mtd: rawnand: fsmc: Fix all coding style issues reported by checkpatch

checkpatch reports a bunch of coding style issues. Let's fix them
all in one step.

Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
This commit is contained in:
Boris Brezillon
2018-11-20 10:02:35 +01:00
committed by Miquel Raynal
parent bb6963449f
commit fc43f45ed5

View File

@@ -38,15 +38,14 @@
/* fsmc controller registers for NOR flash */ /* fsmc controller registers for NOR flash */
#define CTRL 0x0 #define CTRL 0x0
/* ctrl register definitions */ /* ctrl register definitions */
#define BANK_ENABLE (1 << 0) #define BANK_ENABLE BIT(0)
#define MUXED (1 << 1) #define MUXED BIT(1)
#define NOR_DEV (2 << 2) #define NOR_DEV (2 << 2)
#define WIDTH_8 (0 << 4) #define WIDTH_16 BIT(4)
#define WIDTH_16 (1 << 4) #define RSTPWRDWN BIT(6)
#define RSTPWRDWN (1 << 6) #define WPROT BIT(7)
#define WPROT (1 << 7) #define WRT_ENABLE BIT(12)
#define WRT_ENABLE (1 << 12) #define WAIT_ENB BIT(13)
#define WAIT_ENB (1 << 13)
#define CTRL_TIM 0x4 #define CTRL_TIM 0x4
/* ctrl_tim register definitions */ /* ctrl_tim register definitions */
@@ -54,43 +53,35 @@
#define FSMC_NOR_BANK_SZ 0x8 #define FSMC_NOR_BANK_SZ 0x8
#define FSMC_NOR_REG_SIZE 0x40 #define FSMC_NOR_REG_SIZE 0x40
#define FSMC_NOR_REG(base, bank, reg) (base + \ #define FSMC_NOR_REG(base, bank, reg) ((base) + \
FSMC_NOR_BANK_SZ * (bank) + \ (FSMC_NOR_BANK_SZ * (bank)) + \
reg) (reg))
/* fsmc controller registers for NAND flash */ /* fsmc controller registers for NAND flash */
#define FSMC_PC 0x00 #define FSMC_PC 0x00
/* pc register definitions */ /* pc register definitions */
#define FSMC_RESET (1 << 0) #define FSMC_RESET BIT(0)
#define FSMC_WAITON (1 << 1) #define FSMC_WAITON BIT(1)
#define FSMC_ENABLE (1 << 2) #define FSMC_ENABLE BIT(2)
#define FSMC_DEVTYPE_NAND (1 << 3) #define FSMC_DEVTYPE_NAND BIT(3)
#define FSMC_DEVWID_8 (0 << 4) #define FSMC_DEVWID_16 BIT(4)
#define FSMC_DEVWID_16 (1 << 4) #define FSMC_ECCEN BIT(6)
#define FSMC_ECCEN (1 << 6) #define FSMC_ECCPLEN_256 BIT(7)
#define FSMC_ECCPLEN_512 (0 << 7)
#define FSMC_ECCPLEN_256 (1 << 7)
#define FSMC_TCLR_1 (1)
#define FSMC_TCLR_SHIFT (9) #define FSMC_TCLR_SHIFT (9)
#define FSMC_TCLR_MASK (0xF) #define FSMC_TCLR_MASK (0xF)
#define FSMC_TAR_1 (1)
#define FSMC_TAR_SHIFT (13) #define FSMC_TAR_SHIFT (13)
#define FSMC_TAR_MASK (0xF) #define FSMC_TAR_MASK (0xF)
#define STS 0x04 #define STS 0x04
/* sts register definitions */ /* sts register definitions */
#define FSMC_CODE_RDY (1 << 15) #define FSMC_CODE_RDY BIT(15)
#define COMM 0x08 #define COMM 0x08
/* comm register definitions */ /* comm register definitions */
#define FSMC_TSET_0 0
#define FSMC_TSET_SHIFT 0 #define FSMC_TSET_SHIFT 0
#define FSMC_TSET_MASK 0xFF #define FSMC_TSET_MASK 0xFF
#define FSMC_TWAIT_6 6
#define FSMC_TWAIT_SHIFT 8 #define FSMC_TWAIT_SHIFT 8
#define FSMC_TWAIT_MASK 0xFF #define FSMC_TWAIT_MASK 0xFF
#define FSMC_THOLD_4 4
#define FSMC_THOLD_SHIFT 16 #define FSMC_THOLD_SHIFT 16
#define FSMC_THOLD_MASK 0xFF #define FSMC_THOLD_MASK 0xFF
#define FSMC_THIZ_1 1
#define FSMC_THIZ_SHIFT 24 #define FSMC_THIZ_SHIFT 24
#define FSMC_THIZ_MASK 0xFF #define FSMC_THIZ_MASK 0xFF
#define ATTRIB 0x0C #define ATTRIB 0x0C
@@ -103,12 +94,12 @@
#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
struct fsmc_nand_timings { struct fsmc_nand_timings {
uint8_t tclr; u8 tclr;
uint8_t tar; u8 tar;
uint8_t thiz; u8 thiz;
uint8_t thold; u8 thold;
uint8_t twait; u8 twait;
uint8_t tset; u8 tset;
}; };
enum access_mode { enum access_mode {
@@ -262,8 +253,8 @@ static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
static void fsmc_nand_setup(struct fsmc_nand_data *host, static void fsmc_nand_setup(struct fsmc_nand_data *host,
struct fsmc_nand_timings *tims) struct fsmc_nand_timings *tims)
{ {
uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
uint32_t tclr, tar, thiz, thold, twait, tset; u32 tclr, tar, thiz, thold, twait, tset;
tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
@@ -273,13 +264,9 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host,
tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
if (host->nand.options & NAND_BUSWIDTH_16) if (host->nand.options & NAND_BUSWIDTH_16)
writel_relaxed(value | FSMC_DEVWID_16, value |= FSMC_DEVWID_16;
host->regs_va + FSMC_PC);
else
writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + FSMC_PC);
