
hfsplus: remove unnecessary oom message
nilfs2: remove redundant continue statement in a while-loop
kprobes: remove duplicated strong free_insn_page in x86 and s390
init: print out unknown kernel parameters
checkpatch: do not complain about positive return values starting with EPOLL
checkpatch: improve the indented label test
checkpatch: scripts/spdxcheck.py now requires python3
...
Pull drm updates from Dave Airlie:
"Highlights:
- AMD enables two more GPUs, with resulting header files
- i915 has started to move to TTM for discrete GPU and enable DG1
discrete GPU support (not by default yet)
- new HyperV drm driver
- vmwgfx adds arm64 support
- TTM refactoring ongoing
- 16bpc display support for AMD hw
Otherwise it's just the usual insane amounts of work all over the
place in lots of drivers and the core, as mostly summarised below:
Core:
- mark AGP ioctls as legacy
- disable force probing for non-master clients
- HDR metadata property helpers
- HDMI infoframe signal colorimetry support
- remove drm_device.pdev pointer
- remove DRM_KMS_FB_HELPER config option
- remove drm_pci_alloc/free
- drm_err_*/drm_dbg_* helpers
- use drm driver names for fbdev
- leaked DMA handle fix
- 16bpc fixed point format fourcc
- add prefetching memcpy for WC
- Documentation fixes
aperture:
- add aperture ownership helpers
dp:
- aux fixes
- downstream 0 port handling
- use extended base receiver capability DPCD
- Rename DP_PSR_SELECTIVE_UPDATE to better mach eDP spec
- mst: use khz as link rate during init
- VCPI fixes for StarTech hub
ttm:
- provide tt_shrink file via debugfs
- warn about freeing pinned BOs
- fix swapping error handling
- move page alignment into BO
- cleanup ttm_agp_backend
- add ttm_sys_manager
- don't override vm_ops
- ttm_bo_mmap removed
- make ttm_resource base of all managers
- remove VM_MIXEDMAP usage
panel:
- sysfs_emit support
- simple: runtime PM support
- simple: power up panel when reading EDID + caching
bridge:
- MHDP8546: HDCP support + DT bindings
- MHDP8546: Register DP AUX channel with userspace
- TI SN65DSI83 + SN65DSI84: add driver
- Sil8620: Fix module dependencies
- dw-hdmi: make CEC driver loading optional
- Ti-sn65dsi86: refclk fixes, subdrivers, runtime pm
- It66121: Add driver + DT bindings
- Adv7511: Support I2S IEC958 encoding
- Anx7625: fix power-on delay
- Nwi-dsi: Modesetting fixes; Cleanups
- lt6911: add missing MODULE_DEVICE_TABLE
- cdns: fix PM reference leak
hyperv:
- add new DRM driver for HyperV graphics
efifb:
- non-PCI device handling fixes
i915:
- refactor IP/device versioning
- XeLPD Display IP preperation work
- ADL-P enablement patches
- DG1 uAPI behind BROKEN
- disable mmap ioctl for discerte GPUs
- start enabling HuC loading for Gen12+
- major GuC backend rework for new platforms
- initial TTM support for Discrete GPUs
- locking rework for TTM prep
- use correct max source link rate for eDP
- %p4cc format printing
- GLK display fixes
- VLV DSI panel power fixes
- PSR2 disabled for RKL and ADL-S
- ACPI _DSM invalid access fixed
- DMC FW path abstraction
- ADL-S PCI ID update
- uAPI headers converted to kerneldoc
- initial LMEM support for DG1
- x86/gpu: add Jasperlake to gen11 early quirks
amdgpu:
- Aldebaran updates + initial SR-IOV
- new GPU: Beige Goby and Yellow Carp support
- more LTTPR display work
- Vangogh updates
- SDMA 5.x GCR fixes
- PCIe ASPM support
- Renoir TMZ enablement
- initial multiple eDP panel support
- use fdinfo to track devices/process info
- pin/unpin TTM fixes
- free resource on fence usage query
- fix fence calculation
- fix hotunplug/suspend issues
- GC/MM register access macro cleanup for SR-IOV
- W=1 fixes
- ACPI ATCS/ATIF handling rework
- 16bpc fixed point format support
- Initial smartshift support
- RV/PCO power tuning fixes
- new INFO query for additional vbios info
amdkfd:
- SR-IOV aldebaran support
- HMM SVM support
radeon:
- SMU regression fixes
- Oland flickering fix
vmwgfx:
- enable console with fbdev emulation
- fix cpu updates of coherent multisample surfaces
- remove reservation semaphore
- add initial SVGA3 support
- support arm64
msm:
- devcoredump support for display errors
- dpu/dsi: yaml bindings conversion
- mdp5: alpha/blend_mode/zpos support
