Merge remote-tracking branch 'airlied/drm-next' into drm-intel-next-queued
Backmerge because Chris Wilson needs the very latest&greates of
Gustavo Padovan's sync_file work, specifically the refcounting changes
from:
commit 30cd85dd6e
Author: Gustavo Padovan <gustavo.padovan@collabora.co.uk>
Date: Wed Oct 19 15:48:32 2016 -0200
dma-buf/sync_file: hold reference to fence when creating sync_file
Also good to sync in general since git tends to get confused with the
cherry-picking going on.
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
This commit is contained in:
commit
f9bf1d97e8
2
.gitattributes
vendored
Normal file
2
.gitattributes
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
*.c diff=cpp
|
||||
*.h diff=cpp
|
5
.mailmap
5
.mailmap
@ -69,11 +69,14 @@ James Bottomley <jejb@mulgrave.(none)>
|
||||
James Bottomley <jejb@titanic.il.steeleye.com>
|
||||
James E Wilson <wilson@specifix.com>
|
||||
James Ketrenos <jketreno@io.(none)>
|
||||
Javi Merino <javi.merino@kernel.org> <javi.merino@arm.com>
|
||||
<javier@osg.samsung.com> <javier.martinez@collabora.co.uk>
|
||||
Jean Tourrilhes <jt@hpl.hp.com>
|
||||
Jeff Garzik <jgarzik@pretzel.yyz.us>
|
||||
Jens Axboe <axboe@suse.de>
|
||||
Jens Osterkamp <Jens.Osterkamp@de.ibm.com>
|
||||
Johan Hovold <johan@kernel.org> <jhovold@gmail.com>
|
||||
Johan Hovold <johan@kernel.org> <johan@hovoldconsulting.com>
|
||||
John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
|
||||
John Stultz <johnstul@us.ibm.com>
|
||||
<josh@joshtriplett.org> <josh@freedesktop.org>
|
||||
@ -124,6 +127,7 @@ Peter Oruba <peter@oruba.de>
|
||||
Peter Oruba <peter.oruba@amd.com>
|
||||
Pratyush Anand <pratyush.anand@gmail.com> <pratyush.anand@st.com>
|
||||
Praveen BP <praveenbp@ti.com>
|
||||
Qais Yousef <qsyousef@gmail.com> <qais.yousef@imgtec.com>
|
||||
Rajesh Shah <rajesh.shah@intel.com>
|
||||
Ralf Baechle <ralf@linux-mips.org>
|
||||
Ralf Wildenhues <Ralf.Wildenhues@gmx.de>
|
||||
@ -159,6 +163,7 @@ Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
|
||||
Viresh Kumar <vireshk@kernel.org> <viresh.kumar@st.com>
|
||||
Viresh Kumar <vireshk@kernel.org> <viresh.linux@gmail.com>
|
||||
Viresh Kumar <vireshk@kernel.org> <viresh.kumar2@arm.com>
|
||||
Vlad Dogaru <ddvlad@gmail.com> <vlad.dogaru@intel.com>
|
||||
Vladimir Davydov <vdavydov.dev@gmail.com> <vdavydov@virtuozzo.com>
|
||||
Vladimir Davydov <vdavydov.dev@gmail.com> <vdavydov@parallels.com>
|
||||
Takashi YOSHII <takashi.yoshii.zj@renesas.com>
|
||||
|
27
CREDITS
27
CREDITS
@ -1090,6 +1090,10 @@ S: 6350 Stoneridge Mall Road
|
||||
S: Pleasanton, CA 94588
|
||||
S: USA
|
||||
|
||||
N: Dmitry Eremin-Solenikov
|
||||
E: dbaryshkov@gmail.com
|
||||
D: Power Supply Maintainer from v3.14 - v3.15
|
||||
|
||||
N: Doug Evans
|
||||
E: dje@cygnus.com
|
||||
D: Wrote Xenix FS (part of standard kernel since 0.99.15)
|
||||
@ -1944,6 +1948,11 @@ E: kraxel@bytesex.org
|
||||
E: kraxel@suse.de
|
||||
D: video4linux, bttv, vesafb, some scsi, misc fixes
|
||||
|
||||
N: Hans J. Koch
|
||||
D: USERSPACE I/O, MAX6650
|
||||
D: Hans passed away in June 2016, and will be greatly missed.
|
||||
W: https://lwn.net/Articles/691000/
|
||||
|
||||
N: Harald Koenig
|
||||
E: koenig@tat.physik.uni-tuebingen.de
|
||||
D: XFree86 (S3), DCF77, some kernel hacks and fixes
|
||||
@ -2287,11 +2296,11 @@ D: Initial implementation of VC's, pty's and select()
|
||||
|
||||
N: Pavel Machek
|
||||
E: pavel@ucw.cz
|
||||
D: Softcursor for vga, hypertech cdrom support, vcsa bugfix, nbd
|
||||
P: 4096R/92DFCE96 4FA7 9EEF FCD4 C44F C585 B8C7 C060 2241 92DF CE96
|
||||
D: Softcursor for vga, hypertech cdrom support, vcsa bugfix, nbd,
|
||||
D: sun4/330 port, capabilities for elf, speedup for rm on ext2, USB,
|
||||
D: work on suspend-to-ram/disk, killing duplicates from ioctl32
|
||||
S: Volkova 1131
|
||||
S: 198 00 Praha 9
|
||||
D: work on suspend-to-ram/disk, killing duplicates from ioctl32,
|
||||
D: Altera SoCFPGA and Nokia N900 support.
|
||||
S: Czech Republic
|
||||
|
||||
N: Paul Mackerras
|
||||
@ -3518,6 +3527,10 @@ S: 145 Howard St.
|
||||
S: Northborough, MA 01532
|
||||
S: USA
|
||||
|
||||
N: Doug Thompson
|
||||
E: dougthompson@xmission.com
|
||||
D: EDAC
|
||||
|
||||
N: Tommy Thorn
|
||||
E: Tommy.Thorn@irisa.fr
|
||||
W: http://www.irisa.fr/prive/thorn/index.html
|
||||
@ -3654,6 +3667,10 @@ S: Obere Heerbergstrasse 17
|
||||
S: 97078 Wuerzburg
|
||||
S: Germany
|
||||
|
||||
N: Jason Uhlenkott
|
||||
E: juhlenko@akamai.com
|
||||
D: I3000 EDAC driver
|
||||
|
||||
N: Greg Ungerer
|
||||
E: gerg@snapgear.com
|
||||
D: uClinux kernel hacker
|
||||
@ -3691,7 +3708,7 @@ S: Germany
|
||||
N: Geert Uytterhoeven
|
||||
E: geert@linux-m68k.org
|
||||
W: http://users.telenet.be/geertu/
|
||||
P: 1024/862678A6 C51D 361C 0BD1 4C90 B275 C553 6EEA 11BA 8626 78A6
|
||||
P: 4096R/4804B4BC3F55EEFB 750D 82B0 A781 5431 5E25 925B 4804 B4BC 3F55 EEFB
|
||||
D: m68k/Amiga and PPC/CHRP Longtrail coordinator
|
||||
D: Frame buffer device and XF68_FBDev maintainer
|
||||
D: m68k IDE maintainer
|
||||
|
@ -46,7 +46,8 @@ IRQ.txt
|
||||
Intel-IOMMU.txt
|
||||
- basic info on the Intel IOMMU virtualization support.
|
||||
Makefile
|
||||
- some files in Documentation dir are actually sample code to build
|
||||
- This file does nothing. Removing it breaks make htmldocs and
|
||||
make distclean.
|
||||
ManagementStyle
|
||||
- how to (attempt to) manage kernel hackers.
|
||||
RCU/
|
||||
|
345
Documentation/80211/cfg80211.rst
Normal file
345
Documentation/80211/cfg80211.rst
Normal file
@ -0,0 +1,345 @@
|
||||
==================
|
||||
cfg80211 subsystem
|
||||
==================
|
||||
|
||||
Device registration
|
||||
===================
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:doc: Device registration
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_channel_flags
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_channel
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_rate_flags
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_rate
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_sta_ht_cap
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_supported_band
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_signal_type
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_params_flags
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_flags
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wireless_dev
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_new
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_register
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_unregister
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_free
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_name
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_dev
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_priv
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: priv_to_wiphy
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: set_wiphy_dev
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wdev_priv
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_iface_limit
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_iface_combination
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_check_combinations
|
||||
|
||||
Actions and configuration
|
||||
=========================
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:doc: Actions and configuration
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_ops
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: vif_params
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: key_params
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: survey_info_flags
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: survey_info
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_beacon_data
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_ap_settings
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: station_parameters
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: rate_info_flags
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: rate_info
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: station_info
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: monitor_flags
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: mpath_info_flags
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: mpath_info
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: bss_parameters
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_txq_params
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_crypto_settings
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_auth_request
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_assoc_request
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_deauth_request
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_disassoc_request
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_ibss_params
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_connect_params
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_pmksa
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_rx_mlme_mgmt
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_auth_timeout
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_rx_assoc_resp
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_assoc_timeout
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_tx_mlme_mgmt
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_ibss_joined
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_connect_result
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_connect_bss
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_connect_timeout
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_roamed
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_disconnected
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_ready_on_channel
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_remain_on_channel_expired
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_new_sta
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_rx_mgmt
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_mgmt_tx_status
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_cqm_rssi_notify
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_cqm_pktloss_notify
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_michael_mic_failure
|
||||
|
||||
Scanning and BSS list handling
|
||||
==============================
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:doc: Scanning and BSS list handling
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_ssid
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_scan_request
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_scan_done
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_bss
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_inform_bss
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_inform_bss_frame_data
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_inform_bss_data
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_unlink_bss
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_find_ie
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_bss_get_ie
|
||||
|
||||
Utility functions
|
||||
=================
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:doc: Utility functions
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_channel_to_frequency
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_frequency_to_channel
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_get_channel
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_get_response_rate
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_hdrlen
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_get_hdrlen_from_skb
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_radiotap_iterator
|
||||
|
||||
Data path helpers
|
||||
=================
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:doc: Data path helpers
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_data_to_8023
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_data_from_8023
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: ieee80211_amsdu_to_8023s
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_classify8021d
|
||||
|
||||
Regulatory enforcement infrastructure
|
||||
=====================================
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:doc: Regulatory enforcement infrastructure
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: regulatory_hint
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_apply_custom_regulatory
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: freq_reg_info
|
||||
|
||||
RFkill integration
|
||||
==================
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:doc: RFkill integration
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_rfkill_set_hw_state
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_rfkill_start_polling
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: wiphy_rfkill_stop_polling
|
||||
|
||||
Test mode
|
||||
=========
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:doc: Test mode
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_testmode_alloc_reply_skb
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_testmode_reply
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_testmode_alloc_event_skb
|
||||
|
||||
.. kernel-doc:: include/net/cfg80211.h
|
||||
:functions: cfg80211_testmode_event
|
5
Documentation/80211/conf.py
Normal file
5
Documentation/80211/conf.py
Normal file
@ -0,0 +1,5 @@
|
||||
# -*- coding: utf-8; mode: python -*-
|
||||
|
||||
project = "Linux 802.11 Driver Developer's Guide"
|
||||
|
||||
tags.add("subproject")
|
17
Documentation/80211/index.rst
Normal file
17
Documentation/80211/index.rst
Normal file
@ -0,0 +1,17 @@
|
||||
=====================================
|
||||
Linux 802.11 Driver Developer's Guide
|
||||
=====================================
|
||||
|
||||
.. toctree::
|
||||
|
||||
introduction
|
||||
cfg80211
|
||||
mac80211
|
||||
mac80211-advanced
|
||||
|
||||
.. only:: subproject
|
||||
|
||||
Indices
|
||||
=======
|
||||
|
||||
* :ref:`genindex`
|
17
Documentation/80211/introduction.rst
Normal file
17
Documentation/80211/introduction.rst
Normal file
@ -0,0 +1,17 @@
|
||||
============
|
||||
Introduction
|
||||
============
|
||||
|
||||
Explaining wireless 802.11 networking in the Linux kernel
|
||||
|
||||
Copyright 2007-2009 Johannes Berg
|
||||
|
||||
These books attempt to give a description of the various subsystems
|
||||
that play a role in 802.11 wireless networking in Linux. Since these
|
||||
books are for kernel developers they attempts to document the
|
||||
structures and functions used in the kernel as well as giving a
|
||||
higher-level overview.
|
||||
|
||||
The reader is expected to be familiar with the 802.11 standard as
|
||||
published by the IEEE in 802.11-2007 (or possibly later versions).
|
||||
References to this standard will be given as "802.11-2007 8.1.5".
|
295
Documentation/80211/mac80211-advanced.rst
Normal file
295
Documentation/80211/mac80211-advanced.rst
Normal file
@ -0,0 +1,295 @@
|
||||
=============================
|
||||
mac80211 subsystem (advanced)
|
||||
=============================
|
||||
|
||||
Information contained within this part of the book is of interest only
|
||||
for advanced interaction of mac80211 with drivers to exploit more
|
||||
hardware capabilities and improve performance.
|
||||
|
||||
LED support
|
||||
===========
|
||||
|
||||
Mac80211 supports various ways of blinking LEDs. Wherever possible,
|
||||
device LEDs should be exposed as LED class devices and hooked up to the
|
||||
appropriate trigger, which will then be triggered appropriately by
|
||||
mac80211.
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_get_tx_led_name
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_get_rx_led_name
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_get_assoc_led_name
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_get_radio_led_name
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tpt_blink
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tpt_led_trigger_flags
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_create_tpt_led_trigger
|
||||
|
||||
Hardware crypto acceleration
|
||||
============================
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: Hardware crypto acceleration
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: set_key_cmd
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_key_conf
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_key_flags
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_get_tkip_p1k
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_get_tkip_p1k_iv
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_get_tkip_p2k
|
||||
|
||||
Powersave support
|
||||
=================
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: Powersave support
|
||||
|
||||
Beacon filter support
|
||||
=====================
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: Beacon filter support
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_beacon_loss
|
||||
|
||||
Multiple queues and QoS support
|
||||
===============================
|
||||
|
||||
TBD
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tx_queue_params
|
||||
|
||||
Access point mode support
|
||||
=========================
|
||||
|
||||
TBD
|
||||
|
||||
Some parts of the if_conf should be discussed here instead
|
||||
|
||||
Insert notes about VLAN interfaces with hw crypto here or in the hw
|
||||
crypto chapter.
|
||||
|
||||
support for powersaving clients
|
||||
-------------------------------
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: AP support for powersaving clients
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_get_buffered_bc
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_beacon_get
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_sta_eosp
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_frame_release_type
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_sta_ps_transition
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_sta_ps_transition_ni
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_sta_set_buffered
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_sta_block_awake
|
||||
|
||||
Supporting multiple virtual interfaces
|
||||
======================================
|
||||
|
||||
TBD
|
||||
|
||||
Note: WDS with identical MAC address should almost always be OK
|
||||
|
||||
Insert notes about having multiple virtual interfaces with different MAC
|
||||
addresses here, note which configurations are supported by mac80211, add
|
||||
notes about supporting hw crypto with it.
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_iterate_active_interfaces
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_iterate_active_interfaces_atomic
|
||||
|
||||
Station handling
|
||||
================
|
||||
|
||||
TODO
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_sta
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: sta_notify_cmd
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_find_sta
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_find_sta_by_ifaddr
|
||||
|
||||
Hardware scan offload
|
||||
=====================
|
||||
|
||||
TBD
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_scan_completed
|
||||
|
||||
Aggregation
|
||||
===========
|
||||
|
||||
TX A-MPDU aggregation
|
||||
---------------------
|
||||
|
||||
.. kernel-doc:: net/mac80211/agg-tx.c
|
||||
:doc: TX A-MPDU aggregation
|
||||
|
||||
.. WARNING: DOCPROC directive not supported: !Cnet/mac80211/agg-tx.c
|
||||
|
||||
RX A-MPDU aggregation
|
||||
---------------------
|
||||
|
||||
.. kernel-doc:: net/mac80211/agg-rx.c
|
||||
:doc: RX A-MPDU aggregation
|
||||
|
||||
.. WARNING: DOCPROC directive not supported: !Cnet/mac80211/agg-rx.c
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_ampdu_mlme_action
|
||||
|
||||
Spatial Multiplexing Powersave (SMPS)
|
||||
=====================================
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: Spatial multiplexing power save
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_request_smps
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_smps_mode
|
||||
|
||||
TBD
|
||||
|
||||
This part of the book describes the rate control algorithm interface and
|
||||
how it relates to mac80211 and drivers.
|
||||
|
||||
Rate Control API
|
||||
================
|
||||
|
||||
TBD
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_start_tx_ba_session
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_start_tx_ba_cb_irqsafe
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_stop_tx_ba_session
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_stop_tx_ba_cb_irqsafe
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_rate_control_changed
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tx_rate_control
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: rate_control_send_low
|
||||
|
||||
TBD
|
||||
|
||||
This part of the book describes mac80211 internals.
|
||||
|
||||
Key handling
|
||||
============
|
||||
|
||||
Key handling basics
|
||||
-------------------
|
||||
|
||||
.. kernel-doc:: net/mac80211/key.c
|
||||
:doc: Key handling basics
|
||||
|
||||
MORE TBD
|
||||
--------
|
||||
|
||||
TBD
|
||||
|
||||
Receive processing
|
||||
==================
|
||||
|
||||
TBD
|
||||
|
||||
Transmit processing
|
||||
===================
|
||||
|
||||
TBD
|
||||
|
||||
Station info handling
|
||||
=====================
|
||||
|
||||
Programming information
|
||||
-----------------------
|
||||
|
||||
.. kernel-doc:: net/mac80211/sta_info.h
|
||||
:functions: sta_info
|
||||
|
||||
.. kernel-doc:: net/mac80211/sta_info.h
|
||||
:functions: ieee80211_sta_info_flags
|
||||
|
||||
STA information lifetime rules
|
||||
------------------------------
|
||||
|
||||
.. kernel-doc:: net/mac80211/sta_info.c
|
||||
:doc: STA information lifetime rules
|
||||
|
||||
Aggregation
|
||||
===========
|
||||
|
||||
.. kernel-doc:: net/mac80211/sta_info.h
|
||||
:functions: sta_ampdu_mlme
|
||||
|
||||
.. kernel-doc:: net/mac80211/sta_info.h
|
||||
:functions: tid_ampdu_tx
|
||||
|
||||
.. kernel-doc:: net/mac80211/sta_info.h
|
||||
:functions: tid_ampdu_rx
|
||||
|
||||
Synchronisation
|
||||
===============
|
||||
|
||||
TBD
|
||||
|
||||
Locking, lots of RCU
|
216
Documentation/80211/mac80211.rst
Normal file
216
Documentation/80211/mac80211.rst
Normal file
@ -0,0 +1,216 @@
|
||||
===========================
|
||||
mac80211 subsystem (basics)
|
||||
===========================
|
||||
|
||||
You should read and understand the information contained within this
|
||||
part of the book while implementing a mac80211 driver. In some chapters,
|
||||
advanced usage is noted, those may be skipped if this isn't needed.
|
||||
|
||||
This part of the book only covers station and monitor mode
|
||||
functionality, additional information required to implement the other
|
||||
modes is covered in the second part of the book.
|
||||
|
||||
Basic hardware handling
|
||||
=======================
|
||||
|
||||
TBD
|
||||
|
||||
This chapter shall contain information on getting a hw struct allocated
|
||||
and registered with mac80211.
|
||||
|
||||
Since it is required to allocate rates/modes before registering a hw
|
||||
struct, this chapter shall also contain information on setting up the
|
||||
rate/mode structs.
|
||||
|
||||
Additionally, some discussion about the callbacks and the general
|
||||
programming model should be in here, including the definition of
|
||||
ieee80211_ops which will be referred to a lot.
|
||||
|
||||
Finally, a discussion of hardware capabilities should be done with
|
||||
references to other parts of the book.
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_hw
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_hw_flags
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: SET_IEEE80211_DEV
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: SET_IEEE80211_PERM_ADDR
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_ops
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_alloc_hw
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_register_hw
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_unregister_hw
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_free_hw
|
||||
|
||||
PHY configuration
|
||||
=================
|
||||
|
||||
TBD
|
||||
|
||||
This chapter should describe PHY handling including start/stop callbacks
|
||||
and the various structures used.
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_conf
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_conf_flags
|
||||
|
||||
Virtual interfaces
|
||||
==================
|
||||
|
||||
TBD
|
||||
|
||||
This chapter should describe virtual interface basics that are relevant
|
||||
to the driver (VLANs, MGMT etc are not.) It should explain the use of
|
||||
the add_iface/remove_iface callbacks as well as the interface
|
||||
configuration callbacks.
|
||||
|
||||
Things related to AP mode should be discussed there.
|
||||
|
||||
Things related to supporting multiple interfaces should be in the
|
||||
appropriate chapter, a BIG FAT note should be here about this though and
|
||||
the recommendation to allow only a single interface in STA mode at
|
||||
first!
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_vif
|
||||
|
||||
Receive and transmit processing
|
||||
===============================
|
||||
|
||||
what should be here
|
||||
-------------------
|
||||
|
||||
TBD
|
||||
|
||||
This should describe the receive and transmit paths in mac80211/the
|
||||
drivers as well as transmit status handling.
|
||||
|
||||
Frame format
|
||||
------------
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: Frame format
|
||||
|
||||
Packet alignment
|
||||
----------------
|
||||
|
||||
.. kernel-doc:: net/mac80211/rx.c
|
||||
:doc: Packet alignment
|
||||
|
||||
Calling into mac80211 from interrupts
|
||||
-------------------------------------
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: Calling mac80211 from interrupts
|
||||
|
||||
functions/definitions
|
||||
---------------------
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_rx_status
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: mac80211_rx_flags
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: mac80211_tx_info_flags
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: mac80211_tx_control_flags
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: mac80211_rate_control_flags
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tx_rate
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tx_info
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tx_info_clear_status
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_rx
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_rx_ni
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_rx_irqsafe
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tx_status
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tx_status_ni
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_tx_status_irqsafe
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_rts_get
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_rts_duration
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_ctstoself_get
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_ctstoself_duration
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_generic_frame_duration
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_wake_queue
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_stop_queue
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_wake_queues
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_stop_queues
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_queue_stopped
|
||||
|
||||
Frame filtering
|
||||
===============
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: Frame filtering
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_filter_flags
|
||||
|
||||
The mac80211 workqueue
|
||||
======================
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:doc: mac80211 workqueue
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_queue_work
|
||||
|
||||
.. kernel-doc:: include/net/mac80211.h
|
||||
:functions: ieee80211_queue_delayed_work
|
@ -6,7 +6,7 @@ Description:
|
||||
|
||||
Being used for adding and removing rbd block devices.
|
||||
|
||||
Usage: <mon ip addr> <options> <pool name> <rbd image name> [snap name]
|
||||
Usage: <mon ip addr> <options> <pool name> <rbd image name> [<snap name>]
|
||||
|
||||
$ echo "192.168.0.1 name=admin rbd foo" > /sys/bus/rbd/add
|
||||
|
||||
@ -14,9 +14,13 @@ The snapshot name can be "-" or omitted to map the image read/write. A <dev-id>
|
||||
will be assigned for any registered block device. If snapshot is used, it will
|
||||
be mapped read-only.
|
||||
|
||||
Removal of a device:
|
||||
Usage: <dev-id> [force]
|
||||
|
||||
$ echo <dev-id> > /sys/bus/rbd/remove
|
||||
$ echo 2 > /sys/bus/rbd/remove
|
||||
|
||||
Optional "force" argument which when passed will wait for running requests and
|
||||
then unmap the image. Requests sent to the driver after initiating the removal
|
||||
will be failed. (August 2016, since 4.9.)
|
||||
|
||||
What: /sys/bus/rbd/add_single_major
|
||||
Date: December 2013
|
||||
@ -43,10 +47,25 @@ Description: Available only if rbd module is inserted with single_major
|
||||
Entries under /sys/bus/rbd/devices/<dev-id>/
|
||||
--------------------------------------------
|
||||
|
||||
client_addr
|
||||
|
||||
The ceph unique client entity_addr_t (address + nonce).
|
||||
The format is <address>:<port>/<nonce>: '1.2.3.4:1234/5678' or
|
||||
'[1:2:3:4:5:6:7:8]:1234/5678'. (August 2016, since 4.9.)
|
||||
|
||||
client_id
|
||||
|
||||
The ceph unique client id that was assigned for this specific session.
|
||||
|
||||
cluster_fsid
|
||||
|
||||
The ceph cluster UUID. (August 2016, since 4.9.)
|
||||
|
||||
config_info
|
||||
|
||||
The string written into /sys/bus/rbd/add{,_single_major}. (August
|
||||
2016, since 4.9.)
|
||||
|
||||
features
|
||||
|
||||
A hexadecimal encoding of the feature bits for this image.
|
||||
@ -92,6 +111,10 @@ current_snap
|
||||
|
||||
The current snapshot for which the device is mapped.
|
||||
|
||||
snap_id
|
||||
|
||||
The current snapshot's id. (August 2016, since 4.9.)
|
||||
|
||||
parent
|
||||
|
||||
Information identifying the chain of parent images in a layered rbd
|
||||
|
@ -220,8 +220,11 @@ What: /sys/class/cxl/<card>/reset
|
||||
Date: October 2014
|
||||
Contact: linuxppc-dev@lists.ozlabs.org
|
||||
Description: write only
|
||||
Writing 1 will issue a PERST to card which may cause the card
|
||||
to reload the FPGA depending on load_image_on_perst.
|
||||
Writing 1 will issue a PERST to card provided there are no
|
||||
contexts active on any one of the card AFUs. This may cause
|
||||
the card to reload the FPGA depending on load_image_on_perst.
|
||||
Writing -1 will do a force PERST irrespective of any active
|
||||
contexts on the card AFUs.
|
||||
Users: https://github.com/ibm-capi/libcxl
|
||||
|
||||
What: /sys/class/cxl/<card>/perst_reloads_same_image (not in a guest)
|
||||
|
@ -24,7 +24,8 @@ Description:
|
||||
of led events.
|
||||
You can change triggers in a similar manner to the way an IO
|
||||
scheduler is chosen. Trigger specific parameters can appear in
|
||||
/sys/class/leds/<led> once a given trigger is selected.
|
||||
/sys/class/leds/<led> once a given trigger is selected. For
|
||||
their documentation see sysfs-class-led-trigger-*.
|
||||
|
||||
What: /sys/class/leds/<led>/inverted
|
||||
Date: January 2011
|
||||
|
36
Documentation/ABI/testing/sysfs-class-led-trigger-oneshot
Normal file
36
Documentation/ABI/testing/sysfs-class-led-trigger-oneshot
Normal file
@ -0,0 +1,36 @@
|
||||
What: /sys/class/leds/<led>/delay_on
|
||||
Date: Jun 2012
|
||||
KernelVersion: 3.6
|
||||
Contact: linux-leds@vger.kernel.org
|
||||
Description:
|
||||
Specifies for how many milliseconds the LED has to stay at
|
||||
LED_FULL brightness after it has been armed.
|
||||
Defaults to 100 ms.
|
||||
|
||||
What: /sys/class/leds/<led>/delay_off
|
||||
Date: Jun 2012
|
||||
KernelVersion: 3.6
|
||||
Contact: linux-leds@vger.kernel.org
|
||||
Description:
|
||||
Specifies for how many milliseconds the LED has to stay at
|
||||
LED_OFF brightness after it has been armed.
|
||||
Defaults to 100 ms.
|
||||
|
||||
What: /sys/class/leds/<led>/invert
|
||||
Date: Jun 2012
|
||||
KernelVersion: 3.6
|
||||
Contact: linux-leds@vger.kernel.org
|
||||
Description:
|
||||
Reverse the blink logic. If set to 0 (default) blink on for
|
||||
delay_on ms, then blink off for delay_off ms, leaving the LED
|
||||
normally off. If set to 1, blink off for delay_off ms, then
|
||||
blink on for delay_on ms, leaving the LED normally on.
|
||||
Setting this value also immediately changes the LED state.
|
||||
|
||||
What: /sys/class/leds/<led>/shot
|
||||
Date: Jun 2012
|
||||
KernelVersion: 3.6
|
||||
Contact: linux-leds@vger.kernel.org
|
||||
Description:
|
||||
Write any non-empty string to signal an events, this starts a
|
||||
blink sequence if not already running.
|
12
Documentation/ABI/testing/sysfs-class-led-trigger-usbport
Normal file
12
Documentation/ABI/testing/sysfs-class-led-trigger-usbport
Normal file
@ -0,0 +1,12 @@
|
||||
What: /sys/class/leds/<led>/ports/<port>
|
||||
Date: September 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: linux-leds@vger.kernel.org
|
||||
linux-usb@vger.kernel.org
|
||||
Description:
|
||||
Every dir entry represents a single USB port that can be
|
||||
selected for the USB port trigger. Selecting ports makes trigger
|
||||
observing them for any connected devices and lighting on LED if
|
||||
there are any.
|
||||
Echoing "1" value selects USB port. Echoing "0" unselects it.
|
||||
Current state can be also read.
|
@ -153,7 +153,7 @@ Description:
|
||||
|
||||
What: /sys/class/mic/mic(x)/heartbeat_enable
|
||||
Date: March 2015
|
||||
KernelVersion: 3.20
|
||||
KernelVersion: 4.4
|
||||
Contact: Ashutosh Dixit <ashutosh.dixit@intel.com>
|
||||
Description:
|
||||
The MIC drivers detect and inform user space about card crashes
|
||||
|
@ -22,7 +22,7 @@ Description:
|
||||
What: /sys/class/power_supply/max14577-charger/device/fast_charge_timer
|
||||
Date: October 2014
|
||||
KernelVersion: 3.18.0
|
||||
Contact: Krzysztof Kozlowski <k.kozlowski@samsung.com>
|
||||
Contact: Krzysztof Kozlowski <krzk@kernel.org>
|
||||
Description:
|
||||
This entry shows and sets the maximum time the max14577
|
||||
charger operates in fast-charge mode. When the timer expires
|
||||
@ -36,7 +36,7 @@ Description:
|
||||
What: /sys/class/power_supply/max77693-charger/device/fast_charge_timer
|
||||
Date: January 2015
|
||||
KernelVersion: 3.19.0
|
||||
Contact: Krzysztof Kozlowski <k.kozlowski@samsung.com>
|
||||
Contact: Krzysztof Kozlowski <krzk@kernel.org>
|
||||
Description:
|
||||
This entry shows and sets the maximum time the max77693
|
||||
charger operates in fast-charge mode. When the timer expires
|
||||
@ -50,7 +50,7 @@ Description:
|
||||
What: /sys/class/power_supply/max77693-charger/device/top_off_threshold_current
|
||||
Date: January 2015
|
||||
KernelVersion: 3.19.0
|
||||
Contact: Krzysztof Kozlowski <k.kozlowski@samsung.com>
|
||||
Contact: Krzysztof Kozlowski <krzk@kernel.org>
|
||||
Description:
|
||||
This entry shows and sets the charging current threshold for
|
||||
entering top-off charging mode. When charging current in fast
|
||||
@ -65,7 +65,7 @@ Description:
|
||||
What: /sys/class/power_supply/max77693-charger/device/top_off_timer
|
||||
Date: January 2015
|
||||
KernelVersion: 3.19.0
|
||||
Contact: Krzysztof Kozlowski <k.kozlowski@samsung.com>
|
||||
Contact: Krzysztof Kozlowski <krzk@kernel.org>
|
||||
Description:
|
||||
This entry shows and sets the maximum time the max77693
|
||||
charger operates in top-off charge mode. When the timer expires
|
||||
|
@ -35,6 +35,12 @@ Description: Displays a set of alternate modes supported by a wheel. Each
|
||||
DF-EX <*--------> G25 <-> G27
|
||||
DF-EX <*----------------> G27
|
||||
|
||||
G29:
|
||||
DF-EX <*> DFP <-> G25 <-> G27 <-> G29
|
||||
DF-EX <*--------> G25 <-> G27 <-> G29
|
||||
DF-EX <*----------------> G27 <-> G29
|
||||
DF-EX <*------------------------> G29
|
||||
|
||||
DFGT:
|
||||
DF-EX <*> DFP <-> DFGT
|
||||
DF-EX <*--------> DFGT
|
||||
@ -50,3 +56,12 @@ Description: Displays the real model of the wheel regardless of any
|
||||
alternate mode the wheel might be switched to.
|
||||
It is a read-only value.
|
||||
This entry is not created for devices that have only one mode.
|
||||
|
||||
What: /sys/bus/hid/drivers/logitech/<dev>/combine_pedals
|
||||
Date: Sep 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: Simon Wood <simon@mungewell.org>
|
||||
Description: Controls whether a combined value of accelerator and brake is
|
||||
reported on the Y axis of the controller. Useful for older games
|
||||
which can do not work with separate accelerator/brake axis.
|
||||
Off ('0') by default, enabled by setting '1'.
|
||||
|
@ -24,6 +24,7 @@ What: /sys/bus/hid/devices/<bus>:<vid>:<pid>.<n>/wacom_led/status0_luminance
|
||||
Date: August 2014
|
||||
Contact: linux-input@vger.kernel.org
|
||||
Description:
|
||||
<obsoleted by the LED class API now exported by the driver>
|
||||
Writing to this file sets the status LED luminance (1..127)
|
||||
when the stylus does not touch the tablet surface, and no
|
||||
button is pressed on the stylus. This luminance level is
|
||||
@ -33,6 +34,7 @@ What: /sys/bus/hid/devices/<bus>:<vid>:<pid>.<n>/wacom_led/status1_luminance
|
||||
Date: August 2014
|
||||
Contact: linux-input@vger.kernel.org
|
||||
Description:
|
||||
<obsoleted by the LED class API now exported by the driver>
|
||||
Writing to this file sets the status LED luminance (1..127)
|
||||
when the stylus touches the tablet surface, or any button is
|
||||
pressed on the stylus.
|
||||
@ -41,6 +43,7 @@ What: /sys/bus/hid/devices/<bus>:<vid>:<pid>.<n>/wacom_led/status_led0_select
|
||||
Date: August 2014
|
||||
Contact: linux-input@vger.kernel.org
|
||||
Description:
|
||||
<obsoleted by the LED class API now exported by the driver>
|
||||
Writing to this file sets which one of the four (for Intuos 4
|
||||
and Intuos 5) or of the right four (for Cintiq 21UX2 and Cintiq
|
||||
24HD) status LEDs is active (0..3). The other three LEDs on the
|
||||
@ -50,6 +53,7 @@ What: /sys/bus/hid/devices/<bus>:<vid>:<pid>.<n>/wacom_led/status_led1_select
|
||||
Date: August 2014
|
||||
Contact: linux-input@vger.kernel.org
|
||||
Description:
|
||||
<obsoleted by the LED class API now exported by the driver>
|
||||
Writing to this file sets which one of the left four (for Cintiq 21UX2
|
||||
and Cintiq 24HD) status LEDs is active (0..3). The other three LEDs on
|
||||
the left are always inactive.
|
||||
@ -91,6 +95,7 @@ What: /sys/bus/hid/devices/<bus>:<vid>:<pid>.<n>/wacom_remote/<serial_number>/r
|
||||
Date: July 2015
|
||||
Contact: linux-input@vger.kernel.org
|
||||
Description:
|
||||
<obsoleted by the LED class API now exported by the driver>
|
||||
Reading from this file reports the mode status of the
|
||||
remote as indicated by the LED lights on the device. If no
|
||||
reports have been received from the paired device, reading
|
||||
|
@ -1,31 +0,0 @@
|
||||
What: /sys/bus/i2c/devices/<busnum>-<devaddr>/pressure0_input
|
||||
Date: June 2010
|
||||
Contact: Christoph Mair <christoph.mair@gmail.com>
|
||||
Description: Start a pressure measurement and read the result. Values
|
||||
represent the ambient air pressure in pascal (0.01 millibar).
|
||||
|
||||
Reading: returns the current air pressure.
|
||||
|
||||
|
||||
What: /sys/bus/i2c/devices/<busnum>-<devaddr>/temp0_input
|
||||
Date: June 2010
|
||||
Contact: Christoph Mair <christoph.mair@gmail.com>
|
||||
Description: Measure the ambient temperature. The returned value represents
|
||||
the ambient temperature in units of 0.1 degree celsius.
|
||||
|
||||
Reading: returns the current temperature.
|
||||
|
||||
|
||||
What: /sys/bus/i2c/devices/<busnum>-<devaddr>/oversampling
|
||||
Date: June 2010
|
||||
Contact: Christoph Mair <christoph.mair@gmail.com>
|
||||
Description: Tell the bmp085 to use more samples to calculate a pressure
|
||||
value. When writing to this file the chip will use 2^x samples
|
||||
to calculate the next pressure value with x being the value
|
||||
written. Using this feature will decrease RMS noise and
|
||||
increase the measurement time.
|
||||
|
||||
Reading: returns the current oversampling setting.
|
||||
|
||||
Writing: sets a new oversampling setting.
|
||||
Accepted values: 0..3.
|
53
Documentation/ABI/testing/sysfs-kernel-irq
Normal file
53
Documentation/ABI/testing/sysfs-kernel-irq
Normal file
@ -0,0 +1,53 @@
|
||||
What: /sys/kernel/irq
|
||||
Date: September 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: Craig Gallek <kraig@google.com>
|
||||
Description: Directory containing information about the system's IRQs.
|
||||
Specifically, data from the associated struct irq_desc.
|
||||
The information here is similar to that in /proc/interrupts
|
||||
but in a more machine-friendly format. This directory contains
|
||||
one subdirectory for each Linux IRQ number.
|
||||
|
||||
What: /sys/kernel/irq/<irq>/actions
|
||||
Date: September 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: Craig Gallek <kraig@google.com>
|
||||
Description: The IRQ action chain. A comma-separated list of zero or more
|
||||
device names associated with this interrupt.
|
||||
|
||||
What: /sys/kernel/irq/<irq>/chip_name
|
||||
Date: September 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: Craig Gallek <kraig@google.com>
|
||||
Description: Human-readable chip name supplied by the associated device
|
||||
driver.
|
||||
|
||||
What: /sys/kernel/irq/<irq>/hwirq
|
||||
Date: September 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: Craig Gallek <kraig@google.com>
|
||||
Description: When interrupt translation domains are used, this file contains
|
||||
the underlying hardware IRQ number used for this Linux IRQ.
|
||||
|
||||
What: /sys/kernel/irq/<irq>/name
|
||||
Date: September 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: Craig Gallek <kraig@google.com>
|
||||
Description: Human-readable flow handler name as defined by the irq chip
|
||||
driver.
|
||||
|
||||
What: /sys/kernel/irq/<irq>/per_cpu_count
|
||||
Date: September 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: Craig Gallek <kraig@google.com>
|
||||
Description: The number of times the interrupt has fired since boot. This
|
||||
is a comma-separated list of counters; one per CPU in CPU id
|
||||
order. NOTE: This file consistently shows counters for all
|
||||
CPU ids. This differs from the behavior of /proc/interrupts
|
||||
which only shows counters for online CPUs.
|
||||
|
||||
What: /sys/kernel/irq/<irq>/type
|
||||
Date: September 2016
|
||||
KernelVersion: 4.9
|
||||
Contact: Craig Gallek <kraig@google.com>
|
||||
Description: The type of the interrupt. Either the string 'level' or 'edge'.
|
@ -1,8 +1,13 @@
|
||||
.. _changes:
|
||||
|
||||
Minimal requerements to compile the Kernel
|
||||
++++++++++++++++++++++++++++++++++++++++++
|
||||
|
||||
Intro
|
||||
=====
|
||||
|
||||
This document is designed to provide a list of the minimum levels of
|
||||
software necessary to run the 3.0 kernels.
|
||||
software necessary to run the 4.x kernels.
|
||||
|
||||
This document is originally based on my "Changes" file for 2.0.x kernels
|
||||
and therefore owes credit to the same people as that file (Jared Mauch,
|
||||
@ -10,9 +15,9 @@ Axel Boldt, Alessandro Sigala, and countless other users all over the
|
||||
'net).
|
||||
|
||||
Current Minimal Requirements
|
||||
============================
|
||||
****************************
|
||||
|
||||
Upgrade to at *least* these software revisions before thinking you've
|
||||
Upgrade to at **least** these software revisions before thinking you've
|
||||
encountered a bug! If you're unsure what version you're currently
|
||||
running, the suggested command should tell you.
|
||||
|
||||
@ -21,34 +26,40 @@ running a Linux kernel. Also, not all tools are necessary on all
|
||||
systems; obviously, if you don't have any ISDN hardware, for example,
|
||||
you probably needn't concern yourself with isdn4k-utils.
|
||||
|
||||
o GNU C 3.2 # gcc --version
|
||||
o GNU make 3.80 # make --version
|
||||
o binutils 2.12 # ld -v
|
||||
o util-linux 2.10o # fdformat --version
|
||||
o module-init-tools 0.9.10 # depmod -V
|
||||
o e2fsprogs 1.41.4 # e2fsck -V
|
||||
o jfsutils 1.1.3 # fsck.jfs -V
|
||||
o reiserfsprogs 3.6.3 # reiserfsck -V
|
||||
o xfsprogs 2.6.0 # xfs_db -V
|
||||
o squashfs-tools 4.0 # mksquashfs -version
|
||||
o btrfs-progs 0.18 # btrfsck
|
||||
o pcmciautils 004 # pccardctl -V
|
||||
o quota-tools 3.09 # quota -V
|
||||
o PPP 2.4.0 # pppd --version
|
||||
o isdn4k-utils 3.1pre1 # isdnctrl 2>&1|grep version
|
||||
o nfs-utils 1.0.5 # showmount --version
|
||||
o procps 3.2.0 # ps --version
|
||||
o oprofile 0.9 # oprofiled --version
|
||||
o udev 081 # udevd --version
|
||||
o grub 0.93 # grub --version || grub-install --version
|
||||
o mcelog 0.6 # mcelog --version
|
||||
o iptables 1.4.2 # iptables -V
|
||||
o openssl & libcrypto 1.0.0 # openssl version
|
||||
o bc 1.06.95 # bc --version
|
||||
====================== =============== ========================================
|
||||
Program Minimal version Command to check the version
|
||||
====================== =============== ========================================
|
||||
GNU C 3.2 gcc --version
|
||||
GNU make 3.80 make --version
|
||||
binutils 2.12 ld -v
|
||||
util-linux 2.10o fdformat --version
|
||||
module-init-tools 0.9.10 depmod -V
|
||||
e2fsprogs 1.41.4 e2fsck -V
|
||||
jfsutils 1.1.3 fsck.jfs -V
|
||||
reiserfsprogs 3.6.3 reiserfsck -V
|
||||
xfsprogs 2.6.0 xfs_db -V
|
||||
squashfs-tools 4.0 mksquashfs -version
|
||||
btrfs-progs 0.18 btrfsck
|
||||
pcmciautils 004 pccardctl -V
|
||||
quota-tools 3.09 quota -V
|
||||
PPP 2.4.0 pppd --version
|
||||
isdn4k-utils 3.1pre1 isdnctrl 2>&1|grep version
|
||||
nfs-utils 1.0.5 showmount --version
|
||||
procps 3.2.0 ps --version
|
||||
oprofile 0.9 oprofiled --version
|
||||
udev 081 udevd --version
|
||||
grub 0.93 grub --version || grub-install --version
|
||||
mcelog 0.6 mcelog --version
|
||||
iptables 1.4.2 iptables -V
|
||||
openssl & libcrypto 1.0.0 openssl version
|
||||
bc 1.06.95 bc --version
|
||||
Sphinx\ [#f1]_ 1.2 sphinx-build --version
|
||||
====================== =============== ========================================
|
||||
|
||||
.. [#f1] Sphinx is needed only to build the Kernel documentation
|
||||
|
||||
Kernel compilation
|
||||
==================
|
||||
******************
|
||||
|
||||
GCC
|
||||
---
|
||||
@ -64,16 +75,16 @@ You will need GNU make 3.80 or later to build the kernel.
|
||||
Binutils
|
||||
--------
|
||||
|
||||
Linux on IA-32 has recently switched from using as86 to using gas for
|
||||
assembling the 16-bit boot code, removing the need for as86 to compile
|
||||
Linux on IA-32 has recently switched from using ``as86`` to using ``gas`` for
|
||||
assembling the 16-bit boot code, removing the need for ``as86`` to compile
|
||||
your kernel. This change does, however, mean that you need a recent
|
||||
release of binutils.
|
||||
|
||||
Perl
|
||||
----
|
||||
|
||||
You will need perl 5 and the following modules: Getopt::Long, Getopt::Std,
|
||||
File::Basename, and File::Find to build the kernel.
|
||||
You will need perl 5 and the following modules: ``Getopt::Long``,
|
||||
``Getopt::Std``, ``File::Basename``, and ``File::Find`` to build the kernel.
|
||||
|
||||
BC
|
||||
--
|
||||
@ -93,7 +104,7 @@ and higher.
|
||||
|
||||
|
||||
System utilities
|
||||
================
|
||||
****************
|
||||
|
||||
Architectural changes
|
||||
---------------------
|
||||
@ -115,7 +126,7 @@ well as the desired DocBook stylesheets.
|
||||
Util-linux
|
||||
----------
|
||||
|
||||
New versions of util-linux provide *fdisk support for larger disks,
|
||||
New versions of util-linux provide ``fdisk`` support for larger disks,
|
||||
support new options to mount, recognize more supported partition
|
||||
types, have a fdformat which works with 2.4 kernels, and similar goodies.
|
||||
You'll probably want to upgrade.
|
||||
@ -125,54 +136,57 @@ Ksymoops
|
||||
|
||||
If the unthinkable happens and your kernel oopses, you may need the
|
||||
ksymoops tool to decode it, but in most cases you don't.
|
||||
It is generally preferred to build the kernel with CONFIG_KALLSYMS so
|
||||
It is generally preferred to build the kernel with ``CONFIG_KALLSYMS`` so
|
||||
that it produces readable dumps that can be used as-is (this also
|
||||
produces better output than ksymoops). If for some reason your kernel
|
||||
is not build with CONFIG_KALLSYMS and you have no way to rebuild and
|
||||
is not build with ``CONFIG_KALLSYMS`` and you have no way to rebuild and
|
||||
reproduce the Oops with that option, then you can still decode that Oops
|
||||
with ksymoops.
|
||||
|
||||
Module-Init-Tools
|
||||
-----------------
|
||||
|
||||
A new module loader is now in the kernel that requires module-init-tools
|
||||
A new module loader is now in the kernel that requires ``module-init-tools``
|
||||
to use. It is backward compatible with the 2.4.x series kernels.
|
||||
|
||||
Mkinitrd
|
||||
--------
|
||||
|
||||
These changes to the /lib/modules file tree layout also require that
|
||||
These changes to the ``/lib/modules`` file tree layout also require that
|
||||
mkinitrd be upgraded.
|
||||
|
||||
E2fsprogs
|
||||
---------
|
||||
|
||||
The latest version of e2fsprogs fixes several bugs in fsck and
|
||||
The latest version of ``e2fsprogs`` fixes several bugs in fsck and
|
||||
debugfs. Obviously, it's a good idea to upgrade.
|
||||
|
||||
JFSutils
|
||||
--------
|
||||
|
||||
The jfsutils package contains the utilities for the file system.
|
||||
The ``jfsutils`` package contains the utilities for the file system.
|
||||
The following utilities are available:
|
||||
o fsck.jfs - initiate replay of the transaction log, and check
|
||||
|
||||
- ``fsck.jfs`` - initiate replay of the transaction log, and check
|
||||
and repair a JFS formatted partition.
|
||||
o mkfs.jfs - create a JFS formatted partition.
|
||||
o other file system utilities are also available in this package.
|
||||
|
||||
- ``mkfs.jfs`` - create a JFS formatted partition.
|
||||
|
||||
- other file system utilities are also available in this package.
|
||||
|
||||
Reiserfsprogs
|
||||
-------------
|
||||
|
||||
The reiserfsprogs package should be used for reiserfs-3.6.x
|
||||
(Linux kernels 2.4.x). It is a combined package and contains working
|
||||
versions of mkreiserfs, resize_reiserfs, debugreiserfs and
|
||||
reiserfsck. These utils work on both i386 and alpha platforms.
|
||||
versions of ``mkreiserfs``, ``resize_reiserfs``, ``debugreiserfs`` and
|
||||
``reiserfsck``. These utils work on both i386 and alpha platforms.