writel_relaxed(readl(host->regs_va + FSMC_PC) | tclr | tar, writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
host->regs_va + FSMC_PC);
writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM); writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB); writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
} }
@@ -290,7 +277,7 @@ static int fsmc_calc_timings(struct fsmc_nand_data *host,
{ {
unsigned long hclk = clk_get_rate(host->clk); unsigned long hclk = clk_get_rate(host->clk);
unsigned long hclkn = NSEC_PER_SEC / hclk; unsigned long hclkn = NSEC_PER_SEC / hclk;
uint32_t thiz, thold, twait, tset; u32 thiz, thold, twait, tset;
if (sdrt->tRC_min < 30000) if (sdrt->tRC_min < 30000)
return -EOPNOTSUPP; return -EOPNOTSUPP;
@@ -384,17 +371,17 @@ static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
* FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
* max of 8-bits) * max of 8-bits)
*/ */
static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const uint8_t *data, static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
uint8_t *ecc) u8 *ecc)
{ {
struct fsmc_nand_data *host = nand_to_fsmc(chip); struct fsmc_nand_data *host = nand_to_fsmc(chip);
uint32_t ecc_tmp; u32 ecc_tmp;
unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
do { do {
if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY) if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
break; break;
else
cond_resched(); cond_resched();
} while (!time_after_eq(jiffies, deadline)); } while (!time_after_eq(jiffies, deadline));
@@ -404,25 +391,25 @@ static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const uint8_t *data,
} }
ecc_tmp = readl_relaxed(host->regs_va + ECC1); ecc_tmp = readl_relaxed(host->regs_va + ECC1);
ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[0] = ecc_tmp;
ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[1] = ecc_tmp >> 8;
ecc[2] = (uint8_t) (ecc_tmp >> 16); ecc[2] = ecc_tmp >> 16;
ecc[3] = (uint8_t) (ecc_tmp >> 24); ecc[3] = ecc_tmp >> 24;
ecc_tmp = readl_relaxed(host->regs_va + ECC2); ecc_tmp = readl_relaxed(host->regs_va + ECC2);
ecc[4] = (uint8_t) (ecc_tmp >> 0); ecc[4] = ecc_tmp;
ecc[5] = (uint8_t) (ecc_tmp >> 8); ecc[5] = ecc_tmp >> 8;
ecc[6] = (uint8_t) (ecc_tmp >> 16); ecc[6] = ecc_tmp >> 16;
ecc[7] = (uint8_t) (ecc_tmp >> 24); ecc[7] = ecc_tmp >> 24;
ecc_tmp = readl_relaxed(host->regs_va + ECC3); ecc_tmp = readl_relaxed(host->regs_va + ECC3);
ecc[8] = (uint8_t) (ecc_tmp >> 0); ecc[8] = ecc_tmp;
ecc[9] = (uint8_t) (ecc_tmp >> 8); ecc[9] = ecc_tmp >> 8;
ecc[10] = (uint8_t) (ecc_tmp >> 16); ecc[10] = ecc_tmp >> 16;
ecc[11] = (uint8_t) (ecc_tmp >> 24); ecc[11] = ecc_tmp >> 24;
ecc_tmp = readl_relaxed(host->regs_va + STS); ecc_tmp = readl_relaxed(host->regs_va + STS);
ecc[12] = (uint8_t) (ecc_tmp >> 16); ecc[12] = ecc_tmp >> 16;
return 0; return 0;
} }
@@ -432,22 +419,22 @@ static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const uint8_t *data,
* FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
* max of 1-bit) * max of 1-bit)
*/ */
static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const uint8_t *data, static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
uint8_t *ecc) u8 *ecc)
{ {
struct fsmc_nand_data *host = nand_to_fsmc(chip); struct fsmc_nand_data *host = nand_to_fsmc(chip);
uint32_t ecc_tmp; u32 ecc_tmp;
ecc_tmp = readl_relaxed(host->regs_va + ECC1); ecc_tmp = readl_relaxed(host->regs_va + ECC1);
ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[0] = ecc_tmp;
ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[1] = ecc_tmp >> 8;
ecc[2] = (uint8_t) (ecc_tmp >> 16); ecc[2] = ecc_tmp >> 16;
return 0; return 0;
} }
/* Count the number of 0's in buff upto a max of max_bits */ /* Count the number of 0's in buff upto a max of max_bits */
static int count_written_bits(uint8_t *buff, int size, int max_bits) static int count_written_bits(u8 *buff, int size, int max_bits)
{ {
int k, written_bits = 0; int k, written_bits = 0;
@@ -541,14 +528,15 @@ unmap_dma:
* @buf: data buffer * @buf: data buffer
* @len: number of bytes to write * @len: number of bytes to write
*/ */
static void fsmc_write_buf(struct fsmc_nand_data *host, const uint8_t *buf, static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
int len) int len)
{ {
int i; int i;
if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) && if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