- a6xx: cached coherent buffer support
- gpu iova fault improvement
- a660 support
rockchip:
- RK3036 win1 scaling support
- RK3066/3188 missing register support
- RK3036/3066/3126/3188 alpha support
mediatek:
- MT8167 HDMI support
- MT8183 DPI dual edge support
tegra:
- fixed YUV support/scaling on Tegra186+
ast:
- use pcim_iomap
- fix DP501 EDID
bochs:
- screen blanking support
etnaviv:
- export more GPU ID values to userspace
- add HWDB entry for GPU on i.MX8MP
- rework linear window calcs
exynos:
- pm runtime changes
imx:
- Annotate dma_fence critical section
- fix PRG modifiers after drmm conversion
- Add 8 pixel alignment fix for 1366x768
- fix YUV advertising
- add color properties
ingenic:
- IPU planes fix
panfrost:
- Mediatek MT8183 support + DT bindings
- export AFBC_FEATURES register to userspace
simpledrm:
- %pr for printing resources
nouveau:
- pin/unpin TTM fixes
qxl:
- unpin shadow BO
virtio:
- create dumb BOs as guest blob
vkms:
- drmm_universal_plane_alloc
- add XRGB plane composition
- overlay support"
* tag 'drm-next-2021-07-01' of git://anongit.freedesktop.org/drm/drm: (1570 commits)
drm/i915: Reinstate the mmap ioctl for some platforms
drm/i915/dsc: abstract helpers to get bigjoiner primary/secondary crtc
Revert "drm/msm/mdp5: provide dynamic bandwidth management"
drm/msm/mdp5: provide dynamic bandwidth management
drm/msm/mdp5: add perf blocks for holding fudge factors
drm/msm/mdp5: switch to standard zpos property
drm/msm/mdp5: add support for alpha/blend_mode properties
drm/msm/mdp5: use drm_plane_state for pixel blend mode
drm/msm/mdp5: use drm_plane_state for storing alpha value
drm/msm/mdp5: use drm atomic helpers to handle base drm plane state
drm/msm/dsi: do not enable PHYs when called for the slave DSI interface
drm/msm: Add debugfs to trigger shrinker
drm/msm/dpu: Avoid ABBA deadlock between IRQ modules
drm/msm: devcoredump iommu fault support
iommu/arm-smmu-qcom: Add stall support
drm/msm: Improve the a6xx page fault handler
iommu/arm-smmu-qcom: Add an adreno-smmu-priv callback to get pagefault info
iommu/arm-smmu: Add support for driver IOMMU fault handlers
drm/msm: export hangcheck_period in debugfs
drm/msm/a6xx: add support for Adreno 660 GPU
...
Merge misc updates from Andrew Morton:
"191 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, kernel/watchdog, and mm (gup, pagealloc, slab,
slub, kmemleak, dax, debug, pagecache, gup, swap, memcg, pagemap,
mprotect, bootmem, dma, tracing, vmalloc, kasan, initialization,
pagealloc, and memory-failure)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (191 commits)
mm,hwpoison: make get_hwpoison_page() call get_any_page()
mm,hwpoison: send SIGBUS with error virutal address
mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes
mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
docs: remove description of DISCONTIGMEM
arch, mm: remove stale mentions of DISCONIGMEM
mm: remove CONFIG_DISCONTIGMEM
m68k: remove support for DISCONTIGMEM
arc: remove support for DISCONTIGMEM
arc: update comment about HIGHMEM implementation
alpha: remove DISCONTIGMEM and NUMA
mm/page_alloc: move free_the_page
mm/page_alloc: fix counting of managed_pages
mm/page_alloc: improve memmap_pages dbg msg
mm: drop SECTION_SHIFT in code comments
mm/page_alloc: introduce vm.percpu_pagelist_high_fraction
mm/page_alloc: limit the number of pages on PCP lists when reclaim is active
mm/page_alloc: scale the number of pages that are batch freed
...
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to the 20210604 upstream
revision, add preliminary support for the Platform Runtime Mechanism
(PRM), address issues related to the handling of device dependencies
in the ACPI device eunmeration code, improve the tracking of ACPI
power resource states, improve the ACPI support for suspend-to-idle on
AMD systems, continue the unification of message printing in the ACPI
code, address assorted issues and clean up the code in a number of
places.
Specifics:
- Update ACPICA code in the kernel to upstrea revision 20210604
including the following changes:
- Add defines for the CXL Host Bridge Structureand and add the
CFMWS structure definition to CEDT (Alison Schofield).
- iASL: Finish support for the IVRS ACPI table (Bob Moore).