|
||||
|
||||
Xfsprogs
|
||||
--------
|
||||
|
||||
The latest version of xfsprogs contains mkfs.xfs, xfs_db, and the
|
||||
xfs_repair utilities, among others, for the XFS filesystem. It is
|
||||
The latest version of ``xfsprogs`` contains ``mkfs.xfs``, ``xfs_db``, and the
|
||||
``xfs_repair`` utilities, among others, for the XFS filesystem. It is
|
||||
architecture independent and any version from 2.0.0 onward should
|
||||
work correctly with this version of the XFS kernel code (2.6.0 or
|
||||
later is recommended, due to some significant improvements).
|
||||
@ -180,7 +194,7 @@ later is recommended, due to some significant improvements).
|
||||
PCMCIAutils
|
||||
-----------
|
||||
|
||||
PCMCIAutils replaces pcmcia-cs. It properly sets up
|
||||
PCMCIAutils replaces ``pcmcia-cs``. It properly sets up
|
||||
PCMCIA sockets at system startup and loads the appropriate modules
|
||||
for 16-bit PCMCIA devices if the kernel is modularized and the hotplug
|
||||
subsystem is used.
|
||||
@ -198,19 +212,20 @@ Intel IA32 microcode
|
||||
|
||||
A driver has been added to allow updating of Intel IA32 microcode,
|
||||
accessible as a normal (misc) character device. If you are not using
|
||||
udev you may need to:
|
||||
udev you may need to::
|
||||
|
||||
mkdir /dev/cpu
|
||||
mknod /dev/cpu/microcode c 10 184
|
||||
chmod 0644 /dev/cpu/microcode
|
||||
mkdir /dev/cpu
|
||||
mknod /dev/cpu/microcode c 10 184
|
||||
chmod 0644 /dev/cpu/microcode
|
||||
|
||||
as root before you can use this. You'll probably also want to
|
||||
get the user-space microcode_ctl utility to use with this.
|
||||
|
||||
udev
|
||||
----
|
||||
udev is a userspace application for populating /dev dynamically with
|
||||
only entries for devices actually present. udev replaces the basic
|
||||
|
||||
``udev`` is a userspace application for populating ``/dev`` dynamically with
|
||||
only entries for devices actually present. ``udev`` replaces the basic
|
||||
functionality of devfs, while allowing persistent device naming for
|
||||
devices.
|
||||
|
||||
@ -218,10 +233,10 @@ FUSE
|
||||
----
|
||||
|
||||
Needs libfuse 2.4.0 or later. Absolute minimum is 2.3.0 but mount
|
||||
options 'direct_io' and 'kernel_cache' won't work.
|
||||
options ``direct_io`` and ``kernel_cache`` won't work.
|
||||
|
||||
Networking
|
||||
==========
|
||||
**********
|
||||
|
||||
General changes
|
||||
---------------
|
||||
@ -243,9 +258,9 @@ enable it to operate over diverse media layers. If you use PPP,
|
||||
upgrade pppd to at least 2.4.0.
|
||||
|
||||
If you are not using udev, you must have the device file /dev/ppp
|
||||
which can be made by:
|
||||
which can be made by::
|
||||
|
||||
mknod /dev/ppp c 108 0
|
||||
mknod /dev/ppp c 108 0
|
||||
|
||||
as root.
|
||||
|
||||
@ -260,22 +275,22 @@ NFS-utils
|
||||
|
||||
In ancient (2.4 and earlier) kernels, the nfs server needed to know
|
||||
about any client that expected to be able to access files via NFS. This
|
||||
information would be given to the kernel by "mountd" when the client
|
||||
mounted the filesystem, or by "exportfs" at system startup. exportfs
|
||||
would take information about active clients from /var/lib/nfs/rmtab.
|
||||
information would be given to the kernel by ``mountd`` when the client
|
||||
mounted the filesystem, or by ``exportfs`` at system startup. exportfs
|
||||
would take information about active clients from ``/var/lib/nfs/rmtab``.
|
||||
|
||||
This approach is quite fragile as it depends on rmtab being correct
|
||||
which is not always easy, particularly when trying to implement
|
||||
fail-over. Even when the system is working well, rmtab suffers from
|
||||
fail-over. Even when the system is working well, ``rmtab`` suffers from
|
||||
getting lots of old entries that never get removed.
|
||||
|
||||
With modern kernels we have the option of having the kernel tell mountd
|
||||
when it gets a request from an unknown host, and mountd can give
|
||||
appropriate export information to the kernel. This removes the
|
||||
dependency on rmtab and means that the kernel only needs to know about
|
||||
dependency on ``rmtab`` and means that the kernel only needs to know about
|
||||
currently active clients.
|
||||
|
||||
To enable this new functionality, you need to:
|
||||
To enable this new functionality, you need to::
|
||||
|
||||
mount -t nfsd nfsd /proc/fs/nfsd
|
||||
|
||||
@ -287,8 +302,32 @@ mcelog
|
||||
------
|
||||
|
||||
On x86 kernels the mcelog utility is needed to process and log machine check
|
||||
events when CONFIG_X86_MCE is enabled. Machine check events are errors reported
|
||||
by the CPU. Processing them is strongly encouraged.
|
||||
events when ``CONFIG_X86_MCE`` is enabled. Machine check events are errors
|
||||
reported by the CPU. Processing them is strongly encouraged.
|
||||
|
||||
Kernel documentation
|
||||
********************
|
||||
|
||||
Sphinx
|
||||
------
|
||||
|
||||
The ReST markups currently used by the Documentation/ files are meant to be
|
||||
built with ``Sphinx`` version 1.2 or upper. If you're desiring to build
|
||||
PDF outputs, it is recommended to use version 1.4.6.
|
||||
|
||||
.. note::
|
||||
|
||||
Please notice that, for PDF and LaTeX output, you'll also need ``XeLaTeX``
|
||||
version 3.14159265. Depending on the distribution, you may also need
|
||||
to install a series of ``texlive`` packages that provide the minimal
|
||||
set of functionalities required for ``XeLaTex`` to work.
|
||||
|
||||
Other tools
|
||||
-----------
|
||||
|
||||
In order to produce documentation from DocBook, you'll also need ``xmlto``.
|
||||
Please notice, however, that we're currently migrating all documents to use
|
||||
``Sphinx``.
|
||||
|
||||
Getting updated software
|
||||
========================
|
||||
@ -298,114 +337,149 @@ Kernel compilation
|
||||
|
||||
gcc
|
||||
---
|
||||
o <ftp://ftp.gnu.org/gnu/gcc/>
|
||||
|
||||
- <ftp://ftp.gnu.org/gnu/gcc/>
|
||||
|
||||
Make
|
||||
----
|
||||
o <ftp://ftp.gnu.org/gnu/make/>
|
||||
|
||||
- <ftp://ftp.gnu.org/gnu/make/>
|
||||
|
||||
Binutils
|
||||
--------
|
||||
o <ftp://ftp.kernel.org/pub/linux/devel/binutils/>
|
||||
|
||||
- <ftp://ftp.kernel.org/pub/linux/devel/binutils/>
|
||||
|
||||
OpenSSL
|
||||
-------
|
||||
o <https://www.openssl.org/>
|
||||
|
||||
- <https://www.openssl.org/>
|
||||
|
||||
System utilities
|
||||
****************
|
||||
|
||||
Util-linux
|
||||
----------
|
||||
o <ftp://ftp.kernel.org/pub/linux/utils/util-linux/>
|
||||
|
||||
- <ftp://ftp.kernel.org/pub/linux/utils/util-linux/>
|
||||
|
||||
Ksymoops
|
||||
--------
|
||||
o <ftp://ftp.kernel.org/pub/linux/utils/kernel/ksymoops/v2.4/>
|
||||
|
||||
- <ftp://ftp.kernel.org/pub/linux/utils/kernel/ksymoops/v2.4/>
|
||||
|
||||
Module-Init-Tools
|
||||
-----------------
|
||||
o <ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/modules/>
|
||||
|
||||
- <ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/modules/>
|
||||
|
||||
Mkinitrd
|
||||
--------
|
||||
o <https://code.launchpad.net/initrd-tools/main>
|
||||
|
||||
- <https://code.launchpad.net/initrd-tools/main>
|
||||
|
||||
E2fsprogs
|
||||
---------
|
||||
o <http://prdownloads.sourceforge.net/e2fsprogs/e2fsprogs-1.29.tar.gz>
|
||||
|
||||
- <http://prdownloads.sourceforge.net/e2fsprogs/e2fsprogs-1.29.tar.gz>
|
||||
|
||||
JFSutils
|
||||
--------
|
||||
o <http://jfs.sourceforge.net/>
|
||||
|
||||
- <http://jfs.sourceforge.net/>
|
||||
|
||||
Reiserfsprogs
|
||||
-------------
|
||||
o <http://www.kernel.org/pub/linux/utils/fs/reiserfs/>
|
||||
|
||||
- <http://www.kernel.org/pub/linux/utils/fs/reiserfs/>
|
||||
|
||||
Xfsprogs
|
||||
--------
|
||||
o <ftp://oss.sgi.com/projects/xfs/>
|
||||
|
||||
- <ftp://oss.sgi.com/projects/xfs/>
|
||||
|
||||
Pcmciautils
|
||||
-----------
|
||||
o <ftp://ftp.kernel.org/pub/linux/utils/kernel/pcmcia/>
|
||||
|
||||
- <ftp://ftp.kernel.org/pub/linux/utils/kernel/pcmcia/>
|
||||
|
||||
Quota-tools
|
||||
----------
|
||||
o <http://sourceforge.net/projects/linuxquota/>
|
||||
-----------
|
||||
|
||||
- <http://sourceforge.net/projects/linuxquota/>
|
||||
|
||||
DocBook Stylesheets
|
||||
-------------------
|
||||
o <http://sourceforge.net/projects/docbook/files/docbook-dsssl/>
|
||||
|
||||
- <http://sourceforge.net/projects/docbook/files/docbook-dsssl/>
|
||||
|
||||
XMLTO XSLT Frontend
|
||||
-------------------
|
||||
o <http://cyberelk.net/tim/xmlto/>
|
||||
|
||||
- <http://cyberelk.net/tim/xmlto/>
|
||||
|
||||
Intel P6 microcode
|
||||
------------------
|
||||
o <https://downloadcenter.intel.com/>
|
||||
|
||||
- <https://downloadcenter.intel.com/>
|
||||
|
||||
udev
|
||||
----
|
||||
o <http://www.freedesktop.org/software/systemd/man/udev.html>
|
||||
|
||||
- <http://www.freedesktop.org/software/systemd/man/udev.html>
|
||||
|
||||
FUSE
|
||||
----
|
||||
o <http://sourceforge.net/projects/fuse>
|
||||
|
||||
- <http://sourceforge.net/projects/fuse>
|
||||
|
||||
mcelog
|
||||
------
|
||||
o <http://www.mcelog.org/>
|
||||
|
||||
- <http://www.mcelog.org/>
|
||||
|
||||
Networking
|
||||
**********
|
||||
|
||||
PPP
|
||||
---
|
||||
o <ftp://ftp.samba.org/pub/ppp/>
|
||||
|
||||
- <ftp://ftp.samba.org/pub/ppp/>
|
||||
|
||||
Isdn4k-utils
|
||||
------------
|
||||
o <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/>
|
||||
|
||||
- <ftp://ftp.isdn4linux.de/pub/isdn4linux/utils/>
|
||||
|
||||
NFS-utils
|
||||
---------
|
||||
o <http://sourceforge.net/project/showfiles.php?group_id=14>
|
||||
|
||||
- <http://sourceforge.net/project/showfiles.php?group_id=14>
|
||||
|
||||
Iptables
|
||||
--------
|
||||
o <http://www.iptables.org/downloads.html>
|
||||
|
||||
- <http://www.iptables.org/downloads.html>
|
||||
|
||||
Ip-route2
|
||||
---------
|
||||
o <https://www.kernel.org/pub/linux/utils/net/iproute2/>
|
||||
|
||||
- <https://www.kernel.org/pub/linux/utils/net/iproute2/>
|
||||
|
||||
OProfile
|
||||
--------
|
||||
o <http://oprofile.sf.net/download/>
|
||||
|
||||
- <http://oprofile.sf.net/download/>
|
||||
|
||||
NFS-Utils
|
||||
---------
|
||||
o <http://nfs.sourceforge.net/>
|
||||
|
||||
- <http://nfs.sourceforge.net/>
|
||||
|
||||
Kernel documentation
|
||||
********************
|
||||
|
||||
Sphinx
|
||||
------
|
||||
|
||||
- <http://www.sphinx-doc.org/>
|
||||
|
@ -19,7 +19,7 @@ please contact the Linux Foundation's Technical Advisory Board at
|
||||
will work to resolve the issue to the best of their ability. For more
|
||||
information on who is on the Technical Advisory Board and what their
|
||||
role is, please see:
|
||||
http://www.linuxfoundation.org/programs/advisory-councils/tab
|
||||
http://www.linuxfoundation.org/projects/linux/tab
|
||||
|
||||
As a reviewer of code, please strive to keep things civil and focused on
|
||||
the technical issues involved. We are all humans, and frustrations can
|
||||
|
@ -1,8 +1,10 @@
|
||||
.. _codingstyle:
|
||||
|
||||
Linux kernel coding style
|
||||
Linux kernel coding style
|
||||
=========================
|
||||
|
||||
This is a short document describing the preferred coding style for the
|
||||
linux kernel. Coding style is very personal, and I won't _force_ my
|
||||
linux kernel. Coding style is very personal, and I won't **force** my
|
||||
views on anybody, but this is what goes for anything that I have to be
|
||||
able to maintain, and I'd prefer it for most other things too. Please
|
||||
at least consider the points made here.
|
||||
@ -13,7 +15,8 @@ and NOT read it. Burn them, it's a great symbolic gesture.
|
||||
Anyway, here goes:
|
||||
|
||||
|
||||
Chapter 1: Indentation
|
||||
1) Indentation
|
||||
--------------
|
||||
|
||||
Tabs are 8 characters, and thus indentations are also 8 characters.
|
||||
There are heretic movements that try to make indentations 4 (or even 2!)
|
||||
@ -36,8 +39,10 @@ benefit of warning you when you're nesting your functions too deep.
|
||||
Heed that warning.
|
||||
|
||||
The preferred way to ease multiple indentation levels in a switch statement is
|
||||
to align the "switch" and its subordinate "case" labels in the same column
|
||||
instead of "double-indenting" the "case" labels. E.g.:
|
||||
to align the ``switch`` and its subordinate ``case`` labels in the same column
|
||||
instead of ``double-indenting`` the ``case`` labels. E.g.:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
switch (suffix) {
|
||||
case 'G':
|
||||
@ -59,6 +64,8 @@ instead of "double-indenting" the "case" labels. E.g.:
|
||||
Don't put multiple statements on a single line unless you have
|
||||
something to hide:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
if (condition) do_this;
|
||||
do_something_everytime;
|
||||
|
||||
@ -71,7 +78,8 @@ used for indentation, and the above example is deliberately broken.
|
||||
Get a decent editor and don't leave whitespace at the end of lines.
|
||||
|
||||
|
||||
Chapter 2: Breaking long lines and strings
|
||||
2) Breaking long lines and strings
|
||||
----------------------------------
|
||||
|
||||
Coding style is all about readability and maintainability using commonly
|
||||
available tools.
|
||||
@ -87,7 +95,8 @@ with a long argument list. However, never break user-visible strings such as
|
||||
printk messages, because that breaks the ability to grep for them.
|
||||
|
||||
|
||||
Chapter 3: Placing Braces and Spaces
|
||||
3) Placing Braces and Spaces
|
||||
----------------------------
|
||||
|
||||
The other issue that always comes up in C styling is the placement of
|
||||
braces. Unlike the indent size, there are few technical reasons to
|
||||
@ -95,6 +104,8 @@ choose one placement strategy over the other, but the preferred way, as
|
||||
shown to us by the prophets Kernighan and Ritchie, is to put the opening
|
||||
brace last on the line, and put the closing brace first, thusly:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
if (x is true) {
|
||||
we do y
|
||||
}
|
||||
@ -102,6 +113,8 @@ brace last on the line, and put the closing brace first, thusly:
|
||||
This applies to all non-function statement blocks (if, switch, for,
|
||||
while, do). E.g.:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
switch (action) {
|
||||
case KOBJ_ADD:
|
||||
return "add";
|
||||
@ -116,6 +129,8 @@ while, do). E.g.:
|
||||
However, there is one special case, namely functions: they have the
|
||||
opening brace at the beginning of the next line, thus:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
int function(int x)
|
||||
{
|
||||
body of function
|
||||
@ -123,20 +138,24 @@ opening brace at the beginning of the next line, thus:
|
||||
|
||||
Heretic people all over the world have claimed that this inconsistency
|
||||
is ... well ... inconsistent, but all right-thinking people know that
|
||||
(a) K&R are _right_ and (b) K&R are right. Besides, functions are
|
||||
(a) K&R are **right** and (b) K&R are right. Besides, functions are
|
||||
special anyway (you can't nest them in C).
|
||||
|
||||
Note that the closing brace is empty on a line of its own, _except_ in
|
||||
Note that the closing brace is empty on a line of its own, **except** in
|
||||
the cases where it is followed by a continuation of the same statement,
|
||||
ie a "while" in a do-statement or an "else" in an if-statement, like
|
||||
ie a ``while`` in a do-statement or an ``else`` in an if-statement, like
|
||||
this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
do {
|
||||
body of do-loop
|
||||
} while (condition);
|
||||
|
||||
and
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
if (x == y) {
|
||||
..
|
||||
} else if (x > y) {
|
||||
@ -155,11 +174,15 @@ comments on.
|
||||
|
||||
Do not unnecessarily use braces where a single statement will do.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
if (condition)
|
||||
action();
|
||||
|
||||
and
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
if (condition)
|
||||
do_this();
|
||||
else
|
||||
@ -168,6 +191,8 @@ and
|
||||
This does not apply if only one branch of a conditional statement is a single
|
||||
statement; in the latter case use braces in both branches:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
if (condition) {
|
||||
do_this();
|
||||
do_that();
|
||||
@ -175,57 +200,67 @@ statement; in the latter case use braces in both branches:
|
||||
otherwise();
|
||||
}
|
||||
|
||||
3.1: Spaces
|
||||
3.1) Spaces
|
||||
***********
|
||||
|
||||
Linux kernel style for use of spaces depends (mostly) on
|
||||
function-versus-keyword usage. Use a space after (most) keywords. The
|
||||
notable exceptions are sizeof, typeof, alignof, and __attribute__, which look
|
||||
somewhat like functions (and are usually used with parentheses in Linux,
|
||||
although they are not required in the language, as in: "sizeof info" after
|
||||
"struct fileinfo info;" is declared).
|
||||
although they are not required in the language, as in: ``sizeof info`` after
|
||||
``struct fileinfo info;`` is declared).
|
||||
|
||||
So use a space after these keywords:
|
||||
So use a space after these keywords::
|
||||
|
||||
if, switch, case, for, do, while
|
||||
|
||||
but not with sizeof, typeof, alignof, or __attribute__. E.g.,
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
|
||||
s = sizeof(struct file);
|
||||
|
||||
Do not add spaces around (inside) parenthesized expressions. This example is
|
||||
*bad*:
|
||||
**bad**:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
|
||||
s = sizeof( struct file );
|
||||
|
||||
When declaring pointer data or a function that returns a pointer type, the
|
||||
preferred use of '*' is adjacent to the data name or function name and not
|
||||
preferred use of ``*`` is adjacent to the data name or function name and not
|
||||
adjacent to the type name. Examples:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
|
||||
char *linux_banner;
|
||||
unsigned long long memparse(char *ptr, char **retptr);
|
||||
char *match_strdup(substring_t *s);
|
||||
|
||||
Use one space around (on each side of) most binary and ternary operators,
|
||||
such as any of these:
|
||||
such as any of these::
|
||||
|
||||
= + - < > * / % | & ^ <= >= == != ? :
|
||||
|
||||
but no space after unary operators:
|
||||
but no space after unary operators::
|
||||
|
||||
& * + - ~ ! sizeof typeof alignof __attribute__ defined
|
||||
|
||||
no space before the postfix increment & decrement unary operators:
|
||||
no space before the postfix increment & decrement unary operators::
|
||||
|
||||
++ --
|
||||
|
||||
no space after the prefix increment & decrement unary operators:
|
||||
no space after the prefix increment & decrement unary operators::
|
||||
|
||||
++ --
|
||||
|
||||
and no space around the '.' and "->" structure member operators.
|
||||
and no space around the ``.`` and ``->`` structure member operators.
|
||||
|
||||
Do not leave trailing whitespace at the ends of lines. Some editors with
|
||||
"smart" indentation will insert whitespace at the beginning of new lines as
|
||||
``smart`` indentation will insert whitespace at the beginning of new lines as
|
||||
appropriate, so you can start typing the next line of code right away.
|
||||
However, some such editors do not remove the whitespace if you end up not
|
||||
putting a line of code there, such as if you leave a blank line. As a result,
|
||||
@ -237,22 +272,23 @@ of patches, this may make later patches in the series fail by changing their
|
||||
context lines.
|
||||
|
||||
|
||||
Chapter 4: Naming
|
||||
4) Naming
|
||||
---------
|
||||
|
||||
C is a Spartan language, and so should your naming be. Unlike Modula-2
|
||||
and Pascal programmers, C programmers do not use cute names like
|
||||
ThisVariableIsATemporaryCounter. A C programmer would call that
|
||||
variable "tmp", which is much easier to write, and not the least more
|
||||
variable ``tmp``, which is much easier to write, and not the least more
|
||||
difficult to understand.
|
||||
|
||||
HOWEVER, while mixed-case names are frowned upon, descriptive names for
|
||||
global variables are a must. To call a global function "foo" is a
|
||||
global variables are a must. To call a global function ``foo`` is a
|
||||
shooting offense.
|
||||
|
||||
GLOBAL variables (to be used only if you _really_ need them) need to
|
||||
GLOBAL variables (to be used only if you **really** need them) need to
|
||||
have descriptive names, as do global functions. If you have a function
|
||||
that counts the number of active users, you should call that
|
||||
"count_active_users()" or similar, you should _not_ call it "cntusr()".
|
||||
``count_active_users()`` or similar, you should **not** call it ``cntusr()``.
|
||||
|
||||
Encoding the type of a function into the name (so-called Hungarian
|
||||
notation) is brain damaged - the compiler knows the types anyway and can
|
||||
@ -260,9 +296,9 @@ check those, and it only confuses the programmer. No wonder MicroSoft
|
||||
makes buggy programs.
|
||||
|
||||
LOCAL variable names should be short, and to the point. If you have
|
||||
some random integer loop counter, it should probably be called "i".
|
||||
Calling it "loop_counter" is non-productive, if there is no chance of it
|
||||
being mis-understood. Similarly, "tmp" can be just about any type of
|
||||
some random integer loop counter, it should probably be called ``i``.
|
||||
Calling it ``loop_counter`` is non-productive, if there is no chance of it
|
||||
being mis-understood. Similarly, ``tmp`` can be just about any type of
|
||||
variable that is used to hold a temporary value.
|
||||
|
||||
If you are afraid to mix up your local variable names, you have another
|
||||
@ -270,59 +306,69 @@ problem, which is called the function-growth-hormone-imbalance syndrome.
|
||||
See chapter 6 (Functions).
|
||||
|
||||
|
||||
Chapter 5: Typedefs
|
||||
5) Typedefs
|
||||
-----------
|
||||
|
||||
Please don't use things like ``vps_t``.
|
||||
It's a **mistake** to use typedef for structures and pointers. When you see a
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
Please don't use things like "vps_t".
|
||||
It's a _mistake_ to use typedef for structures and pointers. When you see a
|
||||
|
||||
vps_t a;
|
||||
|
||||
in the source, what does it mean?
|
||||
In contrast, if it says
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
struct virtual_container *a;
|
||||
|
||||
you can actually tell what "a" is.
|
||||
you can actually tell what ``a`` is.
|
||||
|
||||
Lots of people think that typedefs "help readability". Not so. They are
|
||||
Lots of people think that typedefs ``help readability``. Not so. They are
|
||||
useful only for:
|
||||
|
||||
(a) totally opaque objects (where the typedef is actively used to _hide_
|
||||
(a) totally opaque objects (where the typedef is actively used to **hide**
|
||||
what the object is).
|
||||
|
||||
Example: "pte_t" etc. opaque objects that you can only access using
|
||||
Example: ``pte_t`` etc. opaque objects that you can only access using
|
||||
the proper accessor functions.
|
||||
|
||||
NOTE! Opaqueness and "accessor functions" are not good in themselves.
|
||||
The reason we have them for things like pte_t etc. is that there
|
||||
really is absolutely _zero_ portably accessible information there.
|
||||
.. note::
|
||||
|
||||
(b) Clear integer types, where the abstraction _helps_ avoid confusion
|
||||
whether it is "int" or "long".
|
||||
Opaqueness and ``accessor functions`` are not good in themselves.
|
||||
The reason we have them for things like pte_t etc. is that there
|
||||
really is absolutely **zero** portably accessible information there.
|
||||
|
||||
(b) Clear integer types, where the abstraction **helps** avoid confusion
|
||||
whether it is ``int`` or ``long``.
|
||||
|
||||
u8/u16/u32 are perfectly fine typedefs, although they fit into
|
||||
category (d) better than here.
|
||||
|
||||
NOTE! Again - there needs to be a _reason_ for this. If something is
|
||||
"unsigned long", then there's no reason to do
|
||||
.. note::
|
||||
|
||||
Again - there needs to be a **reason** for this. If something is
|
||||
``unsigned long``, then there's no reason to do
|
||||
|
||||
typedef unsigned long myflags_t;
|
||||
|
||||
but if there is a clear reason for why it under certain circumstances
|
||||
might be an "unsigned int" and under other configurations might be
|
||||
"unsigned long", then by all means go ahead and use a typedef.
|
||||
might be an ``unsigned int`` and under other configurations might be
|
||||
``unsigned long``, then by all means go ahead and use a typedef.
|
||||
|
||||
(c) when you use sparse to literally create a _new_ type for
|
||||
(c) when you use sparse to literally create a **new** type for
|
||||
type-checking.
|
||||
|
||||
(d) New types which are identical to standard C99 types, in certain
|
||||
exceptional circumstances.
|
||||
|
||||
Although it would only take a short amount of time for the eyes and
|
||||
brain to become accustomed to the standard types like 'uint32_t',
|
||||
brain to become accustomed to the standard types like ``uint32_t``,
|
||||
some people object to their use anyway.
|
||||
|
||||
Therefore, the Linux-specific 'u8/u16/u32/u64' types and their
|
||||
Therefore, the Linux-specific ``u8/u16/u32/u64`` types and their
|
||||
signed equivalents which are identical to standard types are
|
||||
permitted -- although they are not mandatory in new code of your
|
||||
own.
|
||||
@ -333,7 +379,7 @@ useful only for:
|
||||
(e) Types safe for use in userspace.
|
||||
|
||||
In certain structures which are visible to userspace, we cannot
|
||||
require C99 types and cannot use the 'u32' form above. Thus, we
|
||||
require C99 types and cannot use the ``u32`` form above. Thus, we
|
||||
use __u32 and similar types in all structures which are shared
|
||||
with userspace.
|
||||
|
||||
@ -341,10 +387,11 @@ Maybe there are other cases too, but the rule should basically be to NEVER
|
||||
EVER use a typedef unless you can clearly match one of those rules.
|
||||
|
||||
In general, a pointer, or a struct that has elements that can reasonably
|
||||
be directly accessed should _never_ be a typedef.
|
||||
be directly accessed should **never** be a typedef.
|
||||
|
||||
|
||||
Chapter 6: Functions
|
||||
6) Functions
|
||||
------------
|
||||
|
||||
Functions should be short and sweet, and do just one thing. They should
|
||||
fit on one or two screenfuls of text (the ISO/ANSI screen size is 80x24,
|
||||
@ -372,8 +419,10 @@ and it gets confused. You know you're brilliant, but maybe you'd like
|
||||
to understand what you did 2 weeks from now.
|
||||
|
||||
In source files, separate functions with one blank line. If the function is
|
||||
exported, the EXPORT* macro for it should follow immediately after the closing
|
||||
function brace line. E.g.:
|
||||
exported, the **EXPORT** macro for it should follow immediately after the
|
||||
closing function brace line. E.g.:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
int system_is_up(void)
|
||||
{
|
||||
@ -386,7 +435,8 @@ Although this is not required by the C language, it is preferred in Linux
|
||||
because it is a simple way to add valuable information for the reader.
|
||||
|
||||
|
||||
Chapter 7: Centralized exiting of functions
|
||||
7) Centralized exiting of functions
|
||||
-----------------------------------
|
||||
|
||||
Albeit deprecated by some people, the equivalent of the goto statement is
|
||||
used frequently by compilers in form of the unconditional jump instruction.
|
||||
@ -396,18 +446,21 @@ locations and some common work such as cleanup has to be done. If there is no
|
||||
cleanup needed then just return directly.
|
||||
|
||||
Choose label names which say what the goto does or why the goto exists. An
|
||||
example of a good name could be "out_buffer:" if the goto frees "buffer". Avoid
|
||||
using GW-BASIC names like "err1:" and "err2:". Also don't name them after the
|
||||
goto location like "err_kmalloc_failed:"
|
||||
example of a good name could be ``out_free_buffer:`` if the goto frees ``buffer``.
|
||||
Avoid using GW-BASIC names like ``err1:`` and ``err2:``, as you would have to
|
||||
renumber them if you ever add or remove exit paths, and they make correctness
|
||||
difficult to verify anyway.
|
||||
|
||||
The rationale for using gotos is:
|
||||
|
||||
- unconditional statements are easier to understand and follow
|
||||
- nesting is reduced
|
||||
- errors by not updating individual exit points when making
|
||||
modifications are prevented
|
||||
modifications are prevented
|
||||
- saves the compiler work to optimize redundant code away ;)
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
int fun(int a)
|
||||
{
|
||||
int result = 0;
|
||||
@ -425,27 +478,41 @@ The rationale for using gotos is:
|
||||
goto out_buffer;
|
||||
}
|
||||
...
|
||||
out_buffer:
|
||||
out_free_buffer:
|
||||
kfree(buffer);
|
||||
return result;
|
||||
}
|
||||
|
||||
A common type of bug to be aware of is "one err bugs" which look like this:
|
||||
A common type of bug to be aware of is ``one err bugs`` which look like this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
err:
|
||||
kfree(foo->bar);
|
||||
kfree(foo);
|
||||
return ret;
|
||||
|
||||
The bug in this code is that on some exit paths "foo" is NULL. Normally the
|
||||
fix for this is to split it up into two error labels "err_bar:" and "err_foo:".
|
||||
The bug in this code is that on some exit paths ``foo`` is NULL. Normally the
|
||||
fix for this is to split it up into two error labels ``err_free_bar:`` and
|
||||
``err_free_foo:``:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
err_free_bar:
|
||||
kfree(foo->bar);
|
||||
err_free_foo:
|
||||
kfree(foo);
|
||||
return ret;
|
||||
|
||||
Ideally you should simulate errors to test all exit paths.
|
||||
|
||||
|
||||
Chapter 8: Commenting
|
||||
8) Commenting
|
||||
-------------
|
||||
|
||||
Comments are good, but there is also a danger of over-commenting. NEVER
|
||||
try to explain HOW your code works in a comment: it's much better to
|
||||
write the code so that the _working_ is obvious, and it's a waste of
|
||||
write the code so that the **working** is obvious, and it's a waste of
|
||||
time to explain badly written code.
|
||||
|
||||
Generally, you want your comments to tell WHAT your code does, not HOW.
|
||||
@ -461,11 +528,10 @@ When commenting the kernel API functions, please use the kernel-doc format.
|
||||
See the files Documentation/kernel-documentation.rst and scripts/kernel-doc
|
||||
for details.
|
||||
|
||||
Linux style for comments is the C89 "/* ... */" style.
|
||||
Don't use C99-style "// ..." comments.
|
||||
|
||||
The preferred style for long (multi-line) comments is:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
/*
|
||||
* This is the preferred style for multi-line
|
||||
* comments in the Linux kernel source code.
|
||||
@ -478,6 +544,8 @@ The preferred style for long (multi-line) comments is:
|
||||
For files in net/ and drivers/net/ the preferred style for long (multi-line)
|
||||
comments is a little different.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
/* The preferred comment style for files in net/ and drivers/net
|
||||
* looks like this.
|
||||
*
|
||||
@ -491,10 +559,11 @@ multiple data declarations). This leaves you room for a small comment on each
|
||||
item, explaining its use.
|
||||
|
||||
|
||||
Chapter 9: You've made a mess of it
|
||||
9) You've made a mess of it
|
||||
---------------------------
|
||||
|
||||
That's OK, we all do. You've probably been told by your long-time Unix
|
||||
user helper that "GNU emacs" automatically formats the C sources for
|
||||
user helper that ``GNU emacs`` automatically formats the C sources for
|
||||
you, and you've noticed that yes, it does do that, but the defaults it
|
||||
uses are less than desirable (in fact, they are worse than random
|
||||
typing - an infinite number of monkeys typing into GNU emacs would never
|
||||
@ -503,63 +572,66 @@ make a good program).
|
||||
So, you can either get rid of GNU emacs, or change it to use saner
|
||||
values. To do the latter, you can stick the following in your .emacs file:
|
||||
|
||||
(defun c-lineup-arglist-tabs-only (ignored)
|
||||
"Line up argument lists by tabs, not spaces"
|
||||
(let* ((anchor (c-langelem-pos c-syntactic-element))
|
||||
(column (c-langelem-2nd-pos c-syntactic-element))
|
||||
(offset (- (1+ column) anchor))
|
||||
(steps (floor offset c-basic-offset)))
|
||||
(* (max steps 1)
|
||||
c-basic-offset)))
|
||||
.. code-block:: none
|
||||
|
||||
(add-hook 'c-mode-common-hook
|
||||
(lambda ()
|
||||
;; Add kernel style
|
||||
(c-add-style
|
||||
"linux-tabs-only"
|
||||
'("linux" (c-offsets-alist
|
||||
(arglist-cont-nonempty
|
||||
c-lineup-gcc-asm-reg
|
||||
c-lineup-arglist-tabs-only))))))
|
||||
(defun c-lineup-arglist-tabs-only (ignored)
|
||||
"Line up argument lists by tabs, not spaces"
|
||||
(let* ((anchor (c-langelem-pos c-syntactic-element))
|
||||
(column (c-langelem-2nd-pos c-syntactic-element))
|
||||
(offset (- (1+ column) anchor))
|
||||
(steps (floor offset c-basic-offset)))
|
||||
(* (max steps 1)
|
||||
c-basic-offset)))
|
||||
|
||||
(add-hook 'c-mode-hook
|
||||
(lambda ()
|
||||
(let ((filename (buffer-file-name)))
|
||||
;; Enable kernel mode for the appropriate files
|
||||
(when (and filename
|
||||
(string-match (expand-file-name "~/src/linux-trees")
|
||||
filename))
|
||||
(setq indent-tabs-mode t)
|
||||
(setq show-trailing-whitespace t)
|
||||
(c-set-style "linux-tabs-only")))))
|
||||
(add-hook 'c-mode-common-hook
|
||||
(lambda ()
|
||||
;; Add kernel style
|
||||
(c-add-style
|
||||
"linux-tabs-only"
|
||||
'("linux" (c-offsets-alist
|
||||
(arglist-cont-nonempty
|
||||
c-lineup-gcc-asm-reg
|
||||
c-lineup-arglist-tabs-only))))))
|
||||
|
||||
(add-hook 'c-mode-hook
|
||||
(lambda ()
|
||||
(let ((filename (buffer-file-name)))
|
||||
;; Enable kernel mode for the appropriate files
|
||||
(when (and filename
|
||||
(string-match (expand-file-name "~/src/linux-trees")
|
||||
filename))
|
||||
(setq indent-tabs-mode t)
|
||||
(setq show-trailing-whitespace t)
|
||||
(c-set-style "linux-tabs-only")))))
|
||||
|
||||
This will make emacs go better with the kernel coding style for C
|
||||
files below ~/src/linux-trees.
|
||||
files below ``~/src/linux-trees``.
|
||||
|
||||
But even if you fail in getting emacs to do sane formatting, not
|
||||
everything is lost: use "indent".
|
||||
everything is lost: use ``indent``.
|
||||
|
||||
Now, again, GNU indent has the same brain-dead settings that GNU emacs
|
||||
has, which is why you need to give it a few command line options.
|
||||
However, that's not too bad, because even the makers of GNU indent
|
||||
recognize the authority of K&R (the GNU people aren't evil, they are
|
||||
just severely misguided in this matter), so you just give indent the
|
||||
options "-kr -i8" (stands for "K&R, 8 character indents"), or use
|
||||
"scripts/Lindent", which indents in the latest style.
|
||||
options ``-kr -i8`` (stands for ``K&R, 8 character indents``), or use
|
||||
``scripts/Lindent``, which indents in the latest style.
|
||||
|
||||
"indent" has a lot of options, and especially when it comes to comment
|
||||
``indent`` has a lot of options, and especially when it comes to comment
|
||||
re-formatting you may want to take a look at the man page. But
|
||||
remember: "indent" is not a fix for bad programming.
|
||||
remember: ``indent`` is not a fix for bad programming.
|
||||
|
||||
|
||||
Chapter 10: Kconfig configuration files
|
||||
10) Kconfig configuration files
|
||||
-------------------------------
|
||||
|
||||
For all of the Kconfig* configuration files throughout the source tree,
|
||||
the indentation is somewhat different. Lines under a "config" definition
|
||||
the indentation is somewhat different. Lines under a ``config`` definition
|
||||
are indented with one tab, while help text is indented an additional two
|
||||
spaces. Example:
|
||||
spaces. Example::
|
||||
|
||||
config AUDIT
|
||||
config AUDIT
|
||||
bool "Auditing support"
|
||||
depends on NET
|
||||
help
|
||||
@ -569,9 +641,9 @@ config AUDIT
|
||||
auditing without CONFIG_AUDITSYSCALL.
|
||||
|
||||
Seriously dangerous features (such as write support for certain
|
||||
filesystems) should advertise this prominently in their prompt string:
|
||||
filesystems) should advertise this prominently in their prompt string::
|
||||
|
||||
config ADFS_FS_RW
|
||||
config ADFS_FS_RW
|
||||
bool "ADFS write support (DANGEROUS)"
|
||||
depends on ADFS_FS
|
||||
...
|
||||
@ -580,41 +652,45 @@ For full documentation on the configuration files, see the file
|
||||
Documentation/kbuild/kconfig-language.txt.
|
||||
|
||||
|
||||
Chapter 11: Data structures
|
||||
11) Data structures
|
||||
-------------------
|
||||
|
||||
Data structures that have visibility outside the single-threaded
|
||||
environment they are created and destroyed in should always have
|
||||
reference counts. In the kernel, garbage collection doesn't exist (and
|
||||
outside the kernel garbage collection is slow and inefficient), which
|
||||
means that you absolutely _have_ to reference count all your uses.
|
||||
means that you absolutely **have** to reference count all your uses.
|
||||
|
||||
Reference counting means that you can avoid locking, and allows multiple
|
||||
users to have access to the data structure in parallel - and not having
|
||||
to worry about the structure suddenly going away from under them just
|
||||
because they slept or did something else for a while.
|
||||
|
||||
Note that locking is _not_ a replacement for reference counting.
|
||||
Note that locking is **not** a replacement for reference counting.
|
||||
Locking is used to keep data structures coherent, while reference
|
||||
counting is a memory management technique. Usually both are needed, and
|
||||
they are not to be confused with each other.
|
||||
|
||||
Many data structures can indeed have two levels of reference counting,
|
||||
when there are users of different "classes". The subclass count counts
|
||||
when there are users of different ``classes``. The subclass count counts
|
||||
the number of subclass users, and decrements the global count just once
|
||||
when the subclass count goes to zero.
|
||||
|
||||
Examples of this kind of "multi-level-reference-counting" can be found in
|
||||
memory management ("struct mm_struct": mm_users and mm_count), and in
|
||||
filesystem code ("struct super_block": s_count and s_active).
|
||||
Examples of this kind of ``multi-level-reference-counting`` can be found in
|
||||
memory management (``struct mm_struct``: mm_users and mm_count), and in
|
||||
filesystem code (``struct super_block``: s_count and s_active).
|
||||
|
||||
Remember: if another thread can find your data structure, and you don't
|
||||
have a reference count on it, you almost certainly have a bug.
|
||||
|
||||
|
||||
Chapter 12: Macros, Enums and RTL
|
||||
12) Macros, Enums and RTL
|
||||
-------------------------
|
||||
|
||||
Names of macros defining constants and labels in enums are capitalized.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define CONSTANT 0x12345
|
||||
|
||||
Enums are preferred when defining several related constants.
|
||||
@ -626,7 +702,9 @@ Generally, inline functions are preferable to macros resembling functions.
|
||||
|
||||
Macros with multiple statements should be enclosed in a do - while block:
|
||||
|
||||
#define macrofun(a, b, c) \
|
||||
.. code-block:: c
|
||||
|
||||
#define macrofun(a, b, c) \
|
||||
do { \
|
||||
if (a == 5) \
|
||||
do_this(b, c); \
|
||||
@ -636,17 +714,21 @@ Things to avoid when using macros:
|
||||
|
||||
1) macros that affect control flow:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define FOO(x) \
|
||||
do { \
|
||||
if (blah(x) < 0) \
|
||||
return -EBUGGERED; \
|
||||
} while (0)
|
||||
|
||||
is a _very_ bad idea. It looks like a function call but exits the "calling"
|
||||
is a **very** bad idea. It looks like a function call but exits the ``calling``
|
||||
function; don't break the internal parsers of those who will read the code.
|
||||
|
||||
2) macros that depend on having a local variable with a magic name:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define FOO(val) bar(index, val)
|
||||
|
||||
might look like a good thing, but it's confusing as hell when one reads the
|
||||
@ -659,18 +741,22 @@ bite you if somebody e.g. turns FOO into an inline function.
|
||||
must enclose the expression in parentheses. Beware of similar issues with
|
||||
macros using parameters.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define CONSTANT 0x4000
|
||||
#define CONSTEXP (CONSTANT | 3)
|
||||
|
||||
5) namespace collisions when defining local variables in macros resembling
|
||||
functions:
|
||||
|
||||
#define FOO(x) \
|
||||
({ \
|
||||
typeof(x) ret; \
|
||||
ret = calc_ret(x); \
|
||||
(ret); \
|
||||
})
|
||||
.. code-block:: c
|
||||
|
||||
#define FOO(x) \
|
||||
({ \
|
||||
typeof(x) ret; \
|
||||
ret = calc_ret(x); \
|
||||
(ret); \
|
||||
})
|
||||
|
||||
ret is a common name for a local variable - __foo_ret is less likely
|
||||
to collide with an existing variable.
|
||||
@ -679,11 +765,12 @@ The cpp manual deals with macros exhaustively. The gcc internals manual also
|
||||
covers RTL which is used frequently with assembly language in the kernel.
|
||||
|
||||
|
||||
Chapter 13: Printing kernel messages
|
||||
13) Printing kernel messages
|
||||
----------------------------
|
||||
|
||||
Kernel developers like to be seen as literate. Do mind the spelling
|
||||
of kernel messages to make a good impression. Do not use crippled
|
||||
words like "dont"; use "do not" or "don't" instead. Make the messages
|
||||
words like ``dont``; use ``do not`` or ``don't`` instead. Make the messages
|
||||
concise, clear, and unambiguous.
|
||||
|
||||
Kernel messages do not have to be terminated with a period.
|
||||
@ -713,7 +800,8 @@ already inside a debug-related #ifdef section, printk(KERN_DEBUG ...) can be
|
||||
used.
|
||||
|
||||
|
||||
Chapter 14: Allocating memory
|
||||
14) Allocating memory
|
||||
---------------------
|
||||
|
||||
The kernel provides the following general purpose memory allocators:
|
||||
kmalloc(), kzalloc(), kmalloc_array(), kcalloc(), vmalloc(), and
|
||||
@ -722,6 +810,8 @@ about them.
|
||||
|
||||
The preferred form for passing a size of a struct is the following:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
p = kmalloc(sizeof(*p), ...);
|
||||
|
||||
The alternative form where struct name is spelled out hurts readability and
|
||||
@ -734,20 +824,25 @@ language.
|
||||
|
||||
The preferred form for allocating an array is the following:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
p = kmalloc_array(n, sizeof(...), ...);
|
||||
|
||||
The preferred form for allocating a zeroed array is the following:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
p = kcalloc(n, sizeof(...), ...);
|
||||
|
||||
Both forms check for overflow on the allocation size n * sizeof(...),
|
||||
and return NULL if that occurred.
|
||||
|
||||
|
||||
Chapter 15: The inline disease
|
||||
15) The inline disease
|
||||
----------------------
|
||||
|
||||
There appears to be a common misperception that gcc has a magic "make me
|
||||
faster" speedup option called "inline". While the use of inlines can be
|
||||
faster" speedup option called ``inline``. While the use of inlines can be
|
||||
appropriate (for example as a means of replacing macros, see Chapter 12), it
|
||||
very often is not. Abundant use of the inline keyword leads to a much bigger
|
||||
kernel, which in turn slows the system as a whole down, due to a bigger
|
||||
@ -771,26 +866,27 @@ appears outweighs the potential value of the hint that tells gcc to do
|
||||
something it would have done anyway.
|
||||
|
||||
|
||||
Chapter 16: Function return values and names
|
||||
16) Function return values and names
|
||||
------------------------------------
|
||||
|
||||
Functions can return values of many different kinds, and one of the
|
||||
most common is a value indicating whether the function succeeded or
|
||||
failed. Such a value can be represented as an error-code integer
|
||||
(-Exxx = failure, 0 = success) or a "succeeded" boolean (0 = failure,
|
||||
(-Exxx = failure, 0 = success) or a ``succeeded`` boolean (0 = failure,
|
||||
non-zero = success).
|
||||
|
||||
Mixing up these two sorts of representations is a fertile source of
|
||||
difficult-to-find bugs. If the C language included a strong distinction
|
||||
between integers and booleans then the compiler would find these mistakes
|
||||
for us... but it doesn't. To help prevent such bugs, always follow this
|
||||
convention:
|
||||
convention::
|
||||
|
||||
If the name of a function is an action or an imperative command,
|
||||
the function should return an error-code integer. If the name
|
||||
is a predicate, the function should return a "succeeded" boolean.
|
||||
|
||||
For example, "add work" is a command, and the add_work() function returns 0
|
||||
for success or -EBUSY for failure. In the same way, "PCI device present" is
|
||||
For example, ``add work`` is a command, and the add_work() function returns 0
|
||||
for success or -EBUSY for failure. In the same way, ``PCI device present`` is
|
||||
a predicate, and the pci_dev_present() function returns 1 if it succeeds in
|
||||
finding a matching device or 0 if it doesn't.
|
||||
|
||||
@ -805,17 +901,22 @@ result. Typical examples would be functions that return pointers; they use
|
||||
NULL or the ERR_PTR mechanism to report failure.
|
||||
|
||||
|
||||
Chapter 17: Don't re-invent the kernel macros
|
||||
17) Don't re-invent the kernel macros
|
||||
-------------------------------------
|
||||
|
||||
The header file include/linux/kernel.h contains a number of macros that
|
||||
you should use, rather than explicitly coding some variant of them yourself.
|
||||
For example, if you need to calculate the length of an array, take advantage
|
||||
of the macro
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
|
||||
|
||||
Similarly, if you need to calculate the size of some structure member, use
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
|
||||
|
||||
There are also min() and max() macros that do strict type checking if you
|
||||
@ -823,16 +924,21 @@ need them. Feel free to peruse that header file to see what else is already
|
||||
defined that you shouldn't reproduce in your code.
|
||||
|
||||
|
||||
Chapter 18: Editor modelines and other cruft
|
||||
18) Editor modelines and other cruft
|
||||
------------------------------------
|
||||
|
||||
Some editors can interpret configuration information embedded in source files,
|
||||
indicated with special markers. For example, emacs interprets lines marked
|
||||
like this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
-*- mode: c -*-
|
||||
|
||||
Or like this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
/*
|
||||
Local Variables:
|
||||
compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
|
||||
@ -841,6 +947,8 @@ Or like this:
|
||||
|
||||
Vim interprets markers that look like this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
/* vim:set sw=8 noet */
|
||||
|
||||
Do not include any of these in source files. People have their own personal
|
||||
@ -850,7 +958,8 @@ own custom mode, or may have some other magic method for making indentation
|
||||
work correctly.