IS_ALIGNED(len, sizeof(uint32_t))) { IS_ALIGNED(len, sizeof(u32))) {
uint32_t *p = (uint32_t *)buf; u32 *p = (u32 *)buf;
len = len >> 2; len = len >> 2;
for (i = 0; i < len; i++) for (i = 0; i < len; i++)
writel_relaxed(p[i], host->data_va); writel_relaxed(p[i], host->data_va);
@@ -564,13 +552,14 @@ static void fsmc_write_buf(struct fsmc_nand_data *host, const uint8_t *buf,
* @buf: buffer to store date * @buf: buffer to store date
* @len: number of bytes to read * @len: number of bytes to read
*/ */
static void fsmc_read_buf(struct fsmc_nand_data *host, uint8_t *buf, int len) static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
{ {
int i; int i;
if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) && if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
IS_ALIGNED(len, sizeof(uint32_t))) { IS_ALIGNED(len, sizeof(u32))) {
uint32_t *p = (uint32_t *)buf; u32 *p = (u32 *)buf;
len = len >> 2; len = len >> 2;
for (i = 0; i < len; i++) for (i = 0; i < len; i++)
p[i] = readl_relaxed(host->data_va); p[i] = readl_relaxed(host->data_va);
@@ -586,7 +575,7 @@ static void fsmc_read_buf(struct fsmc_nand_data *host, uint8_t *buf, int len)
* @buf: buffer to store date * @buf: buffer to store date
* @len: number of bytes to read * @len: number of bytes to read
*/ */
static void fsmc_read_buf_dma(struct fsmc_nand_data *host, uint8_t *buf, static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
int len) int len)
{ {
dma_xfer(host, buf, len, DMA_FROM_DEVICE); dma_xfer(host, buf, len, DMA_FROM_DEVICE);
@@ -598,7 +587,7 @@ static void fsmc_read_buf_dma(struct fsmc_nand_data *host, uint8_t *buf,
* @buf: data buffer * @buf: data buffer
* @len: number of bytes to write * @len: number of bytes to write
*/ */
static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const uint8_t *buf, static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
int len) int len)
{ {
dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
@@ -679,7 +668,8 @@ static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
", force 8-bit" : ""); ", force 8-bit" : "");
if (host->mode == USE_DMA_ACCESS) if (host->mode == USE_DMA_ACCESS)
fsmc_write_buf_dma(host, instr->ctx.data.buf.out, fsmc_write_buf_dma(host,
instr->ctx.data.buf.out,
instr->ctx.data.len); instr->ctx.data.len);
else else
fsmc_write_buf(host, instr->ctx.data.buf.out, fsmc_write_buf(host, instr->ctx.data.buf.out,
@@ -714,24 +704,24 @@ static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
* After this read, fsmc hardware generates and reports error data bits(up to a * After this read, fsmc hardware generates and reports error data bits(up to a
* max of 8 bits) * max of 8 bits)
*/ */
static int fsmc_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page) int oob_required, int page)
{ {
struct mtd_info *mtd = nand_to_mtd(chip); struct mtd_info *mtd = nand_to_mtd(chip);
int i, j, s, stat, eccsize = chip->ecc.size; int i, j, s, stat, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes; int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps; int eccsteps = chip->ecc.steps;
uint8_t *p = buf; u8 *p = buf;
uint8_t *ecc_calc = chip->ecc.calc_buf; u8 *ecc_calc = chip->ecc.calc_buf;
uint8_t *ecc_code = chip->ecc.code_buf; u8 *ecc_code = chip->ecc.code_buf;
int off, len, ret, group = 0; int off, len, ret, group = 0;
/* /*
* ecc_oob is intentionally taken as uint16_t. In 16bit devices, we * ecc_oob is intentionally taken as u16. In 16bit devices, we
* end up reading 14 bytes (7 words) from oob. The local array is * end up reading 14 bytes (7 words) from oob. The local array is
* to maintain word alignment * to maintain word alignment
*/ */
uint16_t ecc_oob[7]; u16 ecc_oob[7];
uint8_t *oob = (uint8_t *)&ecc_oob[0]; u8 *oob = (u8 *)&ecc_oob[0];
unsigned int max_bitflips = 0; unsigned int max_bitflips = 0;
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
@@ -786,15 +776,15 @@ static int fsmc_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
* @calc_ecc: ecc calculated from read data * @calc_ecc: ecc calculated from read data
* *
* calc_ecc is a 104 bit information containing maximum of 8 error * calc_ecc is a 104 bit information containing maximum of 8 error
* offset informations of 13 bits each in 512 bytes of read data. * offset information of 13 bits each in 512 bytes of read data.