- iASL: Add support for the SVKL table (Bob Moore).
- iASL: Add full support for RGRT ACPI table (Bob Moore).
- iASL: Add support for the BDAT ACPI table (Bob Moore).
- iASL: add disassembler support for PRMT (Erik Kaneda).
- Fix memory leak caused by _CID repair function (Erik Kaneda).
- Add support for PlatformRtMechanism OpRegion (Erik Kaneda).
- Add PRMT module header to facilitate parsing (Erik Kaneda).
- Add _PLD panel positions (Fabian Wüthrich).
- MADT: add Multiprocessor Wakeup Mailbox Structure and the SVKL
table headers (Kuppuswamy Sathyanarayanan).
- Use ACPI_FALLTHROUGH (Wei Ming Chen).
- Add preliminary support for the Platform Runtime Mechanism (PRM) to
allow the AML interpreter to call PRM functions (Erik Kaneda).
- Address some issues related to the handling of device dependencies
reported by _DEP in the ACPI device enumeration code and clean up
some related pieces of it (Rafael Wysocki).
- Improve the tracking of states of ACPI power resources (Rafael
Wysocki).
- Improve ACPI support for suspend-to-idle on AMD systems (Alex
Deucher, Mario Limonciello, Pratik Vishwakarma).
- Continue the unification and cleanup of message printing in the
ACPI code (Hanjun Guo, Heiner Kallweit).
- Fix possible buffer overrun issue with the description_show() sysfs
attribute method (Krzysztof Wilczyński).
- Improve the acpi_mask_gpe kernel command line parameter handling
and clean up the core ACPI code related to sysfs (Andy Shevchenko,
Baokun Li, Clayton Casciato).
- Postpone bringing devices in the general ACPI PM domain to D0
during resume from system-wide suspend until they are really needed
(Dmitry Torokhov).
- Make the ACPI processor driver fix up C-state latency if not
ordered (Mario Limonciello).
- Add support for identifying devices depening on the given one that
are not its direct descendants with the help of _DEP (Daniel
Scally).
- Extend the checks related to ACPI IRQ overrides on x86 in order to
avoid false-positives (Hui Wang).
- Add battery DPTF participant for Intel SoCs (Sumeet Pawnikar).
- Rearrange the ACPI fan driver and device power management code to
use a common list of device IDs (Rafael Wysocki).
- Fix clang CFI violation in the ACPI BGRT table parsing code and
clean it up (Nathan Chancellor).
- Add GPE-related quirks for some laptops to the EC driver (Chris
Chiu, Zhang Rui).
- Make the ACPI PPTT table parsing code populate the cache-id value
if present in the firmware (James Morse).
- Remove redundant clearing of context->ret.pointer from
acpi_run_osc() (Hans de Goede).
- Add missing acpi_put_table() in acpi_init_fpdt() (Jing Xiangfeng).
- Make ACPI APEI handle ARM Processor Error CPER records like Memory
Error ones to avoid user space task lockups (Xiaofei Tan).
- Stop warning about disabled ACPI in APEI (Jon Hunter).
- Fix fall-through warning for Clang in the SBSHC driver (Gustavo A.
R. Silva).
- Add custom DSDT file as Makefile prerequisite (Richard Fitzgerald).
- Initialize local variable to avoid garbage being returned (Colin
Ian King).
- Simplify assorted pieces of code, address assorted coding style and
documentation issues and comment typos (Baokun Li, Christophe
JAILLET, Clayton Casciato, Liu Shixin, Shaokun Zhang, Wei Yongjun,
Yang Li, Zhen Lei)"
* tag 'acpi-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (97 commits)
ACPI: PM: postpone bringing devices to D0 unless we need them
ACPI: tables: Add custom DSDT file as makefile prerequisite
ACPI: bgrt: Use sysfs_emit
ACPI: bgrt: Fix CFI violation
ACPI: EC: trust DSDT GPE for certain HP laptop
ACPI: scan: Simplify acpi_table_events_fn()
ACPI: PM: Adjust behavior for field problems on AMD systems
ACPI: PM: s2idle: Add support for new Microsoft UUID
ACPI: PM: s2idle: Add support for multiple func mask
ACPI: PM: s2idle: Refactor common code
ACPI: PM: s2idle: Use correct revision id
ACPI: sysfs: Remove tailing return statement in void function
ACPI: sysfs: Use __ATTR_RO() and __ATTR_RW() macros
ACPI: sysfs: Sort headers alphabetically
ACPI: sysfs: Refactor param_get_trace_state() to drop dead code
ACPI: sysfs: Unify pattern of memory allocations
ACPI: sysfs: Allow bitmap list to be supplied to acpi_mask_gpe
ACPI: sysfs: Make sparse happy about address space in use
ACPI: scan: Fix race related to dropping dependencies
ACPI: scan: Reorganize acpi_device_add()
...