|
||||
|
||||
|
||||
Chapter 19: Inline assembly
|
||||
19) Inline assembly
|
||||
-------------------
|
||||
|
||||
In architecture-specific code, you may need to use inline assembly to interface
|
||||
with CPU or platform functionality. Don't hesitate to do so when necessary.
|
||||
@ -863,7 +972,7 @@ that inline assembly can use C parameters.
|
||||
|
||||
Large, non-trivial assembly functions should go in .S files, with corresponding
|
||||
C prototypes defined in C header files. The C prototypes for assembly
|
||||
functions should use "asmlinkage".
|
||||
functions should use ``asmlinkage``.
|
||||
|
||||
You may need to mark your asm statement as volatile, to prevent GCC from
|
||||
removing it if GCC doesn't notice any side effects. You don't always need to
|
||||
@ -874,12 +983,15 @@ instructions, put each instruction on a separate line in a separate quoted
|
||||
string, and end each string except the last with \n\t to properly indent the
|
||||
next instruction in the assembly output:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
asm ("magic %reg1, #42\n\t"
|
||||
"more_magic %reg2, %reg3"
|
||||
: /* outputs */ : /* inputs */ : /* clobbers */);
|
||||
|
||||
|
||||
Chapter 20: Conditional Compilation
|
||||
20) Conditional Compilation
|
||||
---------------------------
|
||||
|
||||
Wherever possible, don't use preprocessor conditionals (#if, #ifdef) in .c
|
||||
files; doing so makes code harder to read and logic harder to follow. Instead,
|
||||
@ -903,6 +1015,8 @@ unused, delete it.)
|
||||
Within code, where possible, use the IS_ENABLED macro to convert a Kconfig
|
||||
symbol into a C boolean expression, and use it in a normal C conditional:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
if (IS_ENABLED(CONFIG_SOMETHING)) {
|
||||
...
|
||||
}
|
||||
@ -918,12 +1032,15 @@ At the end of any non-trivial #if or #ifdef block (more than a few lines),
|
||||
place a comment after the #endif on the same line, noting the conditional
|
||||
expression used. For instance:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#ifdef CONFIG_SOMETHING
|
||||
...
|
||||
#endif /* CONFIG_SOMETHING */
|
||||
|
||||
|
||||
Appendix I: References
|
||||
Appendix I) References
|
||||
----------------------
|
||||
|
||||
The C Programming Language, Second Edition
|
||||
by Brian W. Kernighan and Dennis M. Ritchie.
|
||||
@ -943,4 +1060,3 @@ language C, URL: http://www.open-std.org/JTC1/SC22/WG14/
|
||||
|
||||
Kernel CodingStyle, by greg@kroah.com at OLS 2002:
|
||||
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/
|
||||
|
||||
|
@ -699,7 +699,7 @@ to use the dma_sync_*() interfaces.
|
||||
dma_addr_t mapping;
|
||||
|
||||
mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
|
||||
if (dma_mapping_error(cp->dev, dma_handle)) {
|
||||
if (dma_mapping_error(cp->dev, mapping)) {
|
||||
/*
|
||||
* reduce current DMA mapping usage,
|
||||
* delay and try again later or
|
||||
@ -931,10 +931,8 @@ to "Closing".
|
||||
|
||||
1) Struct scatterlist requirements.
|
||||
|
||||
Don't invent the architecture specific struct scatterlist; just use
|
||||
<asm-generic/scatterlist.h>. You need to enable
|
||||
CONFIG_NEED_SG_DMA_LENGTH if the architecture supports IOMMUs
|
||||
(including software IOMMU).
|
||||
You need to enable CONFIG_NEED_SG_DMA_LENGTH if the architecture
|
||||
supports IOMMUs (including software IOMMU).
|
||||
|
||||
2) ARCH_DMA_MINALIGN
|
||||
|
||||
|
@ -277,14 +277,26 @@ and <size> parameters are provided to do partial page mapping, it is
|
||||
recommended that you never use these unless you really know what the
|
||||
cache width is.
|
||||
|
||||
dma_addr_t
|
||||
dma_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
|
||||
enum dma_data_direction dir, unsigned long attrs)
|
||||
|
||||
void
|
||||
dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
|
||||
enum dma_data_direction dir, unsigned long attrs)
|
||||
|
||||
API for mapping and unmapping for MMIO resources. All the notes and
|
||||
warnings for the other mapping APIs apply here. The API should only be
|
||||
used to map device MMIO resources, mapping of RAM is not permitted.
|
||||
|
||||
int
|
||||
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
||||
|
||||
In some circumstances dma_map_single() and dma_map_page() will fail to create
|
||||
a mapping. A driver can check for these errors by testing the returned
|
||||
DMA address with dma_mapping_error(). A non-zero return value means the mapping
|
||||
could not be created and the driver should take appropriate action (e.g.
|
||||
reduce current DMA mapping usage or delay and try again later).
|
||||
In some circumstances dma_map_single(), dma_map_page() and dma_map_resource()
|
||||
will fail to create a mapping. A driver can check for these errors by testing
|
||||
the returned DMA address with dma_mapping_error(). A non-zero return value
|
||||
means the mapping could not be created and the driver should take appropriate
|
||||
action (e.g. reduce current DMA mapping usage or delay and try again later).
|
||||
|
||||
int
|
||||
dma_map_sg(struct device *dev, struct scatterlist *sg,
|
||||
|
@ -126,3 +126,20 @@ means that we won't try quite as hard to get them.
|
||||
|
||||
NOTE: At the moment DMA_ATTR_ALLOC_SINGLE_PAGES is only implemented on ARM,
|
||||
though ARM64 patches will likely be posted soon.
|
||||
|
||||
DMA_ATTR_NO_WARN
|
||||
----------------
|
||||
|
||||
This tells the DMA-mapping subsystem to suppress allocation failure reports
|
||||
(similarly to __GFP_NOWARN).
|
||||
|
||||
On some architectures allocation failures are reported with error messages
|
||||
to the system logs. Although this can help to identify and debug problems,
|
||||
drivers which handle failures (eg, retry later) have no problems with them,
|
||||
and can actually flood the system logs with error messages that aren't any
|
||||
problem at all, depending on the implementation of the retry mechanism.
|
||||
|
||||
So, this provides a way for drivers to avoid those error messages on calls
|
||||
where allocation failures are not a problem, and shouldn't bother the logs.
|
||||
|
||||
NOTE: At the moment DMA_ATTR_NO_WARN is only implemented on PowerPC.
|
||||
|
@ -1,584 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE set PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
|
||||
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
|
||||
<set>
|
||||
<setinfo>
|
||||
<title>The 802.11 subsystems – for kernel developers</title>
|
||||
<subtitle>
|
||||
Explaining wireless 802.11 networking in the Linux kernel
|
||||
</subtitle>
|
||||
|
||||
<copyright>
|
||||
<year>2007-2009</year>
|
||||
<holder>Johannes Berg</holder>
|
||||
</copyright>
|
||||
|
||||
<authorgroup>
|
||||
<author>
|
||||
<firstname>Johannes</firstname>
|
||||
<surname>Berg</surname>
|
||||
<affiliation>
|
||||
<address><email>johannes@sipsolutions.net</email></address>
|
||||
</affiliation>
|
||||
</author>
|
||||
</authorgroup>
|
||||
|
||||
<legalnotice>
|
||||
<para>
|
||||
This documentation is free software; you can redistribute
|
||||
it and/or modify it under the terms of the GNU General Public
|
||||
License version 2 as published by the Free Software Foundation.
|
||||
</para>
|
||||
<para>
|
||||
This documentation is distributed in the hope that it will be
|
||||
useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
See the GNU General Public License for more details.
|
||||
</para>
|
||||
<para>
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with this documentation; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
MA 02111-1307 USA
|
||||
</para>
|
||||
<para>
|
||||
For more details see the file COPYING in the source
|
||||
distribution of Linux.
|
||||
</para>
|
||||
</legalnotice>
|
||||
|
||||
<abstract>
|
||||
<para>
|
||||
These books attempt to give a description of the
|
||||
various subsystems that play a role in 802.11 wireless
|
||||
networking in Linux. Since these books are for kernel
|
||||
developers they attempts to document the structures
|
||||
and functions used in the kernel as well as giving a
|
||||
higher-level overview.
|
||||
</para>
|
||||
<para>
|
||||
The reader is expected to be familiar with the 802.11
|
||||
standard as published by the IEEE in 802.11-2007 (or
|
||||
possibly later versions). References to this standard
|
||||
will be given as "802.11-2007 8.1.5".
|
||||
</para>
|
||||
</abstract>
|
||||
</setinfo>
|
||||
<book id="cfg80211-developers-guide">
|
||||
<bookinfo>
|
||||
<title>The cfg80211 subsystem</title>
|
||||
|
||||
<abstract>
|
||||
!Pinclude/net/cfg80211.h Introduction
|
||||
</abstract>
|
||||
</bookinfo>
|
||||
<chapter>
|
||||
<title>Device registration</title>
|
||||
!Pinclude/net/cfg80211.h Device registration
|
||||
!Finclude/net/cfg80211.h ieee80211_channel_flags
|
||||
!Finclude/net/cfg80211.h ieee80211_channel
|
||||
!Finclude/net/cfg80211.h ieee80211_rate_flags
|
||||
!Finclude/net/cfg80211.h ieee80211_rate
|
||||
!Finclude/net/cfg80211.h ieee80211_sta_ht_cap
|
||||
!Finclude/net/cfg80211.h ieee80211_supported_band
|
||||
!Finclude/net/cfg80211.h cfg80211_signal_type
|
||||
!Finclude/net/cfg80211.h wiphy_params_flags
|
||||
!Finclude/net/cfg80211.h wiphy_flags
|
||||
!Finclude/net/cfg80211.h wiphy
|
||||
!Finclude/net/cfg80211.h wireless_dev
|
||||
!Finclude/net/cfg80211.h wiphy_new
|
||||
!Finclude/net/cfg80211.h wiphy_register
|
||||
!Finclude/net/cfg80211.h wiphy_unregister
|
||||
!Finclude/net/cfg80211.h wiphy_free
|
||||
|
||||
!Finclude/net/cfg80211.h wiphy_name
|
||||
!Finclude/net/cfg80211.h wiphy_dev
|
||||
!Finclude/net/cfg80211.h wiphy_priv
|
||||
!Finclude/net/cfg80211.h priv_to_wiphy
|
||||
!Finclude/net/cfg80211.h set_wiphy_dev
|
||||
!Finclude/net/cfg80211.h wdev_priv
|
||||
!Finclude/net/cfg80211.h ieee80211_iface_limit
|
||||
!Finclude/net/cfg80211.h ieee80211_iface_combination
|
||||
!Finclude/net/cfg80211.h cfg80211_check_combinations
|
||||
</chapter>
|
||||
<chapter>
|
||||
<title>Actions and configuration</title>
|
||||
!Pinclude/net/cfg80211.h Actions and configuration
|
||||
!Finclude/net/cfg80211.h cfg80211_ops
|
||||
!Finclude/net/cfg80211.h vif_params
|
||||
!Finclude/net/cfg80211.h key_params
|
||||
!Finclude/net/cfg80211.h survey_info_flags
|
||||
!Finclude/net/cfg80211.h survey_info
|
||||
!Finclude/net/cfg80211.h cfg80211_beacon_data
|
||||
!Finclude/net/cfg80211.h cfg80211_ap_settings
|
||||
!Finclude/net/cfg80211.h station_parameters
|
||||
!Finclude/net/cfg80211.h rate_info_flags
|
||||
!Finclude/net/cfg80211.h rate_info
|
||||
!Finclude/net/cfg80211.h station_info
|
||||
!Finclude/net/cfg80211.h monitor_flags
|
||||
!Finclude/net/cfg80211.h mpath_info_flags
|
||||
!Finclude/net/cfg80211.h mpath_info
|
||||
!Finclude/net/cfg80211.h bss_parameters
|
||||
!Finclude/net/cfg80211.h ieee80211_txq_params
|
||||
!Finclude/net/cfg80211.h cfg80211_crypto_settings
|
||||
!Finclude/net/cfg80211.h cfg80211_auth_request
|
||||
!Finclude/net/cfg80211.h cfg80211_assoc_request
|
||||
!Finclude/net/cfg80211.h cfg80211_deauth_request
|
||||
!Finclude/net/cfg80211.h cfg80211_disassoc_request
|
||||
!Finclude/net/cfg80211.h cfg80211_ibss_params
|
||||
!Finclude/net/cfg80211.h cfg80211_connect_params
|
||||
!Finclude/net/cfg80211.h cfg80211_pmksa
|
||||
!Finclude/net/cfg80211.h cfg80211_rx_mlme_mgmt
|
||||
!Finclude/net/cfg80211.h cfg80211_auth_timeout
|
||||
!Finclude/net/cfg80211.h cfg80211_rx_assoc_resp
|
||||
!Finclude/net/cfg80211.h cfg80211_assoc_timeout
|
||||
!Finclude/net/cfg80211.h cfg80211_tx_mlme_mgmt
|
||||
!Finclude/net/cfg80211.h cfg80211_ibss_joined
|
||||
!Finclude/net/cfg80211.h cfg80211_connect_result
|
||||
!Finclude/net/cfg80211.h cfg80211_connect_bss
|
||||
!Finclude/net/cfg80211.h cfg80211_connect_timeout
|
||||
!Finclude/net/cfg80211.h cfg80211_roamed
|
||||
!Finclude/net/cfg80211.h cfg80211_disconnected
|
||||
!Finclude/net/cfg80211.h cfg80211_ready_on_channel
|
||||
!Finclude/net/cfg80211.h cfg80211_remain_on_channel_expired
|
||||
!Finclude/net/cfg80211.h cfg80211_new_sta
|
||||
!Finclude/net/cfg80211.h cfg80211_rx_mgmt
|
||||
!Finclude/net/cfg80211.h cfg80211_mgmt_tx_status
|
||||
!Finclude/net/cfg80211.h cfg80211_cqm_rssi_notify
|
||||
!Finclude/net/cfg80211.h cfg80211_cqm_pktloss_notify
|
||||
!Finclude/net/cfg80211.h cfg80211_michael_mic_failure
|
||||
</chapter>
|
||||
<chapter>
|
||||
<title>Scanning and BSS list handling</title>
|
||||
!Pinclude/net/cfg80211.h Scanning and BSS list handling
|
||||
!Finclude/net/cfg80211.h cfg80211_ssid
|
||||
!Finclude/net/cfg80211.h cfg80211_scan_request
|
||||
!Finclude/net/cfg80211.h cfg80211_scan_done
|
||||
!Finclude/net/cfg80211.h cfg80211_bss
|
||||
!Finclude/net/cfg80211.h cfg80211_inform_bss
|
||||
!Finclude/net/cfg80211.h cfg80211_inform_bss_frame_data
|
||||
!Finclude/net/cfg80211.h cfg80211_inform_bss_data
|
||||
!Finclude/net/cfg80211.h cfg80211_unlink_bss
|
||||
!Finclude/net/cfg80211.h cfg80211_find_ie
|
||||
!Finclude/net/cfg80211.h ieee80211_bss_get_ie
|
||||
</chapter>
|
||||
<chapter>
|
||||
<title>Utility functions</title>
|
||||
!Pinclude/net/cfg80211.h Utility functions
|
||||
!Finclude/net/cfg80211.h ieee80211_channel_to_frequency
|
||||
!Finclude/net/cfg80211.h ieee80211_frequency_to_channel
|
||||
!Finclude/net/cfg80211.h ieee80211_get_channel
|
||||
!Finclude/net/cfg80211.h ieee80211_get_response_rate
|
||||
!Finclude/net/cfg80211.h ieee80211_hdrlen
|
||||
!Finclude/net/cfg80211.h ieee80211_get_hdrlen_from_skb
|
||||
!Finclude/net/cfg80211.h ieee80211_radiotap_iterator
|
||||
</chapter>
|
||||
<chapter>
|
||||
<title>Data path helpers</title>
|
||||
!Pinclude/net/cfg80211.h Data path helpers
|
||||
!Finclude/net/cfg80211.h ieee80211_data_to_8023
|
||||
!Finclude/net/cfg80211.h ieee80211_data_from_8023
|
||||
!Finclude/net/cfg80211.h ieee80211_amsdu_to_8023s
|
||||
!Finclude/net/cfg80211.h cfg80211_classify8021d
|
||||
</chapter>
|
||||
<chapter>
|
||||
<title>Regulatory enforcement infrastructure</title>
|
||||
!Pinclude/net/cfg80211.h Regulatory enforcement infrastructure
|
||||
!Finclude/net/cfg80211.h regulatory_hint
|
||||
!Finclude/net/cfg80211.h wiphy_apply_custom_regulatory
|
||||
!Finclude/net/cfg80211.h freq_reg_info
|
||||
</chapter>
|
||||
<chapter>
|
||||
<title>RFkill integration</title>
|
||||
!Pinclude/net/cfg80211.h RFkill integration
|
||||
!Finclude/net/cfg80211.h wiphy_rfkill_set_hw_state
|
||||
!Finclude/net/cfg80211.h wiphy_rfkill_start_polling
|
||||
!Finclude/net/cfg80211.h wiphy_rfkill_stop_polling
|
||||
</chapter>
|
||||
<chapter>
|
||||
<title>Test mode</title>
|
||||
!Pinclude/net/cfg80211.h Test mode
|
||||
!Finclude/net/cfg80211.h cfg80211_testmode_alloc_reply_skb
|
||||
!Finclude/net/cfg80211.h cfg80211_testmode_reply
|
||||
!Finclude/net/cfg80211.h cfg80211_testmode_alloc_event_skb
|
||||
!Finclude/net/cfg80211.h cfg80211_testmode_event
|
||||
</chapter>
|
||||
</book>
|
||||
<book id="mac80211-developers-guide">
|
||||
<bookinfo>
|
||||
<title>The mac80211 subsystem</title>
|
||||
<abstract>
|
||||
!Pinclude/net/mac80211.h Introduction
|
||||
!Pinclude/net/mac80211.h Warning
|
||||
</abstract>
|
||||
</bookinfo>
|
||||
|
||||
<toc></toc>
|
||||
|
||||
<!--
|
||||
Generally, this document shall be ordered by increasing complexity.
|
||||
It is important to note that readers should be able to read only
|
||||
the first few sections to get a working driver and only advanced
|
||||
usage should require reading the full document.
|
||||
-->
|
||||
|
||||
<part>
|
||||
<title>The basic mac80211 driver interface</title>
|
||||
<partintro>
|
||||
<para>
|
||||
You should read and understand the information contained
|
||||
within this part of the book while implementing a driver.
|
||||
In some chapters, advanced usage is noted, that may be
|
||||
skipped at first.
|
||||
</para>
|
||||
<para>
|
||||
This part of the book only covers station and monitor mode
|
||||
functionality, additional information required to implement
|
||||
the other modes is covered in the second part of the book.
|
||||
</para>
|
||||
</partintro>
|
||||
|
||||
<chapter id="basics">
|
||||
<title>Basic hardware handling</title>
|
||||
<para>TBD</para>
|
||||
<para>
|
||||
This chapter shall contain information on getting a hw
|
||||
struct allocated and registered with mac80211.
|
||||
</para>
|
||||
<para>
|
||||
Since it is required to allocate rates/modes before registering
|
||||
a hw struct, this chapter shall also contain information on setting
|
||||
up the rate/mode structs.
|
||||
</para>
|
||||
<para>
|
||||
Additionally, some discussion about the callbacks and
|
||||
the general programming model should be in here, including
|
||||
the definition of ieee80211_ops which will be referred to
|
||||
a lot.
|
||||
</para>
|
||||
<para>
|
||||
Finally, a discussion of hardware capabilities should be done
|
||||
with references to other parts of the book.
|
||||
</para>
|
||||
<!-- intentionally multiple !F lines to get proper order -->
|
||||
!Finclude/net/mac80211.h ieee80211_hw
|
||||
!Finclude/net/mac80211.h ieee80211_hw_flags
|
||||
!Finclude/net/mac80211.h SET_IEEE80211_DEV
|
||||
!Finclude/net/mac80211.h SET_IEEE80211_PERM_ADDR
|
||||
!Finclude/net/mac80211.h ieee80211_ops
|
||||
!Finclude/net/mac80211.h ieee80211_alloc_hw
|
||||
!Finclude/net/mac80211.h ieee80211_register_hw
|
||||
!Finclude/net/mac80211.h ieee80211_unregister_hw
|
||||
!Finclude/net/mac80211.h ieee80211_free_hw
|
||||
</chapter>
|
||||
|
||||
<chapter id="phy-handling">
|
||||
<title>PHY configuration</title>
|
||||
<para>TBD</para>
|
||||
<para>
|
||||
This chapter should describe PHY handling including
|
||||
start/stop callbacks and the various structures used.
|
||||
</para>
|
||||
!Finclude/net/mac80211.h ieee80211_conf
|
||||
!Finclude/net/mac80211.h ieee80211_conf_flags
|
||||
</chapter>
|
||||
|
||||
<chapter id="iface-handling">
|
||||
<title>Virtual interfaces</title>
|
||||
<para>TBD</para>
|
||||
<para>
|
||||
This chapter should describe virtual interface basics
|
||||
that are relevant to the driver (VLANs, MGMT etc are not.)
|
||||
It should explain the use of the add_iface/remove_iface
|
||||
callbacks as well as the interface configuration callbacks.
|
||||
</para>
|
||||
<para>Things related to AP mode should be discussed there.</para>
|
||||
<para>
|
||||
Things related to supporting multiple interfaces should be
|
||||
in the appropriate chapter, a BIG FAT note should be here about
|
||||
this though and the recommendation to allow only a single
|
||||
interface in STA mode at first!
|
||||
</para>
|
||||
!Finclude/net/mac80211.h ieee80211_vif
|
||||
</chapter>
|
||||
|
||||
<chapter id="rx-tx">
|
||||
<title>Receive and transmit processing</title>
|
||||
<sect1>
|
||||
<title>what should be here</title>
|
||||
<para>TBD</para>
|
||||
<para>
|
||||
This should describe the receive and transmit
|
||||
paths in mac80211/the drivers as well as
|
||||
transmit status handling.
|
||||
</para>
|
||||
</sect1>
|
||||
<sect1>
|
||||
<title>Frame format</title>
|
||||
!Pinclude/net/mac80211.h Frame format
|
||||
</sect1>
|
||||
<sect1>
|
||||
<title>Packet alignment</title>
|
||||
!Pnet/mac80211/rx.c Packet alignment
|
||||
</sect1>
|
||||
<sect1>
|
||||
<title>Calling into mac80211 from interrupts</title>
|
||||
!Pinclude/net/mac80211.h Calling mac80211 from interrupts
|
||||
</sect1>
|
||||
<sect1>
|
||||
<title>functions/definitions</title>
|
||||
!Finclude/net/mac80211.h ieee80211_rx_status
|
||||
!Finclude/net/mac80211.h mac80211_rx_flags
|
||||
!Finclude/net/mac80211.h mac80211_tx_info_flags
|
||||
!Finclude/net/mac80211.h mac80211_tx_control_flags
|
||||
!Finclude/net/mac80211.h mac80211_rate_control_flags
|
||||
!Finclude/net/mac80211.h ieee80211_tx_rate
|
||||
!Finclude/net/mac80211.h ieee80211_tx_info
|
||||
!Finclude/net/mac80211.h ieee80211_tx_info_clear_status
|
||||
!Finclude/net/mac80211.h ieee80211_rx
|
||||
!Finclude/net/mac80211.h ieee80211_rx_ni
|
||||
!Finclude/net/mac80211.h ieee80211_rx_irqsafe
|
||||
!Finclude/net/mac80211.h ieee80211_tx_status
|
||||
!Finclude/net/mac80211.h ieee80211_tx_status_ni
|
||||
!Finclude/net/mac80211.h ieee80211_tx_status_irqsafe
|
||||
!Finclude/net/mac80211.h ieee80211_rts_get
|
||||
!Finclude/net/mac80211.h ieee80211_rts_duration
|
||||
!Finclude/net/mac80211.h ieee80211_ctstoself_get
|
||||
!Finclude/net/mac80211.h ieee80211_ctstoself_duration
|
||||
!Finclude/net/mac80211.h ieee80211_generic_frame_duration
|
||||
!Finclude/net/mac80211.h ieee80211_wake_queue
|
||||
!Finclude/net/mac80211.h ieee80211_stop_queue
|
||||
!Finclude/net/mac80211.h ieee80211_wake_queues
|
||||
!Finclude/net/mac80211.h ieee80211_stop_queues
|
||||
!Finclude/net/mac80211.h ieee80211_queue_stopped
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="filters">
|
||||
<title>Frame filtering</title>
|
||||
!Pinclude/net/mac80211.h Frame filtering
|
||||
!Finclude/net/mac80211.h ieee80211_filter_flags
|
||||
</chapter>
|
||||
|
||||
<chapter id="workqueue">
|
||||
<title>The mac80211 workqueue</title>
|
||||
!Pinclude/net/mac80211.h mac80211 workqueue
|
||||
!Finclude/net/mac80211.h ieee80211_queue_work
|
||||
!Finclude/net/mac80211.h ieee80211_queue_delayed_work
|
||||
</chapter>
|
||||
</part>
|
||||
|
||||
<part id="advanced">
|
||||
<title>Advanced driver interface</title>
|
||||
<partintro>
|
||||
<para>
|
||||
Information contained within this part of the book is
|
||||
of interest only for advanced interaction of mac80211
|
||||
with drivers to exploit more hardware capabilities and
|
||||
improve performance.
|
||||
</para>
|
||||
</partintro>
|
||||
|
||||
<chapter id="led-support">
|
||||
<title>LED support</title>
|
||||
<para>
|
||||
Mac80211 supports various ways of blinking LEDs. Wherever possible,
|
||||
device LEDs should be exposed as LED class devices and hooked up to
|
||||
the appropriate trigger, which will then be triggered appropriately
|
||||
by mac80211.
|
||||
</para>
|
||||
!Finclude/net/mac80211.h ieee80211_get_tx_led_name
|
||||
!Finclude/net/mac80211.h ieee80211_get_rx_led_name
|
||||
!Finclude/net/mac80211.h ieee80211_get_assoc_led_name
|
||||
!Finclude/net/mac80211.h ieee80211_get_radio_led_name
|
||||
!Finclude/net/mac80211.h ieee80211_tpt_blink
|
||||
!Finclude/net/mac80211.h ieee80211_tpt_led_trigger_flags
|
||||
!Finclude/net/mac80211.h ieee80211_create_tpt_led_trigger
|
||||
</chapter>
|
||||
|
||||
<chapter id="hardware-crypto-offload">
|
||||
<title>Hardware crypto acceleration</title>
|
||||
!Pinclude/net/mac80211.h Hardware crypto acceleration
|
||||
<!-- intentionally multiple !F lines to get proper order -->
|
||||
!Finclude/net/mac80211.h set_key_cmd
|
||||
!Finclude/net/mac80211.h ieee80211_key_conf
|
||||
!Finclude/net/mac80211.h ieee80211_key_flags
|
||||
!Finclude/net/mac80211.h ieee80211_get_tkip_p1k
|
||||
!Finclude/net/mac80211.h ieee80211_get_tkip_p1k_iv
|
||||
!Finclude/net/mac80211.h ieee80211_get_tkip_p2k
|
||||
</chapter>
|
||||
|
||||
<chapter id="powersave">
|
||||
<title>Powersave support</title>
|
||||
!Pinclude/net/mac80211.h Powersave support
|
||||
</chapter>
|
||||
|
||||
<chapter id="beacon-filter">
|
||||
<title>Beacon filter support</title>
|
||||
!Pinclude/net/mac80211.h Beacon filter support
|
||||
!Finclude/net/mac80211.h ieee80211_beacon_loss
|
||||
</chapter>
|
||||
|
||||
<chapter id="qos">
|
||||
<title>Multiple queues and QoS support</title>
|
||||
<para>TBD</para>
|
||||
!Finclude/net/mac80211.h ieee80211_tx_queue_params
|
||||
</chapter>
|
||||
|
||||
<chapter id="AP">
|
||||
<title>Access point mode support</title>
|
||||
<para>TBD</para>
|
||||
<para>Some parts of the if_conf should be discussed here instead</para>
|
||||
<para>
|
||||
Insert notes about VLAN interfaces with hw crypto here or
|
||||
in the hw crypto chapter.
|
||||
</para>
|
||||
<section id="ps-client">
|
||||
<title>support for powersaving clients</title>
|
||||
!Pinclude/net/mac80211.h AP support for powersaving clients
|
||||
!Finclude/net/mac80211.h ieee80211_get_buffered_bc
|
||||
!Finclude/net/mac80211.h ieee80211_beacon_get
|
||||
!Finclude/net/mac80211.h ieee80211_sta_eosp
|
||||
!Finclude/net/mac80211.h ieee80211_frame_release_type
|
||||
!Finclude/net/mac80211.h ieee80211_sta_ps_transition
|
||||
!Finclude/net/mac80211.h ieee80211_sta_ps_transition_ni
|
||||
!Finclude/net/mac80211.h ieee80211_sta_set_buffered
|
||||
!Finclude/net/mac80211.h ieee80211_sta_block_awake
|
||||
</section>
|
||||
</chapter>
|
||||
|
||||
<chapter id="multi-iface">
|
||||
<title>Supporting multiple virtual interfaces</title>
|
||||
<para>TBD</para>
|
||||
<para>
|
||||
Note: WDS with identical MAC address should almost always be OK
|
||||
</para>
|
||||
<para>
|
||||
Insert notes about having multiple virtual interfaces with
|
||||
different MAC addresses here, note which configurations are
|
||||
supported by mac80211, add notes about supporting hw crypto
|
||||
with it.
|
||||
</para>
|
||||
!Finclude/net/mac80211.h ieee80211_iterate_active_interfaces
|
||||
!Finclude/net/mac80211.h ieee80211_iterate_active_interfaces_atomic
|
||||
</chapter>
|
||||
|
||||
<chapter id="station-handling">
|
||||
<title>Station handling</title>
|
||||
<para>TODO</para>
|
||||
!Finclude/net/mac80211.h ieee80211_sta
|
||||
!Finclude/net/mac80211.h sta_notify_cmd
|
||||
!Finclude/net/mac80211.h ieee80211_find_sta
|
||||
!Finclude/net/mac80211.h ieee80211_find_sta_by_ifaddr
|
||||
</chapter>
|
||||
|
||||
<chapter id="hardware-scan-offload">
|
||||
<title>Hardware scan offload</title>
|
||||
<para>TBD</para>
|
||||
!Finclude/net/mac80211.h ieee80211_scan_completed
|
||||
</chapter>
|
||||
|
||||
<chapter id="aggregation">
|
||||
<title>Aggregation</title>
|
||||
<sect1>
|
||||
<title>TX A-MPDU aggregation</title>
|
||||
!Pnet/mac80211/agg-tx.c TX A-MPDU aggregation
|
||||
!Cnet/mac80211/agg-tx.c
|
||||
</sect1>
|
||||
<sect1>
|
||||
<title>RX A-MPDU aggregation</title>
|
||||
!Pnet/mac80211/agg-rx.c RX A-MPDU aggregation
|
||||
!Cnet/mac80211/agg-rx.c
|
||||
!Finclude/net/mac80211.h ieee80211_ampdu_mlme_action
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="smps">
|
||||
<title>Spatial Multiplexing Powersave (SMPS)</title>
|
||||
!Pinclude/net/mac80211.h Spatial multiplexing power save
|
||||
!Finclude/net/mac80211.h ieee80211_request_smps
|
||||
!Finclude/net/mac80211.h ieee80211_smps_mode
|
||||
</chapter>
|
||||
</part>
|
||||
|
||||
<part id="rate-control">
|
||||
<title>Rate control interface</title>
|
||||
<partintro>
|
||||
<para>TBD</para>
|
||||
<para>
|
||||
This part of the book describes the rate control algorithm
|
||||
interface and how it relates to mac80211 and drivers.
|
||||
</para>
|
||||
</partintro>
|
||||
<chapter id="ratecontrol-api">
|
||||
<title>Rate Control API</title>
|
||||
<para>TBD</para>
|
||||
!Finclude/net/mac80211.h ieee80211_start_tx_ba_session
|
||||
!Finclude/net/mac80211.h ieee80211_start_tx_ba_cb_irqsafe
|
||||
!Finclude/net/mac80211.h ieee80211_stop_tx_ba_session
|
||||
!Finclude/net/mac80211.h ieee80211_stop_tx_ba_cb_irqsafe
|
||||
!Finclude/net/mac80211.h ieee80211_rate_control_changed
|
||||
!Finclude/net/mac80211.h ieee80211_tx_rate_control
|
||||
!Finclude/net/mac80211.h rate_control_send_low
|
||||
</chapter>
|
||||
</part>
|
||||
|
||||
<part id="internal">
|
||||
<title>Internals</title>
|
||||
<partintro>
|
||||
<para>TBD</para>
|
||||
<para>
|
||||
This part of the book describes mac80211 internals.
|
||||
</para>
|
||||
</partintro>
|
||||
|
||||
<chapter id="key-handling">
|
||||
<title>Key handling</title>
|
||||
<sect1>
|
||||
<title>Key handling basics</title>
|
||||
!Pnet/mac80211/key.c Key handling basics
|
||||
</sect1>
|
||||
<sect1>
|
||||
<title>MORE TBD</title>
|
||||
<para>TBD</para>
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="rx-processing">
|
||||
<title>Receive processing</title>
|
||||
<para>TBD</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="tx-processing">
|
||||
<title>Transmit processing</title>
|
||||
<para>TBD</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="sta-info">
|
||||
<title>Station info handling</title>
|
||||
<sect1>
|
||||
<title>Programming information</title>
|
||||
!Fnet/mac80211/sta_info.h sta_info
|
||||
!Fnet/mac80211/sta_info.h ieee80211_sta_info_flags
|
||||
</sect1>
|
||||
<sect1>
|
||||
<title>STA information lifetime rules</title>
|
||||
!Pnet/mac80211/sta_info.c STA information lifetime rules
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="aggregation-internals">
|
||||
<title>Aggregation</title>
|
||||
!Fnet/mac80211/sta_info.h sta_ampdu_mlme
|
||||
!Fnet/mac80211/sta_info.h tid_ampdu_tx
|
||||
!Fnet/mac80211/sta_info.h tid_ampdu_rx
|
||||
</chapter>
|
||||
|
||||
<chapter id="synchronisation">
|
||||
<title>Synchronisation</title>
|
||||
<para>TBD</para>
|
||||
<para>Locking, lots of RCU</para>
|
||||
</chapter>
|
||||
</part>
|
||||
</book>
|
||||
</set>
|
@ -6,13 +6,13 @@
|
||||
# To add a new book the only step required is to add the book to the
|
||||
# list of DOCBOOKS.
|
||||
|
||||
DOCBOOKS := z8530book.xml device-drivers.xml \
|
||||
DOCBOOKS := z8530book.xml \
|
||||
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
|
||||
writing_usb_driver.xml networking.xml \
|
||||
kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
|
||||
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
|
||||
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
|
||||
80211.xml debugobjects.xml sh.xml regulator.xml \
|
||||
debugobjects.xml sh.xml regulator.xml \
|
||||
alsa-driver-api.xml writing-an-alsa-driver.xml \
|
||||
tracepoint.xml w1.xml \
|
||||
writing_musb_glue_layer.xml crypto-API.xml iio.xml
|
||||
@ -22,8 +22,14 @@ ifeq ($(DOCBOOKS),)
|
||||
# Skip DocBook build if the user explicitly requested no DOCBOOKS.
|
||||
.DEFAULT:
|
||||
@echo " SKIP DocBook $@ target (DOCBOOKS=\"\" specified)."
|
||||
|
||||
else
|
||||
ifneq ($(SPHINXDIRS),)
|
||||
|
||||
# Skip DocBook build if the user explicitly requested a sphinx dir
|
||||
.DEFAULT:
|
||||
@echo " SKIP DocBook $@ target (SPHINXDIRS specified)."
|
||||
else
|
||||
|
||||
|
||||
###
|
||||
# The build process is as follows (targets):
|
||||
@ -66,6 +72,7 @@ installmandocs: mandocs
|
||||
|
||||
# no-op for the DocBook toolchain
|
||||
epubdocs:
|
||||
latexdocs:
|
||||
|
||||
###
|
||||
#External programs used
|
||||
@ -221,6 +228,7 @@ silent_gen_xml = :
|
||||
echo "</programlisting>") > $@
|
||||
|
||||
endif # DOCBOOKS=""
|
||||
endif # SPHINDIR=...
|
||||
|
||||
###
|
||||
# Help targets as used by the top-level makefile
|
||||
|
@ -797,7 +797,8 @@ kernel crypto API | Caller
|
||||
include/linux/crypto.h and their definition can be seen below.
|
||||
The former function registers a single transformation, while
|
||||
the latter works on an array of transformation descriptions.
|
||||
The latter is useful when registering transformations in bulk.
|
||||
The latter is useful when registering transformations in bulk,
|
||||
for example when a driver implements multiple transformations.
|
||||
</para>
|
||||
|
||||
<programlisting>
|
||||
@ -822,18 +823,31 @@ kernel crypto API | Caller
|
||||
</para>
|
||||
|
||||
<para>
|
||||
The bulk registration / unregistration functions require
|
||||
that struct crypto_alg is an array of count size. These
|
||||
functions simply loop over that array and register /
|
||||
unregister each individual algorithm. If an error occurs,
|
||||
the loop is terminated at the offending algorithm definition.
|
||||
That means, the algorithms prior to the offending algorithm
|
||||
are successfully registered. Note, the caller has no way of
|
||||
knowing which cipher implementations have successfully
|
||||
registered. If this is important to know, the caller should
|
||||
loop through the different implementations using the single
|
||||
instance *_alg functions for each individual implementation.
|
||||
The bulk registration/unregistration functions
|
||||
register/unregister each transformation in the given array of
|
||||
length count. They handle errors as follows:
|
||||
</para>
|
||||
<itemizedlist>
|
||||
<listitem>
|
||||
<para>
|
||||
crypto_register_algs() succeeds if and only if it
|
||||
successfully registers all the given transformations. If an
|
||||
error occurs partway through, then it rolls back successful
|
||||
registrations before returning the error code. Note that if
|
||||
a driver needs to handle registration errors for individual
|
||||
transformations, then it will need to use the non-bulk
|
||||
function crypto_register_alg() instead.
|
||||
</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>
|
||||
crypto_unregister_algs() tries to unregister all the given
|
||||
transformations, continuing on error. It logs errors and
|
||||
always returns zero.
|
||||
</para>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
|
||||
</sect1>
|
||||
|
||||
<sect1><title>Single-Block Symmetric Ciphers [CIPHER]</title>
|
||||
|
@ -1,521 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
|
||||
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
|
||||
|
||||
<book id="LinuxDriversAPI">
|
||||
<bookinfo>
|
||||
<title>Linux Device Drivers</title>
|
||||
|
||||
<legalnotice>
|
||||
<para>
|
||||
This documentation is free software; you can redistribute
|
||||
it and/or modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later
|
||||
version.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
This program is distributed in the hope that it will be
|
||||
useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
See the GNU General Public License for more details.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with this program; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
MA 02111-1307 USA
|
||||
</para>
|
||||
|
||||
<para>
|
||||
For more details see the file COPYING in the source
|
||||
distribution of Linux.
|
||||
</para>
|
||||
</legalnotice>
|
||||
</bookinfo>
|
||||
|
||||
<toc></toc>
|
||||
|
||||
<chapter id="Basics">
|
||||
<title>Driver Basics</title>
|
||||
<sect1><title>Driver Entry and Exit points</title>
|
||||
!Iinclude/linux/init.h
|
||||
</sect1>
|
||||
|
||||
<sect1><title>Atomic and pointer manipulation</title>
|
||||
!Iarch/x86/include/asm/atomic.h
|
||||
</sect1>
|
||||
|
||||
<sect1><title>Delaying, scheduling, and timer routines</title>
|
||||
!Iinclude/linux/sched.h
|
||||
!Ekernel/sched/core.c
|
||||
!Ikernel/sched/cpupri.c
|
||||
!Ikernel/sched/fair.c
|
||||
!Iinclude/linux/completion.h
|
||||
!Ekernel/time/timer.c
|
||||
</sect1>
|
||||
<sect1><title>Wait queues and Wake events</title>
|
||||
!Iinclude/linux/wait.h
|
||||
!Ekernel/sched/wait.c
|
||||
</sect1>
|
||||
<sect1><title>High-resolution timers</title>
|
||||
!Iinclude/linux/ktime.h
|
||||
!Iinclude/linux/hrtimer.h
|
||||
!Ekernel/time/hrtimer.c
|
||||
</sect1>
|
||||
<sect1><title>Workqueues and Kevents</title>
|
||||
!Iinclude/linux/workqueue.h
|
||||
!Ekernel/workqueue.c
|
||||
</sect1>
|
||||
<sect1><title>Internal Functions</title>
|
||||
!Ikernel/exit.c
|
||||
!Ikernel/signal.c
|
||||
!Iinclude/linux/kthread.h
|
||||
!Ekernel/kthread.c
|
||||
</sect1>
|
||||
|
||||
<sect1><title>Kernel objects manipulation</title>
|
||||
<!--
|
||||
X!Iinclude/linux/kobject.h
|
||||
-->
|
||||
!Elib/kobject.c
|
||||
</sect1>
|
||||
|
||||
<sect1><title>Kernel utility functions</title>
|
||||
!Iinclude/linux/kernel.h
|
||||
!Ekernel/printk/printk.c
|
||||
!Ekernel/panic.c
|
||||
!Ekernel/sys.c
|
||||
!Ekernel/rcu/srcu.c
|
||||
!Ekernel/rcu/tree.c
|
||||
!Ekernel/rcu/tree_plugin.h
|
||||
!Ekernel/rcu/update.c
|
||||
</sect1>
|
||||
|
||||
<sect1><title>Device Resource Management</title>
|
||||
!Edrivers/base/devres.c
|
||||
</sect1>
|
||||
|
||||
</chapter>
|
||||
|
||||
<chapter id="devdrivers">
|
||||
<title>Device drivers infrastructure</title>
|
||||
<sect1><title>The Basic Device Driver-Model Structures </title>
|
||||
!Iinclude/linux/device.h
|
||||
</sect1>
|
||||
<sect1><title>Device Drivers Base</title>
|
||||
!Idrivers/base/init.c
|
||||
!Edrivers/base/driver.c
|
||||
!Edrivers/base/core.c
|
||||
!Edrivers/base/syscore.c
|
||||
!Edrivers/base/class.c
|
||||
!Idrivers/base/node.c
|
||||
!Edrivers/base/firmware_class.c
|
||||
!Edrivers/base/transport_class.c
|
||||
<!-- Cannot be included, because
|
||||
attribute_container_add_class_device_adapter
|
||||
and attribute_container_classdev_to_container
|
||||
exceed allowed 44 characters maximum
|
||||
X!Edrivers/base/attribute_container.c
|
||||
-->
|
||||
!Edrivers/base/dd.c
|
||||
<!--
|
||||
X!Edrivers/base/interface.c
|
||||
-->
|
||||
!Iinclude/linux/platform_device.h
|
||||
!Edrivers/base/platform.c
|
||||
!Edrivers/base/bus.c
|
||||
</sect1>
|
||||
<sect1>
|
||||
<title>Buffer Sharing and Synchronization</title>
|
||||
<para>
|
||||
The dma-buf subsystem provides the framework for sharing buffers
|
||||
for hardware (DMA) access across multiple device drivers and
|
||||
subsystems, and for synchronizing asynchronous hardware access.
|
||||
</para>
|
||||
<para>
|
||||
This is used, for example, by drm "prime" multi-GPU support, but
|
||||
is of course not limited to GPU use cases.
|
||||
</para>
|
||||
<para>
|
||||
The three main components of this are: (1) dma-buf, representing
|
||||
a sg_table and exposed to userspace as a file descriptor to allow
|
||||
passing between devices, (2) fence, which provides a mechanism
|
||||
to signal when one device as finished access, and (3) reservation,
|
||||
which manages the shared or exclusive fence(s) associated with
|
||||
the buffer.
|
||||
</para>
|
||||
<sect2><title>dma-buf</title>
|
||||
!Edrivers/dma-buf/dma-buf.c
|
||||
!Iinclude/linux/dma-buf.h
|
||||
</sect2>
|
||||
<sect2><title>reservation</title>
|
||||
!Pdrivers/dma-buf/reservation.c Reservation Object Overview
|
||||
!Edrivers/dma-buf/reservation.c
|
||||
!Iinclude/linux/reservation.h
|
||||
</sect2>
|
||||
<sect2><title>fence</title>
|
||||
!Edrivers/dma-buf/fence.c
|
||||
!Iinclude/linux/fence.h
|
||||
!Edrivers/dma-buf/seqno-fence.c
|
||||
!Iinclude/linux/seqno-fence.h
|
||||
!Edrivers/dma-buf/fence-array.c
|
||||
!Iinclude/linux/fence-array.h
|
||||
!Edrivers/dma-buf/reservation.c
|
||||
!Iinclude/linux/reservation.h
|
||||
!Edrivers/dma-buf/sync_file.c
|
||||
!Iinclude/linux/sync_file.h
|
||||
</sect2>
|
||||
</sect1>
|
||||
<sect1><title>Device Drivers DMA Management</title>
|
||||
!Edrivers/base/dma-coherent.c
|
||||
!Edrivers/base/dma-mapping.c
|
||||
</sect1>
|
||||
<sect1><title>Device Drivers Power Management</title>
|
||||
!Edrivers/base/power/main.c
|
||||
</sect1>
|
||||
<sect1><title>Device Drivers ACPI Support</title>
|
||||
<!-- Internal functions only
|
||||
X!Edrivers/acpi/sleep/main.c
|
||||
X!Edrivers/acpi/sleep/wakeup.c
|
||||
X!Edrivers/acpi/motherboard.c
|
||||
X!Edrivers/acpi/bus.c
|
||||
-->
|
||||
!Edrivers/acpi/scan.c
|
||||
!Idrivers/acpi/scan.c
|
||||
<!-- No correct structured comments
|
||||
X!Edrivers/acpi/pci_bind.c
|
||||
-->
|
||||
</sect1>
|
||||
<sect1><title>Device drivers PnP support</title>
|
||||
!Idrivers/pnp/core.c
|
||||
<!-- No correct structured comments
|
||||
X!Edrivers/pnp/system.c
|
||||
-->
|
||||
!Edrivers/pnp/card.c
|
||||
!Idrivers/pnp/driver.c
|
||||
!Edrivers/pnp/manager.c
|
||||
!Edrivers/pnp/support.c
|
||||
</sect1>
|
||||
<sect1><title>Userspace IO devices</title>
|
||||
!Edrivers/uio/uio.c
|
||||
!Iinclude/linux/uio_driver.h
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="parportdev">
|
||||
<title>Parallel Port Devices</title>
|
||||
!Iinclude/linux/parport.h
|
||||
!Edrivers/parport/ieee1284.c
|
||||
!Edrivers/parport/share.c
|
||||
!Idrivers/parport/daisy.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="message_devices">
|
||||
<title>Message-based devices</title>
|
||||
<sect1><title>Fusion message devices</title>
|
||||
!Edrivers/message/fusion/mptbase.c
|
||||
!Idrivers/message/fusion/mptbase.c
|
||||
!Edrivers/message/fusion/mptscsih.c
|
||||
!Idrivers/message/fusion/mptscsih.c
|
||||
!Idrivers/message/fusion/mptctl.c
|
||||
!Idrivers/message/fusion/mptspi.c
|
||||
!Idrivers/message/fusion/mptfc.c
|
||||
!Idrivers/message/fusion/mptlan.c
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="snddev">
|
||||
<title>Sound Devices</title>
|
||||
!Iinclude/sound/core.h
|
||||
!Esound/sound_core.c
|
||||
!Iinclude/sound/pcm.h
|
||||
!Esound/core/pcm.c
|
||||
!Esound/core/device.c
|
||||
!Esound/core/info.c
|
||||
!Esound/core/rawmidi.c
|
||||
!Esound/core/sound.c
|
||||
!Esound/core/memory.c
|
||||
!Esound/core/pcm_memory.c
|
||||
!Esound/core/init.c
|
||||
!Esound/core/isadma.c
|
||||
!Esound/core/control.c
|
||||
!Esound/core/pcm_lib.c
|
||||
!Esound/core/hwdep.c
|
||||
!Esound/core/pcm_native.c
|
||||
!Esound/core/memalloc.c
|
||||
<!-- FIXME: Removed for now since no structured comments in source
|
||||
X!Isound/sound_firmware.c
|
||||
-->
|
||||
</chapter>
|
||||
|
||||
|
||||
<chapter id="uart16x50">
|
||||
<title>16x50 UART Driver</title>
|
||||
!Edrivers/tty/serial/serial_core.c
|
||||
!Edrivers/tty/serial/8250/8250_core.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="fbdev">
|
||||
<title>Frame Buffer Library</title>
|
||||
|
||||
<para>
|
||||
The frame buffer drivers depend heavily on four data structures.