*/ */
static int fsmc_bch8_correct_data(struct nand_chip *chip, uint8_t *dat, static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
uint8_t *read_ecc, uint8_t *calc_ecc) u8 *read_ecc, u8 *calc_ecc)
{ {
struct fsmc_nand_data *host = nand_to_fsmc(chip); struct fsmc_nand_data *host = nand_to_fsmc(chip);
uint32_t err_idx[8]; u32 err_idx[8];
uint32_t num_err, i; u32 num_err, i;
uint32_t ecc1, ecc2, ecc3, ecc4; u32 ecc1, ecc2, ecc3, ecc4;
num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF; num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
@@ -835,8 +825,8 @@ static int fsmc_bch8_correct_data(struct nand_chip *chip, uint8_t *dat,
* |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
* *
* calc_ecc is a 104 bit information containing maximum of 8 error * calc_ecc is a 104 bit information containing maximum of 8 error
* offset informations of 13 bits each. calc_ecc is copied into a * offset information of 13 bits each. calc_ecc is copied into a
* uint64_t array and error offset indexes are populated in err_idx * u64 array and error offset indexes are populated in err_idx
* array * array
*/ */
ecc1 = readl_relaxed(host->regs_va + ECC1); ecc1 = readl_relaxed(host->regs_va + ECC1);
@@ -895,9 +885,11 @@ static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
nand->options |= NAND_SKIP_BBTSCAN; nand->options |= NAND_SKIP_BBTSCAN;
host->dev_timings = devm_kzalloc(&pdev->dev, host->dev_timings = devm_kzalloc(&pdev->dev,
sizeof(*host->dev_timings), GFP_KERNEL); sizeof(*host->dev_timings),
GFP_KERNEL);
if (!host->dev_timings) if (!host->dev_timings)
return -ENOMEM; return -ENOMEM;
ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
sizeof(*host->dev_timings)); sizeof(*host->dev_timings));
if (ret) if (ret)
@@ -1061,10 +1053,13 @@ static int __init fsmc_nand_probe(struct platform_device *pdev)
* AMBA PrimeCell bus. However it is not a PrimeCell. * AMBA PrimeCell bus. However it is not a PrimeCell.
*/ */
for (pid = 0, i = 0; i < 4; i++) for (pid = 0, i = 0; i < 4; i++)
pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
255) << (i * 8);
host->pid = pid; host->pid = pid;
dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
"revision %02x, config %02x\n", dev_info(&pdev->dev,
"FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
@@ -1175,19 +1170,23 @@ static int fsmc_nand_remove(struct platform_device *pdev)
static int fsmc_nand_suspend(struct device *dev) static int fsmc_nand_suspend(struct device *dev)
{ {
struct fsmc_nand_data *host = dev_get_drvdata(dev); struct fsmc_nand_data *host = dev_get_drvdata(dev);
if (host) if (host)
clk_disable_unprepare(host->clk); clk_disable_unprepare(host->clk);
return 0; return 0;
} }
static int fsmc_nand_resume(struct device *dev) static int fsmc_nand_resume(struct device *dev)
{ {
struct fsmc_nand_data *host = dev_get_drvdata(dev); struct fsmc_nand_data *host = dev_get_drvdata(dev);
if (host) { if (host) {
clk_prepare_enable(host->clk); clk_prepare_enable(host->clk);
if (host->dev_timings) if (host->dev_timings)
fsmc_nand_setup(host, host->dev_timings); fsmc_nand_setup(host, host->dev_timings);
} }
return 0; return 0;
} }
#endif #endif