Pull x86 interrupt related updates from Thomas Gleixner:
- Consolidate the VECTOR defines and the usage sites.
- Cleanup GDT/IDT related code and replace open coded ASM with proper
native helper functions.
* tag 'x86-irq-2021-06-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kexec: Set_[gi]dt() -> native_[gi]dt_invalidate() in machine_kexec_*.c
x86: Add native_[ig]dt_invalidate()
x86/idt: Remove address argument from idt_invalidate()
x86/irq: Add and use NR_EXTERNAL_VECTORS and NR_SYSTEM_VECTORS
x86/irq: Remove unused vectors defines
Pull timer updates from Thomas Gleixner:
"Time and clocksource/clockevent related updates:
Core changes:
- Infrastructure to support per CPU "broadcast" devices for per CPU
clockevent devices which stop in deep idle states. This allows us
to utilize the more efficient architected timer on certain ARM SoCs
for normal operation instead of permanentely using the slow to
access SoC specific clockevent device.
- Print the name of the broadcast/wakeup device in /proc/timer_list
- Make the clocksource watchdog more robust against delays between
reading the current active clocksource and the watchdog
clocksource. Such delays can be caused by NMIs, SMIs and vCPU
preemption.
Handle this by reading the watchdog clocksource twice, i.e. before
and after reading the current active clocksource. In case that the
two watchdog reads shows an excessive time delta, the read sequence
is repeated up to 3 times.
- Improve the debug output and add a test module for the watchdog
mechanism.
- Reimplementation of the venerable time64_to_tm() function with a
faster and significantly smaller version. Straight from the source,
i.e. the author of the related research paper contributed this!
Driver changes:
- No new drivers, not even new device tree bindings!
- Fixes, improvements and cleanups and all over the place"
* tag 'timers-core-2021-06-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
time/kunit: Add missing MODULE_LICENSE()
time: Improve performance of time64_to_tm()
clockevents: Use list_move() instead of list_del()/list_add()
clocksource: Print deviation in nanoseconds when a clocksource becomes unstable
clocksource: Provide kernel module to test clocksource watchdog
clocksource: Reduce clocksource-skew threshold
clocksource: Limit number of CPUs checked for clock synchronization
clocksource: Check per-CPU clock synchronization when marked unstable
clocksource: Retry clock read if long delays detected
clockevents: Add missing parameter documentation
clocksource/drivers/timer-ti-dm: Drop unnecessary restore
clocksource/arm_arch_timer: Improve Allwinner A64 timer workaround
clocksource/drivers/arm_global_timer: Remove duplicated argument in arm_global_timer
clocksource/drivers/arm_global_timer: Make symbol 'gt_clk_rate_change_nb' static
arm: zynq: don't disable CONFIG_ARM_GLOBAL_TIMER due to CONFIG_CPU_FREQ anymore
clocksource/drivers/arm_global_timer: Implement rate compensation whenever source clock changes
clocksource/drivers/ingenic: Rename unreasonable array names
clocksource/drivers/timer-ti-dm: Save and restore timer TIOCP_CFG
clocksource/drivers/mediatek: Ack and disable interrupts on suspend
clocksource/drivers/samsung_pwm: Constify source IO memory
...
Pull hyperv updates from Wei Liu:
"Just a few minor enhancement patches and bug fixes"
* tag 'hyperv-next-signed-20210629' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
PCI: hv: Add check for hyperv_initialized in init_hv_pci_drv()
Drivers: hv: Move Hyper-V extended capability check to arch neutral code
drivers: hv: Fix missing error code in vmbus_connect()
x86/hyperv: fix logical processor creation
hv_utils: Fix passing zero to 'PTR_ERR' warning
scsi: storvsc: Use blk_mq_unique_tag() to generate requestIDs
Drivers: hv: vmbus: Copy packets sent by Hyper-V out of the ring buffer
hv_balloon: Remove redundant assignment to region_start
* acpi-prm:
ACPI: PRM: make symbol 'prm_module_list' static
ACPI: Add \_SB._OSC bit for PRM
ACPI: PRM: implement OperationRegion handler for the PlatformRtMechanism subtype
* acpi-sysfs:
ACPI: sysfs: Remove tailing return statement in void function
ACPI: sysfs: Use __ATTR_RO() and __ATTR_RW() macros
ACPI: sysfs: Sort headers alphabetically
ACPI: sysfs: Refactor param_get_trace_state() to drop dead code
ACPI: sysfs: Unify pattern of memory allocations
ACPI: sysfs: Allow bitmap list to be supplied to acpi_mask_gpe
ACPI: sysfs: Make sparse happy about address space in use
ACPI: sysfs: fix doc warnings in device_sysfs.c
ACPI: sysfs: Drop four redundant return statements
ACPI: sysfs: Fix a buffer overrun problem with description_show()
* acpi-x86:
x86/acpi: Switch to pr_xxx log functions
Pull kvm updates from Paolo Bonzini:
"This covers all architectures (except MIPS) so I don't expect any
other feature pull requests this merge window.