|
||||
These structures are declared in include/linux/fb.h. They are
|
||||
fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs.
|
||||
The last three can be made available to and from userland.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
fb_info defines the current state of a particular video card.
|
||||
Inside fb_info, there exists a fb_ops structure which is a
|
||||
collection of needed functions to make fbdev and fbcon work.
|
||||
fb_info is only visible to the kernel.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
fb_var_screeninfo is used to describe the features of a video card
|
||||
that are user defined. With fb_var_screeninfo, things such as
|
||||
depth and the resolution may be defined.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
The next structure is fb_fix_screeninfo. This defines the
|
||||
properties of a card that are created when a mode is set and can't
|
||||
be changed otherwise. A good example of this is the start of the
|
||||
frame buffer memory. This "locks" the address of the frame buffer
|
||||
memory, so that it cannot be changed or moved.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
The last structure is fb_monospecs. In the old API, there was
|
||||
little importance for fb_monospecs. This allowed for forbidden things
|
||||
such as setting a mode of 800x600 on a fix frequency monitor. With
|
||||
the new API, fb_monospecs prevents such things, and if used
|
||||
correctly, can prevent a monitor from being cooked. fb_monospecs
|
||||
will not be useful until kernels 2.5.x.
|
||||
</para>
|
||||
|
||||
<sect1><title>Frame Buffer Memory</title>
|
||||
!Edrivers/video/fbdev/core/fbmem.c
|
||||
</sect1>
|
||||
<!--
|
||||
<sect1><title>Frame Buffer Console</title>
|
||||
X!Edrivers/video/console/fbcon.c
|
||||
</sect1>
|
||||
-->
|
||||
<sect1><title>Frame Buffer Colormap</title>
|
||||
!Edrivers/video/fbdev/core/fbcmap.c
|
||||
</sect1>
|
||||
<!-- FIXME:
|
||||
drivers/video/fbgen.c has no docs, which stuffs up the sgml. Comment
|
||||
out until somebody adds docs. KAO
|
||||
<sect1><title>Frame Buffer Generic Functions</title>
|
||||
X!Idrivers/video/fbgen.c
|
||||
</sect1>
|
||||
KAO -->
|
||||
<sect1><title>Frame Buffer Video Mode Database</title>
|
||||
!Idrivers/video/fbdev/core/modedb.c
|
||||
!Edrivers/video/fbdev/core/modedb.c
|
||||
</sect1>
|
||||
<sect1><title>Frame Buffer Macintosh Video Mode Database</title>
|
||||
!Edrivers/video/fbdev/macmodes.c
|
||||
</sect1>
|
||||
<sect1><title>Frame Buffer Fonts</title>
|
||||
<para>
|
||||
Refer to the file lib/fonts/fonts.c for more information.
|
||||
</para>
|
||||
<!-- FIXME: Removed for now since no structured comments in source
|
||||
X!Ilib/fonts/fonts.c
|
||||
-->
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="input_subsystem">
|
||||
<title>Input Subsystem</title>
|
||||
<sect1><title>Input core</title>
|
||||
!Iinclude/linux/input.h
|
||||
!Edrivers/input/input.c
|
||||
!Edrivers/input/ff-core.c
|
||||
!Edrivers/input/ff-memless.c
|
||||
</sect1>
|
||||
<sect1><title>Multitouch Library</title>
|
||||
!Iinclude/linux/input/mt.h
|
||||
!Edrivers/input/input-mt.c
|
||||
</sect1>
|
||||
<sect1><title>Polled input devices</title>
|
||||
!Iinclude/linux/input-polldev.h
|
||||
!Edrivers/input/input-polldev.c
|
||||
</sect1>
|
||||
<sect1><title>Matrix keyboards/keypads</title>
|
||||
!Iinclude/linux/input/matrix_keypad.h
|
||||
</sect1>
|
||||
<sect1><title>Sparse keymap support</title>
|
||||
!Iinclude/linux/input/sparse-keymap.h
|
||||
!Edrivers/input/sparse-keymap.c
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="spi">
|
||||
<title>Serial Peripheral Interface (SPI)</title>
|
||||
<para>
|
||||
SPI is the "Serial Peripheral Interface", widely used with
|
||||
embedded systems because it is a simple and efficient
|
||||
interface: basically a multiplexed shift register.
|
||||
Its three signal wires hold a clock (SCK, often in the range
|
||||
of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and
|
||||
a "Master In, Slave Out" (MISO) data line.
|
||||
SPI is a full duplex protocol; for each bit shifted out the
|
||||
MOSI line (one per clock) another is shifted in on the MISO line.
|
||||
Those bits are assembled into words of various sizes on the
|
||||
way to and from system memory.
|
||||
An additional chipselect line is usually active-low (nCS);
|
||||
four signals are normally used for each peripheral, plus
|
||||
sometimes an interrupt.
|
||||
</para>
|
||||
<para>
|
||||
The SPI bus facilities listed here provide a generalized
|
||||
interface to declare SPI busses and devices, manage them
|
||||
according to the standard Linux driver model, and perform
|
||||
input/output operations.
|
||||
At this time, only "master" side interfaces are supported,
|
||||
where Linux talks to SPI peripherals and does not implement
|
||||
such a peripheral itself.
|
||||
(Interfaces to support implementing SPI slaves would
|
||||
necessarily look different.)
|
||||
</para>
|
||||
<para>
|
||||
The programming interface is structured around two kinds of driver,
|
||||
and two kinds of device.
|
||||
A "Controller Driver" abstracts the controller hardware, which may
|
||||
be as simple as a set of GPIO pins or as complex as a pair of FIFOs
|
||||
connected to dual DMA engines on the other side of the SPI shift
|
||||
register (maximizing throughput). Such drivers bridge between
|
||||
whatever bus they sit on (often the platform bus) and SPI, and
|
||||
expose the SPI side of their device as a
|
||||
<structname>struct spi_master</structname>.
|
||||
SPI devices are children of that master, represented as a
|
||||
<structname>struct spi_device</structname> and manufactured from
|
||||
<structname>struct spi_board_info</structname> descriptors which
|
||||
are usually provided by board-specific initialization code.
|
||||
A <structname>struct spi_driver</structname> is called a
|
||||
"Protocol Driver", and is bound to a spi_device using normal
|
||||
driver model calls.
|
||||
</para>
|
||||
<para>
|
||||
The I/O model is a set of queued messages. Protocol drivers
|
||||
submit one or more <structname>struct spi_message</structname>
|
||||
objects, which are processed and completed asynchronously.
|
||||
(There are synchronous wrappers, however.) Messages are
|
||||
built from one or more <structname>struct spi_transfer</structname>
|
||||
objects, each of which wraps a full duplex SPI transfer.
|
||||
A variety of protocol tweaking options are needed, because
|
||||
different chips adopt very different policies for how they
|
||||
use the bits transferred with SPI.
|
||||
</para>
|
||||
!Iinclude/linux/spi/spi.h
|
||||
!Fdrivers/spi/spi.c spi_register_board_info
|
||||
!Edrivers/spi/spi.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="i2c">
|
||||
<title>I<superscript>2</superscript>C and SMBus Subsystem</title>
|
||||
|
||||
<para>
|
||||
I<superscript>2</superscript>C (or without fancy typography, "I2C")
|
||||
is an acronym for the "Inter-IC" bus, a simple bus protocol which is
|
||||
widely used where low data rate communications suffice.
|
||||
Since it's also a licensed trademark, some vendors use another
|
||||
name (such as "Two-Wire Interface", TWI) for the same bus.
|
||||
I2C only needs two signals (SCL for clock, SDA for data), conserving
|
||||
board real estate and minimizing signal quality issues.
|
||||
Most I2C devices use seven bit addresses, and bus speeds of up
|
||||
to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
|
||||
found wide use.
|
||||
I2C is a multi-master bus; open drain signaling is used to
|
||||
arbitrate between masters, as well as to handshake and to
|
||||
synchronize clocks from slower clients.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
The Linux I2C programming interfaces support only the master
|
||||
side of bus interactions, not the slave side.
|
||||
The programming interface is structured around two kinds of driver,
|
||||
and two kinds of device.
|
||||
An I2C "Adapter Driver" abstracts the controller hardware; it binds
|
||||
to a physical device (perhaps a PCI device or platform_device) and
|
||||
exposes a <structname>struct i2c_adapter</structname> representing
|
||||
each I2C bus segment it manages.
|
||||
On each I2C bus segment will be I2C devices represented by a
|
||||
<structname>struct i2c_client</structname>. Those devices will
|
||||
be bound to a <structname>struct i2c_driver</structname>,
|
||||
which should follow the standard Linux driver model.
|
||||
(At this writing, a legacy model is more widely used.)
|
||||
There are functions to perform various I2C protocol operations; at
|
||||
this writing all such functions are usable only from task context.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
The System Management Bus (SMBus) is a sibling protocol. Most SMBus
|
||||
systems are also I2C conformant. The electrical constraints are
|
||||
tighter for SMBus, and it standardizes particular protocol messages
|
||||
and idioms. Controllers that support I2C can also support most
|
||||
SMBus operations, but SMBus controllers don't support all the protocol
|
||||
options that an I2C controller will.
|
||||
There are functions to perform various SMBus protocol operations,
|
||||
either using I2C primitives or by issuing SMBus commands to
|
||||
i2c_adapter devices which don't support those I2C operations.
|
||||
</para>
|
||||
|
||||
!Iinclude/linux/i2c.h
|
||||
!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
|
||||
!Edrivers/i2c/i2c-core.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="hsi">
|
||||
<title>High Speed Synchronous Serial Interface (HSI)</title>
|
||||
|
||||
<para>
|
||||
High Speed Synchronous Serial Interface (HSI) is a
|
||||
serial interface mainly used for connecting application
|
||||
engines (APE) with cellular modem engines (CMT) in cellular
|
||||
handsets.
|
||||
|
||||
HSI provides multiplexing for up to 16 logical channels,
|
||||
low-latency and full duplex communication.
|
||||
</para>
|
||||
|
||||
!Iinclude/linux/hsi/hsi.h
|
||||
!Edrivers/hsi/hsi_core.c
|
||||
</chapter>
|
||||
|
||||
<chapter id="pwm">
|
||||
<title>Pulse-Width Modulation (PWM)</title>
|
||||
<para>
|
||||
Pulse-width modulation is a modulation technique primarily used to
|
||||
control power supplied to electrical devices.
|
||||
</para>
|
||||
<para>
|
||||
The PWM framework provides an abstraction for providers and consumers
|
||||
of PWM signals. A controller that provides one or more PWM signals is
|
||||
registered as <structname>struct pwm_chip</structname>. Providers are
|
||||
expected to embed this structure in a driver-specific structure. This
|
||||
structure contains fields that describe a particular chip.
|
||||
</para>
|
||||
<para>
|
||||
A chip exposes one or more PWM signal sources, each of which exposed
|
||||
as a <structname>struct pwm_device</structname>. Operations can be
|
||||
performed on PWM devices to control the period, duty cycle, polarity
|
||||
and active state of the signal.
|
||||
</para>
|
||||
<para>
|
||||
Note that PWM devices are exclusive resources: they can always only be
|
||||
used by one consumer at a time.
|
||||
</para>
|
||||
!Iinclude/linux/pwm.h
|
||||
!Edrivers/pwm/core.c
|
||||
</chapter>
|
||||
|
||||
</book>
|
@ -483,7 +483,7 @@ printk(KERN_INFO "my ip: %pI4\n", &ipaddress);
|
||||
<function>get_user()</function>
|
||||
/
|
||||
<function>put_user()</function>
|
||||
<filename class="headerfile">include/asm/uaccess.h</filename>
|
||||
<filename class="headerfile">include/linux/uaccess.h</filename>
|
||||
</title>
|
||||
|
||||
<para>
|
||||
|
@ -1,5 +1,5 @@
|
||||
HOWTO do Linux kernel development
|
||||
---------------------------------
|
||||
=================================
|
||||
|
||||
This is the be-all, end-all document on this topic. It contains
|
||||
instructions on how to become a Linux kernel developer and how to learn
|
||||
@ -28,6 +28,7 @@ kernel development. Assembly (any architecture) is not required unless
|
||||
you plan to do low-level development for that architecture. Though they
|
||||
are not a good substitute for a solid C education and/or years of
|
||||
experience, the following books are good for, if anything, reference:
|
||||
|
||||
- "The C Programming Language" by Kernighan and Ritchie [Prentice Hall]
|
||||
- "Practical C Programming" by Steve Oualline [O'Reilly]
|
||||
- "C: A Reference Manual" by Harbison and Steele [Prentice Hall]
|
||||
@ -64,7 +65,8 @@ people on the mailing lists are not lawyers, and you should not rely on
|
||||
their statements on legal matters.
|
||||
|
||||
For common questions and answers about the GPL, please see:
|
||||
http://www.gnu.org/licenses/gpl-faq.html
|
||||
|
||||
https://www.gnu.org/licenses/gpl-faq.html
|
||||
|
||||
|
||||
Documentation
|
||||
@ -82,96 +84,118 @@ linux-api@vger.kernel.org.
|
||||
|
||||
Here is a list of files that are in the kernel source tree that are
|
||||
required reading:
|
||||
|
||||
README
|
||||
This file gives a short background on the Linux kernel and describes
|
||||
what is necessary to do to configure and build the kernel. People
|
||||
who are new to the kernel should start here.
|
||||
|
||||
Documentation/Changes
|
||||
:ref:`Documentation/Changes <changes>`
|
||||
This file gives a list of the minimum levels of various software
|
||||
packages that are necessary to build and run the kernel
|
||||
successfully.
|
||||
|
||||
Documentation/CodingStyle
|
||||
:ref:`Documentation/CodingStyle <codingstyle>`
|
||||
This describes the Linux kernel coding style, and some of the
|
||||
rationale behind it. All new code is expected to follow the
|
||||
guidelines in this document. Most maintainers will only accept
|
||||
patches if these rules are followed, and many people will only
|
||||
review code if it is in the proper style.
|
||||
|
||||
Documentation/SubmittingPatches
|
||||
Documentation/SubmittingDrivers
|
||||
:ref:`Documentation/SubmittingPatches <submittingpatches>` and :ref:`Documentation/SubmittingDrivers <submittingdrivers>`
|
||||
These files describe in explicit detail how to successfully create
|
||||
and send a patch, including (but not limited to):
|
||||
|
||||
- Email contents
|
||||
- Email format
|
||||
- Who to send it to
|
||||
|
||||
Following these rules will not guarantee success (as all patches are
|
||||
subject to scrutiny for content and style), but not following them
|
||||
will almost always prevent it.
|
||||
|
||||
Other excellent descriptions of how to create patches properly are:
|
||||
|
||||
"The Perfect Patch"
|
||||
http://www.ozlabs.org/~akpm/stuff/tpp.txt
|
||||
https://www.ozlabs.org/~akpm/stuff/tpp.txt
|
||||
|
||||
"Linux kernel patch submission format"
|
||||
http://linux.yyz.us/patch-format.html
|
||||
|
||||
Documentation/stable_api_nonsense.txt
|
||||
:ref:`Documentation/stable_api_nonsense.txt <stable_api_nonsense>`
|
||||
This file describes the rationale behind the conscious decision to
|
||||
not have a stable API within the kernel, including things like:
|
||||
|
||||
- Subsystem shim-layers (for compatibility?)
|
||||
- Driver portability between Operating Systems.
|
||||
- Mitigating rapid change within the kernel source tree (or
|
||||
preventing rapid change)
|
||||
|
||||
This document is crucial for understanding the Linux development
|
||||
philosophy and is very important for people moving to Linux from
|
||||
development on other Operating Systems.
|
||||
|
||||
Documentation/SecurityBugs
|
||||
:ref:`Documentation/SecurityBugs <securitybugs>`
|
||||
If you feel you have found a security problem in the Linux kernel,
|
||||
please follow the steps in this document to help notify the kernel
|
||||
developers, and help solve the issue.
|
||||
|
||||
Documentation/ManagementStyle
|
||||
:ref:`Documentation/ManagementStyle <managementstyle>`
|
||||
This document describes how Linux kernel maintainers operate and the
|
||||
shared ethos behind their methodologies. This is important reading
|
||||
for anyone new to kernel development (or anyone simply curious about
|
||||
it), as it resolves a lot of common misconceptions and confusion
|
||||
about the unique behavior of kernel maintainers.
|
||||
|
||||
Documentation/stable_kernel_rules.txt
|
||||
:ref:`Documentation/stable_kernel_rules.txt <stable_kernel_rules>`
|
||||
This file describes the rules on how the stable kernel releases
|
||||
happen, and what to do if you want to get a change into one of these
|
||||
releases.
|
||||
|
||||
Documentation/kernel-docs.txt
|
||||
:ref:`Documentation/kernel-docs.txt <kernel_docs>`
|
||||
A list of external documentation that pertains to kernel
|
||||
development. Please consult this list if you do not find what you
|
||||
are looking for within the in-kernel documentation.
|
||||
|
||||
Documentation/applying-patches.txt
|
||||
:ref:`Documentation/applying-patches.txt <applying_patches>`
|
||||
A good introduction describing exactly what a patch is and how to
|
||||
apply it to the different development branches of the kernel.
|
||||
|
||||
The kernel also has a large number of documents that can be
|
||||
automatically generated from the source code itself. This includes a
|
||||
automatically generated from the source code itself or from
|
||||
ReStructuredText markups (ReST), like this one. This includes a
|
||||
full description of the in-kernel API, and rules on how to handle
|
||||
locking properly. The documents will be created in the
|
||||
Documentation/DocBook/ directory and can be generated as PDF,
|
||||
Postscript, HTML, and man pages by running:
|
||||
locking properly.
|
||||
|
||||
All such documents can be generated as PDF or HTML by running::
|
||||
|
||||
make pdfdocs
|
||||
make psdocs
|
||||
make htmldocs
|
||||
make mandocs
|
||||
|
||||
respectively from the main kernel source directory.
|
||||
|
||||
The documents that uses ReST markup will be generated at Documentation/output.
|
||||
They can also be generated on LaTeX and ePub formats with::
|
||||
|
||||
make latexdocs
|
||||
make epubdocs
|
||||
|
||||
Currently, there are some documents written on DocBook that are in
|
||||
the process of conversion to ReST. Such documents will be created in the
|
||||
Documentation/DocBook/ directory and can be generated also as
|
||||
Postscript or man pages by running::
|
||||
|
||||
make psdocs
|
||||
make mandocs
|
||||
|
||||
Becoming A Kernel Developer
|
||||
---------------------------
|
||||
|
||||
If you do not know anything about Linux kernel development, you should
|
||||
look at the Linux KernelNewbies project:
|
||||
http://kernelnewbies.org
|
||||
|
||||
https://kernelnewbies.org
|
||||
|
||||
It consists of a helpful mailing list where you can ask almost any type
|
||||
of basic kernel development question (make sure to search the archives
|
||||
first, before asking something that has already been answered in the
|
||||
@ -187,7 +211,9 @@ apply a patch.
|
||||
If you do not know where you want to start, but you want to look for
|
||||
some task to start doing to join into the kernel development community,
|
||||
go to the Linux Kernel Janitor's project:
|
||||
http://kernelnewbies.org/KernelJanitors
|
||||
|
||||
https://kernelnewbies.org/KernelJanitors
|
||||
|
||||
It is a great place to start. It describes a list of relatively simple
|
||||
problems that need to be cleaned up and fixed within the Linux kernel
|
||||
source tree. Working with the developers in charge of this project, you
|
||||
@ -199,7 +225,8 @@ If you already have a chunk of code that you want to put into the kernel
|
||||
tree, but need some help getting it in the proper form, the
|
||||
kernel-mentors project was created to help you out with this. It is a
|
||||
mailing list, and can be found at:
|
||||
http://selenic.com/mailman/listinfo/kernel-mentors
|
||||
|
||||
https://selenic.com/mailman/listinfo/kernel-mentors
|
||||
|
||||
Before making any actual modifications to the Linux kernel code, it is
|
||||
imperative to understand how the code in question works. For this
|
||||
@ -209,6 +236,7 @@ tools. One such tool that is particularly recommended is the Linux
|
||||
Cross-Reference project, which is able to present source code in a
|
||||
self-referential, indexed webpage format. An excellent up-to-date
|
||||
repository of the kernel code may be found at:
|
||||
|
||||
http://lxr.free-electrons.com/
|
||||
|
||||
|
||||
@ -218,6 +246,7 @@ The development process
|
||||
Linux kernel development process currently consists of a few different
|
||||
main kernel "branches" and lots of different subsystem-specific kernel
|
||||
branches. These different branches are:
|
||||
|
||||
- main 4.x kernel tree
|
||||
- 4.x.y -stable kernel tree
|
||||
- 4.x -git kernel patches
|
||||
@ -227,14 +256,15 @@ branches. These different branches are:
|
||||
4.x kernel tree
|
||||
-----------------
|
||||
4.x kernels are maintained by Linus Torvalds, and can be found on
|
||||
kernel.org in the pub/linux/kernel/v4.x/ directory. Its development
|
||||
https://kernel.org in the pub/linux/kernel/v4.x/ directory. Its development
|
||||
process is as follows:
|
||||
|
||||
- As soon as a new kernel is released a two weeks window is open,
|
||||
during this period of time maintainers can submit big diffs to
|
||||
Linus, usually the patches that have already been included in the
|
||||
-next kernel for a few weeks. The preferred way to submit big changes
|
||||
is using git (the kernel's source management tool, more information
|
||||
can be found at http://git-scm.com/) but plain patches are also just
|
||||
can be found at https://git-scm.com/) but plain patches are also just
|
||||
fine.
|
||||
- After two weeks a -rc1 kernel is released it is now possible to push
|
||||
only patches that do not include new features that could affect the
|
||||
@ -253,9 +283,10 @@ process is as follows:
|
||||
|
||||
It is worth mentioning what Andrew Morton wrote on the linux-kernel
|
||||
mailing list about kernel releases:
|
||||
"Nobody knows when a kernel will be released, because it's
|
||||
|
||||
*"Nobody knows when a kernel will be released, because it's
|
||||
released according to perceived bug status, not according to a
|
||||
preconceived timeline."
|
||||
preconceived timeline."*
|
||||
|
||||
4.x.y -stable kernel tree
|
||||
-------------------------
|
||||
@ -301,7 +332,7 @@ submission and other already ongoing work are avoided.
|
||||
Most of these repositories are git trees, but there are also other SCMs
|
||||
in use, or patch queues being published as quilt series. Addresses of
|
||||
these subsystem repositories are listed in the MAINTAINERS file. Many
|
||||
of them can be browsed at http://git.kernel.org/.
|
||||
of them can be browsed at https://git.kernel.org/.
|
||||
|
||||
Before a proposed patch is committed to such a subsystem tree, it is
|
||||
subject to review which primarily happens on mailing lists (see the
|
||||
@ -310,7 +341,7 @@ process is tracked with the tool patchwork. Patchwork offers a web
|
||||
interface which shows patch postings, any comments on a patch or
|
||||
revisions to it, and maintainers can mark patches as under review,
|
||||
accepted, or rejected. Most of these patchwork sites are listed at
|
||||
http://patchwork.kernel.org/.
|
||||
https://patchwork.kernel.org/.
|
||||
|
||||
4.x -next kernel tree for integration tests
|
||||
-------------------------------------------
|
||||
@ -318,7 +349,8 @@ Before updates from subsystem trees are merged into the mainline 4.x
|
||||
tree, they need to be integration-tested. For this purpose, a special
|
||||
testing repository exists into which virtually all subsystem trees are
|
||||
pulled on an almost daily basis:
|
||||
http://git.kernel.org/?p=linux/kernel/git/next/linux-next.git
|
||||
|
||||
https://git.kernel.org/?p=linux/kernel/git/next/linux-next.git
|
||||
|
||||
This way, the -next kernel gives a summary outlook onto what will be
|
||||
expected to go into the mainline kernel at the next merge period.
|
||||
@ -328,10 +360,11 @@ Adventurous testers are very welcome to runtime-test the -next kernel.
|
||||
Bug Reporting
|
||||
-------------
|
||||
|
||||
bugzilla.kernel.org is where the Linux kernel developers track kernel
|
||||
https://bugzilla.kernel.org is where the Linux kernel developers track kernel
|
||||
bugs. Users are encouraged to report all bugs that they find in this
|
||||
tool. For details on how to use the kernel bugzilla, please see:
|
||||
http://bugzilla.kernel.org/page.cgi?id=faq.html
|
||||
|
||||
https://bugzilla.kernel.org/page.cgi?id=faq.html
|
||||
|
||||
The file REPORTING-BUGS in the main kernel source directory has a good
|
||||
template for how to report a possible kernel bug, and details what kind
|
||||
@ -349,13 +382,14 @@ your skills, and other developers will be aware of your presence. Fixing
|
||||
bugs is one of the best ways to get merits among other developers, because
|
||||
not many people like wasting time fixing other people's bugs.
|
||||
|
||||
To work in the already reported bug reports, go to http://bugzilla.kernel.org.
|
||||
To work in the already reported bug reports, go to https://bugzilla.kernel.org.
|
||||
If you want to be advised of the future bug reports, you can subscribe to the
|
||||
bugme-new mailing list (only new bug reports are mailed here) or to the
|
||||
bugme-janitor mailing list (every change in the bugzilla is mailed here)
|
||||
|
||||
http://lists.linux-foundation.org/mailman/listinfo/bugme-new
|
||||
http://lists.linux-foundation.org/mailman/listinfo/bugme-janitors
|
||||
https://lists.linux-foundation.org/mailman/listinfo/bugme-new
|
||||
|
||||
https://lists.linux-foundation.org/mailman/listinfo/bugme-janitors
|
||||
|
||||
|
||||
|
||||
@ -365,10 +399,14 @@ Mailing lists
|
||||
As some of the above documents describe, the majority of the core kernel
|
||||
developers participate on the Linux Kernel Mailing list. Details on how
|
||||
to subscribe and unsubscribe from the list can be found at:
|
||||
|
||||
http://vger.kernel.org/vger-lists.html#linux-kernel
|
||||
|
||||
There are archives of the mailing list on the web in many different
|
||||
places. Use a search engine to find these archives. For example:
|
||||
|
||||
http://dir.gmane.org/gmane.linux.kernel
|
||||
|
||||
It is highly recommended that you search the archives about the topic
|
||||
you want to bring up, before you post it to the list. A lot of things
|
||||
already discussed in detail are only recorded at the mailing list
|
||||
@ -381,11 +419,13 @@ groups.
|
||||
|
||||
Many of the lists are hosted on kernel.org. Information on them can be
|
||||
found at:
|
||||
|
||||
http://vger.kernel.org/vger-lists.html
|
||||
|
||||
Please remember to follow good behavioral habits when using the lists.
|
||||
Though a bit cheesy, the following URL has some simple guidelines for
|
||||
interacting with the list (or any list):
|
||||
|
||||
http://www.albion.com/netiquette/
|
||||
|
||||
If multiple people respond to your mail, the CC: list of recipients may
|
||||
@ -400,13 +440,14 @@ add your statements between the individual quoted sections instead of
|
||||
writing at the top of the mail.
|
||||
|
||||
If you add patches to your mail, make sure they are plain readable text
|
||||
as stated in Documentation/SubmittingPatches. Kernel developers don't
|
||||
want to deal with attachments or compressed patches; they may want
|
||||
to comment on individual lines of your patch, which works only that way.
|
||||
Make sure you use a mail program that does not mangle spaces and tab
|
||||
characters. A good first test is to send the mail to yourself and try
|
||||
to apply your own patch by yourself. If that doesn't work, get your
|
||||
mail program fixed or change it until it works.
|
||||
as stated in Documentation/SubmittingPatches.
|
||||
Kernel developers don't want to deal with
|
||||
attachments or compressed patches; they may want to comment on
|
||||
individual lines of your patch, which works only that way. Make sure you
|
||||
use a mail program that does not mangle spaces and tab characters. A
|
||||
good first test is to send the mail to yourself and try to apply your
|
||||
own patch by yourself. If that doesn't work, get your mail program fixed
|
||||
or change it until it works.
|
||||
|
||||
Above all, please remember to show respect to other subscribers.
|
||||
|
||||
@ -418,6 +459,7 @@ The goal of the kernel community is to provide the best possible kernel
|
||||
there is. When you submit a patch for acceptance, it will be reviewed
|
||||
on its technical merits and those alone. So, what should you be
|
||||
expecting?
|
||||
|
||||
- criticism
|
||||
- comments
|
||||
- requests for change
|
||||
@ -432,6 +474,7 @@ If there are no responses to your posting, wait a few days and try
|
||||
again, sometimes things get lost in the huge volume.
|
||||
|
||||
What should you not do?
|
||||
|
||||
- expect your patch to be accepted without question
|
||||
- become defensive
|
||||
- ignore comments
|
||||
@ -445,8 +488,8 @@ Remember, being wrong is acceptable as long as you are willing to work
|
||||
toward a solution that is right.
|
||||
|
||||
It is normal that the answers to your first patch might simply be a list
|
||||
of a dozen things you should correct. This does _not_ imply that your
|
||||
patch will not be accepted, and it is _not_ meant against you
|
||||
of a dozen things you should correct. This does **not** imply that your
|
||||
patch will not be accepted, and it is **not** meant against you
|
||||
personally. Simply correct all issues raised against your patch and
|
||||
resend it.
|
||||
|
||||
@ -457,7 +500,9 @@ Differences between the kernel community and corporate structures
|
||||
The kernel community works differently than most traditional corporate
|
||||
development environments. Here are a list of things that you can try to
|
||||
do to avoid problems:
|
||||
|
||||
Good things to say regarding your proposed changes:
|
||||
|
||||
- "This solves multiple problems."
|
||||
- "This deletes 2000 lines of code."
|
||||
- "Here is a patch that explains what I am trying to describe."
|
||||
@ -466,6 +511,7 @@ do to avoid problems:
|
||||
- "This increases performance on typical machines..."
|
||||
|
||||
Bad things you should avoid saying:
|
||||
|
||||
- "We did it this way in AIX/ptx/Solaris, so therefore it must be
|
||||
good..."
|
||||
- "I've being doing this for 20 years, so..."
|
||||
@ -527,17 +573,18 @@ The reasons for breaking things up are the following:
|
||||
and simplify (or simply re-order) patches before submitting them.
|
||||
|
||||
Here is an analogy from kernel developer Al Viro:
|
||||
"Think of a teacher grading homework from a math student. The
|
||||
|
||||
*"Think of a teacher grading homework from a math student. The
|
||||
teacher does not want to see the student's trials and errors
|
||||
before they came up with the solution. They want to see the
|
||||
cleanest, most elegant answer. A good student knows this, and
|
||||
would never submit her intermediate work before the final
|
||||
solution."
|
||||
solution.*
|
||||
|
||||
The same is true of kernel development. The maintainers and
|
||||
*The same is true of kernel development. The maintainers and
|
||||
reviewers do not want to see the thought process behind the
|
||||
solution to the problem one is solving. They want to see a
|
||||
simple and elegant solution."
|
||||
simple and elegant solution."*
|
||||
|
||||
It may be challenging to keep the balance between presenting an elegant
|
||||
solution and working together with the community and discussing your
|
||||
@ -565,6 +612,7 @@ When sending in your patches, pay special attention to what you say in
|
||||
the text in your email. This information will become the ChangeLog
|
||||
information for the patch, and will be preserved for everyone to see for
|
||||
all time. It should describe the patch completely, containing:
|
||||
|
||||
- why the change is necessary
|
||||
- the overall design approach in the patch
|
||||
- implementation details
|
||||
@ -572,12 +620,11 @@ all time. It should describe the patch completely, containing:
|
||||
|
||||
For more details on what this should all look like, please see the
|
||||
ChangeLog section of the document:
|
||||
|
||||
"The Perfect Patch"
|
||||
http://www.ozlabs.org/~akpm/stuff/tpp.txt
|
||||
|
||||
|
||||
|
||||
|
||||
All of these things are sometimes very hard to do. It can take years to
|
||||
perfect these practices (if at all). It's a continuous process of
|
||||
improvement that requires a lot of patience and determination. But
|
||||
@ -588,8 +635,9 @@ start exactly where you are now.
|
||||
|
||||
|
||||
----------
|
||||
|
||||
Thanks to Paolo Ciarrocchi who allowed the "Development Process"
|
||||
(http://lwn.net/Articles/94386/) section
|
||||
(https://lwn.net/Articles/94386/) section
|
||||
to be based on text he had written, and to Randy Dunlap and Gerrit
|
||||
Huizenga for some of the list of things you should and should not say.
|
||||
Also thanks to Pat Mochel, Hanna Linder, Randy Dunlap, Kay Sievers,
|
||||
|
@ -1,3 +1 @@
|
||||
subdir-y := accounting auxdisplay blackfin \
|
||||
filesystems filesystems ia64 laptops mic misc-devices \
|
||||
networking pcmcia prctl ptp timers vDSO watchdog
|
||||
subdir-y :=
|
||||
|
@ -5,6 +5,9 @@
|
||||
# You can set these variables from the command line.
|
||||
SPHINXBUILD = sphinx-build
|
||||
SPHINXOPTS =
|
||||
SPHINXDIRS = .
|
||||
_SPHINXDIRS = $(patsubst $(srctree)/Documentation/%/conf.py,%,$(wildcard $(srctree)/Documentation/*/conf.py))
|
||||
SPHINX_CONF = conf.py
|
||||
PAPER =
|
||||
BUILDDIR = $(obj)/output
|
||||
|
||||
@ -25,38 +28,62 @@ else ifneq ($(DOCBOOKS),)
|
||||
|
||||
else # HAVE_SPHINX
|
||||
|
||||
# User-friendly check for rst2pdf
|
||||
HAVE_RST2PDF := $(shell if python -c "import rst2pdf" >/dev/null 2>&1; then echo 1; else echo 0; fi)
|
||||
# User-friendly check for pdflatex
|
||||
HAVE_PDFLATEX := $(shell if which xelatex >/dev/null 2>&1; then echo 1; else echo 0; fi)
|
||||
|
||||
# Internal variables.
|
||||
PAPEROPT_a4 = -D latex_paper_size=a4
|
||||
PAPEROPT_letter = -D latex_paper_size=letter
|
||||
KERNELDOC = $(srctree)/scripts/kernel-doc
|
||||
KERNELDOC_CONF = -D kerneldoc_srctree=$(srctree) -D kerneldoc_bin=$(KERNELDOC)
|
||||
ALLSPHINXOPTS = -D version=$(KERNELVERSION) -D release=$(KERNELRELEASE) -d $(BUILDDIR)/.doctrees $(KERNELDOC_CONF) $(PAPEROPT_$(PAPER)) -c $(srctree)/$(src) $(SPHINXOPTS) $(srctree)/$(src)
|
||||
ALLSPHINXOPTS = $(KERNELDOC_CONF) $(PAPEROPT_$(PAPER)) $(SPHINXOPTS)
|
||||
# the i18n builder cannot share the environment and doctrees with the others
|
||||
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
|
||||
|
||||
quiet_cmd_sphinx = SPHINX $@
|
||||
cmd_sphinx = BUILDDIR=$(BUILDDIR) $(SPHINXBUILD) -b $2 $(ALLSPHINXOPTS) $(BUILDDIR)/$2
|
||||
# commands; the 'cmd' from scripts/Kbuild.include is not *loopable*
|
||||
loop_cmd = $(echo-cmd) $(cmd_$(1))
|
||||
|
||||
# $2 sphinx builder e.g. "html"
|
||||
# $3 name of the build subfolder / e.g. "media", used as:
|
||||
# * dest folder relative to $(BUILDDIR) and
|
||||
# * cache folder relative to $(BUILDDIR)/.doctrees
|
||||
# $4 dest subfolder e.g. "man" for man pages at media/man
|
||||
# $5 reST source folder relative to $(srctree)/$(src),
|
||||
# e.g. "media" for the linux-tv book-set at ./Documentation/media
|
||||
|
||||
quiet_cmd_sphinx = SPHINX $@ --> file://$(abspath $(BUILDDIR)/$3/$4);
|
||||
cmd_sphinx = $(MAKE) BUILDDIR=$(abspath $(BUILDDIR)) $(build)=Documentation/media all;\
|
||||
BUILDDIR=$(abspath $(BUILDDIR)) SPHINX_CONF=$(abspath $(srctree)/$(src)/$5/$(SPHINX_CONF)) \
|
||||
$(SPHINXBUILD) \
|
||||
-b $2 \
|
||||
-c $(abspath $(srctree)/$(src)) \
|
||||
-d $(abspath $(BUILDDIR)/.doctrees/$3) \
|
||||
-D version=$(KERNELVERSION) -D release=$(KERNELRELEASE) \
|
||||
$(ALLSPHINXOPTS) \
|
||||
$(abspath $(srctree)/$(src)/$5) \
|
||||
$(abspath $(BUILDDIR)/$3/$4);
|
||||
|
||||
htmldocs:
|
||||
$(MAKE) BUILDDIR=$(BUILDDIR) -f $(srctree)/Documentation/media/Makefile $@
|
||||
$(call cmd,sphinx,html)
|
||||
@$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,html,$(var),,$(var)))
|
||||
|
||||
pdfdocs:
|
||||
ifeq ($(HAVE_RST2PDF),0)
|
||||
$(warning The Python 'rst2pdf' module was not found. Make sure you have the module installed to produce PDF output.)
|
||||
latexdocs:
|
||||
ifeq ($(HAVE_PDFLATEX),0)
|
||||
$(warning The 'xelatex' command was not found. Make sure you have it installed and in PATH to produce PDF output.)
|
||||
@echo " SKIP Sphinx $@ target."
|
||||
else # HAVE_RST2PDF
|
||||
$(call cmd,sphinx,pdf)
|
||||
endif # HAVE_RST2PDF
|
||||
else # HAVE_PDFLATEX
|
||||
@$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,latex,$(var),latex,$(var)))
|
||||
endif # HAVE_PDFLATEX
|
||||
|
||||
pdfdocs: latexdocs
|
||||
ifneq ($(HAVE_PDFLATEX),0)
|
||||
$(foreach var,$(SPHINXDIRS), $(MAKE) PDFLATEX=xelatex LATEXOPTS="-interaction=nonstopmode" -C $(BUILDDIR)/$(var)/latex)
|
||||
endif # HAVE_PDFLATEX
|
||||
|
||||
epubdocs:
|
||||
$(call cmd,sphinx,epub)
|
||||
@$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,epub,$(var),epub,$(var)))
|
||||
|
||||
xmldocs:
|
||||
$(call cmd,sphinx,xml)
|
||||
@$(foreach var,$(SPHINXDIRS),$(call loop_cmd,sphinx,xml,$(var),xml,$(var)))
|
||||
|
||||
# no-ops for the Sphinx toolchain
|
||||
sgmldocs:
|
||||
@ -72,7 +99,14 @@ endif # HAVE_SPHINX
|
||||
dochelp:
|
||||
@echo ' Linux kernel internal documentation in different formats (Sphinx):'
|
||||
@echo ' htmldocs - HTML'
|
||||
@echo ' latexdocs - LaTeX'
|
||||
@echo ' pdfdocs - PDF'
|
||||
@echo ' epubdocs - EPUB'
|
||||
@echo ' xmldocs - XML'
|
||||
@echo ' cleandocs - clean all generated files'
|
||||
@echo
|
||||
@echo ' make SPHINXDIRS="s1 s2" [target] Generate only docs of folder s1, s2'
|
||||
@echo ' valid values for SPHINXDIRS are: $(_SPHINXDIRS)'
|
||||
@echo
|
||||
@echo ' make SPHINX_CONF={conf-file} [target] use *additional* sphinx-build'
|
||||
@echo ' configuration. This is e.g. useful to build with nit-picking config.'
|
||||
|
@ -1,10 +1,12 @@
|
||||
.. _managementstyle:
|
||||
|
||||
Linux kernel management style
|
||||
Linux kernel management style
|
||||
=============================
|
||||
|
||||
This is a short document describing the preferred (or made up, depending
|
||||
on who you ask) management style for the linux kernel. It's meant to
|
||||
mirror the CodingStyle document to some degree, and mainly written to
|
||||
avoid answering (*) the same (or similar) questions over and over again.
|
||||
avoid answering [#f1]_ the same (or similar) questions over and over again.
|
||||
|
||||
Management style is very personal and much harder to quantify than
|
||||
simple coding style rules, so this document may or may not have anything
|
||||
@ -14,50 +16,52 @@ might not actually be true. You'll have to decide for yourself.
|
||||
Btw, when talking about "kernel manager", it's all about the technical
|
||||
lead persons, not the people who do traditional management inside
|
||||
companies. If you sign purchase orders or you have any clue about the
|
||||
budget of your group, you're almost certainly not a kernel manager.
|
||||
These suggestions may or may not apply to you.
|
||||
budget of your group, you're almost certainly not a kernel manager.
|
||||
These suggestions may or may not apply to you.
|
||||
|
||||
First off, I'd suggest buying "Seven Habits of Highly Effective
|
||||
People", and NOT read it. Burn it, it's a great symbolic gesture.
|
||||
People", and NOT read it. Burn it, it's a great symbolic gesture.
|
||||
|
||||
(*) This document does so not so much by answering the question, but by
|
||||
making it painfully obvious to the questioner that we don't have a clue
|
||||
to what the answer is.
|
||||
.. [#f1] This document does so not so much by answering the question, but by
|
||||
making it painfully obvious to the questioner that we don't have a clue
|
||||
to what the answer is.
|
||||
|
||||
Anyway, here goes:
|
||||
|
||||
.. _decisions:
|
||||
|
||||
Chapter 1: Decisions
|
||||
1) Decisions
|
||||
------------
|
||||
|
||||
Everybody thinks managers make decisions, and that decision-making is
|
||||
important. The bigger and more painful the decision, the bigger the
|
||||
manager must be to make it. That's very deep and obvious, but it's not
|
||||
actually true.
|
||||
actually true.
|
||||
|
||||
The name of the game is to _avoid_ having to make a decision. In
|
||||
The name of the game is to **avoid** having to make a decision. In
|
||||
particular, if somebody tells you "choose (a) or (b), we really need you
|
||||
to decide on this", you're in trouble as a manager. The people you
|
||||
manage had better know the details better than you, so if they come to
|
||||
you for a technical decision, you're screwed. You're clearly not
|
||||
competent to make that decision for them.
|
||||
competent to make that decision for them.
|
||||
|
||||
(Corollary:if the people you manage don't know the details better than
|
||||
you, you're also screwed, although for a totally different reason.
|
||||
Namely that you are in the wrong job, and that _they_ should be managing
|
||||
your brilliance instead).
|
||||
you, you're also screwed, although for a totally different reason.
|
||||
Namely that you are in the wrong job, and that **they** should be managing
|
||||
your brilliance instead).
|
||||
|
||||
So the name of the game is to _avoid_ decisions, at least the big and
|
||||
So the name of the game is to **avoid** decisions, at least the big and
|
||||
painful ones. Making small and non-consequential decisions is fine, and
|
||||
makes you look like you know what you're doing, so what a kernel manager
|
||||
needs to do is to turn the big and painful ones into small things where
|
||||
nobody really cares.
|
||||
nobody really cares.
|
||||
|
||||
It helps to realize that the key difference between a big decision and a
|
||||
small one is whether you can fix your decision afterwards. Any decision
|
||||
can be made small by just always making sure that if you were wrong (and
|
||||
you _will_ be wrong), you can always undo the damage later by
|
||||
you **will** be wrong), you can always undo the damage later by
|
||||
backtracking. Suddenly, you get to be doubly managerial for making
|
||||
_two_ inconsequential decisions - the wrong one _and_ the right one.
|
||||
**two** inconsequential decisions - the wrong one **and** the right one.
|
||||
|
||||
And people will even see that as true leadership (*cough* bullshit
|
||||
*cough*).
|
||||
@ -65,10 +69,10 @@ And people will even see that as true leadership (*cough* bullshit
|
||||
Thus the key to avoiding big decisions becomes to just avoiding to do
|
||||
things that can't be undone. Don't get ushered into a corner from which
|
||||
you cannot escape. A cornered rat may be dangerous - a cornered manager
|
||||
is just pitiful.
|
||||
is just pitiful.
|
||||
|
||||
It turns out that since nobody would be stupid enough to ever really let
|
||||
a kernel manager have huge fiscal responsibility _anyway_, it's usually
|
||||
a kernel manager have huge fiscal responsibility **anyway**, it's usually
|
||||
fairly easy to backtrack. Since you're not going to be able to waste
|
||||
huge amounts of money that you might not be able to repay, the only
|
||||
thing you can backtrack on is a technical decision, and there
|
||||
@ -76,113 +80,118 @@ back-tracking is very easy: just tell everybody that you were an
|
||||
incompetent nincompoop, say you're sorry, and undo all the worthless
|
||||
work you had people work on for the last year. Suddenly the decision
|
||||
you made a year ago wasn't a big decision after all, since it could be
|
||||
easily undone.
|
||||
easily undone.
|
||||
|
||||
It turns out that some people have trouble with this approach, for two
|
||||
reasons:
|
||||
|
||||
- admitting you were an idiot is harder than it looks. We all like to
|
||||
maintain appearances, and coming out in public to say that you were
|
||||
wrong is sometimes very hard indeed.
|
||||
wrong is sometimes very hard indeed.
|
||||
- having somebody tell you that what you worked on for the last year
|
||||
wasn't worthwhile after all can be hard on the poor lowly engineers
|
||||
too, and while the actual _work_ was easy enough to undo by just
|
||||
too, and while the actual **work** was easy enough to undo by just
|
||||
deleting it, you may have irrevocably lost the trust of that
|
||||
engineer. And remember: "irrevocable" was what we tried to avoid in
|
||||
the first place, and your decision ended up being a big one after
|
||||
all.
|
||||
all.
|
||||
|
||||
Happily, both of these reasons can be mitigated effectively by just
|
||||
admitting up-front that you don't have a friggin' clue, and telling
|
||||
people ahead of the fact that your decision is purely preliminary, and
|
||||
might be the wrong thing. You should always reserve the right to change
|
||||
your mind, and make people very _aware_ of that. And it's much easier
|
||||
to admit that you are stupid when you haven't _yet_ done the really
|
||||
your mind, and make people very **aware** of that. And it's much easier
|
||||
to admit that you are stupid when you haven't **yet** done the really
|
||||
stupid thing.
|
||||
|
||||
Then, when it really does turn out to be stupid, people just roll their
|
||||
eyes and say "Oops, he did it again".
|
||||
eyes and say "Oops, he did it again".
|
||||
|
||||
This preemptive admission of incompetence might also make the people who
|
||||
actually do the work also think twice about whether it's worth doing or
|
||||
not. After all, if _they_ aren't certain whether it's a good idea, you
|
||||
not. After all, if **they** aren't certain whether it's a good idea, you
|
||||
sure as hell shouldn't encourage them by promising them that what they
|
||||
work on will be included. Make them at least think twice before they
|
||||
embark on a big endeavor.
|
||||
embark on a big endeavor.
|
||||
|
||||
Remember: they'd better know more about the details than you do, and
|
||||
they usually already think they have the answer to everything. The best
|
||||
thing you can do as a manager is not to instill confidence, but rather a
|
||||
healthy dose of critical thinking on what they do.
|
||||
healthy dose of critical thinking on what they do.
|
||||
|
||||
Btw, another way to avoid a decision is to plaintively just whine "can't
|
||||
we just do both?" and look pitiful. Trust me, it works. If it's not
|
||||
clear which approach is better, they'll eventually figure it out. The
|
||||
answer may end up being that both teams get so frustrated by the
|
||||
situation that they just give up.