ARM:
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration and
apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
PPC:
- Support for the H_RPT_INVALIDATE hypercall
- Conversion of Book3S entry/exit to C
- Bug fixes
S390:
- new HW facilities for guests
- make inline assembly more robust with KASAN and co
x86:
- Allow userspace to handle emulation errors (unknown instructions)
- Lazy allocation of the rmap (host physical -> guest physical
address)
- Support for virtualizing TSC scaling on VMX machines
- Optimizations to avoid shattering huge pages at the beginning of
live migration
- Support for initializing the PDPTRs without loading them from
memory
- Many TLB flushing cleanups
- Refuse to load if two-stage paging is available but NX is not (this
has been a requirement in practice for over a year)
- A large series that separates the MMU mode (WP/SMAP/SMEP etc.) from
CR0/CR4/EFER, using the MMU mode everywhere once it is computed
from the CPU registers
- Use PM notifier to notify the guest about host suspend or hibernate
- Support for passing arguments to Hyper-V hypercalls using XMM
registers
- Support for Hyper-V TLB flush hypercalls and enlightened MSR bitmap
on AMD processors
- Hide Hyper-V hypercalls that are not included in the guest CPUID
- Fixes for live migration of virtual machines that use the Hyper-V
"enlightened VMCS" optimization of nested virtualization
- Bugfixes (not many)
Generic:
- Support for retrieving statistics without debugfs
- Cleanups for the KVM selftests API"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (314 commits)
KVM: x86: rename apic_access_page_done to apic_access_memslot_enabled
kvm: x86: disable the narrow guest module parameter on unload
selftests: kvm: Allows userspace to handle emulation errors.
kvm: x86: Allow userspace to handle emulation errors
KVM: x86/mmu: Let guest use GBPAGES if supported in hardware and TDP is on
KVM: x86/mmu: Get CR4.SMEP from MMU, not vCPU, in shadow page fault
KVM: x86/mmu: Get CR0.WP from MMU, not vCPU, in shadow page fault
KVM: x86/mmu: Drop redundant rsvd bits reset for nested NPT
KVM: x86/mmu: Optimize and clean up so called "last nonleaf level" logic
KVM: x86: Enhance comments for MMU roles and nested transition trickiness
KVM: x86/mmu: WARN on any reserved SPTE value when making a valid SPTE
KVM: x86/mmu: Add helpers to do full reserved SPTE checks w/ generic MMU
KVM: x86/mmu: Use MMU's role to determine PTTYPE
KVM: x86/mmu: Collapse 32-bit PAE and 64-bit statements for helpers
KVM: x86/mmu: Add a helper to calculate root from role_regs
KVM: x86/mmu: Add helper to update paging metadata
KVM: x86/mmu: Don't update nested guest's paging bitmasks if CR0.PG=0
KVM: x86/mmu: Consolidate reset_rsvds_bits_mask() calls
KVM: x86/mmu: Use MMU role_regs to get LA57, and drop vCPU LA57 helper
KVM: x86/mmu: Get nested MMU's root level from the MMU's role
...
Pull x86 splitlock updates from Ingo Molnar:
- Add the "ratelimit:N" parameter to the split_lock_detect= boot
option, to rate-limit the generation of bus-lock exceptions.
This is both easier on system resources and kinder to offending
applications than the current policy of outright killing them.
- Document the split-lock detection feature and its parameters.