|
||||
situation that they just give up.
|
||||
|
||||
That may sound like a failure, but it's usually a sign that there was
|
||||
something wrong with both projects, and the reason the people involved
|
||||
couldn't decide was that they were both wrong. You end up coming up
|
||||
smelling like roses, and you avoided yet another decision that you could
|
||||
have screwed up on.
|
||||
have screwed up on.
|
||||
|
||||
|
||||
Chapter 2: People
|
||||
2) People
|
||||
---------
|
||||
|
||||
Most people are idiots, and being a manager means you'll have to deal
|
||||
with it, and perhaps more importantly, that _they_ have to deal with
|
||||
_you_.
|
||||
with it, and perhaps more importantly, that **they** have to deal with
|
||||
**you**.
|
||||
|
||||
It turns out that while it's easy to undo technical mistakes, it's not
|
||||
as easy to undo personality disorders. You just have to live with
|
||||
theirs - and yours.
|
||||
theirs - and yours.
|
||||
|
||||
However, in order to prepare yourself as a kernel manager, it's best to
|
||||
remember not to burn any bridges, bomb any innocent villagers, or
|
||||
alienate too many kernel developers. It turns out that alienating people
|
||||
is fairly easy, and un-alienating them is hard. Thus "alienating"
|
||||
immediately falls under the heading of "not reversible", and becomes a
|
||||
no-no according to Chapter 1.
|
||||
no-no according to :ref:`decisions`.
|
||||
|
||||
There's just a few simple rules here:
|
||||
|
||||
(1) don't call people d*ckheads (at least not in public)
|
||||
(2) learn how to apologize when you forgot rule (1)
|
||||
|
||||
The problem with #1 is that it's very easy to do, since you can say
|
||||
"you're a d*ckhead" in millions of different ways (*), sometimes without
|
||||
"you're a d*ckhead" in millions of different ways [#f2]_, sometimes without
|
||||
even realizing it, and almost always with a white-hot conviction that
|
||||
you are right.
|
||||
you are right.
|
||||
|
||||
And the more convinced you are that you are right (and let's face it,
|
||||
you can call just about _anybody_ a d*ckhead, and you often _will_ be
|
||||
right), the harder it ends up being to apologize afterwards.
|
||||
you can call just about **anybody** a d*ckhead, and you often **will** be
|
||||
right), the harder it ends up being to apologize afterwards.
|
||||
|
||||
To solve this problem, you really only have two options:
|
||||
|
||||
- get really good at apologies
|
||||
- spread the "love" out so evenly that nobody really ends up feeling
|
||||
like they get unfairly targeted. Make it inventive enough, and they
|
||||
might even be amused.
|
||||
might even be amused.
|
||||
|
||||
The option of being unfailingly polite really doesn't exist. Nobody will
|
||||
trust somebody who is so clearly hiding his true character.
|
||||
|
||||
(*) Paul Simon sang "Fifty Ways to Leave Your Lover", because quite
|
||||
frankly, "A Million Ways to Tell a Developer He Is a D*ckhead" doesn't
|
||||
scan nearly as well. But I'm sure he thought about it.
|
||||
.. [#f2] Paul Simon sang "Fifty Ways to Leave Your Lover", because quite
|
||||
frankly, "A Million Ways to Tell a Developer He Is a D*ckhead" doesn't
|
||||
scan nearly as well. But I'm sure he thought about it.
|
||||
|
||||
|
||||
Chapter 3: People II - the Good Kind
|
||||
3) People II - the Good Kind
|
||||
----------------------------
|
||||
|
||||
While it turns out that most people are idiots, the corollary to that is
|
||||
sadly that you are one too, and that while we can all bask in the secure
|
||||
knowledge that we're better than the average person (let's face it,
|
||||
nobody ever believes that they're average or below-average), we should
|
||||
also admit that we're not the sharpest knife around, and there will be
|
||||
other people that are less of an idiot than you are.
|
||||
other people that are less of an idiot than you are.
|
||||
|
||||
Some people react badly to smart people. Others take advantage of them.
|
||||
Some people react badly to smart people. Others take advantage of them.
|
||||
|
||||
Make sure that you, as a kernel maintainer, are in the second group.
|
||||
Make sure that you, as a kernel maintainer, are in the second group.
|
||||
Suck up to them, because they are the people who will make your job
|
||||
easier. In particular, they'll be able to make your decisions for you,
|
||||
which is what the game is all about.
|
||||
@ -191,7 +200,7 @@ So when you find somebody smarter than you are, just coast along. Your
|
||||
management responsibilities largely become ones of saying "Sounds like a
|
||||
good idea - go wild", or "That sounds good, but what about xxx?". The
|
||||
second version in particular is a great way to either learn something
|
||||
new about "xxx" or seem _extra_ managerial by pointing out something the
|
||||
new about "xxx" or seem **extra** managerial by pointing out something the
|
||||
smarter person hadn't thought about. In either case, you win.
|
||||
|
||||
One thing to look out for is to realize that greatness in one area does
|
||||
@ -199,47 +208,49 @@ not necessarily translate to other areas. So you might prod people in
|
||||
specific directions, but let's face it, they might be good at what they
|
||||
do, and suck at everything else. The good news is that people tend to
|
||||
naturally gravitate back to what they are good at, so it's not like you
|
||||
are doing something irreversible when you _do_ prod them in some
|
||||
are doing something irreversible when you **do** prod them in some
|
||||
direction, just don't push too hard.
|
||||
|
||||
|
||||
Chapter 4: Placing blame
|
||||
4) Placing blame
|
||||
----------------
|
||||
|
||||
Things will go wrong, and people want somebody to blame. Tag, you're it.
|
||||
|
||||
It's not actually that hard to accept the blame, especially if people
|
||||
kind of realize that it wasn't _all_ your fault. Which brings us to the
|
||||
kind of realize that it wasn't **all** your fault. Which brings us to the
|
||||
best way of taking the blame: do it for another guy. You'll feel good
|
||||
for taking the fall, he'll feel good about not getting blamed, and the
|
||||
guy who lost his whole 36GB porn-collection because of your incompetence
|
||||
will grudgingly admit that you at least didn't try to weasel out of it.
|
||||
|
||||
Then make the developer who really screwed up (if you can find him) know
|
||||
_in_private_ that he screwed up. Not just so he can avoid it in the
|
||||
**in_private** that he screwed up. Not just so he can avoid it in the
|
||||
future, but so that he knows he owes you one. And, perhaps even more
|
||||
importantly, he's also likely the person who can fix it. Because, let's
|
||||
face it, it sure ain't you.
|
||||
face it, it sure ain't you.
|
||||
|
||||
Taking the blame is also why you get to be manager in the first place.
|
||||
Taking the blame is also why you get to be manager in the first place.
|
||||
It's part of what makes people trust you, and allow you the potential
|
||||
glory, because you're the one who gets to say "I screwed up". And if
|
||||
you've followed the previous rules, you'll be pretty good at saying that
|
||||
by now.
|
||||
by now.
|
||||
|
||||
|
||||
Chapter 5: Things to avoid
|
||||
5) Things to avoid
|
||||
------------------
|
||||
|
||||
There's one thing people hate even more than being called "d*ckhead",
|
||||
and that is being called a "d*ckhead" in a sanctimonious voice. The
|
||||
first you can apologize for, the second one you won't really get the
|
||||
chance. They likely will no longer be listening even if you otherwise
|
||||
do a good job.
|
||||
do a good job.
|
||||
|
||||
We all think we're better than anybody else, which means that when
|
||||
somebody else puts on airs, it _really_ rubs us the wrong way. You may
|
||||
somebody else puts on airs, it **really** rubs us the wrong way. You may
|
||||
be morally and intellectually superior to everybody around you, but
|
||||
don't try to make it too obvious unless you really _intend_ to irritate
|
||||
somebody (*).
|
||||
don't try to make it too obvious unless you really **intend** to irritate
|
||||
somebody [#f3]_.
|
||||
|
||||
Similarly, don't be too polite or subtle about things. Politeness easily
|
||||
ends up going overboard and hiding the problem, and as they say, "On the
|
||||
@ -251,15 +262,16 @@ Some humor can help pad both the bluntness and the moralizing. Going
|
||||
overboard to the point of being ridiculous can drive a point home
|
||||
without making it painful to the recipient, who just thinks you're being
|
||||
silly. It can thus help get through the personal mental block we all
|
||||
have about criticism.
|
||||
have about criticism.
|
||||
|
||||
(*) Hint: internet newsgroups that are not directly related to your work
|
||||
are great ways to take out your frustrations at other people. Write
|
||||
insulting posts with a sneer just to get into a good flame every once in
|
||||
a while, and you'll feel cleansed. Just don't crap too close to home.
|
||||
.. [#f3] Hint: internet newsgroups that are not directly related to your work
|
||||
are great ways to take out your frustrations at other people. Write
|
||||
insulting posts with a sneer just to get into a good flame every once in
|
||||
a while, and you'll feel cleansed. Just don't crap too close to home.
|
||||
|
||||
|
||||
Chapter 6: Why me?
|
||||
6) Why me?
|
||||
----------
|
||||
|
||||
Since your main responsibility seems to be to take the blame for other
|
||||
peoples mistakes, and make it painfully obvious to everybody else that
|
||||
@ -268,9 +280,9 @@ first place?
|
||||
|
||||
First off, while you may or may not get screaming teenage girls (or
|
||||
boys, let's not be judgmental or sexist here) knocking on your dressing
|
||||
room door, you _will_ get an immense feeling of personal accomplishment
|
||||
room door, you **will** get an immense feeling of personal accomplishment
|
||||
for being "in charge". Never mind the fact that you're really leading
|
||||
by trying to keep up with everybody else and running after them as fast
|
||||
as you can. Everybody will still think you're the person in charge.
|
||||
as you can. Everybody will still think you're the person in charge.
|
||||
|
||||
It's a great job if you can hack it.
|
||||
|
@ -49,25 +49,17 @@ depends on CONFIG_PCIEPORTBUS, so pls. set CONFIG_PCIEPORTBUS=y and
|
||||
CONFIG_PCIEAER = y.
|
||||
|
||||
2.2 Load PCI Express AER Root Driver
|
||||
There is a case where a system has AER support in BIOS. Enabling the AER
|
||||
Root driver and having AER support in BIOS may result unpredictable
|
||||
behavior. To avoid this conflict, a successful load of the AER Root driver
|
||||
requires ACPI _OSC support in the BIOS to allow the AER Root driver to
|
||||
request for native control of AER. See the PCI FW 3.0 Specification for
|
||||
details regarding OSC usage. Currently, lots of firmwares don't provide
|
||||
_OSC support while they use PCI Express. To support such firmwares,
|
||||
forceload, a parameter of type bool, could enable AER to continue to
|
||||
be initiated although firmwares have no _OSC support. To enable the
|
||||
walkaround, pls. add aerdriver.forceload=y to kernel boot parameter line
|
||||
when booting kernel. Note that forceload=n by default.
|
||||
|
||||
nosourceid, another parameter of type bool, can be used when broken
|
||||
hardware (mostly chipsets) has root ports that cannot obtain the reporting
|
||||
source ID. nosourceid=n by default.
|
||||
Some systems have AER support in firmware. Enabling Linux AER support at
|
||||
the same time the firmware handles AER may result in unpredictable
|
||||
behavior. Therefore, Linux does not handle AER events unless the firmware
|
||||
grants AER control to the OS via the ACPI _OSC method. See the PCI FW 3.0
|
||||
Specification for details regarding _OSC usage.
|
||||
|
||||
2.3 AER error output
|
||||
When a PCI-E AER error is captured, an error message will be outputted to
|
||||
console. If it's a correctable error, it is outputted as a warning.
|
||||
|
||||
When a PCIe AER error is captured, an error message will be output to
|
||||
console. If it's a correctable error, it is output as a warning.
|
||||
Otherwise, it is printed as an error. So users could choose different
|
||||
log level to filter out correctable error messages.
|
||||
|
||||
|
@ -2493,6 +2493,28 @@ or some future “lazy”
|
||||
variant of <tt>call_rcu()</tt> that might one day be created for
|
||||
energy-efficiency purposes.
|
||||
|
||||
<p>
|
||||
That said, there are limits.
|
||||
RCU requires that the <tt>rcu_head</tt> structure be aligned to a
|
||||
two-byte boundary, and passing a misaligned <tt>rcu_head</tt>
|
||||
structure to one of the <tt>call_rcu()</tt> family of functions
|
||||
will result in a splat.
|
||||
It is therefore necessary to exercise caution when packing
|
||||
structures containing fields of type <tt>rcu_head</tt>.
|
||||
Why not a four-byte or even eight-byte alignment requirement?
|
||||
Because the m68k architecture provides only two-byte alignment,
|
||||
and thus acts as alignment's least common denominator.
|
||||
|
||||
<p>
|
||||
The reason for reserving the bottom bit of pointers to
|
||||
<tt>rcu_head</tt> structures is to leave the door open to
|
||||
“lazy” callbacks whose invocations can safely be deferred.
|
||||
Deferring invocation could potentially have energy-efficiency
|
||||
benefits, but only if the rate of non-lazy callbacks decreases
|
||||
significantly for some important workload.
|
||||
In the meantime, reserving the bottom bit keeps this option open
|
||||
in case it one day becomes useful.
|
||||
|
||||
<h3><a name="Performance, Scalability, Response Time, and Reliability">
|
||||
Performance, Scalability, Response Time, and Reliability</a></h3>
|
||||
|
||||
|
@ -57,7 +57,7 @@ Call Trace:
|
||||
[<ffffffff817db154>] kernel_thread_helper+0x4/0x10
|
||||
[<ffffffff81066430>] ? finish_task_switch+0x80/0x110
|
||||
[<ffffffff817d9c04>] ? retint_restore_args+0xe/0xe
|
||||
[<ffffffff81097510>] ? __init_kthread_worker+0x70/0x70
|
||||
[<ffffffff81097510>] ? __kthread_init_worker+0x70/0x70
|
||||
[<ffffffff817db150>] ? gs_change+0xb/0xb
|
||||
|
||||
Line 2776 of block/cfq-iosched.c in v3.0-rc5 is as follows:
|
||||
|
@ -10,21 +10,6 @@ status messages via printk(), which can be examined via the dmesg
|
||||
command (perhaps grepping for "torture"). The test is started
|
||||
when the module is loaded, and stops when the module is unloaded.
|
||||
|
||||
CONFIG_RCU_TORTURE_TEST_RUNNABLE
|
||||
|
||||
It is also possible to specify CONFIG_RCU_TORTURE_TEST=y, which will
|
||||
result in the tests being loaded into the base kernel. In this case,
|
||||
the CONFIG_RCU_TORTURE_TEST_RUNNABLE config option is used to specify
|
||||
whether the RCU torture tests are to be started immediately during
|
||||
boot or whether the /proc/sys/kernel/rcutorture_runnable file is used
|
||||
to enable them. This /proc file can be used to repeatedly pause and
|
||||
restart the tests, regardless of the initial state specified by the
|
||||
CONFIG_RCU_TORTURE_TEST_RUNNABLE config option.
|
||||
|
||||
You will normally -not- want to start the RCU torture tests during boot
|
||||
(and thus the default is CONFIG_RCU_TORTURE_TEST_RUNNABLE=n), but doing
|
||||
this can sometimes be useful in finding boot-time bugs.
|
||||
|
||||
|
||||
MODULE PARAMETERS
|
||||
|
||||
|
@ -1,9 +1,15 @@
|
||||
.. _securitybugs:
|
||||
|
||||
Security bugs
|
||||
=============
|
||||
|
||||
Linux kernel developers take security very seriously. As such, we'd
|
||||
like to know when a security bug is found so that it can be fixed and
|
||||
disclosed as quickly as possible. Please report security bugs to the
|
||||
Linux kernel security team.
|
||||
|
||||
1) Contact
|
||||
----------
|
||||
|
||||
The Linux kernel security team can be contacted by email at
|
||||
<security@kernel.org>. This is a private list of security officers
|
||||
@ -18,6 +24,7 @@ Any exploit code is very helpful and will not be released without
|
||||
consent from the reporter unless it has already been made public.
|
||||
|
||||
2) Disclosure
|
||||
-------------
|
||||
|
||||
The goal of the Linux kernel security team is to work with the
|
||||
bug submitter to bug resolution as well as disclosure. We prefer
|
||||
@ -33,6 +40,7 @@ to a few weeks. As a basic default policy, we expect report date to
|
||||
disclosure date to be on the order of 7 days.
|
||||
|
||||
3) Non-disclosure agreements
|
||||
----------------------------
|
||||
|
||||
The Linux kernel security team is not a formal body and therefore unable
|
||||
to enter any non-disclosure agreements.
|
||||
|
@ -1,109 +1,120 @@
|
||||
.. _submitchecklist:
|
||||
|
||||
Linux Kernel patch submission checklist
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Here are some basic things that developers should do if they want to see their
|
||||
kernel patch submissions accepted more quickly.
|
||||
|
||||
These are all above and beyond the documentation that is provided in
|
||||
Documentation/SubmittingPatches and elsewhere regarding submitting Linux
|
||||
kernel patches.
|
||||
:ref:`Documentation/SubmittingPatches <submittingpatches>`
|
||||
and elsewhere regarding submitting Linux kernel patches.
|
||||
|
||||
|
||||
1: If you use a facility then #include the file that defines/declares
|
||||
1) If you use a facility then #include the file that defines/declares
|
||||
that facility. Don't depend on other header files pulling in ones
|
||||
that you use.
|
||||
|
||||
2: Builds cleanly with applicable or modified CONFIG options =y, =m, and
|
||||
=n. No gcc warnings/errors, no linker warnings/errors.
|
||||
2) Builds cleanly:
|
||||
|
||||
2b: Passes allnoconfig, allmodconfig
|
||||
a) with applicable or modified ``CONFIG`` options ``=y``, ``=m``, and
|
||||
``=n``. No ``gcc`` warnings/errors, no linker warnings/errors.
|
||||
|
||||
2c: Builds successfully when using O=builddir
|
||||
b) Passes ``allnoconfig``, ``allmodconfig``
|
||||
|
||||
3: Builds on multiple CPU architectures by using local cross-compile tools
|
||||
c) Builds successfully when using ``O=builddir``
|
||||
|
||||
3) Builds on multiple CPU architectures by using local cross-compile tools
|
||||
or some other build farm.
|
||||
|
||||
4: ppc64 is a good architecture for cross-compilation checking because it
|
||||
tends to use `unsigned long' for 64-bit quantities.
|
||||
4) ppc64 is a good architecture for cross-compilation checking because it
|
||||
tends to use ``unsigned long`` for 64-bit quantities.
|
||||
|
||||
5: Check your patch for general style as detailed in
|
||||
Documentation/CodingStyle. Check for trivial violations with the
|
||||
patch style checker prior to submission (scripts/checkpatch.pl).
|
||||
5) Check your patch for general style as detailed in
|
||||
:ref:`Documentation/CodingStyle <codingstyle>`.
|
||||
Check for trivial violations with the patch style checker prior to
|
||||
submission (``scripts/checkpatch.pl``).
|
||||
You should be able to justify all violations that remain in
|
||||
your patch.
|
||||
|
||||
6: Any new or modified CONFIG options don't muck up the config menu.
|
||||
6) Any new or modified ``CONFIG`` options don't muck up the config menu.
|
||||
|
||||
7: All new Kconfig options have help text.
|
||||
7) All new ``Kconfig`` options have help text.
|
||||
|
||||
8: Has been carefully reviewed with respect to relevant Kconfig
|
||||
8) Has been carefully reviewed with respect to relevant ``Kconfig``
|
||||
combinations. This is very hard to get right with testing -- brainpower
|
||||
pays off here.
|
||||
|
||||
9: Check cleanly with sparse.
|
||||
9) Check cleanly with sparse.
|
||||
|
||||
10: Use 'make checkstack' and 'make namespacecheck' and fix any problems
|
||||
that they find. Note: checkstack does not point out problems explicitly,
|
||||
but any one function that uses more than 512 bytes on the stack is a
|
||||
candidate for change.
|
||||
10) Use ``make checkstack`` and ``make namespacecheck`` and fix any problems
|
||||
that they find.
|
||||
|
||||
11: Include kernel-doc to document global kernel APIs. (Not required for
|
||||
static functions, but OK there also.) Use 'make htmldocs' or 'make
|
||||
mandocs' to check the kernel-doc and fix any issues.
|
||||
.. note::
|
||||
|
||||
12: Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT,
|
||||
CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES,
|
||||
CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_ATOMIC_SLEEP, CONFIG_PROVE_RCU
|
||||
and CONFIG_DEBUG_OBJECTS_RCU_HEAD all simultaneously enabled.
|
||||
``checkstack`` does not point out problems explicitly,
|
||||
but any one function that uses more than 512 bytes on the stack is a
|
||||
candidate for change.
|
||||
|
||||
13: Has been build- and runtime tested with and without CONFIG_SMP and
|
||||
CONFIG_PREEMPT.
|
||||
11) Include :ref:`kernel-doc <kernel_doc>` to document global kernel APIs.
|
||||
(Not required for static functions, but OK there also.) Use
|
||||
``make htmldocs`` or ``make pdfdocs`` to check the
|
||||
:ref:`kernel-doc <kernel_doc>` and fix any issues.
|
||||
|
||||
14: If the patch affects IO/Disk, etc: has been tested with and without
|
||||
CONFIG_LBDAF.
|
||||
12) Has been tested with ``CONFIG_PREEMPT``, ``CONFIG_DEBUG_PREEMPT``,
|
||||
``CONFIG_DEBUG_SLAB``, ``CONFIG_DEBUG_PAGEALLOC``, ``CONFIG_DEBUG_MUTEXES``,
|
||||
``CONFIG_DEBUG_SPINLOCK``, ``CONFIG_DEBUG_ATOMIC_SLEEP``,
|
||||
``CONFIG_PROVE_RCU`` and ``CONFIG_DEBUG_OBJECTS_RCU_HEAD`` all
|
||||
simultaneously enabled.
|
||||
|
||||
15: All codepaths have been exercised with all lockdep features enabled.
|
||||
13) Has been build- and runtime tested with and without ``CONFIG_SMP`` and
|
||||
``CONFIG_PREEMPT.``
|
||||
|
||||
16: All new /proc entries are documented under Documentation/
|
||||
14) If the patch affects IO/Disk, etc: has been tested with and without
|
||||
``CONFIG_LBDAF.``
|
||||
|
||||
17: All new kernel boot parameters are documented in
|
||||
Documentation/kernel-parameters.txt.
|
||||
15) All codepaths have been exercised with all lockdep features enabled.
|
||||
|
||||
18: All new module parameters are documented with MODULE_PARM_DESC()
|
||||
16) All new ``/proc`` entries are documented under ``Documentation/``
|
||||
|
||||
19: All new userspace interfaces are documented in Documentation/ABI/.
|
||||
See Documentation/ABI/README for more information.
|
||||
17) All new kernel boot parameters are documented in
|
||||
``Documentation/kernel-parameters.txt``.
|
||||
|
||||
18) All new module parameters are documented with ``MODULE_PARM_DESC()``
|
||||
|
||||
19) All new userspace interfaces are documented in ``Documentation/ABI/``.
|
||||
See ``Documentation/ABI/README`` for more information.
|
||||
Patches that change userspace interfaces should be CCed to
|
||||
linux-api@vger.kernel.org.
|
||||
|
||||
20: Check that it all passes `make headers_check'.
|
||||
20) Check that it all passes ``make headers_check``.
|
||||
|
||||
21: Has been checked with injection of at least slab and page-allocation
|
||||
failures. See Documentation/fault-injection/.
|
||||
21) Has been checked with injection of at least slab and page-allocation
|
||||
failures. See ``Documentation/fault-injection/``.
|
||||
|
||||
If the new code is substantial, addition of subsystem-specific fault
|
||||
injection might be appropriate.
|
||||
|
||||
22: Newly-added code has been compiled with `gcc -W' (use "make
|
||||
EXTRA_CFLAGS=-W"). This will generate lots of noise, but is good for
|
||||
finding bugs like "warning: comparison between signed and unsigned".
|
||||
22) Newly-added code has been compiled with ``gcc -W`` (use
|
||||
``make EXTRA_CFLAGS=-W``). This will generate lots of noise, but is good
|
||||
for finding bugs like "warning: comparison between signed and unsigned".
|
||||
|
||||
23: Tested after it has been merged into the -mm patchset to make sure
|
||||
23) Tested after it has been merged into the -mm patchset to make sure
|
||||
that it still works with all of the other queued patches and various
|
||||
changes in the VM, VFS, and other subsystems.
|
||||
|
||||
24: All memory barriers {e.g., barrier(), rmb(), wmb()} need a comment in the
|
||||
source code that explains the logic of what they are doing and why.
|
||||
24) All memory barriers {e.g., ``barrier()``, ``rmb()``, ``wmb()``} need a
|
||||
comment in the source code that explains the logic of what they are doing
|
||||
and why.
|
||||
|
||||
25: If any ioctl's are added by the patch, then also update
|
||||
Documentation/ioctl/ioctl-number.txt.
|
||||
25) If any ioctl's are added by the patch, then also update
|
||||
``Documentation/ioctl/ioctl-number.txt``.
|
||||
|
||||
26: If your modified source code depends on or uses any of the kernel
|
||||
APIs or features that are related to the following kconfig symbols,
|
||||
then test multiple builds with the related kconfig symbols disabled
|
||||
and/or =m (if that option is available) [not all of these at the
|
||||
26) If your modified source code depends on or uses any of the kernel
|
||||
APIs or features that are related to the following ``Kconfig`` symbols,
|
||||
then test multiple builds with the related ``Kconfig`` symbols disabled
|
||||
and/or ``=m`` (if that option is available) [not all of these at the
|
||||
same time, just various/random combinations of them]:
|
||||
|
||||
CONFIG_SMP, CONFIG_SYSFS, CONFIG_PROC_FS, CONFIG_INPUT, CONFIG_PCI,
|
||||
CONFIG_BLOCK, CONFIG_PM, CONFIG_MAGIC_SYSRQ,
|
||||
CONFIG_NET, CONFIG_INET=n (but latter with CONFIG_NET=y)
|
||||
``CONFIG_SMP``, ``CONFIG_SYSFS``, ``CONFIG_PROC_FS``, ``CONFIG_INPUT``, ``CONFIG_PCI``, ``CONFIG_BLOCK``, ``CONFIG_PM``, ``CONFIG_MAGIC_SYSRQ``,
|
||||
``CONFIG_NET``, ``CONFIG_INET=n`` (but latter with ``CONFIG_NET=y``).
|
||||
|
@ -1,5 +1,7 @@
|
||||
.. _submittingdrivers:
|
||||
|
||||
Submitting Drivers For The Linux Kernel
|
||||
---------------------------------------
|
||||
=======================================
|
||||
|
||||
This document is intended to explain how to submit device drivers to the
|
||||
various kernel trees. Note that if you are interested in video card drivers
|
||||
@ -38,42 +40,48 @@ Linux 2.4:
|
||||
maintainer does not respond or you cannot find the appropriate
|
||||
maintainer then please contact Willy Tarreau <w@1wt.eu>.
|
||||
|
||||
Linux 2.6:
|
||||
Linux 2.6 and upper:
|
||||
The same rules apply as 2.4 except that you should follow linux-kernel
|
||||
to track changes in API's. The final contact point for Linux 2.6
|
||||
to track changes in API's. The final contact point for Linux 2.6+
|
||||
submissions is Andrew Morton.
|
||||
|
||||
What Criteria Determine Acceptance
|
||||
----------------------------------
|
||||
|
||||
Licensing: The code must be released to us under the
|
||||
Licensing:
|
||||
The code must be released to us under the
|
||||
GNU General Public License. We don't insist on any kind
|
||||
of exclusive GPL licensing, and if you wish the driver
|
||||
to be useful to other communities such as BSD you may well
|
||||
wish to release under multiple licenses.
|
||||
See accepted licenses at include/linux/module.h
|
||||
|
||||
Copyright: The copyright owner must agree to use of GPL.
|
||||
Copyright:
|
||||
The copyright owner must agree to use of GPL.
|
||||
It's best if the submitter and copyright owner
|
||||
are the same person/entity. If not, the name of
|
||||
the person/entity authorizing use of GPL should be
|
||||
listed in case it's necessary to verify the will of
|
||||
the copyright owner.
|
||||
|
||||
Interfaces: If your driver uses existing interfaces and behaves like
|
||||
Interfaces:
|
||||
If your driver uses existing interfaces and behaves like
|
||||
other drivers in the same class it will be much more likely
|
||||
to be accepted than if it invents gratuitous new ones.
|
||||
If you need to implement a common API over Linux and NT
|
||||
drivers do it in userspace.
|
||||
|
||||
Code: Please use the Linux style of code formatting as documented
|
||||
in Documentation/CodingStyle. If you have sections of code
|
||||
Code:
|
||||
Please use the Linux style of code formatting as documented
|
||||
in :ref:`Documentation/CodingStyle <codingStyle>`.
|
||||
If you have sections of code
|
||||
that need to be in other formats, for example because they
|
||||
are shared with a windows driver kit and you want to
|
||||
maintain them just once separate them out nicely and note
|
||||
this fact.
|
||||
|
||||
Portability: Pointers are not always 32bits, not all computers are little
|
||||
Portability:
|
||||
Pointers are not always 32bits, not all computers are little
|
||||
endian, people do not all have floating point and you
|
||||
shouldn't use inline x86 assembler in your driver without
|
||||
careful thought. Pure x86 drivers generally are not popular.
|
||||
@ -81,12 +89,14 @@ Portability: Pointers are not always 32bits, not all computers are little
|
||||
but it is easy to make sure the code can easily be made
|
||||
portable.
|
||||
|
||||
Clarity: It helps if anyone can see how to fix the driver. It helps
|
||||
Clarity:
|
||||
It helps if anyone can see how to fix the driver. It helps
|
||||
you because you get patches not bug reports. If you submit a
|
||||
driver that intentionally obfuscates how the hardware works
|
||||
it will go in the bitbucket.
|
||||
|
||||
PM support: Since Linux is used on many portable and desktop systems, your
|
||||
PM support:
|
||||
Since Linux is used on many portable and desktop systems, your
|
||||
driver is likely to be used on such a system and therefore it
|
||||
should support basic power management by implementing, if
|
||||
necessary, the .suspend and .resume methods used during the
|
||||
@ -101,7 +111,8 @@ PM support: Since Linux is used on many portable and desktop systems, your
|
||||
complete overview of the power management issues related to
|
||||
drivers see Documentation/power/devices.txt .
|
||||
|
||||
Control: In general if there is active maintenance of a driver by
|
||||
Control:
|
||||
In general if there is active maintenance of a driver by
|
||||
the author then patches will be redirected to them unless
|
||||
they are totally obvious and without need of checking.
|
||||
If you want to be the contact and update point for the
|
||||
@ -111,13 +122,15 @@ Control: In general if there is active maintenance of a driver by
|
||||
What Criteria Do Not Determine Acceptance
|
||||
-----------------------------------------
|
||||
|
||||
Vendor: Being the hardware vendor and maintaining the driver is
|
||||
Vendor:
|
||||
Being the hardware vendor and maintaining the driver is
|
||||
often a good thing. If there is a stable working driver from
|
||||
other people already in the tree don't expect 'we are the
|
||||
vendor' to get your driver chosen. Ideally work with the
|
||||
existing driver author to build a single perfect driver.
|
||||
|
||||
Author: It doesn't matter if a large Linux company wrote the driver,
|
||||
Author:
|
||||
It doesn't matter if a large Linux company wrote the driver,
|
||||
or you did. Nobody has any special access to the kernel
|
||||
tree. Anyone who tells you otherwise isn't telling the
|
||||
whole story.
|
||||
@ -127,8 +140,10 @@ Resources
|
||||
---------
|
||||
|
||||
Linux kernel master tree:
|
||||
ftp.??.kernel.org:/pub/linux/kernel/...
|
||||
?? == your country code, such as "us", "uk", "fr", etc.
|
||||
ftp.\ *country_code*\ .kernel.org:/pub/linux/kernel/...
|
||||
|
||||
where *country_code* == your country code, such as
|
||||
**us**, **uk**, **fr**, etc.
|
||||
|
||||
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git
|
||||
|
||||
@ -141,14 +156,19 @@ Linux Device Drivers, Third Edition (covers 2.6.10):
|
||||
|
||||
LWN.net:
|
||||
Weekly summary of kernel development activity - http://lwn.net/
|
||||
|
||||
2.6 API changes:
|
||||
|
||||
http://lwn.net/Articles/2.6-kernel-api/
|
||||
|
||||
Porting drivers from prior kernels to 2.6:
|
||||
|
||||
http://lwn.net/Articles/driver-porting/
|
||||
|
||||
KernelNewbies:
|
||||
Documentation and assistance for new kernel programmers
|
||||
http://kernelnewbies.org/
|
||||
|
||||
http://kernelnewbies.org/
|
||||
|
||||
Linux USB project:
|
||||
http://www.linux-usb.org/
|
||||
|
@ -1,9 +1,7 @@
|
||||
.. _submittingpatches:
|
||||
|
||||
How to Get Your Change Into the Linux Kernel
|
||||
or
|
||||
Care And Operation Of Your Linus Torvalds
|
||||
|
||||
|
||||
How to Get Your Change Into the Linux Kernel or Care And Operation Of Your Linus Torvalds
|
||||
=========================================================================================
|
||||
|
||||
For a person or company who wishes to submit a change to the Linux
|
||||
kernel, the process can sometimes be daunting if you're not familiar
|
||||
@ -12,57 +10,59 @@ can greatly increase the chances of your change being accepted.
|
||||
|
||||
This document contains a large number of suggestions in a relatively terse
|
||||
format. For detailed information on how the kernel development process
|
||||
works, see Documentation/development-process. Also, read
|
||||
Documentation/SubmitChecklist for a list of items to check before
|
||||
works, see :ref:`Documentation/development-process <development_process_main>`.
|
||||
Also, read :ref:`Documentation/SubmitChecklist <submitchecklist>`
|
||||
for a list of items to check before
|
||||
submitting code. If you are submitting a driver, also read
|
||||
Documentation/SubmittingDrivers; for device tree binding patches, read
|
||||
:ref:`Documentation/SubmittingDrivers <submittingdrivers>`;
|
||||
for device tree binding patches, read
|
||||
Documentation/devicetree/bindings/submitting-patches.txt.
|
||||
|
||||
Many of these steps describe the default behavior of the git version
|
||||
control system; if you use git to prepare your patches, you'll find much
|
||||
Many of these steps describe the default behavior of the ``git`` version
|
||||
control system; if you use ``git`` to prepare your patches, you'll find much
|
||||
of the mechanical work done for you, though you'll still need to prepare
|
||||
and document a sensible set of patches. In general, use of git will make
|
||||
and document a sensible set of patches. In general, use of ``git`` will make
|
||||
your life as a kernel developer easier.
|
||||
|
||||
--------------------------------------------
|
||||
SECTION 1 - CREATING AND SENDING YOUR CHANGE
|
||||
--------------------------------------------
|
||||
Creating and Sending your Change
|
||||
********************************
|
||||
|
||||
|
||||
0) Obtain a current source tree
|
||||
-------------------------------
|
||||
|
||||
If you do not have a repository with the current kernel source handy, use
|
||||
git to obtain one. You'll want to start with the mainline repository,
|
||||
which can be grabbed with:
|
||||
``git`` to obtain one. You'll want to start with the mainline repository,
|
||||
which can be grabbed with::
|
||||
|
||||
git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
|
||||
git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
|
||||
|
||||
Note, however, that you may not want to develop against the mainline tree
|
||||
directly. Most subsystem maintainers run their own trees and want to see
|
||||
patches prepared against those trees. See the "T:" entry for the subsystem
|
||||
patches prepared against those trees. See the **T:** entry for the subsystem
|
||||
in the MAINTAINERS file to find that tree, or simply ask the maintainer if
|
||||
the tree is not listed there.
|
||||
|
||||
It is still possible to download kernel releases via tarballs (as described
|
||||
in the next section), but that is the hard way to do kernel development.
|
||||
|
||||
1) "diff -up"
|
||||
------------
|
||||
1) ``diff -up``
|
||||
---------------
|
||||
|
||||
If you must generate your patches by hand, use "diff -up" or "diff -uprN"
|
||||
If you must generate your patches by hand, use ``diff -up`` or ``diff -uprN``
|
||||
to create patches. Git generates patches in this form by default; if
|
||||
you're using git, you can skip this section entirely.
|
||||
you're using ``git``, you can skip this section entirely.
|
||||
|
||||
All changes to the Linux kernel occur in the form of patches, as
|
||||
generated by diff(1). When creating your patch, make sure to create it
|
||||
in "unified diff" format, as supplied by the '-u' argument to diff(1).
|
||||
Also, please use the '-p' argument which shows which C function each
|
||||
change is in - that makes the resultant diff a lot easier to read.
|
||||
generated by :manpage:`diff(1)`. When creating your patch, make sure to
|
||||
create it in "unified diff" format, as supplied by the ``-u`` argument
|
||||
to :manpage:`diff(1)`.
|
||||
Also, please use the ``-p`` argument which shows which C function each
|
||||
change is in - that makes the resultant ``diff`` a lot easier to read.
|
||||
Patches should be based in the root kernel source directory,
|
||||
not in any lower subdirectory.
|
||||
|
||||
To create a patch for a single file, it is often sufficient to do:
|
||||
To create a patch for a single file, it is often sufficient to do::
|
||||
|
||||
SRCTREE= linux
|
||||
MYFILE= drivers/net/mydriver.c
|
||||
@ -74,8 +74,8 @@ To create a patch for a single file, it is often sufficient to do:
|
||||
diff -up $SRCTREE/$MYFILE{.orig,} > /tmp/patch
|
||||
|
||||
To create a patch for multiple files, you should unpack a "vanilla",
|
||||
or unmodified kernel source tree, and generate a diff against your
|
||||
own source tree. For example:
|
||||
or unmodified kernel source tree, and generate a ``diff`` against your
|
||||
own source tree. For example::
|
||||
|
||||
MYSRC= /devel/linux
|
||||
|
||||
@ -84,27 +84,27 @@ own source tree. For example:
|
||||
diff -uprN -X linux-3.19-vanilla/Documentation/dontdiff \
|
||||
linux-3.19-vanilla $MYSRC > /tmp/patch
|
||||
|
||||
"dontdiff" is a list of files which are generated by the kernel during
|
||||
the build process, and should be ignored in any diff(1)-generated
|
||||
``dontdiff`` is a list of files which are generated by the kernel during
|
||||
the build process, and should be ignored in any :manpage:`diff(1)`-generated
|
||||
patch.
|
||||
|
||||
Make sure your patch does not include any extra files which do not
|
||||
belong in a patch submission. Make sure to review your patch -after-
|
||||
generating it with diff(1), to ensure accuracy.
|
||||
generating it with :manpage:`diff(1)`, to ensure accuracy.
|
||||
|
||||
If your changes produce a lot of deltas, you need to split them into
|
||||
individual patches which modify things in logical stages; see section
|
||||
#3. This will facilitate review by other kernel developers,
|
||||
individual patches which modify things in logical stages; see
|
||||
:ref:`split_changes`. This will facilitate review by other kernel developers,
|
||||
very important if you want your patch accepted.
|
||||
|
||||
If you're using git, "git rebase -i" can help you with this process. If
|
||||
you're not using git, quilt <http://savannah.nongnu.org/projects/quilt>
|
||||
If you're using ``git``, ``git rebase -i`` can help you with this process. If
|
||||
you're not using ``git``, ``quilt`` <http://savannah.nongnu.org/projects/quilt>
|
||||
is another popular alternative.
|
||||
|
||||
.. _describe_changes:
|
||||
|
||||
|
||||
2) Describe your changes.
|
||||
-------------------------
|
||||
2) Describe your changes
|
||||
------------------------
|
||||
|
||||
Describe your problem. Whether your patch is a one-line bug fix or
|
||||
5000 lines of a new feature, there must be an underlying problem that
|
||||
@ -137,11 +137,11 @@ as you intend it to.
|
||||
|
||||
The maintainer will thank you if you write your patch description in a
|
||||
form which can be easily pulled into Linux's source code management
|
||||
system, git, as a "commit log". See #15, below.
|
||||
system, ``git``, as a "commit log". See :ref:`explicit_in_reply_to`.
|
||||
|
||||
Solve only one problem per patch. If your description starts to get
|
||||
long, that's a sign that you probably need to split up your patch.
|
||||
See #3, next.
|
||||
See :ref:`split_changes`.
|
||||
|
||||
When you submit or resubmit a patch or patch series, include the
|
||||
complete patch description and justification for it. Don't just
|
||||
@ -160,7 +160,7 @@ its behaviour.
|
||||
If the patch fixes a logged bug entry, refer to that bug entry by
|
||||
number and URL. If the patch follows from a mailing list discussion,
|
||||
give a URL to the mailing list archive; use the https://lkml.kernel.org/
|
||||
redirector with a Message-Id, to ensure that the links cannot become
|
||||
redirector with a ``Message-Id``, to ensure that the links cannot become
|
||||
stale.
|
||||
|
||||
However, try to make your explanation understandable without external
|
||||
@ -171,7 +171,7 @@ patch as submitted.
|
||||
If you want to refer to a specific commit, don't just refer to the
|
||||
SHA-1 ID of the commit. Please also include the oneline summary of
|
||||
the commit, to make it easier for reviewers to know what it is about.
|
||||
Example:
|
||||
Example::
|
||||
|
||||
Commit e21d2170f36602ae2708 ("video: remove unnecessary
|
||||
platform_set_drvdata()") removed the unnecessary
|
||||
@ -185,23 +185,25 @@ there is no collision with your six-character ID now, that condition may
|
||||
change five years from now.
|
||||
|
||||
If your patch fixes a bug in a specific commit, e.g. you found an issue using
|
||||
git-bisect, please use the 'Fixes:' tag with the first 12 characters of the
|
||||
SHA-1 ID, and the one line summary. For example:
|
||||
``git bisect``, please use the 'Fixes:' tag with the first 12 characters of
|
||||
the SHA-1 ID, and the one line summary. For example::
|
||||
|
||||
Fixes: e21d2170f366 ("video: remove unnecessary platform_set_drvdata()")
|
||||
|
||||
The following git-config settings can be used to add a pretty format for
|
||||
outputting the above style in the git log or git show commands
|
||||
The following ``git config`` settings can be used to add a pretty format for
|
||||
outputting the above style in the ``git log`` or ``git show`` commands::
|
||||
|
||||
[core]
|
||||
abbrev = 12
|
||||
[pretty]
|
||||
fixes = Fixes: %h (\"%s\")
|
||||
|
||||
3) Separate your changes.
|
||||
-------------------------
|
||||
.. _split_changes:
|
||||
|
||||
Separate each _logical change_ into a separate patch.
|
||||
3) Separate your changes
|
||||
------------------------
|
||||
|
||||
Separate each **logical change** into a separate patch.
|
||||
|
||||
For example, if your changes include both bug fixes and performance
|
||||
enhancements for a single driver, separate those changes into two
|
||||
@ -217,12 +219,12 @@ change that can be verified by reviewers. Each patch should be justifiable
|
||||
on its own merits.
|
||||
|
||||
If one patch depends on another patch in order for a change to be
|
||||
complete, that is OK. Simply note "this patch depends on patch X"
|
||||
complete, that is OK. Simply note **"this patch depends on patch X"**
|
||||
in your patch description.
|
||||
|
||||
When dividing your change into a series of patches, take special care to
|
||||
ensure that the kernel builds and runs properly after each patch in the
|
||||
series. Developers using "git bisect" to track down a problem can end up
|
||||
series. Developers using ``git bisect`` to track down a problem can end up
|
||||
splitting your patch series at any point; they will not thank you if you
|
||||
introduce bugs in the middle.
|
||||
|
||||
@ -231,11 +233,13 @@ then only post say 15 or so at a time and wait for review and integration.
|
||||
|
||||
|
||||
|
||||
4) Style-check your changes.
|
||||
----------------------------
|
||||
4) Style-check your changes
|
||||
---------------------------
|
||||
|
||||
Check your patch for basic style violations, details of which can be
|
||||
found in Documentation/CodingStyle. Failure to do so simply wastes
|
||||
found in
|
||||
:ref:`Documentation/CodingStyle <codingstyle>`.
|
||||
Failure to do so simply wastes
|
||||
the reviewers time and will get your patch rejected, probably
|
||||
without even being read.
|
||||
|
||||
@ -260,8 +264,8 @@ You should be able to justify all violations that remain in your
|
||||
patch.
|
||||
|
||||
|
||||
5) Select the recipients for your patch.
|
||||
----------------------------------------
|
||||
5) Select the recipients for your patch
|
||||
---------------------------------------
|
||||
|
||||
You should always copy the appropriate subsystem maintainer(s) on any patch
|
||||
to code that they maintain; look through the MAINTAINERS file and the
|
||||
@ -295,13 +299,14 @@ to allow distributors to get the patch out to users; in such cases,
|
||||
obviously, the patch should not be sent to any public lists.
|
||||
|
||||
Patches that fix a severe bug in a released kernel should be directed
|
||||
toward the stable maintainers by putting a line like this:
|
||||
toward the stable maintainers by putting a line like this::
|
||||
|
||||
Cc: stable@vger.kernel.org
|
||||
|
||||
into the sign-off area of your patch (note, NOT an email recipient). You
|
||||
should also read Documentation/stable_kernel_rules.txt in addition to this
|
||||
file.
|
||||
should also read
|
||||
:ref:`Documentation/stable_kernel_rules.txt <stable_kernel_rules>`
|
||||
in addition to this file.
|
||||
|
||||
Note, however, that some subsystem maintainers want to come to their own
|
||||
conclusions on which patches should go to the stable trees. The networking
|
||||
@ -312,28 +317,30 @@ If changes affect userland-kernel interfaces, please send the MAN-PAGES
|
||||
maintainer (as listed in the MAINTAINERS file) a man-pages patch, or at
|
||||
least a notification of the change, so that some information makes its way
|
||||
into the manual pages. User-space API changes should also be copied to
|
||||
linux-api@vger.kernel.org.
|
||||
linux-api@vger.kernel.org.
|
||||
|
||||
For small patches you may want to CC the Trivial Patch Monkey
|
||||
trivial@kernel.org which collects "trivial" patches. Have a look
|
||||
into the MAINTAINERS file for its current manager.
|
||||
|
||||
Trivial patches must qualify for one of the following rules:
|
||||
Spelling fixes in documentation
|
||||
Spelling fixes for errors which could break grep(1)
|
||||
Warning fixes (cluttering with useless warnings is bad)
|
||||
Compilation fixes (only if they are actually correct)
|
||||
Runtime fixes (only if they actually fix things)
|
||||
Removing use of deprecated functions/macros
|
||||
Contact detail and documentation fixes
|
||||
Non-portable code replaced by portable code (even in arch-specific,
|
||||
since people copy, as long as it's trivial)
|
||||
Any fix by the author/maintainer of the file (ie. patch monkey
|
||||
in re-transmission mode)
|
||||
|
||||
- Spelling fixes in documentation
|
||||
- Spelling fixes for errors which could break :manpage:`grep(1)`
|
||||
- Warning fixes (cluttering with useless warnings is bad)
|
||||
- Compilation fixes (only if they are actually correct)
|
||||
- Runtime fixes (only if they actually fix things)
|
||||
- Removing use of deprecated functions/macros
|
||||
- Contact detail and documentation fixes
|
||||
- Non-portable code replaced by portable code (even in arch-specific,
|
||||
since people copy, as long as it's trivial)
|
||||
- Any fix by the author/maintainer of the file (ie. patch monkey
|
||||
in re-transmission mode)
|
||||
|
||||
|
||||
|
||||
6) No MIME, no links, no compression, no attachments. Just plain text.
|
||||
-----------------------------------------------------------------------
|
||||
6) No MIME, no links, no compression, no attachments. Just plain text
|
||||
----------------------------------------------------------------------
|
||||
|
||||
Linus and other kernel developers need to be able to read and comment
|
||||
on the changes you are submitting. It is important for a kernel
|
||||
@ -341,8 +348,11 @@ developer to be able to "quote" your changes, using standard e-mail
|
||||
tools, so that they may comment on specific portions of your code.