* tag 'x86-splitlock-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Add ratelimit in buslock.rst
Documentation/admin-guide: Add bus lock ratelimit
x86/bus_lock: Set rate limit for bus lock
Documentation/x86: Add buslock.rst
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups & removal of obsolete code"
* tag 'x86-cleanups-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Correct kernel-doc's arg name in sgx_encl_release()
doc: Remove references to IBM Calgary
x86/setup: Document that Windows reserves the first MiB
x86/crash: Remove crash_reserve_low_1M()
x86/setup: Remove CONFIG_X86_RESERVE_LOW and reservelow= options
x86/alternative: Align insn bytes vertically
x86: Fix leftover comment typos
x86/asm: Simplify __smp_mb() definition
x86/alternatives: Make the x86nops[] symbol static
Pull x86 resource control documentation fixes from Ingo Molnar:
"Fix Docbook comments in the x86/resctrl code"
* tag 'x86-cache-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix kernel-doc in internal.h
x86/resctrl: Fix kernel-doc in pseudo_lock.c
Pull x86 asm updates from Ingo Molnar:
- Micro-optimize and standardize the do_syscall_64() calling convention
- Make syscall entry flags clearing more conservative
- Clean up syscall table handling
- Clean up & standardize assembly macros, in preparation of FRED
- Misc cleanups and fixes
* tag 'x86-asm-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm: Make <asm/asm.h> valid on cross-builds as well
x86/regs: Syscall_get_nr() returns -1 for a non-system call
x86/entry: Split PUSH_AND_CLEAR_REGS into two submacros
x86/syscall: Maximize MSR_SYSCALL_MASK
x86/syscall: Unconditionally prototype {ia32,x32}_sys_call_table[]
x86/entry: Reverse arguments to do_syscall_64()
x86/entry: Unify definitions from <asm/calling.h> and <asm/ptrace-abi.h>
x86/asm: Use _ASM_BYTES() in <asm/nops.h>
x86/asm: Add _ASM_BYTES() macro for a .byte ... opcode sequence
x86/asm: Have the __ASM_FORM macros handle commas in arguments
Pull x86 exception handling updates from Ingo Molnar:
- Clean up & simplify AP exception handling setup.
- Consolidate the disjoint IDT setup code living in idt_setup_traps()
and idt_setup_ist_traps() into a single idt_setup_traps()
initialization function and call it before cpu_init().
* tag 'x86-apic-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/idt: Rework IDT setup for boot CPU
x86/cpu: Init AP exception handling from cpu_init_secondary()
Pull scheduler udpates from Ingo Molnar:
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow the
flexible utilization of SMT siblings, without exposing untrusted
domains to information leaks & side channels, plus to ensure more
deterministic computing performance on SMT systems used by
heterogenous workloads.
There are new prctls to set core scheduling groups, which allows
more flexible management of workloads that can share siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve 'memcache'-like
workloads.
- "Age" (decay) average idle time, to better track & improve
workloads such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked via
/sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable it at
runtime if tooling needs it. Use static keys and other
optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
* tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/doc: Update the CPU capacity asymmetry bits
sched/topology: Rework CPU capacity asymmetry detection
sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag
psi: Fix race between psi_trigger_create/destroy
sched/fair: Introduce the burstable CFS controller
sched/uclamp: Fix uclamp_tg_restrict()
sched/rt: Fix Deadline utilization tracking during policy change
sched/rt: Fix RT utilization tracking during policy change
sched: Change task_struct::state
sched,arch: Remove unused TASK_STATE offsets
sched,timer: Use __set_current_state()
sched: Add get_current_state()
sched,perf,kvm: Fix preemption condition
sched: Introduce task_is_running()
sched: Unbreak wakeups
sched/fair: Age the average idle time
sched/cpufreq: Consider reduced CPU capacity in energy calculation
sched/fair: Take thermal pressure into account while estimating energy
thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure
sched/fair: Return early from update_tg_cfs_load() if delta == 0
...
Pull perf events updates from Ingo Molnar:
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
* tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix task context PMU for Hetero
perf/x86/intel: Fix instructions:ppp support in Sapphire Rapids
perf/x86/intel: Add more events requires FRONTEND MSR on Sapphire Rapids
perf/x86/intel: Fix fixed counter check warning for some Alder Lake
perf/x86/intel: Fix PEBS-via-PT reload base value for Extended PEBS
perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
kprobes: Do not increment probe miss count in the fault handler
x86,kprobes: WARN if kprobes tries to handle a fault
kprobes: Remove kprobe::fault_handler
uprobes: Update uprobe_write_opcode() kernel-doc comment
perf/hw_breakpoint: Fix DocBook warnings in perf hw_breakpoint
perf/core: Fix DocBook warnings
perf/core: Make local function perf_pmu_snapshot_aux() static
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on ICX
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on SNR
perf/x86/intel/uncore: Generalize I/O stacks to PMON mapping procedure
perf/x86/intel/uncore: Drop unnecessary NULL checks after container_of()
Pull objtool fix and updates from Ingo Molnar:
"An ELF format fix for a section flags mismatch bug that breaks kernel
tooling such as kpatch-build.
The biggest change in this cycle is the new code to handle and rewrite
variable sized jump labels - which results in slightly tighter code
generation in hot paths, through the use of short(er) NOPs.
Also a number of cleanups and fixes, and a change to the generic
include/linux/compiler.h to handle a s390 GCC quirk"
* tag 'objtool-urgent-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Don't make .altinstructions writable
* tag 'objtool-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Improve reloc hash size guestimate
instrumentation.h: Avoid using inline asm operand modifiers
compiler.h: Avoid using inline asm operand modifiers
kbuild: Fix objtool dependency for 'OBJECT_FILES_NON_STANDARD_<obj> := n'
objtool: Reflow handle_jump_alt()
jump_label/x86: Remove unused JUMP_LABEL_NOP_SIZE
jump_label, x86: Allow short NOPs
objtool: Provide stats for jump_labels
objtool: Rewrite jump_label instructions
objtool: Decode jump_entry::key addend
jump_label, x86: Emit short JMP
jump_label: Free jump_entry::key bit1 for build use
jump_label, x86: Add variable length patching support
jump_label, x86: Introduce jump_entry_size()
jump_label, x86: Improve error when we fail expected text
jump_label, x86: Factor out the __jump_table generation
jump_label, x86: Strip ASM jump_label support
x86, objtool: Dont exclude arch/x86/realmode/
objtool: Rewrite hashtable sizing
Pull x86 SEV updates from Borislav Petkov:
- Differentiate the type of exception the #VC handler raises depending
on code executed in the guest and handle the case where failure to
get the RIP would result in a #GP, as it should, instead of in a #PF
- Disable interrupts while the per-CPU GHCB is held
- Split the #VC handler depending on where the #VC exception has
happened and therefore provide for precise context tracking like the
rest of the exception handlers deal with noinstr regions now
- Add defines for the GHCB version 2 protocol so that further shared
development with KVM can happen without merge conflicts
- The usual small cleanups
* tag 'x86_sev_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sev: Use "SEV: " prefix for messages from sev.c
x86/sev: Add defines for GHCB version 2 MSR protocol requests
x86/sev: Split up runtime #VC handler for correct state tracking
x86/sev: Make sure IRQs are disabled while GHCB is active
x86/sev: Propagate #GP if getting linear instruction address failed
x86/insn: Extend error reporting from insn_fetch_from_user[_inatomic]()
x86/insn-eval: Make 0 a valid RIP for insn_get_effective_ip()
x86/sev: Fix error message in runtime #VC handler
Pull x86 cpu updates from Borislav Petkov:
- New AMD models support
- Allow MONITOR/MWAIT to be used for C1 state entry on Hygon too
- Use the special RAPL CPUID bit to detect the functionality on AMD and
Hygon instead of doing family matching.
- Add support for new Intel microcode deprecating TSX on some models
and do not enable kernel workarounds for those CPUs when TSX
transactions always abort, as a result of that microcode update.
* tag 'x86_cpu_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tsx: Clear CPUID bits when TSX always force aborts
x86/events/intel: Do not deploy TSX force abort workaround when TSX is deprecated
x86/msr: Define new bits in TSX_FORCE_ABORT MSR
perf/x86/rapl: Use CPUID bit on AMD and Hygon parts
x86/cstate: Allow ACPI C1 FFH MWAIT use on Hygon systems
x86/amd_nb: Add AMD family 19h model 50h PCI ids
x86/cpu: Fix core name for Sapphire Rapids
Pull x86 RAS updates from Borislav Petkov:
- Add the required information to the faked APEI-reported mem error so
that the kernel properly attempts to offline the corresponding page,
as it does for kernel-detected correctable errors.
- Fix a typo in AMD's error descriptions.
* tag 'ras_core_for_v5.14_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/mce_amd: Fix typo "FIfo" -> "Fifo"
x86/mce: Include a MCi_MISC value in faked mce logs
x86/MCE/AMD, EDAC/mce_amd: Add new SMCA bank types
In the context of high-performance computing (HPC), the Operating System
Noise (*osnoise*) refers to the interference experienced by an application
due to activities inside the operating system. In the context of Linux,
NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the
system. Moreover, hardware-related jobs can also cause noise, for example,
via SMIs.
The osnoise tracer leverages the hwlat_detector by running a similar
loop with preemption, SoftIRQs and IRQs enabled, thus allowing all
the sources of *osnoise* during its execution. Using the same approach
of hwlat, osnoise takes note of the entry and exit point of any
source of interferences, increasing a per-cpu interference counter. The
osnoise tracer also saves an interference counter for each source of
interference. The interference counter for NMI, IRQs, SoftIRQs, and
threads is increased anytime the tool observes these interferences' entry
events. When a noise happens without any interference from the operating
system level, the hardware noise counter increases, pointing to a
hardware-related noise. In this way, osnoise can account for any
source of interference. At the end of the period, the osnoise tracer
prints the sum of all noise, the max single noise, the percentage of CPU
available for the thread, and the counters for the noise sources.