|
||||
|
||||
For this reason, all patches should be submitted by e-mail "inline".
|
||||
WARNING: Be wary of your editor's word-wrap corrupting your patch,
|
||||
if you choose to cut-n-paste your patch.
|
||||
|
||||
.. warning::
|
||||
|
||||
Be wary of your editor's word-wrap corrupting your patch,
|
||||
if you choose to cut-n-paste your patch.
|
||||
|
||||
Do not attach the patch as a MIME attachment, compressed or not.
|
||||
Many popular e-mail applications will not always transmit a MIME
|
||||
@ -353,11 +363,12 @@ decreasing the likelihood of your MIME-attached change being accepted.
|
||||
Exception: If your mailer is mangling patches then someone may ask
|
||||
you to re-send them using MIME.
|
||||
|
||||
See Documentation/email-clients.txt for hints about configuring
|
||||
your e-mail client so that it sends your patches untouched.
|
||||
See :ref:`Documentation/email-clients.txt <email_clients>`
|
||||
for hints about configuring your e-mail client so that it sends your patches
|
||||
untouched.
|
||||
|
||||
7) E-mail size.
|
||||
---------------
|
||||
7) E-mail size
|
||||
--------------
|
||||
|
||||
Large changes are not appropriate for mailing lists, and some
|
||||
maintainers. If your patch, uncompressed, exceeds 300 kB in size,
|
||||
@ -366,8 +377,8 @@ server, and provide instead a URL (link) pointing to your patch. But note
|
||||
that if your patch exceeds 300 kB, it almost certainly needs to be broken up
|
||||
anyway.
|
||||
|
||||
8) Respond to review comments.
|
||||
------------------------------
|
||||
8) Respond to review comments
|
||||
-----------------------------
|
||||
|
||||
Your patch will almost certainly get comments from reviewers on ways in
|
||||
which the patch can be improved. You must respond to those comments;
|
||||
@ -382,8 +393,8 @@ reviewers sometimes get grumpy. Even in that case, though, respond
|
||||
politely and address the problems they have pointed out.
|
||||
|
||||
|
||||
9) Don't get discouraged - or impatient.
|
||||
----------------------------------------
|
||||
9) Don't get discouraged - or impatient
|
||||
---------------------------------------
|
||||
|
||||
After you have submitted your change, be patient and wait. Reviewers are
|
||||
busy people and may not get to your patch right away.
|
||||
@ -419,9 +430,10 @@ patch, which certifies that you wrote it or otherwise have the right to
|
||||
pass it on as an open-source patch. The rules are pretty simple: if you
|
||||
can certify the below:
|
||||
|
||||
Developer's Certificate of Origin 1.1
|
||||
Developer's Certificate of Origin 1.1
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
By making a contribution to this project, I certify that:
|
||||
By making a contribution to this project, I certify that:
|
||||
|
||||
(a) The contribution was created in whole or in part by me and I
|
||||
have the right to submit it under the open source license
|
||||
@ -445,7 +457,7 @@ can certify the below:
|
||||
maintained indefinitely and may be redistributed consistent with
|
||||
this project or the open source license(s) involved.
|
||||
|
||||
then you just add a line saying
|
||||
then you just add a line saying::
|
||||
|
||||
Signed-off-by: Random J Developer <random@developer.example.org>
|
||||
|
||||
@ -466,7 +478,7 @@ you add a line between the last Signed-off-by header and yours, indicating
|
||||
the nature of your changes. While there is nothing mandatory about this, it
|
||||
seems like prepending the description with your mail and/or name, all
|
||||
enclosed in square brackets, is noticeable enough to make it obvious that
|
||||
you are responsible for last-minute changes. Example :
|
||||
you are responsible for last-minute changes. Example::
|
||||
|
||||
Signed-off-by: Random J Developer <random@developer.example.org>
|
||||
[lucky@maintainer.example.org: struct foo moved from foo.c to foo.h]
|
||||
@ -481,15 +493,15 @@ which appears in the changelog.
|
||||
Special note to back-porters: It seems to be a common and useful practice
|
||||
to insert an indication of the origin of a patch at the top of the commit
|
||||
message (just after the subject line) to facilitate tracking. For instance,
|
||||
here's what we see in a 3.x-stable release:
|
||||
here's what we see in a 3.x-stable release::
|
||||
|
||||
Date: Tue Oct 7 07:26:38 2014 -0400
|
||||
Date: Tue Oct 7 07:26:38 2014 -0400
|
||||
|
||||
libata: Un-break ATA blacklist
|
||||
|
||||
commit 1c40279960bcd7d52dbdf1d466b20d24b99176c8 upstream.
|
||||
|
||||
And here's what might appear in an older kernel once a patch is backported:
|
||||
And here's what might appear in an older kernel once a patch is backported::
|
||||
|
||||
Date: Tue May 13 22:12:27 2008 +0200
|
||||
|
||||
@ -529,7 +541,7 @@ When in doubt people should refer to the original discussion in the mailing
|
||||
list archives.
|
||||
|
||||
If a person has had the opportunity to comment on a patch, but has not
|
||||
provided such comments, you may optionally add a "Cc:" tag to the patch.
|
||||
provided such comments, you may optionally add a ``Cc:`` tag to the patch.
|
||||
This is the only tag which might be added without an explicit action by the
|
||||
person it names - but it should indicate that this person was copied on the
|
||||
patch. This tag documents that potentially interested parties
|
||||
@ -552,11 +564,12 @@ future patches, and ensures credit for the testers.
|
||||
Reviewed-by:, instead, indicates that the patch has been reviewed and found
|
||||
acceptable according to the Reviewer's Statement:
|
||||
|
||||
Reviewer's statement of oversight
|
||||
Reviewer's statement of oversight
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
By offering my Reviewed-by: tag, I state that:
|
||||
By offering my Reviewed-by: tag, I state that:
|
||||
|
||||
(a) I have carried out a technical review of this patch to
|
||||
(a) I have carried out a technical review of this patch to
|
||||
evaluate its appropriateness and readiness for inclusion into
|
||||
the mainline kernel.
|
||||
|
||||
@ -594,24 +607,25 @@ A Fixes: tag indicates that the patch fixes an issue in a previous commit. It
|
||||
is used to make it easy to determine where a bug originated, which can help
|
||||
review a bug fix. This tag also assists the stable kernel team in determining
|
||||
which stable kernel versions should receive your fix. This is the preferred
|
||||
method for indicating a bug fixed by the patch. See #2 above for more details.
|
||||
method for indicating a bug fixed by the patch. See :ref:`describe_changes`
|
||||
for more details.
|
||||
|
||||
|
||||
14) The canonical patch format
|
||||
------------------------------
|
||||
|
||||
This section describes how the patch itself should be formatted. Note
|
||||
that, if you have your patches stored in a git repository, proper patch
|
||||
formatting can be had with "git format-patch". The tools cannot create
|
||||
that, if you have your patches stored in a ``git`` repository, proper patch
|
||||
formatting can be had with ``git format-patch``. The tools cannot create
|
||||
the necessary text, though, so read the instructions below anyway.
|
||||
|
||||
The canonical patch subject line is:
|
||||
The canonical patch subject line is::
|
||||
|
||||
Subject: [PATCH 001/123] subsystem: summary phrase
|
||||
|
||||
The canonical patch message body contains the following:
|
||||
|
||||
- A "from" line specifying the patch author (only needed if the person
|
||||
- A ``from`` line specifying the patch author (only needed if the person
|
||||
sending the patch is not the author).
|
||||
|
||||
- An empty line.
|
||||
@ -619,46 +633,46 @@ The canonical patch message body contains the following:
|
||||
- The body of the explanation, line wrapped at 75 columns, which will
|
||||
be copied to the permanent changelog to describe this patch.
|
||||
|
||||
- The "Signed-off-by:" lines, described above, which will
|
||||
- The ``Signed-off-by:`` lines, described above, which will
|
||||
also go in the changelog.
|
||||
|
||||
- A marker line containing simply "---".
|
||||
- A marker line containing simply ``---``.
|
||||
|
||||
- Any additional comments not suitable for the changelog.
|
||||
|
||||
- The actual patch (diff output).
|
||||
- The actual patch (``diff`` output).
|
||||
|
||||
The Subject line format makes it very easy to sort the emails
|
||||
alphabetically by subject line - pretty much any email reader will
|
||||
support that - since because the sequence number is zero-padded,
|
||||
the numerical and alphabetic sort is the same.
|
||||
|
||||
The "subsystem" in the email's Subject should identify which
|
||||
The ``subsystem`` in the email's Subject should identify which
|
||||
area or subsystem of the kernel is being patched.
|
||||
|
||||
The "summary phrase" in the email's Subject should concisely
|
||||
describe the patch which that email contains. The "summary
|
||||
phrase" should not be a filename. Do not use the same "summary
|
||||
phrase" for every patch in a whole patch series (where a "patch
|
||||
series" is an ordered sequence of multiple, related patches).
|
||||
The ``summary phrase`` in the email's Subject should concisely
|
||||
describe the patch which that email contains. The ``summary
|
||||
phrase`` should not be a filename. Do not use the same ``summary
|
||||
phrase`` for every patch in a whole patch series (where a ``patch
|
||||
series`` is an ordered sequence of multiple, related patches).
|
||||
|
||||
Bear in mind that the "summary phrase" of your email becomes a
|
||||
Bear in mind that the ``summary phrase`` of your email becomes a
|
||||
globally-unique identifier for that patch. It propagates all the way
|
||||
into the git changelog. The "summary phrase" may later be used in
|
||||
into the ``git`` changelog. The ``summary phrase`` may later be used in
|
||||
developer discussions which refer to the patch. People will want to
|
||||
google for the "summary phrase" to read discussion regarding that
|
||||
google for the ``summary phrase`` to read discussion regarding that
|
||||
patch. It will also be the only thing that people may quickly see
|
||||
when, two or three months later, they are going through perhaps
|
||||
thousands of patches using tools such as "gitk" or "git log
|
||||
--oneline".
|
||||
thousands of patches using tools such as ``gitk`` or ``git log
|
||||
--oneline``.
|
||||
|
||||
For these reasons, the "summary" must be no more than 70-75
|
||||
For these reasons, the ``summary`` must be no more than 70-75
|
||||
characters, and it must describe both what the patch changes, as well
|
||||
as why the patch might be necessary. It is challenging to be both
|
||||
succinct and descriptive, but that is what a well-written summary
|
||||
should do.
|
||||
|
||||
The "summary phrase" may be prefixed by tags enclosed in square
|
||||
The ``summary phrase`` may be prefixed by tags enclosed in square
|
||||
brackets: "Subject: [PATCH <tag>...] <summary phrase>". The tags are
|
||||
not considered part of the summary phrase, but describe how the patch
|
||||
should be treated. Common tags might include a version descriptor if
|
||||
@ -670,19 +684,19 @@ that developers understand the order in which the patches should be
|
||||
applied and that they have reviewed or applied all of the patches in
|
||||
the patch series.
|
||||
|
||||
A couple of example Subjects:
|
||||
A couple of example Subjects::
|
||||
|
||||
Subject: [PATCH 2/5] ext2: improve scalability of bitmap searching
|
||||
Subject: [PATCH v2 01/27] x86: fix eflags tracking
|
||||
|
||||
The "from" line must be the very first line in the message body,
|
||||
The ``from`` line must be the very first line in the message body,
|
||||
and has the form:
|
||||
|
||||
From: Original Author <author@example.com>
|
||||
|
||||
The "from" line specifies who will be credited as the author of the
|
||||
patch in the permanent changelog. If the "from" line is missing,
|
||||
then the "From:" line from the email header will be used to determine
|
||||
The ``from`` line specifies who will be credited as the author of the
|
||||
patch in the permanent changelog. If the ``from`` line is missing,
|
||||
then the ``From:`` line from the email header will be used to determine
|
||||
the patch author in the changelog.
|
||||
|
||||
The explanation body will be committed to the permanent source
|
||||
@ -694,35 +708,37 @@ especially useful for people who might be searching the commit logs
|
||||
looking for the applicable patch. If a patch fixes a compile failure,
|
||||
it may not be necessary to include _all_ of the compile failures; just
|
||||
enough that it is likely that someone searching for the patch can find
|
||||
it. As in the "summary phrase", it is important to be both succinct as
|
||||
it. As in the ``summary phrase``, it is important to be both succinct as
|
||||
well as descriptive.
|
||||
|
||||
The "---" marker line serves the essential purpose of marking for patch
|
||||
The ``---`` marker line serves the essential purpose of marking for patch
|
||||
handling tools where the changelog message ends.
|
||||
|
||||
One good use for the additional comments after the "---" marker is for
|
||||
a diffstat, to show what files have changed, and the number of
|
||||
inserted and deleted lines per file. A diffstat is especially useful
|
||||
One good use for the additional comments after the ``---`` marker is for
|
||||
a ``diffstat``, to show what files have changed, and the number of
|
||||
inserted and deleted lines per file. A ``diffstat`` is especially useful
|
||||
on bigger patches. Other comments relevant only to the moment or the
|
||||
maintainer, not suitable for the permanent changelog, should also go
|
||||
here. A good example of such comments might be "patch changelogs"
|
||||
here. A good example of such comments might be ``patch changelogs``
|
||||
which describe what has changed between the v1 and v2 version of the
|
||||
patch.
|
||||
|
||||
If you are going to include a diffstat after the "---" marker, please
|
||||
use diffstat options "-p 1 -w 70" so that filenames are listed from
|
||||
If you are going to include a ``diffstat`` after the ``---`` marker, please
|
||||
use ``diffstat`` options ``-p 1 -w 70`` so that filenames are listed from
|
||||
the top of the kernel source tree and don't use too much horizontal
|
||||
space (easily fit in 80 columns, maybe with some indentation). (git
|
||||
space (easily fit in 80 columns, maybe with some indentation). (``git``
|
||||
generates appropriate diffstats by default.)
|
||||
|
||||
See more details on the proper patch format in the following
|
||||
references.
|
||||
|
||||
.. _explicit_in_reply_to:
|
||||
|
||||
15) Explicit In-Reply-To headers
|
||||
--------------------------------
|
||||
|
||||
It can be helpful to manually add In-Reply-To: headers to a patch
|
||||
(e.g., when using "git send-email") to associate the patch with
|
||||
(e.g., when using ``git send-email``) to associate the patch with
|
||||
previous relevant discussion, e.g. to link a bug fix to the email with
|
||||
the bug report. However, for a multi-patch series, it is generally
|
||||
best to avoid using In-Reply-To: to link to older versions of the
|
||||
@ -732,12 +748,12 @@ helpful, you can use the https://lkml.kernel.org/ redirector (e.g., in
|
||||
the cover email text) to link to an earlier version of the patch series.
|
||||
|
||||
|
||||
16) Sending "git pull" requests
|
||||
-------------------------------
|
||||
16) Sending ``git pull`` requests
|
||||
---------------------------------
|
||||
|
||||
If you have a series of patches, it may be most convenient to have the
|
||||
maintainer pull them directly into the subsystem repository with a
|
||||
"git pull" operation. Note, however, that pulling patches from a developer
|
||||
``git pull`` operation. Note, however, that pulling patches from a developer
|
||||
requires a higher degree of trust than taking patches from a mailing list.
|
||||
As a result, many subsystem maintainers are reluctant to take pull
|
||||
requests, especially from new, unknown developers. If in doubt you can use
|
||||
@ -746,7 +762,7 @@ series, giving the maintainer the option of using either.
|
||||
|
||||
A pull request should have [GIT] or [PULL] in the subject line. The
|
||||
request itself should include the repository name and the branch of
|
||||
interest on a single line; it should look something like:
|
||||
interest on a single line; it should look something like::
|
||||
|
||||
Please pull from
|
||||
|
||||
@ -755,10 +771,10 @@ interest on a single line; it should look something like:
|
||||
to get these changes:
|
||||
|
||||
A pull request should also include an overall message saying what will be
|
||||
included in the request, a "git shortlog" listing of the patches
|
||||
themselves, and a diffstat showing the overall effect of the patch series.
|
||||
included in the request, a ``git shortlog`` listing of the patches
|
||||
themselves, and a ``diffstat`` showing the overall effect of the patch series.
|
||||
The easiest way to get all this information together is, of course, to let
|
||||
git do it for you with the "git request-pull" command.
|
||||
``git`` do it for you with the ``git request-pull`` command.
|
||||
|
||||
Some maintainers (including Linus) want to see pull requests from signed
|
||||
commits; that increases their confidence that the request actually came
|
||||
@ -770,8 +786,8 @@ signed by one or more core kernel developers. This step can be hard for
|
||||
new developers, but there is no way around it. Attending conferences can
|
||||
be a good way to find developers who can sign your key.
|
||||
|
||||
Once you have prepared a patch series in git that you wish to have somebody
|
||||
pull, create a signed tag with "git tag -s". This will create a new tag
|
||||
Once you have prepared a patch series in ``git`` that you wish to have somebody
|
||||
pull, create a signed tag with ``git tag -s``. This will create a new tag
|
||||
identifying the last commit in the series and containing a signature
|
||||
created with your private key. You will also have the opportunity to add a
|
||||
changelog-style message to the tag; this is an ideal place to describe the
|
||||
@ -782,14 +798,13 @@ are working from, don't forget to push the signed tag explicitly to the
|
||||
public tree.
|
||||
|
||||
When generating your pull request, use the signed tag as the target. A
|
||||
command like this will do the trick:
|
||||
command like this will do the trick::
|
||||
|
||||
git request-pull master git://my.public.tree/linux.git my-signed-tag
|
||||
|
||||
|
||||
----------------------
|
||||
SECTION 2 - REFERENCES
|
||||
----------------------
|
||||
REFERENCES
|
||||
**********
|
||||
|
||||
Andrew Morton, "The perfect patch" (tpp).
|
||||
<http://www.ozlabs.org/~akpm/stuff/tpp.txt>
|
||||
@ -799,23 +814,28 @@ Jeff Garzik, "Linux kernel patch submission format".
|
||||
|
||||
Greg Kroah-Hartman, "How to piss off a kernel subsystem maintainer".
|
||||
<http://www.kroah.com/log/linux/maintainer.html>
|
||||
|
||||
<http://www.kroah.com/log/linux/maintainer-02.html>
|
||||
|
||||
<http://www.kroah.com/log/linux/maintainer-03.html>
|
||||
|
||||
<http://www.kroah.com/log/linux/maintainer-04.html>
|
||||
|
||||
<http://www.kroah.com/log/linux/maintainer-05.html>
|
||||
|
||||
<http://www.kroah.com/log/linux/maintainer-06.html>
|
||||
|
||||
NO!!!! No more huge patch bombs to linux-kernel@vger.kernel.org people!
|
||||
<https://lkml.org/lkml/2005/7/11/336>
|
||||
|
||||
Kernel Documentation/CodingStyle:
|
||||
<Documentation/CodingStyle>
|
||||
:ref:`Documentation/CodingStyle <codingstyle>`
|
||||
|
||||
Linus Torvalds's mail on the canonical patch format:
|
||||
<http://lkml.org/lkml/2005/4/7/183>
|
||||
|
||||
Andi Kleen, "On submitting kernel patches"
|
||||
Some strategies to get difficult or controversial changes in.
|
||||
|
||||
http://halobates.de/on-submitting-patches.pdf
|
||||
|
||||
--
|
||||
|
@ -1,7 +0,0 @@
|
||||
# List of programs to build
|
||||
hostprogs-y := getdelays
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
||||
|
||||
HOSTCFLAGS_getdelays.o += -I$(objtree)/usr/include
|
@ -54,9 +54,9 @@ are sent to userspace without requiring a command. If it is the last exiting
|
||||
task of a thread group, the per-tgid statistics are also sent. More details
|
||||
are given in the taskstats interface description.
|
||||
|
||||
The getdelays.c userspace utility in this directory allows simple commands to
|
||||
be run and the corresponding delay statistics to be displayed. It also serves
|
||||
as an example of using the taskstats interface.
|
||||
The getdelays.c userspace utility in tools/accounting directory allows simple
|
||||
commands to be run and the corresponding delay statistics to be displayed. It
|
||||
also serves as an example of using the taskstats interface.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
96
Documentation/acpi/acpi-lid.txt
Normal file
96
Documentation/acpi/acpi-lid.txt
Normal file
@ -0,0 +1,96 @@
|
||||
Special Usage Model of the ACPI Control Method Lid Device
|
||||
|
||||
Copyright (C) 2016, Intel Corporation
|
||||
Author: Lv Zheng <lv.zheng@intel.com>
|
||||
|
||||
|
||||
Abstract:
|
||||
|
||||
Platforms containing lids convey lid state (open/close) to OSPMs using a
|
||||
control method lid device. To implement this, the AML tables issue
|
||||
Notify(lid_device, 0x80) to notify the OSPMs whenever the lid state has
|
||||
changed. The _LID control method for the lid device must be implemented to
|
||||
report the "current" state of the lid as either "opened" or "closed".
|
||||
|
||||
For most platforms, both the _LID method and the lid notifications are
|
||||
reliable. However, there are exceptions. In order to work with these
|
||||
exceptional buggy platforms, special restrictions and expections should be
|
||||
taken into account. This document describes the restrictions and the
|
||||
expections of the Linux ACPI lid device driver.
|
||||
|
||||
|
||||
1. Restrictions of the returning value of the _LID control method
|
||||
|
||||
The _LID control method is described to return the "current" lid state.
|
||||
However the word of "current" has ambiguity, some buggy AML tables return
|
||||
the lid state upon the last lid notification instead of returning the lid
|
||||
state upon the last _LID evaluation. There won't be difference when the
|
||||
_LID control method is evaluated during the runtime, the problem is its
|
||||
initial returning value. When the AML tables implement this control method
|
||||
with cached value, the initial returning value is likely not reliable.
|
||||
There are platforms always retun "closed" as initial lid state.
|
||||
|
||||
2. Restrictions of the lid state change notifications
|
||||
|
||||
There are buggy AML tables never notifying when the lid device state is
|
||||
changed to "opened". Thus the "opened" notification is not guaranteed. But
|
||||
it is guaranteed that the AML tables always notify "closed" when the lid
|
||||
state is changed to "closed". The "closed" notification is normally used to
|
||||
trigger some system power saving operations on Windows. Since it is fully
|
||||
tested, it is reliable from all AML tables.
|
||||
|
||||
3. Expections for the userspace users of the ACPI lid device driver
|
||||
|
||||
The ACPI button driver exports the lid state to the userspace via the
|
||||
following file:
|
||||
/proc/acpi/button/lid/LID0/state
|
||||
This file actually calls the _LID control method described above. And given
|
||||
the previous explanation, it is not reliable enough on some platforms. So
|
||||
it is advised for the userspace program to not to solely rely on this file
|
||||
to determine the actual lid state.
|
||||
|
||||
The ACPI button driver emits the following input event to the userspace:
|
||||
SW_LID
|
||||
The ACPI lid device driver is implemented to try to deliver the platform
|
||||
triggered events to the userspace. However, given the fact that the buggy
|
||||
firmware cannot make sure "opened"/"closed" events are paired, the ACPI
|
||||
button driver uses the following 3 modes in order not to trigger issues.
|
||||
|
||||
If the userspace hasn't been prepared to ignore the unreliable "opened"
|
||||
events and the unreliable initial state notification, Linux users can use
|
||||
the following kernel parameters to handle the possible issues:
|
||||
A. button.lid_init_state=method:
|
||||
When this option is specified, the ACPI button driver reports the
|
||||
initial lid state using the returning value of the _LID control method
|
||||
and whether the "opened"/"closed" events are paired fully relies on the
|
||||
firmware implementation.
|
||||
This option can be used to fix some platforms where the returning value
|
||||
of the _LID control method is reliable but the initial lid state
|
||||
notification is missing.
|
||||
This option is the default behavior during the period the userspace
|
||||
isn't ready to handle the buggy AML tables.
|
||||
B. button.lid_init_state=open:
|
||||
When this option is specified, the ACPI button driver always reports the
|
||||
initial lid state as "opened" and whether the "opened"/"closed" events
|
||||
are paired fully relies on the firmware implementation.
|
||||
This may fix some platforms where the returning value of the _LID
|
||||
control method is not reliable and the initial lid state notification is
|
||||
missing.
|
||||
|
||||
If the userspace has been prepared to ignore the unreliable "opened" events
|
||||
and the unreliable initial state notification, Linux users should always
|
||||
use the following kernel parameter:
|
||||
C. button.lid_init_state=ignore:
|
||||
When this option is specified, the ACPI button driver never reports the
|
||||
initial lid state and there is a compensation mechanism implemented to
|
||||
ensure that the reliable "closed" notifications can always be delievered
|
||||
to the userspace by always pairing "closed" input events with complement
|
||||
"opened" input events. But there is still no guarantee that the "opened"
|
||||
notifications can be delivered to the userspace when the lid is actually
|
||||
opens given that some AML tables do not send "opened" notifications
|
||||
reliably.
|
||||
In this mode, if everything is correctly implemented by the platform
|
||||
firmware, the old userspace programs should still work. Otherwise, the
|
||||
new userspace programs are required to work with the ACPI button driver.
|
||||
This option will be the default behavior after the userspace is ready to
|
||||
handle the buggy AML tables.
|
@ -28,8 +28,8 @@ index, like the ASL example below shows:
|
||||
ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
|
||||
Package ()
|
||||
{
|
||||
Package () {"reset-gpio", Package() {^BTH, 1, 1, 0 }},
|
||||
Package () {"shutdown-gpio", Package() {^BTH, 0, 0, 0 }},
|
||||
Package () {"reset-gpios", Package() {^BTH, 1, 1, 0 }},
|
||||
Package () {"shutdown-gpios", Package() {^BTH, 0, 0, 0 }},
|
||||
}
|
||||
})
|
||||
}
|
||||
@ -48,7 +48,7 @@ Since ACPI GpioIo() resource does not have a field saying whether it is
|
||||
active low or high, the "active_low" argument can be used here. Setting
|
||||
it to 1 marks the GPIO as active low.
|
||||
|
||||
In our Bluetooth example the "reset-gpio" refers to the second GpioIo()
|
||||
In our Bluetooth example the "reset-gpios" refers to the second GpioIo()
|
||||
resource, second pin in that resource with the GPIO number of 31.
|
||||
|
||||
ACPI GPIO Mappings Provided by Drivers
|
||||
@ -83,8 +83,8 @@ static const struct acpi_gpio_params reset_gpio = { 1, 1, false };
|
||||
static const struct acpi_gpio_params shutdown_gpio = { 0, 0, false };
|
||||
|
||||
static const struct acpi_gpio_mapping bluetooth_acpi_gpios[] = {
|
||||
{ "reset-gpio", &reset_gpio, 1 },
|
||||
{ "shutdown-gpio", &shutdown_gpio, 1 },
|
||||
{ "reset-gpios", &reset_gpio, 1 },
|
||||
{ "shutdown-gpios", &shutdown_gpio, 1 },
|
||||
{ },
|
||||
};
|
||||
|
||||
|
@ -1,9 +1,13 @@
|
||||
.. _applying_patches:
|
||||
|
||||
Applying Patches To The Linux Kernel
|
||||
------------------------------------
|
||||
Applying Patches To The Linux Kernel
|
||||
++++++++++++++++++++++++++++++++++++
|
||||
|
||||
Original by: Jesper Juhl, August 2005
|
||||
Last update: 2006-01-05
|
||||
Original by:
|
||||
Jesper Juhl, August 2005
|
||||
|
||||
Last update:
|
||||
2016-09-14
|
||||
|
||||
|
||||
A frequently asked question on the Linux Kernel Mailing List is how to apply
|
||||
@ -17,10 +21,12 @@ their specific patches) is also provided.
|
||||
|
||||
|
||||
What is a patch?
|
||||
---
|
||||
A patch is a small text document containing a delta of changes between two
|
||||
different versions of a source tree. Patches are created with the `diff'
|
||||
================
|
||||
|
||||
A patch is a small text document containing a delta of changes between two
|
||||
different versions of a source tree. Patches are created with the ``diff``
|
||||
program.
|
||||
|
||||
To correctly apply a patch you need to know what base it was generated from
|
||||
and what new version the patch will change the source tree into. These
|
||||
should both be present in the patch file metadata or be possible to deduce
|
||||
@ -28,8 +34,9 @@ from the filename.
|
||||
|
||||
|
||||
How do I apply or revert a patch?
|
||||
---
|
||||
You apply a patch with the `patch' program. The patch program reads a diff
|
||||
=================================
|
||||
|
||||
You apply a patch with the ``patch`` program. The patch program reads a diff
|
||||
(or patch) file and makes the changes to the source tree described in it.
|
||||
|
||||
Patches for the Linux kernel are generated relative to the parent directory
|
||||
@ -38,26 +45,33 @@ holding the kernel source dir.
|
||||
This means that paths to files inside the patch file contain the name of the
|
||||
kernel source directories it was generated against (or some other directory
|
||||
names like "a/" and "b/").
|
||||
|
||||
Since this is unlikely to match the name of the kernel source dir on your
|
||||
local machine (but is often useful info to see what version an otherwise
|
||||
unlabeled patch was generated against) you should change into your kernel
|
||||
source directory and then strip the first element of the path from filenames
|
||||
in the patch file when applying it (the -p1 argument to `patch' does this).
|
||||
in the patch file when applying it (the ``-p1`` argument to ``patch`` does
|
||||
this).
|
||||
|
||||
To revert a previously applied patch, use the -R argument to patch.
|
||||
So, if you applied a patch like this:
|
||||
So, if you applied a patch like this::
|
||||
|
||||
patch -p1 < ../patch-x.y.z
|
||||
|
||||
You can revert (undo) it like this:
|
||||
You can revert (undo) it like this::
|
||||
|
||||
patch -R -p1 < ../patch-x.y.z
|
||||
|
||||
|
||||
How do I feed a patch/diff file to `patch'?
|
||||
---
|
||||
This (as usual with Linux and other UNIX like operating systems) can be
|
||||
How do I feed a patch/diff file to ``patch``?
|
||||
=============================================
|
||||
|
||||
This (as usual with Linux and other UNIX like operating systems) can be
|
||||
done in several different ways.
|
||||
|
||||
In all the examples below I feed the file (in uncompressed form) to patch
|
||||
via stdin using the following syntax:
|
||||
via stdin using the following syntax::
|
||||
|
||||
patch -p1 < path/to/patch-x.y.z
|
||||
|
||||
If you just want to be able to follow the examples below and don't want to
|
||||
@ -65,35 +79,40 @@ know of more than one way to use patch, then you can stop reading this
|
||||
section here.
|
||||
|
||||
Patch can also get the name of the file to use via the -i argument, like
|
||||
this:
|
||||
this::
|
||||
|
||||
patch -p1 -i path/to/patch-x.y.z
|
||||
|
||||
If your patch file is compressed with gzip or bzip2 and you don't want to
|
||||
If your patch file is compressed with gzip or xz and you don't want to
|
||||
uncompress it before applying it, then you can feed it to patch like this
|
||||
instead:
|
||||
zcat path/to/patch-x.y.z.gz | patch -p1
|
||||
bzcat path/to/patch-x.y.z.bz2 | patch -p1
|
||||
instead::
|
||||
|
||||
xzcat path/to/patch-x.y.z.xz | patch -p1
|
||||
bzcat path/to/patch-x.y.z.gz | patch -p1
|
||||
|
||||
If you wish to uncompress the patch file by hand first before applying it
|
||||
(what I assume you've done in the examples below), then you simply run
|
||||
gunzip or bunzip2 on the file -- like this:
|
||||
gunzip or xz on the file -- like this::
|
||||
|
||||
gunzip patch-x.y.z.gz
|
||||
bunzip2 patch-x.y.z.bz2
|
||||
xz -d patch-x.y.z.xz
|
||||
|
||||
Which will leave you with a plain text patch-x.y.z file that you can feed to
|
||||
patch via stdin or the -i argument, as you prefer.
|
||||
patch via stdin or the ``-i`` argument, as you prefer.
|
||||
|
||||
A few other nice arguments for patch are -s which causes patch to be silent
|
||||
A few other nice arguments for patch are ``-s`` which causes patch to be silent
|
||||
except for errors which is nice to prevent errors from scrolling out of the
|
||||
screen too fast, and --dry-run which causes patch to just print a listing of
|
||||
what would happen, but doesn't actually make any changes. Finally --verbose
|
||||
screen too fast, and ``--dry-run`` which causes patch to just print a listing of
|
||||
what would happen, but doesn't actually make any changes. Finally ``--verbose``
|
||||
tells patch to print more information about the work being done.
|
||||
|
||||
|
||||
Common errors when patching
|
||||
---
|
||||
When patch applies a patch file it attempts to verify the sanity of the
|
||||
===========================
|
||||
|
||||
When patch applies a patch file it attempts to verify the sanity of the
|
||||
file in different ways.
|
||||
|
||||
Checking that the file looks like a valid patch file and checking the code
|
||||
around the bits being modified matches the context provided in the patch are
|
||||
just two of the basic sanity checks patch does.
|
||||
@ -111,13 +130,13 @@ everything looks good it has just moved up or down a bit, and patch will
|
||||
usually adjust the line numbers and apply the patch.
|
||||
|
||||
Whenever patch applies a patch that it had to modify a bit to make it fit
|
||||
it'll tell you about it by saying the patch applied with 'fuzz'.
|
||||
it'll tell you about it by saying the patch applied with **fuzz**.
|
||||
You should be wary of such changes since even though patch probably got it
|
||||
right it doesn't /always/ get it right, and the result will sometimes be
|
||||
wrong.
|
||||
|
||||
When patch encounters a change that it can't fix up with fuzz it rejects it
|
||||
outright and leaves a file with a .rej extension (a reject file). You can
|
||||
outright and leaves a file with a ``.rej`` extension (a reject file). You can
|
||||
read this file to see exactly what change couldn't be applied, so you can
|
||||
go fix it up by hand if you wish.
|
||||
|
||||
@ -132,43 +151,47 @@ to start with a fresh tree downloaded in full from kernel.org.
|
||||
|
||||
Let's look a bit more at some of the messages patch can produce.
|
||||
|
||||
If patch stops and presents a "File to patch:" prompt, then patch could not
|
||||
If patch stops and presents a ``File to patch:`` prompt, then patch could not
|
||||
find a file to be patched. Most likely you forgot to specify -p1 or you are
|
||||
in the wrong directory. Less often, you'll find patches that need to be
|
||||
applied with -p0 instead of -p1 (reading the patch file should reveal if
|
||||
applied with ``-p0`` instead of ``-p1`` (reading the patch file should reveal if
|
||||
this is the case -- if so, then this is an error by the person who created
|
||||
the patch but is not fatal).
|
||||
|
||||
If you get "Hunk #2 succeeded at 1887 with fuzz 2 (offset 7 lines)." or a
|
||||
If you get ``Hunk #2 succeeded at 1887 with fuzz 2 (offset 7 lines).`` or a
|
||||
message similar to that, then it means that patch had to adjust the location
|
||||
of the change (in this example it needed to move 7 lines from where it
|
||||
expected to make the change to make it fit).
|
||||
|
||||
The resulting file may or may not be OK, depending on the reason the file
|
||||
was different than expected.
|
||||
|
||||
This often happens if you try to apply a patch that was generated against a
|
||||
different kernel version than the one you are trying to patch.
|
||||
|
||||
If you get a message like "Hunk #3 FAILED at 2387.", then it means that the
|
||||
If you get a message like ``Hunk #3 FAILED at 2387.``, then it means that the
|
||||
patch could not be applied correctly and the patch program was unable to
|
||||
fuzz its way through. This will generate a .rej file with the change that
|
||||
caused the patch to fail and also a .orig file showing you the original
|
||||
fuzz its way through. This will generate a ``.rej`` file with the change that
|
||||
caused the patch to fail and also a ``.orig`` file showing you the original
|
||||
content that couldn't be changed.
|
||||
|
||||
If you get "Reversed (or previously applied) patch detected! Assume -R? [n]"
|
||||
If you get ``Reversed (or previously applied) patch detected! Assume -R? [n]``
|
||||
then patch detected that the change contained in the patch seems to have
|
||||
already been made.
|
||||
|
||||
If you actually did apply this patch previously and you just re-applied it
|
||||
in error, then just say [n]o and abort this patch. If you applied this patch
|
||||
previously and actually intended to revert it, but forgot to specify -R,
|
||||
then you can say [y]es here to make patch revert it for you.
|
||||
then you can say [**y**]es here to make patch revert it for you.
|
||||
|
||||
This can also happen if the creator of the patch reversed the source and
|
||||
destination directories when creating the patch, and in that case reverting
|
||||
the patch will in fact apply it.
|
||||
|
||||
A message similar to "patch: **** unexpected end of file in patch" or "patch
|
||||
unexpectedly ends in middle of line" means that patch could make no sense of
|
||||
the file you fed to it. Either your download is broken, you tried to feed
|
||||
patch a compressed patch file without uncompressing it first, or the patch
|
||||
A message similar to ``patch: **** unexpected end of file in patch`` or
|
||||
``patch unexpectedly ends in middle of line`` means that patch could make no
|
||||
sense of the file you fed to it. Either your download is broken, you tried to
|
||||
feed patch a compressed patch file without uncompressing it first, or the patch
|
||||
file that you are using has been mangled by a mail client or mail transfer
|
||||
agent along the way somewhere, e.g., by splitting a long line into two lines.
|
||||
Often these warnings can easily be fixed by joining (concatenating) the
|
||||
@ -182,28 +205,32 @@ to start over with a fresh download of a full kernel tree and the patch you
|
||||
wish to apply.
|
||||
|
||||
|
||||
Are there any alternatives to `patch'?
|
||||
---
|
||||
Yes there are alternatives.
|
||||
Are there any alternatives to ``patch``?
|
||||
========================================
|
||||
|
||||
You can use the `interdiff' program (http://cyberelk.net/tim/patchutils/) to
|
||||
|
||||
Yes there are alternatives.
|
||||
|
||||
You can use the ``interdiff`` program (http://cyberelk.net/tim/patchutils/) to
|
||||
generate a patch representing the differences between two patches and then
|
||||
apply the result.
|
||||
This will let you move from something like 2.6.12.2 to 2.6.12.3 in a single
|
||||
|
||||
This will let you move from something like 4.7.2 to 4.7.3 in a single
|
||||
step. The -z flag to interdiff will even let you feed it patches in gzip or
|
||||
bzip2 compressed form directly without the use of zcat or bzcat or manual
|
||||
decompression.
|
||||
|
||||
Here's how you'd go from 2.6.12.2 to 2.6.12.3 in a single step:
|
||||
interdiff -z ../patch-2.6.12.2.bz2 ../patch-2.6.12.3.gz | patch -p1
|
||||
Here's how you'd go from 4.7.2 to 4.7.3 in a single step::
|
||||
|
||||
interdiff -z ../patch-4.7.2.gz ../patch-4.7.3.gz | patch -p1
|
||||
|
||||
Although interdiff may save you a step or two you are generally advised to
|
||||
do the additional steps since interdiff can get things wrong in some cases.
|
||||
|
||||
Another alternative is `ketchup', which is a python script for automatic
|
||||
Another alternative is ``ketchup``, which is a python script for automatic
|
||||
downloading and applying of patches (http://www.selenic.com/ketchup/).
|
||||
|
||||
Other nice tools are diffstat, which shows a summary of changes made by a
|
||||
Other nice tools are diffstat, which shows a summary of changes made by a
|
||||
patch; lsdiff, which displays a short listing of affected files in a patch
|
||||
file, along with (optionally) the line numbers of the start of each patch;
|
||||
and grepdiff, which displays a list of the files modified by a patch where
|
||||
@ -211,99 +238,103 @@ the patch contains a given regular expression.
|
||||
|
||||
|
||||
Where can I download the patches?
|
||||
---
|
||||
The patches are available at http://kernel.org/
|
||||
=================================
|
||||
|
||||
The patches are available at http://kernel.org/
|
||||
Most recent patches are linked from the front page, but they also have
|
||||
specific homes.
|
||||
|
||||
The 2.6.x.y (-stable) and 2.6.x patches live at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/
|
||||
The 4.x.y (-stable) and 4.x patches live at
|
||||
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v4.x/
|
||||
|
||||
The -rc patches live at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/testing/
|
||||
|
||||
The -git patches live at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/snapshots/
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v4.x/testing/
|
||||
|
||||
The -mm kernels live at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.6/
|
||||
|
||||
In place of ftp.kernel.org you can use ftp.cc.kernel.org, where cc is a
|
||||
In place of ``ftp.kernel.org`` you can use ``ftp.cc.kernel.org``, where cc is a
|
||||
country code. This way you'll be downloading from a mirror site that's most
|
||||
likely geographically closer to you, resulting in faster downloads for you,
|
||||
less bandwidth used globally and less load on the main kernel.org servers --
|
||||
these are good things, so do use mirrors when possible.
|
||||
|
||||
|
||||
The 2.6.x kernels
|
||||
---
|
||||
These are the base stable releases released by Linus. The highest numbered
|
||||
The 4.x kernels
|
||||
===============
|
||||
|
||||
These are the base stable releases released by Linus. The highest numbered
|
||||
release is the most recent.
|
||||
|
||||
If regressions or other serious flaws are found, then a -stable fix patch
|
||||
will be released (see below) on top of this base. Once a new 2.6.x base
|
||||
will be released (see below) on top of this base. Once a new 4.x base
|
||||
kernel is released, a patch is made available that is a delta between the
|
||||
previous 2.6.x kernel and the new one.
|
||||
previous 4.x kernel and the new one.
|
||||
|
||||
To apply a patch moving from 2.6.11 to 2.6.12, you'd do the following (note
|
||||
that such patches do *NOT* apply on top of 2.6.x.y kernels but on top of the
|
||||
base 2.6.x kernel -- if you need to move from 2.6.x.y to 2.6.x+1 you need to
|
||||
first revert the 2.6.x.y patch).
|
||||
To apply a patch moving from 4.6 to 4.7, you'd do the following (note
|
||||
that such patches do **NOT** apply on top of 4.x.y kernels but on top of the
|
||||
base 4.x kernel -- if you need to move from 4.x.y to 4.x+1 you need to
|
||||
first revert the 4.x.y patch).
|
||||
|
||||
Here are some examples:
|
||||
Here are some examples::
|
||||
|
||||
# moving from 2.6.11 to 2.6.12
|
||||
$ cd ~/linux-2.6.11 # change to kernel source dir
|
||||
$ patch -p1 < ../patch-2.6.12 # apply the 2.6.12 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.11 linux-2.6.12 # rename source dir
|
||||
# moving from 4.6 to 4.7
|
||||
|
||||
# moving from 2.6.11.1 to 2.6.12
|
||||
$ cd ~/linux-2.6.11.1 # change to kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.11.1 # revert the 2.6.11.1 patch
|
||||
# source dir is now 2.6.11
|
||||
$ patch -p1 < ../patch-2.6.12 # apply new 2.6.12 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.11.1 linux-2.6.12 # rename source dir
|
||||
$ cd ~/linux-4.6 # change to kernel source dir
|
||||
$ patch -p1 < ../patch-4.7 # apply the 4.7 patch
|
||||
$ cd ..
|
||||
$ mv linux-4.6 linux-4.7 # rename source dir
|
||||
|
||||
# moving from 4.6.1 to 4.7
|
||||
|
||||
$ cd ~/linux-4.6.1 # change to kernel source dir
|
||||
$ patch -p1 -R < ../patch-4.6.1 # revert the 4.6.1 patch
|
||||
# source dir is now 4.6
|
||||
$ patch -p1 < ../patch-4.7 # apply new 4.7 patch
|
||||
$ cd ..
|
||||
$ mv linux-4.6.1 linux-4.7 # rename source dir
|
||||
|
||||
|
||||
The 2.6.x.y kernels
|
||||
---
|
||||
Kernels with 4-digit versions are -stable kernels. They contain small(ish)
|
||||
The 4.x.y kernels
|
||||
=================
|
||||
|
||||
Kernels with 3-digit versions are -stable kernels. They contain small(ish)
|
||||
critical fixes for security problems or significant regressions discovered
|
||||
in a given 2.6.x kernel.
|
||||
in a given 4.x kernel.
|
||||
|
||||
This is the recommended branch for users who want the most recent stable
|
||||
kernel and are not interested in helping test development/experimental
|
||||
versions.
|
||||
|
||||
If no 2.6.x.y kernel is available, then the highest numbered 2.6.x kernel is
|
||||
If no 4.x.y kernel is available, then the highest numbered 4.x kernel is
|
||||
the current stable kernel.
|
||||
|
||||
note: the -stable team usually do make incremental patches available as well
|
||||
.. note::
|
||||
|
||||
The -stable team usually do make incremental patches available as well
|
||||
as patches against the latest mainline release, but I only cover the
|
||||
non-incremental ones below. The incremental ones can be found at
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v2.6/incr/
|
||||
ftp://ftp.kernel.org/pub/linux/kernel/v4.x/incr/
|
||||
|
||||
These patches are not incremental, meaning that for example the 2.6.12.3
|
||||
patch does not apply on top of the 2.6.12.2 kernel source, but rather on top
|
||||
of the base 2.6.12 kernel source .
|
||||
So, in order to apply the 2.6.12.3 patch to your existing 2.6.12.2 kernel
|
||||
source you have to first back out the 2.6.12.2 patch (so you are left with a
|
||||
base 2.6.12 kernel source) and then apply the new 2.6.12.3 patch.
|
||||
These patches are not incremental, meaning that for example the 4.7.3
|
||||
patch does not apply on top of the 4.7.2 kernel source, but rather on top
|
||||
of the base 4.7 kernel source.
|
||||
|
||||
Here's a small example:
|
||||
So, in order to apply the 4.7.3 patch to your existing 4.7.2 kernel
|
||||
source you have to first back out the 4.7.2 patch (so you are left with a
|
||||
base 4.7 kernel source) and then apply the new 4.7.3 patch.
|
||||
|
||||
$ cd ~/linux-2.6.12.2 # change into the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12.2 # revert the 2.6.12.2 patch
|
||||
$ patch -p1 < ../patch-2.6.12.3 # apply the new 2.6.12.3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12.2 linux-2.6.12.3 # rename the kernel source dir
|
||||
Here's a small example::
|
||||
|
||||
$ cd ~/linux-4.7.2 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-4.7.2 # revert the 4.7.2 patch
|
||||
$ patch -p1 < ../patch-4.7.3 # apply the new 4.7.3 patch
|
||||
$ cd ..
|
||||
$ mv linux-4.7.2 linux-4.7.3 # rename the kernel source dir
|
||||
|
||||
The -rc kernels
|
||||
---
|
||||
These are release-candidate kernels. These are development kernels released
|
||||
===============
|
||||
|
||||
These are release-candidate kernels. These are development kernels released
|
||||
by Linus whenever he deems the current git (the kernel's source management
|
||||
tool) tree to be in a reasonably sane state adequate for testing.
|
||||
|
||||
@ -317,39 +348,44 @@ This is a good branch to run for people who want to help out testing
|
||||
development kernels but do not want to run some of the really experimental
|
||||
stuff (such people should see the sections about -git and -mm kernels below).
|
||||
|
||||
The -rc patches are not incremental, they apply to a base 2.6.x kernel, just
|
||||
like the 2.6.x.y patches described above. The kernel version before the -rcN
|
||||
The -rc patches are not incremental, they apply to a base 4.x kernel, just
|
||||
like the 4.x.y patches described above. The kernel version before the -rcN
|
||||
suffix denotes the version of the kernel that this -rc kernel will eventually
|
||||
turn into.
|
||||
So, 2.6.13-rc5 means that this is the fifth release candidate for the 2.6.13
|
||||
kernel and the patch should be applied on top of the 2.6.12 kernel source.
|
||||
|
||||
Here are 3 examples of how to apply these patches:
|
||||
So, 4.8-rc5 means that this is the fifth release candidate for the 4.8
|
||||
kernel and the patch should be applied on top of the 4.7 kernel source.