Usage
Write the ASCII text "osnoise" into the current_tracer file of the
tracing system (generally mounted at /sys/kernel/tracing).
For example::
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
It is possible to follow the trace by reading the trace trace file::
[root@f32 tracing]# cat trace
# tracer: osnoise
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth MAX
# || / SINGLE Interference counters:
# |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+
# TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
# | | | |||| | | | | | | | | | |
<...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
<...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
<...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
<...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
<...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
<...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
<...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
<...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19
In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the
tracer prints a message at the end of each period for each CPU that is
running an osnoise/CPU thread. The osnoise specific fields report:
- The RUNTIME IN USE reports the amount of time in microseconds that
the osnoise thread kept looping reading the time.
- The NOISE IN US reports the sum of noise in microseconds observed
by the osnoise tracer during the associated runtime.
- The % OF CPU AVAILABLE reports the percentage of CPU available for
the osnoise thread during the runtime window.
- The MAX SINGLE NOISE IN US reports the maximum single noise observed
during the runtime window.
- The Interference counters display how many each of the respective
interference happened during the runtime window.
Note that the example above shows a high number of HW noise samples.
The reason being is that this sample was taken on a virtual machine,
and the host interference is detected as a hardware interference.
Tracer options
The tracer has a set of options inside the osnoise directory, they are:
- osnoise/cpus: CPUs at which a osnoise thread will execute.
- osnoise/period_us: the period of the osnoise thread.
- osnoise/runtime_us: how long an osnoise thread will look for noise.
- osnoise/stop_tracing_us: stop the system tracing if a single noise
higher than the configured value happens. Writing 0 disables this
option.
- osnoise/stop_tracing_total_us: stop the system tracing if total noise
higher than the configured value happens. Writing 0 disables this
option.
- tracing_threshold: the minimum delta between two time() reads to be
considered as noise, in us. When set to 0, the default value will
be used, which is currently 5 us.
Additional Tracing
In addition to the tracer, a set of tracepoints were added to
facilitate the identification of the osnoise source.
- osnoise:sample_threshold: printed anytime a noise is higher than
the configurable tolerance_ns.
- osnoise:nmi_noise: noise from NMI, including the duration.
- osnoise:irq_noise: noise from an IRQ, including the duration.
- osnoise:softirq_noise: noise from a SoftIRQ, including the
duration.
- osnoise:thread_noise: noise from a thread, including the duration.
Note that all the values are *net values*. For example, if while osnoise
is running, another thread preempts the osnoise thread, it will start a
thread_noise duration at the start. Then, an IRQ takes place, preempting
the thread_noise, starting a irq_noise. When the IRQ ends its execution,
it will compute its duration, and this duration will be subtracted from
the thread_noise, in such a way as to avoid the double accounting of the
IRQ execution. This logic is valid for all sources of noise.
Here is one example of the usage of these tracepoints::
osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns
osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns
migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns
osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2
In this example, a noise sample of 8 microseconds was reported in the last
line, pointing to two interferences. Looking backward in the trace, the
two previous entries were about the migration thread running after a
timer IRQ execution. The first event is not part of the noise because
it took place one millisecond before.
It is worth noticing that the sum of the duration reported in the
tracepoints is smaller than eight us reported in the sample_threshold.
The reason roots in the overhead of the entry and exit code that happens
before and after any interference execution. This justifies the dual
approach: measuring thread and tracing.
Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
[
Made the following functions static:
trace_irqentry_callback()
trace_irqexit_callback()
trace_intel_irqentry_callback()
trace_intel_irqexit_callback()
Added to include/trace.h:
osnoise_arch_register()
osnoise_arch_unregister()
Fixed define logic for LATENCY_FS_NOTIFY
Reported-by: kernel test robot <lkp@intel.com>
]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
KVM/arm64 updates for v5.14.
- Add MTE support in guests, complete with tag save/restore interface
- Reduce the impact of CMOs by moving them in the page-table code
- Allow device block mappings at stage-2
- Reduce the footprint of the vmemmap in protected mode
- Support the vGIC on dumb systems such as the Apple M1
- Add selftest infrastructure to support multiple configuration
and apply that to PMU/non-PMU setups
- Add selftests for the debug architecture
- The usual crop of PMU fixes
The change which made copy_xstate_to_uabi_buf() usable for
[x]fpregs_get() removed the zeroing of the header which means the
header, which is copied to user space later, contains except for the
xfeatures member, random stack content.
Add the memset() back to zero it before usage.
Fixes: eb6f51723f ("x86/fpu: Make copy_xstate_to_kernel() usable for [x]fpregs_get()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/875yy3wb8h.ffs@nanos.tec.linutronix.de