|
||||
|
||||
# first an example of moving from 2.6.12 to 2.6.13-rc3
|
||||
$ cd ~/linux-2.6.12 # change into the 2.6.12 source dir
|
||||
$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.13-rc3 # rename the source dir
|
||||
Here are 3 examples of how to apply these patches::
|
||||
|
||||
# now let's move from 2.6.13-rc3 to 2.6.13-rc5
|
||||
$ cd ~/linux-2.6.13-rc3 # change into the 2.6.13-rc3 dir
|
||||
$ patch -p1 -R < ../patch-2.6.13-rc3 # revert the 2.6.13-rc3 patch
|
||||
$ patch -p1 < ../patch-2.6.13-rc5 # apply the new 2.6.13-rc5 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.13-rc3 linux-2.6.13-rc5 # rename the source dir
|
||||
# first an example of moving from 4.7 to 4.8-rc3
|
||||
|
||||
# finally let's try and move from 2.6.12.3 to 2.6.13-rc5
|
||||
$ cd ~/linux-2.6.12.3 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12.3 # revert the 2.6.12.3 patch
|
||||
$ patch -p1 < ../patch-2.6.13-rc5 # apply new 2.6.13-rc5 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12.3 linux-2.6.13-rc5 # rename the kernel source dir
|
||||
$ cd ~/linux-4.7 # change to the 4.7 source dir
|
||||
$ patch -p1 < ../patch-4.8-rc3 # apply the 4.8-rc3 patch
|
||||
$ cd ..
|
||||
$ mv linux-4.7 linux-4.8-rc3 # rename the source dir
|
||||
|
||||
# now let's move from 4.8-rc3 to 4.8-rc5
|
||||
|
||||
$ cd ~/linux-4.8-rc3 # change to the 4.8-rc3 dir
|
||||
$ patch -p1 -R < ../patch-4.8-rc3 # revert the 4.8-rc3 patch
|
||||
$ patch -p1 < ../patch-4.8-rc5 # apply the new 4.8-rc5 patch
|
||||
$ cd ..
|
||||
$ mv linux-4.8-rc3 linux-4.8-rc5 # rename the source dir
|
||||
|
||||
# finally let's try and move from 4.7.3 to 4.8-rc5
|
||||
|
||||
$ cd ~/linux-4.7.3 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-4.7.3 # revert the 4.7.3 patch
|
||||
$ patch -p1 < ../patch-4.8-rc5 # apply new 4.8-rc5 patch
|
||||
$ cd ..
|
||||
$ mv linux-4.7.3 linux-4.8-rc5 # rename the kernel source dir
|
||||
|
||||
|
||||
The -git kernels
|
||||
---
|
||||
These are daily snapshots of Linus' kernel tree (managed in a git
|
||||
================
|
||||
|
||||
These are daily snapshots of Linus' kernel tree (managed in a git
|
||||
repository, hence the name).
|
||||
|
||||
These patches are usually released daily and represent the current state of
|
||||
@ -357,91 +393,66 @@ Linus's tree. They are more experimental than -rc kernels since they are
|
||||
generated automatically without even a cursory glance to see if they are
|
||||
sane.
|
||||
|
||||
-git patches are not incremental and apply either to a base 2.6.x kernel or
|
||||
a base 2.6.x-rc kernel -- you can see which from their name.
|
||||
A patch named 2.6.12-git1 applies to the 2.6.12 kernel source and a patch
|
||||
named 2.6.13-rc3-git2 applies to the source of the 2.6.13-rc3 kernel.
|
||||
-git patches are not incremental and apply either to a base 4.x kernel or
|
||||
a base 4.x-rc kernel -- you can see which from their name.
|
||||
A patch named 4.7-git1 applies to the 4.7 kernel source and a patch
|
||||
named 4.8-rc3-git2 applies to the source of the 4.8-rc3 kernel.
|
||||
|
||||
Here are some examples of how to apply these patches:
|
||||
Here are some examples of how to apply these patches::
|
||||
|
||||
# moving from 2.6.12 to 2.6.12-git1
|
||||
$ cd ~/linux-2.6.12 # change to the kernel source dir
|
||||
$ patch -p1 < ../patch-2.6.12-git1 # apply the 2.6.12-git1 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.12-git1 # rename the kernel source dir
|
||||
# moving from 4.7 to 4.7-git1
|
||||
|
||||
# moving from 2.6.12-git1 to 2.6.13-rc2-git3
|
||||
$ cd ~/linux-2.6.12-git1 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-2.6.12-git1 # revert the 2.6.12-git1 patch
|
||||
# we now have a 2.6.12 kernel
|
||||
$ patch -p1 < ../patch-2.6.13-rc2 # apply the 2.6.13-rc2 patch
|
||||
# the kernel is now 2.6.13-rc2
|
||||
$ patch -p1 < ../patch-2.6.13-rc2-git3 # apply the 2.6.13-rc2-git3 patch
|
||||
# the kernel is now 2.6.13-rc2-git3
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12-git1 linux-2.6.13-rc2-git3 # rename source dir
|
||||
$ cd ~/linux-4.7 # change to the kernel source dir
|
||||
$ patch -p1 < ../patch-4.7-git1 # apply the 4.7-git1 patch
|
||||
$ cd ..
|
||||
$ mv linux-4.7 linux-4.7-git1 # rename the kernel source dir
|
||||
|
||||
# moving from 4.7-git1 to 4.8-rc2-git3
|
||||
|
||||
$ cd ~/linux-4.7-git1 # change to the kernel source dir
|
||||
$ patch -p1 -R < ../patch-4.7-git1 # revert the 4.7-git1 patch
|
||||
# we now have a 4.7 kernel
|
||||
$ patch -p1 < ../patch-4.8-rc2 # apply the 4.8-rc2 patch
|
||||
# the kernel is now 4.8-rc2
|
||||
$ patch -p1 < ../patch-4.8-rc2-git3 # apply the 4.8-rc2-git3 patch
|
||||
# the kernel is now 4.8-rc2-git3
|
||||
$ cd ..
|
||||
$ mv linux-4.7-git1 linux-4.8-rc2-git3 # rename source dir
|
||||
|
||||
|
||||
The -mm kernels
|
||||
---
|
||||
These are experimental kernels released by Andrew Morton.
|
||||
The -mm patches and the linux-next tree
|
||||
=======================================
|
||||
|
||||
The -mm tree serves as a sort of proving ground for new features and other
|
||||
experimental patches.
|
||||
Once a patch has proved its worth in -mm for a while Andrew pushes it on to
|
||||
Linus for inclusion in mainline.
|
||||
The -mm patches are experimental patches released by Andrew Morton.
|
||||
|
||||
Although it's encouraged that patches flow to Linus via the -mm tree, this
|
||||
is not always enforced.
|
||||
Subsystem maintainers (or individuals) sometimes push their patches directly
|
||||
to Linus, even though (or after) they have been merged and tested in -mm (or
|
||||
sometimes even without prior testing in -mm).
|
||||
In the past, -mm tree were used to also test subsystem patches, but this
|
||||
function is now done via the
|
||||
:ref:`linux-next <https://www.kernel.org/doc/man-pages/linux-next.html>`
|
||||
tree. The Subsystem maintainers push their patches first to linux-next,
|
||||
and, during the merge window, sends them directly to Linus.
|
||||
|
||||
You should generally strive to get your patches into mainline via -mm to
|
||||
ensure maximum testing.
|
||||
The -mm patches serve as a sort of proving ground for new features and other
|
||||
experimental patches that aren't merged via a subsystem tree.
|
||||
Once such patches has proved its worth in -mm for a while Andrew pushes
|
||||
it on to Linus for inclusion in mainline.
|
||||
|
||||
This branch is in constant flux and contains many experimental features, a
|
||||
The linux-next tree is daily updated, and includes the -mm patches.
|
||||
Both are in constant flux and contains many experimental features, a
|
||||
lot of debugging patches not appropriate for mainline etc., and is the most
|
||||
experimental of the branches described in this document.
|
||||
|
||||
These kernels are not appropriate for use on systems that are supposed to be
|
||||
These patches are not appropriate for use on systems that are supposed to be
|
||||
stable and they are more risky to run than any of the other branches (make
|
||||
sure you have up-to-date backups -- that goes for any experimental kernel but
|
||||
even more so for -mm kernels).
|
||||
even more so for -mm patches or using a Kernel from the linux-next tree).
|
||||
|
||||
These kernels in addition to all the other experimental patches they contain
|
||||
usually also contain any changes in the mainline -git kernels available at
|
||||
the time of release.
|
||||
Testing of -mm patches and linux-next is greatly appreciated since the whole
|
||||
point of those are to weed out regressions, crashes, data corruption bugs,
|
||||
build breakage (and any other bug in general) before changes are merged into
|
||||
the more stable mainline Linus tree.
|
||||
|
||||
Testing of -mm kernels is greatly appreciated since the whole point of the
|
||||
tree is to weed out regressions, crashes, data corruption bugs, build
|
||||
breakage (and any other bug in general) before changes are merged into the
|
||||
more stable mainline Linus tree.
|
||||
But testers of -mm should be aware that breakage in this tree is more common
|
||||
than in any other tree.
|
||||
|
||||
The -mm kernels are not released on a fixed schedule, but usually a few -mm
|
||||
kernels are released in between each -rc kernel (1 to 3 is common).
|
||||
The -mm kernels apply to either a base 2.6.x kernel (when no -rc kernels
|
||||
have been released yet) or to a Linus -rc kernel.
|
||||
|
||||
Here are some examples of applying the -mm patches:
|
||||
|
||||
# moving from 2.6.12 to 2.6.12-mm1
|
||||
$ cd ~/linux-2.6.12 # change to the 2.6.12 source dir
|
||||
$ patch -p1 < ../2.6.12-mm1 # apply the 2.6.12-mm1 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12 linux-2.6.12-mm1 # rename the source appropriately
|
||||
|
||||
# moving from 2.6.12-mm1 to 2.6.13-rc3-mm3
|
||||
$ cd ~/linux-2.6.12-mm1
|
||||
$ patch -p1 -R < ../2.6.12-mm1 # revert the 2.6.12-mm1 patch
|
||||
# we now have a 2.6.12 source
|
||||
$ patch -p1 < ../patch-2.6.13-rc3 # apply the 2.6.13-rc3 patch
|
||||
# we now have a 2.6.13-rc3 source
|
||||
$ patch -p1 < ../2.6.13-rc3-mm3 # apply the 2.6.13-rc3-mm3 patch
|
||||
$ cd ..
|
||||
$ mv linux-2.6.12-mm1 linux-2.6.13-rc3-mm3 # rename the source dir
|
||||
But testers of -mm and linux-next should be aware that breakages are
|
||||
more common than in any other tree.
|
||||
|
||||
|
||||
This concludes this list of explanations of the various kernel trees.
|
||||
|
@ -8,8 +8,6 @@ Interrupts
|
||||
- ARM Interrupt subsystem documentation
|
||||
IXP4xx
|
||||
- Intel IXP4xx Network processor.
|
||||
Makefile
|
||||
- Build sourcefiles as part of the Documentation-build for arm
|
||||
Netwinder
|
||||
- Netwinder specific documentation
|
||||
Porting
|
||||
|
@ -31,6 +31,8 @@ SunXi family
|
||||
+ User Manual
|
||||
http://dl.linux-sunxi.org/A13/A13%20User%20Manual%20-%20v1.2%20%282013-01-08%29.pdf
|
||||
|
||||
- Next Thing Co GR8 (sun5i)
|
||||
|
||||
* Dual ARM Cortex-A7 based SoCs
|
||||
- Allwinner A20 (sun7i)
|
||||
+ User Manual
|
||||
@ -73,4 +75,13 @@ SunXi family
|
||||
* Octa ARM Cortex-A7 based SoCs
|
||||
- Allwinner A83T
|
||||
+ Datasheet
|
||||
http://dl.linux-sunxi.org/A83T/A83T_datasheet_Revision_1.1.pdf
|
||||
https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_Datasheet_v1.3_20150510.pdf
|
||||
+ User Manual
|
||||
https://github.com/allwinner-zh/documents/raw/master/A83T/A83T_User_Manual_v1.5.1_20150513.pdf
|
||||
|
||||
* Quad ARM Cortex-A53 based SoCs
|
||||
- Allwinner A64
|
||||
+ Datasheet
|
||||
http://dl.linux-sunxi.org/A64/A64_Datasheet_V1.1.pdf
|
||||
+ User Manual
|
||||
http://dl.linux-sunxi.org/A64/Allwinner%20A64%20User%20Manual%20v1.0.pdf
|
||||
|
@ -61,3 +61,5 @@ stable kernels.
|
||||
| Cavium | ThunderX GICv3 | #23154 | CAVIUM_ERRATUM_23154 |
|
||||
| Cavium | ThunderX Core | #27456 | CAVIUM_ERRATUM_27456 |
|
||||
| Cavium | ThunderX SMMUv2 | #27704 | N/A |
|
||||
| | | | |
|
||||
| Freescale/NXP | LS2080A/LS1043A | A-008585 | FSL_ERRATUM_A008585 |
|
||||
|
@ -1,7 +0,0 @@
|
||||
# List of programs to build
|
||||
hostprogs-y := cfag12864b-example
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
||||
|
||||
HOSTCFLAGS_cfag12864b-example.o += -I$(objtree)/usr/include
|
@ -101,5 +101,5 @@ Although the LCD won't get updated until the next refresh time arrives.
|
||||
Also, you can mmap the framebuffer: open & mmap, munmap & close...
|
||||
which is the best option for most uses.
|
||||
|
||||
Check Documentation/auxdisplay/cfag12864b-example.c
|
||||
Check samples/auxdisplay/cfag12864b-example.c
|
||||
for a real working userspace complete program with usage examples.
|
||||
|
@ -1,10 +1,6 @@
|
||||
00-INDEX
|
||||
- This file
|
||||
Makefile
|
||||
- Makefile for gptimers example file.
|
||||
bfin-gpio-notes.txt
|
||||
- Notes in developing/using bfin-gpio driver.
|
||||
bfin-spi-notes.txt
|
||||
- Notes for using bfin spi bus driver.
|
||||
gptimers-example.c
|
||||
- gptimers example
|
||||
|
@ -1,5 +0,0 @@
|
||||
ifneq ($(CONFIG_BLACKFIN),)
|
||||
ifneq ($(CONFIG_BFIN_GPTIMERS),)
|
||||
obj-m := gptimers-example.o
|
||||
endif
|
||||
endif
|
@ -115,7 +115,7 @@ i. Per-queue limits/values exported to the generic layer by the driver
|
||||
|
||||
Various parameters that the generic i/o scheduler logic uses are set at
|
||||
a per-queue level (e.g maximum request size, maximum number of segments in
|
||||
a scatter-gather list, hardsect size)
|
||||
a scatter-gather list, logical block size)
|
||||
|
||||
Some parameters that were earlier available as global arrays indexed by
|
||||
major/minor are now directly associated with the queue. Some of these may
|
||||
@ -156,7 +156,7 @@ Some new queue property settings:
|
||||
blk_queue_max_segment_size(q, max_seg_size)
|
||||
Maximum size of a clustered segment, 64kB default.
|
||||
|
||||
blk_queue_hardsect_size(q, hardsect_size)
|
||||
blk_queue_logical_block_size(q, logical_block_size)
|
||||
Lowest possible sector size that the hardware can operate
|
||||
on, 512 bytes default.
|
||||
|
||||
|
@ -1,267 +0,0 @@
|
||||
CEC Kernel Support
|
||||
==================
|
||||
|
||||
The CEC framework provides a unified kernel interface for use with HDMI CEC
|
||||
hardware. It is designed to handle a multiple types of hardware (receivers,
|
||||
transmitters, USB dongles). The framework also gives the option to decide
|
||||
what to do in the kernel driver and what should be handled by userspace
|
||||
applications. In addition it integrates the remote control passthrough
|
||||
feature into the kernel's remote control framework.
|
||||
|
||||
|
||||
The CEC Protocol
|
||||
----------------
|
||||
|
||||
The CEC protocol enables consumer electronic devices to communicate with each
|
||||
other through the HDMI connection. The protocol uses logical addresses in the
|
||||
communication. The logical address is strictly connected with the functionality
|
||||
provided by the device. The TV acting as the communication hub is always
|
||||
assigned address 0. The physical address is determined by the physical
|
||||
connection between devices.
|
||||
|
||||
The CEC framework described here is up to date with the CEC 2.0 specification.
|
||||
It is documented in the HDMI 1.4 specification with the new 2.0 bits documented
|
||||
in the HDMI 2.0 specification. But for most of the features the freely available
|
||||
HDMI 1.3a specification is sufficient:
|
||||
|
||||
http://www.microprocessor.org/HDMISpecification13a.pdf
|
||||
|
||||
|
||||
The Kernel Interface
|
||||
====================
|
||||
|
||||
CEC Adapter
|
||||
-----------
|
||||
|
||||
The struct cec_adapter represents the CEC adapter hardware. It is created by
|
||||
calling cec_allocate_adapter() and deleted by calling cec_delete_adapter():
|
||||
|
||||
struct cec_adapter *cec_allocate_adapter(const struct cec_adap_ops *ops,
|
||||
void *priv, const char *name, u32 caps, u8 available_las,
|
||||
struct device *parent);
|
||||
void cec_delete_adapter(struct cec_adapter *adap);
|
||||
|
||||
To create an adapter you need to pass the following information:
|
||||
|
||||
ops: adapter operations which are called by the CEC framework and that you
|
||||
have to implement.
|
||||
|
||||
priv: will be stored in adap->priv and can be used by the adapter ops.
|
||||
|
||||
name: the name of the CEC adapter. Note: this name will be copied.
|
||||
|
||||
caps: capabilities of the CEC adapter. These capabilities determine the
|
||||
capabilities of the hardware and which parts are to be handled
|
||||
by userspace and which parts are handled by kernelspace. The
|
||||
capabilities are returned by CEC_ADAP_G_CAPS.
|
||||
|
||||
available_las: the number of simultaneous logical addresses that this
|
||||
adapter can handle. Must be 1 <= available_las <= CEC_MAX_LOG_ADDRS.
|
||||
|
||||
parent: the parent device.
|
||||
|
||||
|
||||
To register the /dev/cecX device node and the remote control device (if
|
||||
CEC_CAP_RC is set) you call:
|
||||
|
||||
int cec_register_adapter(struct cec_adapter *adap);
|
||||
|
||||
To unregister the devices call:
|
||||
|
||||
void cec_unregister_adapter(struct cec_adapter *adap);
|
||||
|
||||
Note: if cec_register_adapter() fails, then call cec_delete_adapter() to
|
||||
clean up. But if cec_register_adapter() succeeded, then only call
|
||||
cec_unregister_adapter() to clean up, never cec_delete_adapter(). The
|
||||
unregister function will delete the adapter automatically once the last user
|
||||
of that /dev/cecX device has closed its file handle.
|
||||
|
||||
|
||||
Implementing the Low-Level CEC Adapter
|
||||
--------------------------------------
|
||||
|
||||
The following low-level adapter operations have to be implemented in
|
||||
your driver:
|
||||
|
||||
struct cec_adap_ops {
|
||||
/* Low-level callbacks */
|
||||
int (*adap_enable)(struct cec_adapter *adap, bool enable);
|
||||
int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable);
|
||||
int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);
|
||||
int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,
|
||||
u32 signal_free_time, struct cec_msg *msg);
|
||||
void (*adap_log_status)(struct cec_adapter *adap);
|
||||
|
||||
/* High-level callbacks */
|
||||
...
|
||||
};
|
||||
|
||||
The three low-level ops deal with various aspects of controlling the CEC adapter
|
||||
hardware:
|
||||
|
||||
|
||||
To enable/disable the hardware:
|
||||
|
||||
int (*adap_enable)(struct cec_adapter *adap, bool enable);
|
||||
|
||||
This callback enables or disables the CEC hardware. Enabling the CEC hardware
|
||||
means powering it up in a state where no logical addresses are claimed. This
|
||||
op assumes that the physical address (adap->phys_addr) is valid when enable is
|
||||
true and will not change while the CEC adapter remains enabled. The initial
|
||||
state of the CEC adapter after calling cec_allocate_adapter() is disabled.
|
||||
|
||||
Note that adap_enable must return 0 if enable is false.
|
||||
|
||||
|
||||
To enable/disable the 'monitor all' mode:
|
||||
|
||||
int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable);
|
||||
|
||||
If enabled, then the adapter should be put in a mode to also monitor messages
|
||||
that not for us. Not all hardware supports this and this function is only
|
||||
called if the CEC_CAP_MONITOR_ALL capability is set. This callback is optional
|
||||
(some hardware may always be in 'monitor all' mode).
|
||||
|
||||
Note that adap_monitor_all_enable must return 0 if enable is false.
|
||||
|
||||
|
||||
To program a new logical address:
|
||||
|
||||
int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);
|
||||
|
||||
If logical_addr == CEC_LOG_ADDR_INVALID then all programmed logical addresses
|
||||
are to be erased. Otherwise the given logical address should be programmed.
|
||||
If the maximum number of available logical addresses is exceeded, then it
|
||||
should return -ENXIO. Once a logical address is programmed the CEC hardware
|
||||
can receive directed messages to that address.
|
||||
|
||||
Note that adap_log_addr must return 0 if logical_addr is CEC_LOG_ADDR_INVALID.
|
||||
|
||||
|
||||
To transmit a new message:
|
||||
|
||||
int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,
|
||||
u32 signal_free_time, struct cec_msg *msg);
|
||||
|
||||
This transmits a new message. The attempts argument is the suggested number of
|
||||
attempts for the transmit.
|
||||
|
||||
The signal_free_time is the number of data bit periods that the adapter should
|
||||
wait when the line is free before attempting to send a message. This value
|
||||
depends on whether this transmit is a retry, a message from a new initiator or
|
||||
a new message for the same initiator. Most hardware will handle this
|
||||
automatically, but in some cases this information is needed.
|
||||
|
||||
The CEC_FREE_TIME_TO_USEC macro can be used to convert signal_free_time to
|
||||
microseconds (one data bit period is 2.4 ms).
|
||||
|
||||
|
||||
To log the current CEC hardware status:
|
||||
|
||||
void (*adap_status)(struct cec_adapter *adap, struct seq_file *file);
|
||||
|
||||
This optional callback can be used to show the status of the CEC hardware.
|
||||
The status is available through debugfs: cat /sys/kernel/debug/cec/cecX/status
|
||||
|
||||
|
||||
Your adapter driver will also have to react to events (typically interrupt
|
||||
driven) by calling into the framework in the following situations:
|
||||
|
||||
When a transmit finished (successfully or otherwise):
|
||||
|
||||
void cec_transmit_done(struct cec_adapter *adap, u8 status, u8 arb_lost_cnt,
|
||||
u8 nack_cnt, u8 low_drive_cnt, u8 error_cnt);
|
||||
|
||||
The status can be one of:
|
||||
|
||||
CEC_TX_STATUS_OK: the transmit was successful.
|
||||
CEC_TX_STATUS_ARB_LOST: arbitration was lost: another CEC initiator
|
||||
took control of the CEC line and you lost the arbitration.
|
||||
CEC_TX_STATUS_NACK: the message was nacked (for a directed message) or
|
||||
acked (for a broadcast message). A retransmission is needed.
|
||||
CEC_TX_STATUS_LOW_DRIVE: low drive was detected on the CEC bus. This
|
||||
indicates that a follower detected an error on the bus and requested a
|
||||
retransmission.
|
||||
CEC_TX_STATUS_ERROR: some unspecified error occurred: this can be one of
|
||||
the previous two if the hardware cannot differentiate or something else
|
||||
entirely.
|
||||
CEC_TX_STATUS_MAX_RETRIES: could not transmit the message after
|
||||
trying multiple times. Should only be set by the driver if it has hardware
|
||||
support for retrying messages. If set, then the framework assumes that it
|
||||
doesn't have to make another attempt to transmit the message since the
|
||||
hardware did that already.
|
||||
|
||||
The *_cnt arguments are the number of error conditions that were seen.
|
||||
This may be 0 if no information is available. Drivers that do not support
|
||||
hardware retry can just set the counter corresponding to the transmit error
|
||||
to 1, if the hardware does support retry then either set these counters to
|
||||
0 if the hardware provides no feedback of which errors occurred and how many
|
||||
times, or fill in the correct values as reported by the hardware.
|
||||
|
||||
When a CEC message was received:
|
||||
|
||||
void cec_received_msg(struct cec_adapter *adap, struct cec_msg *msg);
|
||||
|
||||
Speaks for itself.
|
||||
|
||||
Implementing the High-Level CEC Adapter
|
||||
---------------------------------------
|
||||
|
||||
The low-level operations drive the hardware, the high-level operations are
|
||||
CEC protocol driven. The following high-level callbacks are available:
|
||||
|
||||
struct cec_adap_ops {
|
||||
/* Low-level callbacks */
|
||||
...
|
||||
|
||||
/* High-level CEC message callback */
|
||||
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);
|
||||
};
|
||||
|
||||
The received() callback allows the driver to optionally handle a newly
|
||||
received CEC message
|
||||
|
||||
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);
|
||||
|
||||
If the driver wants to process a CEC message, then it can implement this
|
||||
callback. If it doesn't want to handle this message, then it should return
|
||||
-ENOMSG, otherwise the CEC framework assumes it processed this message and
|
||||
it will not no anything with it.
|
||||
|
||||
|
||||
CEC framework functions
|
||||
-----------------------
|
||||
|
||||
CEC Adapter drivers can call the following CEC framework functions:
|
||||
|
||||
int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
|
||||
bool block);
|
||||
|
||||
Transmit a CEC message. If block is true, then wait until the message has been
|
||||
transmitted, otherwise just queue it and return.
|
||||
|
||||
void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block);
|
||||
|
||||
Change the physical address. This function will set adap->phys_addr and
|
||||
send an event if it has changed. If cec_s_log_addrs() has been called and
|
||||
the physical address has become valid, then the CEC framework will start
|
||||
claiming the logical addresses. If block is true, then this function won't
|
||||
return until this process has finished.
|
||||
|
||||
When the physical address is set to a valid value the CEC adapter will
|
||||
be enabled (see the adap_enable op). When it is set to CEC_PHYS_ADDR_INVALID,
|
||||
then the CEC adapter will be disabled. If you change a valid physical address
|
||||
to another valid physical address, then this function will first set the
|
||||
address to CEC_PHYS_ADDR_INVALID before enabling the new physical address.
|
||||
|
||||
int cec_s_log_addrs(struct cec_adapter *adap,
|
||||
struct cec_log_addrs *log_addrs, bool block);
|
||||
|
||||
Claim the CEC logical addresses. Should never be called if CEC_CAP_LOG_ADDRS
|
||||
is set. If block is true, then wait until the logical addresses have been
|
||||
claimed, otherwise just queue it and return. To unconfigure all logical
|
||||
addresses call this function with log_addrs set to NULL or with
|
||||
log_addrs->num_log_addrs set to 0. The block argument is ignored when
|
||||
unconfiguring. This function will just return if the physical address is
|
||||
invalid. Once the physical address becomes valid, then the framework will
|
||||
attempt to claim these logical addresses.
|
@ -31,24 +31,25 @@ serve as a convenient shorthand for the implementation of the
|
||||
hardware-specific bits for the hypothetical "foo" hardware.
|
||||
|
||||
Tying the two halves of this interface together is struct clk_hw, which
|
||||
is defined in struct clk_foo and pointed to within struct clk. This
|
||||
is defined in struct clk_foo and pointed to within struct clk_core. This
|
||||
allows for easy navigation between the two discrete halves of the common
|
||||
clock interface.
|
||||
|
||||
Part 2 - common data structures and api
|
||||
|
||||
Below is the common struct clk definition from
|
||||
include/linux/clk-private.h, modified for brevity:
|
||||
Below is the common struct clk_core definition from
|
||||
drivers/clk/clk.c, modified for brevity:
|
||||
|
||||
struct clk {
|
||||
struct clk_core {
|
||||
const char *name;
|
||||
const struct clk_ops *ops;
|
||||
struct clk_hw *hw;
|
||||
char **parent_names;
|
||||
struct clk **parents;
|
||||
struct clk *parent;
|
||||
struct hlist_head children;
|
||||
struct hlist_node child_node;
|
||||
struct module *owner;
|
||||
struct clk_core *parent;
|
||||
const char **parent_names;
|
||||
struct clk_core **parents;
|
||||
u8 num_parents;
|
||||
u8 new_parent_index;
|
||||
...
|
||||
};
|
||||
|
||||
@ -56,16 +57,19 @@ The members above make up the core of the clk tree topology. The clk
|
||||
api itself defines several driver-facing functions which operate on
|
||||
struct clk. That api is documented in include/linux/clk.h.
|
||||
|
||||
Platforms and devices utilizing the common struct clk use the struct
|
||||
clk_ops pointer in struct clk to perform the hardware-specific parts of
|
||||
the operations defined in clk.h:
|
||||
Platforms and devices utilizing the common struct clk_core use the struct
|
||||
clk_ops pointer in struct clk_core to perform the hardware-specific parts of
|
||||
the operations defined in clk-provider.h:
|
||||
|
||||
struct clk_ops {
|
||||
int (*prepare)(struct clk_hw *hw);
|
||||
void (*unprepare)(struct clk_hw *hw);
|
||||
int (*is_prepared)(struct clk_hw *hw);
|
||||
void (*unprepare_unused)(struct clk_hw *hw);
|
||||
int (*enable)(struct clk_hw *hw);
|
||||
void (*disable)(struct clk_hw *hw);
|
||||
int (*is_enabled)(struct clk_hw *hw);
|
||||
void (*disable_unused)(struct clk_hw *hw);
|
||||
unsigned long (*recalc_rate)(struct clk_hw *hw,
|
||||
unsigned long parent_rate);
|
||||
long (*round_rate)(struct clk_hw *hw,
|
||||
@ -84,6 +88,8 @@ the operations defined in clk.h:
|
||||
u8 index);
|
||||
unsigned long (*recalc_accuracy)(struct clk_hw *hw,
|
||||
unsigned long parent_accuracy);
|
||||
int (*get_phase)(struct clk_hw *hw);
|
||||
int (*set_phase)(struct clk_hw *hw, int degrees);
|
||||
void (*init)(struct clk_hw *hw);
|
||||
int (*debug_init)(struct clk_hw *hw,
|
||||
struct dentry *dentry);
|
||||
@ -91,7 +97,7 @@ the operations defined in clk.h:
|
||||
|
||||
Part 3 - hardware clk implementations
|
||||
|
||||
The strength of the common struct clk comes from its .ops and .hw pointers
|
||||
The strength of the common struct clk_core comes from its .ops and .hw pointers
|
||||
which abstract the details of struct clk from the hardware-specific bits, and
|
||||
vice versa. To illustrate consider the simple gateable clk implementation in
|
||||
drivers/clk/clk-gate.c:
|
||||
@ -107,7 +113,7 @@ struct clk_gate contains struct clk_hw hw as well as hardware-specific
|
||||
knowledge about which register and bit controls this clk's gating.
|
||||
Nothing about clock topology or accounting, such as enable_count or
|
||||
notifier_count, is needed here. That is all handled by the common
|
||||
framework code and struct clk.
|
||||
framework code and struct clk_core.
|
||||
|
||||
Let's walk through enabling this clk from driver code:
|
||||
|
||||
@ -139,22 +145,18 @@ static void clk_gate_set_bit(struct clk_gate *gate)
|
||||
|
||||
Note that to_clk_gate is defined as:
|
||||
|
||||
#define to_clk_gate(_hw) container_of(_hw, struct clk_gate, clk)
|
||||
#define to_clk_gate(_hw) container_of(_hw, struct clk_gate, hw)
|
||||
|
||||
This pattern of abstraction is used for every clock hardware
|
||||
representation.
|
||||
|
||||
Part 4 - supporting your own clk hardware
|
||||
|
||||
When implementing support for a new type of clock it only necessary to
|
||||
When implementing support for a new type of clock it is only necessary to
|
||||
include the following header:
|
||||
|
||||
#include <linux/clk-provider.h>
|
||||
|
||||
include/linux/clk.h is included within that header and clk-private.h
|
||||
must never be included from the code which implements the operations for
|
||||
a clock. More on that below in Part 5.
|
||||
|
||||
To construct a clk hardware structure for your platform you must define
|
||||
the following:
|
||||
|
||||
|
@ -1,470 +0,0 @@
|
||||
Copyright 2010 Nicolas Palix <npalix@diku.dk>
|
||||
Copyright 2010 Julia Lawall <julia@diku.dk>
|
||||
Copyright 2010 Gilles Muller <Gilles.Muller@lip6.fr>
|
||||
|
||||
|
||||
Getting Coccinelle
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The semantic patches included in the kernel use features and options
|
||||
which are provided by Coccinelle version 1.0.0-rc11 and above.
|
||||
Using earlier versions will fail as the option names used by
|
||||
the Coccinelle files and coccicheck have been updated.
|
||||
|
||||
Coccinelle is available through the package manager
|
||||
of many distributions, e.g. :
|
||||
|
||||
- Debian
|
||||
- Fedora
|
||||
- Ubuntu
|
||||
- OpenSUSE
|
||||
- Arch Linux
|
||||
- NetBSD
|
||||
- FreeBSD
|
||||
|
||||
|
||||
You can get the latest version released from the Coccinelle homepage at
|
||||
http://coccinelle.lip6.fr/
|
||||
|
||||
Information and tips about Coccinelle are also provided on the wiki
|
||||
pages at http://cocci.ekstranet.diku.dk/wiki/doku.php
|
||||
|
||||
Once you have it, run the following command:
|
||||
|
||||
./configure
|
||||
make
|
||||
|
||||
as a regular user, and install it with
|
||||
|
||||
sudo make install
|
||||
|
||||
Supplemental documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
For supplemental documentation refer to the wiki:
|
||||
|
||||
https://bottest.wiki.kernel.org/coccicheck
|
||||
|
||||
The wiki documentation always refers to the linux-next version of the script.
|
||||
|
||||
Using Coccinelle on the Linux kernel
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
A Coccinelle-specific target is defined in the top level
|
||||
Makefile. This target is named 'coccicheck' and calls the 'coccicheck'
|
||||
front-end in the 'scripts' directory.
|
||||
|
||||
Four basic modes are defined: patch, report, context, and org. The mode to
|
||||
use is specified by setting the MODE variable with 'MODE=<mode>'.
|
||||
|
||||
'patch' proposes a fix, when possible.
|
||||
|
||||
'report' generates a list in the following format:
|
||||
file:line:column-column: message
|
||||
|
||||
'context' highlights lines of interest and their context in a
|
||||
diff-like style.Lines of interest are indicated with '-'.
|
||||
|
||||
'org' generates a report in the Org mode format of Emacs.
|
||||
|
||||
Note that not all semantic patches implement all modes. For easy use
|
||||
of Coccinelle, the default mode is "report".
|
||||
|
||||
Two other modes provide some common combinations of these modes.
|
||||
|
||||
'chain' tries the previous modes in the order above until one succeeds.
|
||||
|
||||
'rep+ctxt' runs successively the report mode and the context mode.
|
||||
It should be used with the C option (described later)
|
||||
which checks the code on a file basis.
|
||||
|
||||
Examples:
|
||||
To make a report for every semantic patch, run the following command:
|
||||
|
||||
make coccicheck MODE=report
|
||||
|
||||
To produce patches, run:
|
||||
|
||||
make coccicheck MODE=patch
|
||||
|
||||
|
||||
The coccicheck target applies every semantic patch available in the
|
||||
sub-directories of 'scripts/coccinelle' to the entire Linux kernel.
|
||||
|
||||
For each semantic patch, a commit message is proposed. It gives a
|
||||
description of the problem being checked by the semantic patch, and
|
||||
includes a reference to Coccinelle.
|
||||
|
||||
As any static code analyzer, Coccinelle produces false
|
||||
positives. Thus, reports must be carefully checked, and patches
|
||||
reviewed.
|
||||
|
||||
To enable verbose messages set the V= variable, for example:
|
||||
|
||||
make coccicheck MODE=report V=1
|
||||
|
||||
Coccinelle parallelization
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
By default, coccicheck tries to run as parallel as possible. To change
|
||||
the parallelism, set the J= variable. For example, to run across 4 CPUs:
|
||||
|
||||
make coccicheck MODE=report J=4
|
||||
|
||||
As of Coccinelle 1.0.2 Coccinelle uses Ocaml parmap for parallelization,
|
||||
if support for this is detected you will benefit from parmap parallelization.
|
||||
|
||||
When parmap is enabled coccicheck will enable dynamic load balancing by using
|
||||
'--chunksize 1' argument, this ensures we keep feeding threads with work
|
||||
one by one, so that we avoid the situation where most work gets done by only
|
||||
a few threads. With dynamic load balancing, if a thread finishes early we keep
|
||||
feeding it more work.
|
||||
|
||||
When parmap is enabled, if an error occurs in Coccinelle, this error
|
||||
value is propagated back, the return value of the 'make coccicheck'
|
||||
captures this return value.
|
||||
|
||||
Using Coccinelle with a single semantic patch
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The optional make variable COCCI can be used to check a single
|
||||
semantic patch. In that case, the variable must be initialized with
|
||||
the name of the semantic patch to apply.
|
||||
|
||||
For instance:
|
||||
|
||||
make coccicheck COCCI=<my_SP.cocci> MODE=patch
|
||||
or
|
||||
make coccicheck COCCI=<my_SP.cocci> MODE=report
|
||||
|
||||
|
||||
Controlling Which Files are Processed by Coccinelle
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
By default the entire kernel source tree is checked.
|
||||
|
||||
To apply Coccinelle to a specific directory, M= can be used.
|
||||
For example, to check drivers/net/wireless/ one may write:
|
||||
|
||||
make coccicheck M=drivers/net/wireless/
|
||||
|
||||
To apply Coccinelle on a file basis, instead of a directory basis, the
|
||||
following command may be used:
|
||||
|
||||
make C=1 CHECK="scripts/coccicheck"
|
||||
|
||||
To check only newly edited code, use the value 2 for the C flag, i.e.
|
||||
|
||||
make C=2 CHECK="scripts/coccicheck"
|
||||
|
||||
In these modes, which works on a file basis, there is no information
|
||||
about semantic patches displayed, and no commit message proposed.
|
||||
|
||||
This runs every semantic patch in scripts/coccinelle by default. The
|
||||
COCCI variable may additionally be used to only apply a single
|
||||
semantic patch as shown in the previous section.
|
||||
|
||||
The "report" mode is the default. You can select another one with the
|
||||
MODE variable explained above.
|
||||
|
||||
Debugging Coccinelle SmPL patches
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Using coccicheck is best as it provides in the spatch command line
|
||||
include options matching the options used when we compile the kernel.
|
||||
You can learn what these options are by using V=1, you could then
|
||||
manually run Coccinelle with debug options added.
|
||||
|
||||
Alternatively you can debug running Coccinelle against SmPL patches
|
||||
by asking for stderr to be redirected to stderr, by default stderr
|
||||
is redirected to /dev/null, if you'd like to capture stderr you
|
||||
can specify the DEBUG_FILE="file.txt" option to coccicheck. For
|
||||
instance:
|
||||
|
||||
rm -f cocci.err
|
||||
make coccicheck COCCI=scripts/coccinelle/free/kfree.cocci MODE=report DEBUG_FILE=cocci.err
|
||||
cat cocci.err
|
||||
|
||||
You can use SPFLAGS to add debugging flags, for instance you may want to
|
||||
add both --profile --show-trying to SPFLAGS when debugging. For instance
|
||||
you may want to use:
|
||||
|
||||
rm -f err.log
|
||||
export COCCI=scripts/coccinelle/misc/irqf_oneshot.cocci
|
||||
make coccicheck DEBUG_FILE="err.log" MODE=report SPFLAGS="--profile --show-trying" M=./drivers/mfd/arizona-irq.c
|
||||
|
||||
err.log will now have the profiling information, while stdout will
|
||||
provide some progress information as Coccinelle moves forward with
|
||||
work.
|
||||
|
||||
DEBUG_FILE support is only supported when using coccinelle >= 1.2.
|
||||
|
||||
.cocciconfig support
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Coccinelle supports reading .cocciconfig for default Coccinelle options that
|
||||
should be used every time spatch is spawned, the order of precedence for
|
||||
variables for .cocciconfig is as follows:
|
||||
|
||||
o Your current user's home directory is processed first
|
||||
o Your directory from which spatch is called is processed next
|
||||
o The directory provided with the --dir option is processed last, if used
|
||||
|
||||
Since coccicheck runs through make, it naturally runs from the kernel
|
||||
proper dir, as such the second rule above would be implied for picking up a
|
||||
.cocciconfig when using 'make coccicheck'.
|
||||
|
||||
'make coccicheck' also supports using M= targets.If you do not supply
|
||||
any M= target, it is assumed you want to target the entire kernel.
|
||||
The kernel coccicheck script has:
|
||||
|
||||
if [ "$KBUILD_EXTMOD" = "" ] ; then
|
||||
OPTIONS="--dir $srctree $COCCIINCLUDE"
|
||||
else
|
||||
OPTIONS="--dir $KBUILD_EXTMOD $COCCIINCLUDE"
|
||||
fi
|
||||
|
||||
KBUILD_EXTMOD is set when an explicit target with M= is used. For both cases
|
||||
the spatch --dir argument is used, as such third rule applies when whether M=
|
||||
is used or not, and when M= is used the target directory can have its own
|
||||
.cocciconfig file. When M= is not passed as an argument to coccicheck the
|
||||
target directory is the same as the directory from where spatch was called.
|
||||
|
||||
If not using the kernel's coccicheck target, keep the above precedence
|
||||
order logic of .cocciconfig reading. If using the kernel's coccicheck target,
|
||||
override any of the kernel's .coccicheck's settings using SPFLAGS.
|
||||
|
||||
We help Coccinelle when used against Linux with a set of sensible defaults
|
||||
options for Linux with our own Linux .cocciconfig. This hints to coccinelle
|
||||
git can be used for 'git grep' queries over coccigrep. A timeout of 200
|
||||
seconds should suffice for now.
|
||||
|
||||
The options picked up by coccinelle when reading a .cocciconfig do not appear
|
||||
as arguments to spatch processes running on your system, to confirm what
|
||||
options will be used by Coccinelle run:
|
||||
|
||||
spatch --print-options-only
|
||||
|
||||
You can override with your own preferred index option by using SPFLAGS. Take
|
||||
note that when there are conflicting options Coccinelle takes precedence for
|
||||
the last options passed. Using .cocciconfig is possible to use idutils, however
|
||||
given the order of precedence followed by Coccinelle, since the kernel now
|
||||
carries its own .cocciconfig, you will need to use SPFLAGS to use idutils if
|
||||
desired. See below section "Additional flags" for more details on how to use
|
||||
idutils.
|
||||
|
||||
Additional flags
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Additional flags can be passed to spatch through the SPFLAGS
|
||||
variable. This works as Coccinelle respects the last flags
|
||||
given to it when options are in conflict.
|
||||
|
||||
make SPFLAGS=--use-glimpse coccicheck
|
||||
|
||||
Coccinelle supports idutils as well but requires coccinelle >= 1.0.6.
|
||||
When no ID file is specified coccinelle assumes your ID database file
|
||||
is in the file .id-utils.index on the top level of the kernel, coccinelle
|
||||
carries a script scripts/idutils_index.sh which creates the database with
|
||||
|
||||
mkid -i C --output .id-utils.index
|
||||
|
||||
If you have another database filename you can also just symlink with this
|
||||
name.
|
||||
|
||||
make SPFLAGS=--use-idutils coccicheck
|
||||
|
||||
Alternatively you can specify the database filename explicitly, for
|
||||
instance:
|
||||
|
||||
make SPFLAGS="--use-idutils /full-path/to/ID" coccicheck
|
||||
|
||||
See spatch --help to learn more about spatch options.
|
||||
|
||||
Note that the '--use-glimpse' and '--use-idutils' options
|
||||
require external tools for indexing the code. None of them is
|
||||
thus active by default. However, by indexing the code with
|
||||
one of these tools, and according to the cocci file used,
|
||||
spatch could proceed the entire code base more quickly.
|
||||
|
||||
SmPL patch specific options
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
SmPL patches can have their own requirements for options passed
|
||||
to Coccinelle. SmPL patch specific options can be provided by
|
||||
providing them at the top of the SmPL patch, for instance:
|
||||
|
||||
// Options: --no-includes --include-headers
|
||||
|
||||
SmPL patch Coccinelle requirements
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
As Coccinelle features get added some more advanced SmPL patches
|
||||
may require newer versions of Coccinelle. If an SmPL patch requires
|
||||
at least a version of Coccinelle, this can be specified as follows,
|
||||
as an example if requiring at least Coccinelle >= 1.0.5:
|
||||
|
||||
// Requires: 1.0.5
|
||||
|
||||
Proposing new semantic patches
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
New semantic patches can be proposed and submitted by kernel
|
||||
developers. For sake of clarity, they should be organized in the
|
||||
sub-directories of 'scripts/coccinelle/'.
|
||||
|
||||
|
||||
Detailed description of the 'report' mode
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
'report' generates a list in the following format:
|
||||
file:line:column-column: message
|
||||
|
||||
Example:
|
||||
|
||||
Running
|
||||
|
||||
make coccicheck MODE=report COCCI=scripts/coccinelle/api/err_cast.cocci
|
||||
|
||||
will execute the following part of the SmPL script.
|
||||
|
||||
<smpl>
|
||||
@r depends on !context && !patch && (org || report)@
|
||||
expression x;
|
||||
position p;
|
||||
@@
|
||||
|
||||
ERR_PTR@p(PTR_ERR(x))
|
||||
|
||||
@script:python depends on report@
|
||||
p << r.p;
|
||||
x << r.x;
|
||||
@@
|
||||
|
||||
msg="ERR_CAST can be used with %s" % (x)
|
||||
coccilib.report.print_report(p[0], msg)
|
||||
</smpl>
|
||||
|
||||
This SmPL excerpt generates entries on the standard output, as
|
||||
illustrated below:
|
||||
|
||||
/home/user/linux/crypto/ctr.c:188:9-16: ERR_CAST can be used with alg
|
||||
/home/user/linux/crypto/authenc.c:619:9-16: ERR_CAST can be used with auth
|
||||
/home/user/linux/crypto/xts.c:227:9-16: ERR_CAST can be used with alg
|
||||
|
||||
|
||||
Detailed description of the 'patch' mode
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
When the 'patch' mode is available, it proposes a fix for each problem
|
||||
identified.
|
||||
|
||||
Example:
|
||||
|
||||
Running
|
||||
make coccicheck MODE=patch COCCI=scripts/coccinelle/api/err_cast.cocci
|
||||
|
||||
will execute the following part of the SmPL script.
|
||||
|
||||
<smpl>
|
||||
@ depends on !context && patch && !org && !report @
|
||||
expression x;
|
||||
@@
|
||||
|
||||
- ERR_PTR(PTR_ERR(x))
|
||||
+ ERR_CAST(x)
|
||||
</smpl>
|
||||
|
||||
This SmPL excerpt generates patch hunks on the standard output, as
|
||||
illustrated below:
|
||||
|
||||
diff -u -p a/crypto/ctr.c b/crypto/ctr.c
|
||||
--- a/crypto/ctr.c 2010-05-26 10:49:38.000000000 +0200
|
||||
+++ b/crypto/ctr.c 2010-06-03 23:44:49.000000000 +0200
|
||||
@@ -185,7 +185,7 @@ static struct crypto_instance *crypto_ct
|
||||
alg = crypto_attr_alg(tb[1], CRYPTO_ALG_TYPE_CIPHER,
|
||||
CRYPTO_ALG_TYPE_MASK);
|
||||
if (IS_ERR(alg))
|
||||
- return ERR_PTR(PTR_ERR(alg));
|
||||
+ return ERR_CAST(alg);
|
||||
|
||||
/* Block size must be >= 4 bytes. */
|
||||
err = -EINVAL;
|
||||
|
||||
Detailed description of the 'context' mode
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
'context' highlights lines of interest and their context
|
||||
in a diff-like style.
|
||||
|
||||
NOTE: The diff-like output generated is NOT an applicable patch. The
|
||||
intent of the 'context' mode is to highlight the important lines
|
||||
(annotated with minus, '-') and gives some surrounding context
|
||||
lines around. This output can be used with the diff mode of
|
||||
Emacs to review the code.
|
||||
|
||||
Example:
|
||||
|
||||
Running
|
||||
make coccicheck MODE=context COCCI=scripts/coccinelle/api/err_cast.cocci
|
||||
|
||||
will execute the following part of the SmPL script.
|
||||
|
||||
<smpl>
|
||||
@ depends on context && !patch && !org && !report@
|
||||
expression x;
|
||||
@@
|
||||
|
||||
* ERR_PTR(PTR_ERR(x))
|
||||
</smpl>
|
||||
|
||||
This SmPL excerpt generates diff hunks on the standard output, as
|
||||
illustrated below:
|
||||
|
||||
diff -u -p /home/user/linux/crypto/ctr.c /tmp/nothing
|
||||
--- /home/user/linux/crypto/ctr.c 2010-05-26 10:49:38.000000000 +0200
|
||||
+++ /tmp/nothing
|
||||
@@ -185,7 +185,6 @@ static struct crypto_instance *crypto_ct
|
||||
alg = crypto_attr_alg(tb[1], CRYPTO_ALG_TYPE_CIPHER,
|
||||
CRYPTO_ALG_TYPE_MASK);
|
||||
if (IS_ERR(alg))
|
||||
- return ERR_PTR(PTR_ERR(alg));
|
||||
|
||||
/* Block size must be >= 4 bytes. */
|
||||
err = -EINVAL;
|
||||
|
||||
Detailed description of the 'org' mode
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
'org' generates a report in the Org mode format of Emacs.
|
||||
|
||||
Example:
|
||||
|
||||
Running
|
||||
make coccicheck MODE=org COCCI=scripts/coccinelle/api/err_cast.cocci
|
||||
|
||||
will execute the following part of the SmPL script.
|
||||
|
||||
<smpl>
|
||||
@r depends on !context && !patch && (org || report)@
|
||||
expression x;
|
||||
position p;
|
||||
@@
|
||||
|
||||
ERR_PTR@p(PTR_ERR(x))
|
||||
|
||||
@script:python depends on org@
|
||||
p << r.p;
|
||||
x << r.x;
|
||||
@@
|
||||
|
||||
msg="ERR_CAST can be used with %s" % (x)
|
||||
msg_safe=msg.replace("[","@(").replace("]",")")
|
||||
coccilib.org.print_todo(p[0], msg_safe)
|
||||
</smpl>
|
||||
|
||||
This SmPL excerpt generates Org entries on the standard output, as
|
||||
illustrated below:
|
||||
|
||||
* TODO [[view:/home/user/linux/crypto/ctr.c::face=ovl-face1::linb=188::colb=9::cole=16][ERR_CAST can be used with alg]]
|
||||
* TODO [[view:/home/user/linux/crypto/authenc.c::face=ovl-face1::linb=619::colb=9::cole=16][ERR_CAST can be used with auth]]
|
||||
* TODO [[view:/home/user/linux/crypto/xts.c::face=ovl-face1::linb=227::colb=9::cole=16][ERR_CAST can be used with alg]]
|
@ -14,11 +14,17 @@
|
||||
|
||||
import sys
|
||||
import os
|
||||
import sphinx
|
||||
|
||||
# Get Sphinx version
|
||||
major, minor, patch = map(int, sphinx.__version__.split("."))
|
||||
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
sys.path.insert(0, os.path.abspath('sphinx'))
|
||||
from load_config import loadConfig
|
||||
|
||||
# -- General configuration ------------------------------------------------
|
||||
|
||||
@ -28,14 +34,13 @@ sys.path.insert(0, os.path.abspath('sphinx'))
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = ['kernel-doc', 'rstFlatTable', 'kernel_include']
|
||||
extensions = ['kernel-doc', 'rstFlatTable', 'kernel_include', 'cdomain']
|
||||
|
||||
# Gracefully handle missing rst2pdf.
|
||||
try:
|
||||
import rst2pdf
|
||||
extensions += ['rst2pdf.pdfbuilder']
|
||||
except ImportError:
|
||||
pass
|
||||
# The name of the math extension changed on Sphinx 1.4
|
||||
if minor > 3:
|
||||
extensions.append("sphinx.ext.imgmath")
|
||||
else:
|
||||
extensions.append("sphinx.ext.pngmath")
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
@ -252,23 +257,92 @@ htmlhelp_basename = 'TheLinuxKerneldoc'
|
||||
|
||||
latex_elements = {
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#'papersize': 'letterpaper',
|
||||
'papersize': 'a4paper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#'pointsize': '10pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#'preamble': '',
|
||||
'pointsize': '8pt',
|
||||
|
||||
# Latex figure (float) alignment
|
||||
#'figure_align': 'htbp',
|
||||
|
||||
# Don't mangle with UTF-8 chars
|
||||
'inputenc': '',
|
||||
'utf8extra': '',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
'preamble': '''
|
||||
% Adjust margins
|
||||
\\usepackage[margin=0.5in, top=1in, bottom=1in]{geometry}
|
||||
|
||||
% Allow generate some pages in landscape
|
||||
\\usepackage{lscape}
|
||||
|
||||
% Put notes in color and let them be inside a table
|
||||
\\definecolor{NoteColor}{RGB}{204,255,255}
|
||||
\\definecolor{WarningColor}{RGB}{255,204,204}
|
||||
\\definecolor{AttentionColor}{RGB}{255,255,204}
|
||||
\\definecolor{OtherColor}{RGB}{204,204,204}
|
||||
\\newlength{\\mynoticelength}
|
||||
\\makeatletter\\newenvironment{coloredbox}[1]{%
|
||||
\\setlength{\\fboxrule}{1pt}
|
||||
\\setlength{\\fboxsep}{7pt}
|
||||
\\setlength{\\mynoticelength}{\\linewidth}
|
||||
\\addtolength{\\mynoticelength}{-2\\fboxsep}
|
||||
\\addtolength{\\mynoticelength}{-2\\fboxrule}
|
||||
\\begin{lrbox}{\\@tempboxa}\\begin{minipage}{\\mynoticelength}}{\\end{minipage}\\end{lrbox}%
|
||||
\\ifthenelse%
|
||||
{\\equal{\\py@noticetype}{note}}%
|
||||
{\\colorbox{NoteColor}{\\usebox{\\@tempboxa}}}%
|
||||
{%
|
||||
\\ifthenelse%
|
||||
{\\equal{\\py@noticetype}{warning}}%
|
||||
{\\colorbox{WarningColor}{\\usebox{\\@tempboxa}}}%
|
||||
{%
|
||||
\\ifthenelse%
|
||||
{\\equal{\\py@noticetype}{attention}}%
|
||||
{\\colorbox{AttentionColor}{\\usebox{\\@tempboxa}}}%
|
||||
{\\colorbox{OtherColor}{\\usebox{\\@tempboxa}}}%
|
||||
}%
|
||||
}%
|
||||
}\\makeatother
|
||||
|
||||
\\makeatletter
|
||||
\\renewenvironment{notice}[2]{%
|
||||
\\def\\py@noticetype{#1}
|
||||
\\begin{coloredbox}{#1}
|
||||
\\bf\\it
|
||||
\\par\\strong{#2}
|
||||
\\csname py@noticestart@#1\\endcsname
|
||||
}
|
||||
{
|
||||
\\csname py@noticeend@\\py@noticetype\\endcsname
|
||||
\\end{coloredbox}
|
||||
}
|
||||
\\makeatother
|
||||
|
||||
% Use some font with UTF-8 support with XeLaTeX
|
||||
\\usepackage{fontspec}
|
||||
\\setsansfont{DejaVu Serif}
|
||||
\\setromanfont{DejaVu Sans}
|
||||
\\setmonofont{DejaVu Sans Mono}
|
||||
|
||||
% To allow adjusting table sizes
|
||||
\\usepackage{adjustbox}
|
||||
|
||||
'''
|
||||
}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
# (source start file, target name, title,
|
||||
# author, documentclass [howto, manual, or own class]).
|
||||
latex_documents = [
|
||||
(master_doc, 'TheLinuxKernel.tex', 'The Linux Kernel Documentation',
|
||||
('kernel-documentation', 'kernel-documentation.tex', 'The Linux Kernel Documentation',
|
||||
'The kernel development community', 'manual'),
|
||||
('development-process/index', 'development-process.tex', 'Linux Kernel Development Documentation',
|
||||
'The kernel development community', 'manual'),
|
||||
('gpu/index', 'gpu.tex', 'Linux GPU Driver Developer\'s Guide',
|
||||
'The kernel development community', 'manual'),
|
||||
('media/index', 'media.tex', 'Linux Media Subsystem Documentation',
|
||||
'The kernel development community', 'manual'),
|
||||
]
|
||||
|
||||
@ -419,3 +493,9 @@ pdf_documents = [
|
||||
# line arguments.
|
||||
kerneldoc_bin = '../scripts/kernel-doc'
|
||||
kerneldoc_srctree = '..'
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# Since loadConfig overwrites settings from the global namespace, it has to be
|
||||
# the last statement in the conf.py file
|
||||
# ------------------------------------------------------------------------------
|
||||
loadConfig(globals())
|
||||
|
491
Documentation/dev-tools/coccinelle.rst
Normal file
491
Documentation/dev-tools/coccinelle.rst
Normal file
@ -0,0 +1,491 @@
|
||||
.. Copyright 2010 Nicolas Palix <npalix@diku.dk>
|
||||
.. Copyright 2010 Julia Lawall <julia@diku.dk>
|
||||
.. Copyright 2010 Gilles Muller <Gilles.Muller@lip6.fr>
|
||||
|
||||
.. highlight:: none
|
||||
|
||||
Coccinelle
|
||||
==========
|
||||
|
||||
Coccinelle is a tool for pattern matching and text transformation that has
|
||||
many uses in kernel development, including the application of complex,
|
||||
tree-wide patches and detection of problematic programming patterns.
|
||||
|
||||
Getting Coccinelle
|
||||
-------------------
|
||||
|
||||
The semantic patches included in the kernel use features and options
|
||||
which are provided by Coccinelle version 1.0.0-rc11 and above.
|
||||
Using earlier versions will fail as the option names used by
|
||||
the Coccinelle files and coccicheck have been updated.
|
||||
|
||||
Coccinelle is available through the package manager
|
||||
of many distributions, e.g. :
|
||||
|
||||
- Debian
|
||||
- Fedora
|
||||
- Ubuntu
|
||||
- OpenSUSE
|
||||
- Arch Linux
|
||||
- NetBSD
|
||||
- FreeBSD
|
||||
|
||||
You can get the latest version released from the Coccinelle homepage at
|
||||
http://coccinelle.lip6.fr/
|
||||
|
||||
Information and tips about Coccinelle are also provided on the wiki
|
||||
pages at http://cocci.ekstranet.diku.dk/wiki/doku.php
|
||||
|
||||
Once you have it, run the following command::
|
||||
|
||||
./configure
|
||||
make
|
||||
|
||||
as a regular user, and install it with::
|
||||
|
||||
sudo make install
|
||||
|
||||
Supplemental documentation
|
||||
---------------------------
|
||||
|
||||
For supplemental documentation refer to the wiki:
|
||||
|
||||
https://bottest.wiki.kernel.org/coccicheck
|
||||
|
||||
The wiki documentation always refers to the linux-next version of the script.
|
||||
|
||||
Using Coccinelle on the Linux kernel
|
||||
------------------------------------
|
||||
|
||||
A Coccinelle-specific target is defined in the top level
|
||||
Makefile. This target is named ``coccicheck`` and calls the ``coccicheck``
|
||||
front-end in the ``scripts`` directory.
|
||||
|
||||
Four basic modes are defined: ``patch``, ``report``, ``context``, and
|
||||
``org``. The mode to use is specified by setting the MODE variable with
|
||||
``MODE=<mode>``.
|
||||
|
||||
- ``patch`` proposes a fix, when possible.
|
||||
|
||||
- ``report`` generates a list in the following format:
|
||||
file:line:column-column: message
|
||||
|
||||
- ``context`` highlights lines of interest and their context in a
|
||||
diff-like style.Lines of interest are indicated with ``-``.
|
||||
|
||||
- ``org`` generates a report in the Org mode format of Emacs.
|
||||
|
||||
Note that not all semantic patches implement all modes. For easy use
|
||||
of Coccinelle, the default mode is "report".
|
||||
|
||||
Two other modes provide some common combinations of these modes.
|
||||
|
||||
- ``chain`` tries the previous modes in the order above until one succeeds.
|
||||
|
||||
- ``rep+ctxt`` runs successively the report mode and the context mode.
|
||||
It should be used with the C option (described later)
|
||||
which checks the code on a file basis.
|
||||
|
||||
Examples
|
||||
~~~~~~~~
|
||||
|
||||
To make a report for every semantic patch, run the following command::
|
||||
|
||||
make coccicheck MODE=report
|
||||
|
||||
To produce patches, run::
|
||||
|
||||
make coccicheck MODE=patch
|
||||
|
||||
|
||||
The coccicheck target applies every semantic patch available in the
|
||||
sub-directories of ``scripts/coccinelle`` to the entire Linux kernel.
|
||||
|
||||
For each semantic patch, a commit message is proposed. It gives a
|
||||
description of the problem being checked by the semantic patch, and
|
||||
includes a reference to Coccinelle.
|
||||
|
||||
As any static code analyzer, Coccinelle produces false
|
||||
positives. Thus, reports must be carefully checked, and patches
|
||||
reviewed.
|
||||
|
||||
To enable verbose messages set the V= variable, for example::
|
||||
|
||||
make coccicheck MODE=report V=1
|
||||
|
||||
Coccinelle parallelization
|
||||
---------------------------
|
||||
|
||||
By default, coccicheck tries to run as parallel as possible. To change
|
||||
the parallelism, set the J= variable. For example, to run across 4 CPUs::
|
||||
|
||||
make coccicheck MODE=report J=4
|
||||
|
||||
As of Coccinelle 1.0.2 Coccinelle uses Ocaml parmap for parallelization,
|
||||
if support for this is detected you will benefit from parmap parallelization.
|
||||
|
||||
When parmap is enabled coccicheck will enable dynamic load balancing by using
|
||||
``--chunksize 1`` argument, this ensures we keep feeding threads with work
|
||||
one by one, so that we avoid the situation where most work gets done by only
|
||||
a few threads. With dynamic load balancing, if a thread finishes early we keep
|
||||
feeding it more work.
|
||||
|
||||
When parmap is enabled, if an error occurs in Coccinelle, this error
|
||||
value is propagated back, the return value of the ``make coccicheck``
|
||||
captures this return value.
|
||||
|
||||
Using Coccinelle with a single semantic patch
|
||||
---------------------------------------------
|
||||
|
||||
The optional make variable COCCI can be used to check a single
|
||||
semantic patch. In that case, the variable must be initialized with
|
||||
the name of the semantic patch to apply.
|
||||
|
||||
For instance::
|
||||
|
||||
make coccicheck COCCI=<my_SP.cocci> MODE=patch
|
||||
|
||||
or::
|
||||
|
||||
make coccicheck COCCI=<my_SP.cocci> MODE=report
|
||||
|
||||
|
||||
Controlling Which Files are Processed by Coccinelle
|
||||
---------------------------------------------------
|
||||
|
||||
By default the entire kernel source tree is checked.
|
||||
|
||||
To apply Coccinelle to a specific directory, ``M=`` can be used.
|
||||
For example, to check drivers/net/wireless/ one may write::
|
||||
|
||||
make coccicheck M=drivers/net/wireless/
|
||||
|
||||
To apply Coccinelle on a file basis, instead of a directory basis, the
|
||||
following command may be used::
|
||||
|
||||
make C=1 CHECK="scripts/coccicheck"
|
||||
|
||||
To check only newly edited code, use the value 2 for the C flag, i.e.::
|
||||
|
||||
make C=2 CHECK="scripts/coccicheck"
|
||||
|
||||
In these modes, which works on a file basis, there is no information
|
||||
about semantic patches displayed, and no commit message proposed.
|
||||
|
||||
This runs every semantic patch in scripts/coccinelle by default. The
|
||||
COCCI variable may additionally be used to only apply a single
|
||||
semantic patch as shown in the previous section.
|
||||
|
||||
The "report" mode is the default. You can select another one with the
|
||||
MODE variable explained above.
|
||||
|
||||
Debugging Coccinelle SmPL patches
|
||||
---------------------------------
|
||||
|
||||
Using coccicheck is best as it provides in the spatch command line
|
||||
include options matching the options used when we compile the kernel.
|
||||
You can learn what these options are by using V=1, you could then
|
||||
manually run Coccinelle with debug options added.
|
||||
|
||||
Alternatively you can debug running Coccinelle against SmPL patches
|
||||
by asking for stderr to be redirected to stderr, by default stderr
|
||||
is redirected to /dev/null, if you'd like to capture stderr you
|
||||
can specify the ``DEBUG_FILE="file.txt"`` option to coccicheck. For
|
||||
instance::
|
||||
|
||||
rm -f cocci.err
|
||||
make coccicheck COCCI=scripts/coccinelle/free/kfree.cocci MODE=report DEBUG_FILE=cocci.err
|
||||
cat cocci.err
|
||||
|
||||
You can use SPFLAGS to add debugging flags, for instance you may want to
|
||||
add both --profile --show-trying to SPFLAGS when debugging. For instance
|
||||
you may want to use::
|
||||
|
||||
rm -f err.log
|
||||
export COCCI=scripts/coccinelle/misc/irqf_oneshot.cocci
|
||||
make coccicheck DEBUG_FILE="err.log" MODE=report SPFLAGS="--profile --show-trying" M=./drivers/mfd/arizona-irq.c
|
||||
|
||||
err.log will now have the profiling information, while stdout will
|
||||
provide some progress information as Coccinelle moves forward with
|
||||
work.
|
||||
|
||||
DEBUG_FILE support is only supported when using coccinelle >= 1.2.
|
||||
|
||||
.cocciconfig support
|
||||
--------------------
|
||||
|
||||
Coccinelle supports reading .cocciconfig for default Coccinelle options that
|
||||
should be used every time spatch is spawned, the order of precedence for
|
||||
variables for .cocciconfig is as follows:
|
||||
|
||||
- Your current user's home directory is processed first
|
||||
- Your directory from which spatch is called is processed next
|
||||
- The directory provided with the --dir option is processed last, if used
|
||||
|
||||
Since coccicheck runs through make, it naturally runs from the kernel
|
||||
proper dir, as such the second rule above would be implied for picking up a
|
||||
.cocciconfig when using ``make coccicheck``.
|
||||
|
||||
``make coccicheck`` also supports using M= targets.If you do not supply
|
||||
any M= target, it is assumed you want to target the entire kernel.
|
||||
The kernel coccicheck script has::
|
||||
|
||||
if [ "$KBUILD_EXTMOD" = "" ] ; then
|
||||
OPTIONS="--dir $srctree $COCCIINCLUDE"
|
||||
else
|
||||
OPTIONS="--dir $KBUILD_EXTMOD $COCCIINCLUDE"
|
||||
fi
|
||||
|
||||
KBUILD_EXTMOD is set when an explicit target with M= is used. For both cases
|
||||
the spatch --dir argument is used, as such third rule applies when whether M=
|
||||
is used or not, and when M= is used the target directory can have its own
|
||||
.cocciconfig file. When M= is not passed as an argument to coccicheck the
|
||||
target directory is the same as the directory from where spatch was called.
|
||||
|
||||
If not using the kernel's coccicheck target, keep the above precedence
|
||||
order logic of .cocciconfig reading. If using the kernel's coccicheck target,
|
||||
override any of the kernel's .coccicheck's settings using SPFLAGS.
|
||||
|
||||
We help Coccinelle when used against Linux with a set of sensible defaults
|
||||
options for Linux with our own Linux .cocciconfig. This hints to coccinelle
|
||||
git can be used for ``git grep`` queries over coccigrep. A timeout of 200
|
||||
seconds should suffice for now.
|
||||
|
||||
The options picked up by coccinelle when reading a .cocciconfig do not appear
|
||||
as arguments to spatch processes running on your system, to confirm what
|
||||
options will be used by Coccinelle run::
|
||||
|
||||
spatch --print-options-only
|
||||
|
||||
You can override with your own preferred index option by using SPFLAGS. Take
|
||||
note that when there are conflicting options Coccinelle takes precedence for
|
||||
the last options passed. Using .cocciconfig is possible to use idutils, however
|
||||
given the order of precedence followed by Coccinelle, since the kernel now
|
||||
carries its own .cocciconfig, you will need to use SPFLAGS to use idutils if
|
||||
desired. See below section "Additional flags" for more details on how to use
|
||||
idutils.
|
||||
|
||||
Additional flags
|
||||
----------------
|
||||
|
||||
Additional flags can be passed to spatch through the SPFLAGS
|
||||
variable. This works as Coccinelle respects the last flags
|
||||
given to it when options are in conflict. ::
|
||||
|
||||
make SPFLAGS=--use-glimpse coccicheck
|
||||
|
||||
Coccinelle supports idutils as well but requires coccinelle >= 1.0.6.
|
||||
When no ID file is specified coccinelle assumes your ID database file
|
||||
is in the file .id-utils.index on the top level of the kernel, coccinelle
|
||||
carries a script scripts/idutils_index.sh which creates the database with::
|
||||
|
||||
mkid -i C --output .id-utils.index
|
||||
|
||||
If you have another database filename you can also just symlink with this
|
||||
name. ::
|
||||
|
||||
make SPFLAGS=--use-idutils coccicheck
|
||||
|
||||
Alternatively you can specify the database filename explicitly, for
|
||||
instance::
|
||||
|
||||
make SPFLAGS="--use-idutils /full-path/to/ID" coccicheck
|
||||
|
||||
See ``spatch --help`` to learn more about spatch options.
|
||||
|
||||
Note that the ``--use-glimpse`` and ``--use-idutils`` options
|
||||
require external tools for indexing the code. None of them is
|
||||
thus active by default. However, by indexing the code with
|
||||
one of these tools, and according to the cocci file used,
|
||||
spatch could proceed the entire code base more quickly.
|
||||
|
||||
SmPL patch specific options
|
||||
---------------------------
|
||||
|
||||
SmPL patches can have their own requirements for options passed
|
||||
to Coccinelle. SmPL patch specific options can be provided by
|
||||
providing them at the top of the SmPL patch, for instance::
|
||||
|
||||
// Options: --no-includes --include-headers
|
||||
|
||||
SmPL patch Coccinelle requirements
|
||||
----------------------------------
|
||||
|
||||
As Coccinelle features get added some more advanced SmPL patches
|
||||
may require newer versions of Coccinelle. If an SmPL patch requires
|
||||
at least a version of Coccinelle, this can be specified as follows,
|
||||
as an example if requiring at least Coccinelle >= 1.0.5::
|
||||
|
||||
// Requires: 1.0.5
|
||||
|
||||
Proposing new semantic patches
|
||||
-------------------------------
|
||||
|
||||
New semantic patches can be proposed and submitted by kernel
|
||||
developers. For sake of clarity, they should be organized in the
|
||||
sub-directories of ``scripts/coccinelle/``.
|
||||
|
||||
|
||||
Detailed description of the ``report`` mode
|
||||
-------------------------------------------
|
||||
|
||||
``report`` generates a list in the following format::
|
||||
|
||||
file:line:column-column: message
|
||||
|
||||
Example
|
||||
~~~~~~~
|
||||
|
||||
Running::
|
||||
|
||||
make coccicheck MODE=report COCCI=scripts/coccinelle/api/err_cast.cocci
|
||||
|
||||
will execute the following part of the SmPL script::
|
||||
|
||||
<smpl>
|
||||
@r depends on !context && !patch && (org || report)@
|
||||
expression x;
|
||||
position p;
|
||||
@@
|
||||
|
||||
ERR_PTR@p(PTR_ERR(x))
|
||||
|
||||
@script:python depends on report@
|
||||
p << r.p;
|
||||
x << r.x;
|
||||
@@
|
||||
|
||||
msg="ERR_CAST can be used with %s" % (x)
|
||||
coccilib.report.print_report(p[0], msg)
|
||||
</smpl>
|
||||
|
||||
This SmPL excerpt generates entries on the standard output, as
|
||||
illustrated below::
|
||||
|
||||
/home/user/linux/crypto/ctr.c:188:9-16: ERR_CAST can be used with alg
|
||||
/home/user/linux/crypto/authenc.c:619:9-16: ERR_CAST can be used with auth
|
||||
/home/user/linux/crypto/xts.c:227:9-16: ERR_CAST can be used with alg
|
||||
|
||||
|
||||
Detailed description of the ``patch`` mode
|
||||
------------------------------------------
|
||||
|
||||
When the ``patch`` mode is available, it proposes a fix for each problem
|
||||
identified.
|
||||
|
||||
Example
|
||||
~~~~~~~
|
||||
|
||||
Running::
|
||||
|
||||
make coccicheck MODE=patch COCCI=scripts/coccinelle/api/err_cast.cocci
|
||||
|
||||
will execute the following part of the SmPL script::
|
||||
|
||||
<smpl>
|
||||
@ depends on !context && patch && !org && !report @
|
||||
expression x;
|
||||
@@
|
||||
|
||||
- ERR_PTR(PTR_ERR(x))
|
||||
+ ERR_CAST(x)
|
||||
</smpl>
|
||||
|
||||
This SmPL excerpt generates patch hunks on the standard output, as
|
||||
illustrated below::
|
||||
|
||||
diff -u -p a/crypto/ctr.c b/crypto/ctr.c
|
||||
--- a/crypto/ctr.c 2010-05-26 10:49:38.000000000 +0200
|
||||
+++ b/crypto/ctr.c 2010-06-03 23:44:49.000000000 +0200
|
||||
@@ -185,7 +185,7 @@ static struct crypto_instance *crypto_ct
|
||||
alg = crypto_attr_alg(tb[1], CRYPTO_ALG_TYPE_CIPHER,
|
||||
CRYPTO_ALG_TYPE_MASK);
|
||||
if (IS_ERR(alg))
|
||||
- return ERR_PTR(PTR_ERR(alg));
|
||||
+ return ERR_CAST(alg);
|
||||
|
||||
/* Block size must be >= 4 bytes. */
|
||||
err = -EINVAL;
|
||||
|
||||
Detailed description of the ``context`` mode
|
||||
--------------------------------------------
|
||||
|
||||
``context`` highlights lines of interest and their context
|
||||
in a diff-like style.
|
||||
|
||||
**NOTE**: The diff-like output generated is NOT an applicable patch. The
|
||||
intent of the ``context`` mode is to highlight the important lines
|
||||
(annotated with minus, ``-``) and gives some surrounding context
|
||||
lines around. This output can be used with the diff mode of
|
||||
Emacs to review the code.
|
||||
|
||||
Example
|
||||
~~~~~~~
|
||||
|
||||
Running::
|
||||
|
||||
make coccicheck MODE=context COCCI=scripts/coccinelle/api/err_cast.cocci
|
||||
|
||||
will execute the following part of the SmPL script::
|
||||
|
||||
<smpl>
|
||||
@ depends on context && !patch && !org && !report@
|
||||
expression x;
|
||||
@@
|
||||
|
||||
* ERR_PTR(PTR_ERR(x))
|
||||
</smpl>
|
||||
|
||||
This SmPL excerpt generates diff hunks on the standard output, as
|
||||
illustrated below::
|
||||
|
||||
diff -u -p /home/user/linux/crypto/ctr.c /tmp/nothing
|
||||
--- /home/user/linux/crypto/ctr.c 2010-05-26 10:49:38.000000000 +0200
|
||||
+++ /tmp/nothing
|
||||
@@ -185,7 +185,6 @@ static struct crypto_instance *crypto_ct
|
||||
alg = crypto_attr_alg(tb[1], CRYPTO_ALG_TYPE_CIPHER,
|
||||
CRYPTO_ALG_TYPE_MASK);
|
||||
if (IS_ERR(alg))
|
||||
- return ERR_PTR(PTR_ERR(alg));
|
||||
|
||||
/* Block size must be >= 4 bytes. */
|
||||
err = -EINVAL;
|
||||
|
||||
Detailed description of the ``org`` mode
|
||||
----------------------------------------
|
||||
|
||||
``org`` generates a report in the Org mode format of Emacs.
|
||||
|
||||
Example
|
||||
~~~~~~~
|
||||
|
||||
Running::
|
||||
|
||||
make coccicheck MODE=org COCCI=scripts/coccinelle/api/err_cast.cocci
|
||||
|
||||
will execute the following part of the SmPL script::
|
||||
|
||||
<smpl>
|
||||
@r depends on !context && !patch && (org || report)@
|
||||
expression x;
|
||||
position p;
|
||||
@@
|
||||
|
||||
ERR_PTR@p(PTR_ERR(x))
|
||||
|
||||
@script:python depends on org@
|
||||
p << r.p;
|
||||
x << r.x;
|
||||
@@
|
||||
|
||||
msg="ERR_CAST can be used with %s" % (x)
|
||||
msg_safe=msg.replace("[","@(").replace("]",")")
|
||||
coccilib.org.print_todo(p[0], msg_safe)
|
||||
</smpl>
|
||||
|
||||
This SmPL excerpt generates Org entries on the standard output, as
|
||||
illustrated below::
|
||||
|
||||
* TODO [[view:/home/user/linux/crypto/ctr.c::face=ovl-face1::linb=188::colb=9::cole=16][ERR_CAST can be used with alg]]
|
||||
* TODO [[view:/home/user/linux/crypto/authenc.c::face=ovl-face1::linb=619::colb=9::cole=16][ERR_CAST can be used with auth]]
|
||||
* TODO [[view:/home/user/linux/crypto/xts.c::face=ovl-face1::linb=227::colb=9::cole=16][ERR_CAST can be used with alg]]
|
256
Documentation/dev-tools/gcov.rst
Normal file
256
Documentation/dev-tools/gcov.rst
Normal file
@ -0,0 +1,256 @@
|
||||
Using gcov with the Linux kernel
|
||||
================================
|
||||
|
||||
gcov profiling kernel support enables the use of GCC's coverage testing
|
||||
tool gcov_ with the Linux kernel. Coverage data of a running kernel
|
||||
is exported in gcov-compatible format via the "gcov" debugfs directory.
|
||||
To get coverage data for a specific file, change to the kernel build
|
||||
directory and use gcov with the ``-o`` option as follows (requires root)::
|
||||
|
||||
# cd /tmp/linux-out
|
||||
# gcov -o /sys/kernel/debug/gcov/tmp/linux-out/kernel spinlock.c
|
||||
|
||||
This will create source code files annotated with execution counts
|
||||
in the current directory. In addition, graphical gcov front-ends such
|
||||
as lcov_ can be used to automate the process of collecting data
|
||||
for the entire kernel and provide coverage overviews in HTML format.
|
||||
|
||||
Possible uses:
|
||||
|
||||
* debugging (has this line been reached at all?)
|
||||
* test improvement (how do I change my test to cover these lines?)
|
||||
* minimizing kernel configurations (do I need this option if the
|
||||
associated code is never run?)
|
||||
|
||||
.. _gcov: http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
|
||||
.. _lcov: http://ltp.sourceforge.net/coverage/lcov.php
|
||||
|
||||
|
||||
Preparation
|
||||
-----------
|
||||
|
||||
Configure the kernel with::
|
||||
|
||||
CONFIG_DEBUG_FS=y
|
||||
CONFIG_GCOV_KERNEL=y
|
||||
|
||||
select the gcc's gcov format, default is autodetect based on gcc version::
|
||||
|
||||
CONFIG_GCOV_FORMAT_AUTODETECT=y
|
||||
|
||||
and to get coverage data for the entire kernel::
|
||||
|
||||
CONFIG_GCOV_PROFILE_ALL=y
|
||||
|
||||
Note that kernels compiled with profiling flags will be significantly
|
||||
larger and run slower. Also CONFIG_GCOV_PROFILE_ALL may not be supported
|
||||
on all architectures.
|
||||
|
||||
Profiling data will only become accessible once debugfs has been
|
||||
mounted::
|
||||
|
||||
mount -t debugfs none /sys/kernel/debug
|
||||
|
||||
|
||||
Customization
|
||||
-------------
|
||||
|
||||
To enable profiling for specific files or directories, add a line
|
||||
similar to the following to the respective kernel Makefile:
|
||||
|
||||
- For a single file (e.g. main.o)::
|
||||
|
||||
GCOV_PROFILE_main.o := y
|
||||
|
||||
- For all files in one directory::
|
||||
|
||||
GCOV_PROFILE := y
|
||||
|
||||
To exclude files from being profiled even when CONFIG_GCOV_PROFILE_ALL
|
||||
is specified, use::
|
||||
|
||||
GCOV_PROFILE_main.o := n
|
||||
|
||||
and::
|
||||
|
||||
GCOV_PROFILE := n
|
||||
|
||||
Only files which are linked to the main kernel image or are compiled as
|
||||
kernel modules are supported by this mechanism.
|
||||
|
||||
|
||||
Files
|
||||
-----
|
||||
|
||||
The gcov kernel support creates the following files in debugfs:
|
||||
|
||||
``/sys/kernel/debug/gcov``
|
||||
Parent directory for all gcov-related files.
|
||||
|
||||
``/sys/kernel/debug/gcov/reset``
|
||||
Global reset file: resets all coverage data to zero when
|
||||
written to.
|
||||
|
||||
``/sys/kernel/debug/gcov/path/to/compile/dir/file.gcda``
|
||||
The actual gcov data file as understood by the gcov
|
||||
tool. Resets file coverage data to zero when written to.
|
||||
|
||||
``/sys/kernel/debug/gcov/path/to/compile/dir/file.gcno``
|
||||
Symbolic link to a static data file required by the gcov
|
||||
tool. This file is generated by gcc when compiling with
|
||||
option ``-ftest-coverage``.
|
||||
|
||||
|
||||
Modules
|
||||
-------
|
||||
|
||||
Kernel modules may contain cleanup code which is only run during
|
||||
module unload time. The gcov mechanism provides a means to collect
|
||||
coverage data for such code by keeping a copy of the data associated
|
||||
with the unloaded module. This data remains available through debugfs.
|
||||
Once the module is loaded again, the associated coverage counters are
|
||||
initialized with the data from its previous instantiation.
|
||||
|
||||
This behavior can be deactivated by specifying the gcov_persist kernel
|
||||
parameter::
|
||||
|
||||
gcov_persist=0
|
||||
|
||||
At run-time, a user can also choose to discard data for an unloaded
|
||||
module by writing to its data file or the global reset file.
|
||||
|
||||
|
||||
Separated build and test machines
|
||||
---------------------------------
|
||||
|
||||
The gcov kernel profiling infrastructure is designed to work out-of-the
|
||||
box for setups where kernels are built and run on the same machine. In
|
||||
cases where the kernel runs on a separate machine, special preparations
|
||||
must be made, depending on where the gcov tool is used:
|
||||
|
||||
a) gcov is run on the TEST machine
|
||||
|
||||
The gcov tool version on the test machine must be compatible with the
|
||||
gcc version used for kernel build. Also the following files need to be
|
||||
copied from build to test machine:
|
||||
|
||||
from the source tree:
|
||||
- all C source files + headers
|
||||
|
||||
from the build tree:
|
||||
- all C source files + headers
|
||||
- all .gcda and .gcno files
|
||||
- all links to directories
|
||||
|
||||
It is important to note that these files need to be placed into the
|
||||
exact same file system location on the test machine as on the build
|
||||
machine. If any of the path components is symbolic link, the actual
|
||||
directory needs to be used instead (due to make's CURDIR handling).
|
||||
|
||||
b) gcov is run on the BUILD machine
|
||||
|
||||
The following files need to be copied after each test case from test
|
||||
to build machine:
|
||||
|
||||
from the gcov directory in sysfs:
|
||||
- all .gcda files
|
||||
- all links to .gcno files
|
||||
|
||||
These files can be copied to any location on the build machine. gcov
|
||||
must then be called with the -o option pointing to that directory.
|
||||
|
||||
Example directory setup on the build machine::
|
||||
|
||||
/tmp/linux: kernel source tree
|
||||
/tmp/out: kernel build directory as specified by make O=
|
||||
/tmp/coverage: location of the files copied from the test machine
|
||||
|
||||
[user@build] cd /tmp/out
|
||||
[user@build] gcov -o /tmp/coverage/tmp/out/init main.c
|
||||
|
||||
|
||||
Troubleshooting
|
||||
---------------
|
||||
|
||||
Problem
|
||||
Compilation aborts during linker step.
|
||||
|
||||
Cause
|
||||
Profiling flags are specified for source files which are not
|
||||
linked to the main kernel or which are linked by a custom
|
||||
linker procedure.
|
||||
|
||||
Solution
|
||||
Exclude affected source files from profiling by specifying
|
||||
``GCOV_PROFILE := n`` or ``GCOV_PROFILE_basename.o := n`` in the
|
||||
corresponding Makefile.
|
||||
|
||||
Problem
|
||||
Files copied from sysfs appear empty or incomplete.
|
||||
|
||||
Cause
|
||||
Due to the way seq_file works, some tools such as cp or tar
|
||||
may not correctly copy files from sysfs.
|
||||
|
||||
Solution
|
||||
Use ``cat``' to read ``.gcda`` files and ``cp -d`` to copy links.
|
||||
Alternatively use the mechanism shown in Appendix B.
|
||||
|
||||
|
||||
Appendix A: gather_on_build.sh
|
||||
------------------------------
|
||||
|
||||
Sample script to gather coverage meta files on the build machine
|
||||
(see 6a)::
|
||||
|
||||
#!/bin/bash
|
||||
|
||||
KSRC=$1
|
||||
KOBJ=$2
|
||||
DEST=$3
|
||||
|
||||
if [ -z "$KSRC" ] || [ -z "$KOBJ" ] || [ -z "$DEST" ]; then
|
||||
echo "Usage: $0 <ksrc directory> <kobj directory> <output.tar.gz>" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
KSRC=$(cd $KSRC; printf "all:\n\t@echo \${CURDIR}\n" | make -f -)
|
||||
KOBJ=$(cd $KOBJ; printf "all:\n\t@echo \${CURDIR}\n" | make -f -)
|
||||
|
||||
find $KSRC $KOBJ \( -name '*.gcno' -o -name '*.[ch]' -o -type l \) -a \
|
||||
-perm /u+r,g+r | tar cfz $DEST -P -T -
|
||||
|
||||
if [ $? -eq 0 ] ; then
|
||||
echo "$DEST successfully created, copy to test system and unpack with:"
|
||||
echo " tar xfz $DEST -P"
|
||||
else
|
||||
echo "Could not create file $DEST"
|
||||
fi
|
||||
|
||||
|
||||
Appendix B: gather_on_test.sh
|
||||
-----------------------------
|
||||
|
||||
Sample script to gather coverage data files on the test machine
|
||||
(see 6b)::
|
||||
|
||||
#!/bin/bash -e
|
||||
|
||||
DEST=$1
|
||||
GCDA=/sys/kernel/debug/gcov
|
||||
|
||||
if [ -z "$DEST" ] ; then
|
||||
echo "Usage: $0 <output.tar.gz>" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
TEMPDIR=$(mktemp -d)
|
||||
echo Collecting data..
|
||||
find $GCDA -type d -exec mkdir -p $TEMPDIR/\{\} \;
|
||||
find $GCDA -name '*.gcda' -exec sh -c 'cat < $0 > '$TEMPDIR'/$0' {} \;
|
||||
find $GCDA -name '*.gcno' -exec sh -c 'cp -d $0 '$TEMPDIR'/$0' {} \;
|
||||
tar czf $DEST -C $TEMPDIR sys
|
||||
rm -rf $TEMPDIR
|
||||
|
||||
echo "$DEST successfully created, copy to build system and unpack with:"
|
||||
echo " tar xfz $DEST"
|
173
Documentation/dev-tools/gdb-kernel-debugging.rst
Normal file
173
Documentation/dev-tools/gdb-kernel-debugging.rst
Normal file
@ -0,0 +1,173 @@
|
||||
.. highlight:: none
|
||||
|
||||
Debugging kernel and modules via gdb
|
||||
====================================
|
||||
|
||||
The kernel debugger kgdb, hypervisors like QEMU or JTAG-based hardware
|
||||
interfaces allow to debug the Linux kernel and its modules during runtime
|
||||
using gdb. Gdb comes with a powerful scripting interface for python. The
|
||||
kernel provides a collection of helper scripts that can simplify typical
|
||||
kernel debugging steps. This is a short tutorial about how to enable and use
|
||||
them. It focuses on QEMU/KVM virtual machines as target, but the examples can
|
||||
be transferred to the other gdb stubs as well.
|
||||
|
||||
|
||||
Requirements
|
||||
------------
|
||||
|
||||
- gdb 7.2+ (recommended: 7.4+) with python support enabled (typically true
|
||||
for distributions)
|
||||
|
||||
|
||||
Setup
|
||||
-----
|
||||
|
||||
- Create a virtual Linux machine for QEMU/KVM (see www.linux-kvm.org and
|
||||
www.qemu.org for more details). For cross-development,
|
||||
http://landley.net/aboriginal/bin keeps a pool of machine images and
|
||||
toolchains that can be helpful to start from.
|
||||
|
||||
- Build the kernel with CONFIG_GDB_SCRIPTS enabled, but leave
|
||||
CONFIG_DEBUG_INFO_REDUCED off. If your architecture supports
|
||||
CONFIG_FRAME_POINTER, keep it enabled.
|
||||
|
||||
- Install that kernel on the guest.
|
||||
Alternatively, QEMU allows to boot the kernel directly using -kernel,
|
||||
-append, -initrd command line switches. This is generally only useful if
|
||||
you do not depend on modules. See QEMU documentation for more details on
|
||||
this mode.
|
||||
|
||||
- Enable the gdb stub of QEMU/KVM, either
|
||||
|
||||
- at VM startup time by appending "-s" to the QEMU command line
|
||||
|
||||
or
|
||||
|
||||
- during runtime by issuing "gdbserver" from the QEMU monitor
|
||||
console
|
||||
|
||||
- cd /path/to/linux-build
|
||||
|
||||
- Start gdb: gdb vmlinux
|
||||
|
||||
Note: Some distros may restrict auto-loading of gdb scripts to known safe
|
||||
directories. In case gdb reports to refuse loading vmlinux-gdb.py, add::
|
||||
|
||||
add-auto-load-safe-path /path/to/linux-build
|
||||
|
||||
to ~/.gdbinit. See gdb help for more details.
|
||||
|
||||
- Attach to the booted guest::
|
||||
|
||||
(gdb) target remote :1234
|
||||
|
||||
|
||||
Examples of using the Linux-provided gdb helpers
|
||||
------------------------------------------------
|
||||
|
||||
- Load module (and main kernel) symbols::
|
||||
|
||||
(gdb) lx-symbols
|
||||
loading vmlinux
|
||||
scanning for modules in /home/user/linux/build
|
||||
loading @0xffffffffa0020000: /home/user/linux/build/net/netfilter/xt_tcpudp.ko
|
||||
loading @0xffffffffa0016000: /home/user/linux/build/net/netfilter/xt_pkttype.ko
|
||||
loading @0xffffffffa0002000: /home/user/linux/build/net/netfilter/xt_limit.ko
|
||||
loading @0xffffffffa00ca000: /home/user/linux/build/net/packet/af_packet.ko
|
||||
loading @0xffffffffa003c000: /home/user/linux/build/fs/fuse/fuse.ko
|
||||
...
|
||||
loading @0xffffffffa0000000: /home/user/linux/build/drivers/ata/ata_generic.ko
|
||||
|
||||
- Set a breakpoint on some not yet loaded module function, e.g.::
|
||||
|
||||
(gdb) b btrfs_init_sysfs
|
||||
Function "btrfs_init_sysfs" not defined.
|
||||
Make breakpoint pending on future shared library load? (y or [n]) y
|
||||
Breakpoint 1 (btrfs_init_sysfs) pending.
|
||||
|
||||
- Continue the target::
|
||||
|
||||
(gdb) c
|
||||
|
||||
- Load the module on the target and watch the symbols being loaded as well as
|
||||
the breakpoint hit::
|
||||
|
||||
loading @0xffffffffa0034000: /home/user/linux/build/lib/libcrc32c.ko
|
||||
loading @0xffffffffa0050000: /home/user/linux/build/lib/lzo/lzo_compress.ko
|
||||
loading @0xffffffffa006e000: /home/user/linux/build/lib/zlib_deflate/zlib_deflate.ko
|
||||
loading @0xffffffffa01b1000: /home/user/linux/build/fs/btrfs/btrfs.ko
|
||||
|
||||
Breakpoint 1, btrfs_init_sysfs () at /home/user/linux/fs/btrfs/sysfs.c:36
|
||||
36 btrfs_kset = kset_create_and_add("btrfs", NULL, fs_kobj);
|
||||
|
||||
- Dump the log buffer of the target kernel::
|
||||
|
||||
(gdb) lx-dmesg
|
||||
[ 0.000000] Initializing cgroup subsys cpuset
|
||||
[ 0.000000] Initializing cgroup subsys cpu
|
||||
[ 0.000000] Linux version 3.8.0-rc4-dbg+ (...
|
||||
[ 0.000000] Command line: root=/dev/sda2 resume=/dev/sda1 vga=0x314
|
||||
[ 0.000000] e820: BIOS-provided physical RAM map:
|
||||
[ 0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
|
||||
[ 0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
|
||||
....
|
||||
|
||||
- Examine fields of the current task struct::
|
||||
|
||||
(gdb) p $lx_current().pid
|
||||
$1 = 4998
|
||||
(gdb) p $lx_current().comm
|
||||
$2 = "modprobe\000\000\000\000\000\000\000"
|
||||
|
||||
- Make use of the per-cpu function for the current or a specified CPU::
|
||||
|
||||
(gdb) p $lx_per_cpu("runqueues").nr_running
|
||||
$3 = 1
|
||||
(gdb) p $lx_per_cpu("runqueues", 2).nr_running
|
||||
$4 = 0
|
||||
|
||||
- Dig into hrtimers using the container_of helper::
|
||||
|
||||
(gdb) set $next = $lx_per_cpu("hrtimer_bases").clock_base[0].active.next
|
||||
(gdb) p *$container_of($next, "struct hrtimer", "node")
|
||||
$5 = {
|
||||
node = {
|
||||
node = {
|
||||
__rb_parent_color = 18446612133355256072,
|
||||
rb_right = 0x0 <irq_stack_union>,
|
||||
rb_left = 0x0 <irq_stack_union>
|
||||
},
|
||||
expires = {
|
||||
tv64 = 1835268000000
|
||||
}
|
||||
},
|
||||
_softexpires = {
|
||||
tv64 = 1835268000000
|
||||
},
|
||||
function = 0xffffffff81078232 <tick_sched_timer>,
|
||||
base = 0xffff88003fd0d6f0,
|
||||
state = 1,
|
||||
start_pid = 0,
|
||||
start_site = 0xffffffff81055c1f <hrtimer_start_range_ns+20>,
|
||||
start_comm = "swapper/2\000\000\000\000\000\000"
|
||||
}
|
||||
|
||||
|
||||
List of commands and functions
|
||||
------------------------------
|
||||
|
||||
The number of commands and convenience functions may evolve over the time,
|
||||
this is just a snapshot of the initial version::
|
||||
|
||||
(gdb) apropos lx
|
||||
function lx_current -- Return current task
|
||||
function lx_module -- Find module by name and return the module variable
|
||||
function lx_per_cpu -- Return per-cpu variable
|
||||
function lx_task_by_pid -- Find Linux task by PID and return the task_struct variable
|
||||
function lx_thread_info -- Calculate Linux thread_info from task variable
|
||||
lx-dmesg -- Print Linux kernel log buffer
|
||||
lx-lsmod -- List currently loaded modules
|
||||
lx-symbols -- (Re-)load symbols of Linux kernel and currently loaded modules
|
||||
|
||||
Detailed help can be obtained via "help <command-name>" for commands and "help
|
||||
function <function-name>" for convenience functions.
|
173
Documentation/dev-tools/kasan.rst
Normal file
173
Documentation/dev-tools/kasan.rst
Normal file
@ -0,0 +1,173 @@
|
||||
The Kernel Address Sanitizer (KASAN)
|
||||
====================================
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides
|
||||
a fast and comprehensive solution for finding use-after-free and out-of-bounds
|
||||
bugs.
|
||||
|
||||
KASAN uses compile-time instrumentation for checking every memory access,
|
||||
therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is
|
||||
required for detection of out-of-bounds accesses to stack or global variables.
|
||||
|
||||
Currently KASAN is supported only for the x86_64 and arm64 architectures.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
To enable KASAN configure kernel with::
|
||||
|
||||
CONFIG_KASAN = y
|
||||
|
||||
and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and
|
||||
inline are compiler instrumentation types. The former produces smaller binary
|
||||
the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC
|
||||
version 5.0 or later.
|
||||
|
||||
KASAN works with both SLUB and SLAB memory allocators.
|
||||
For better bug detection and nicer reporting, enable CONFIG_STACKTRACE.
|
||||
|
||||
To disable instrumentation for specific files or directories, add a line
|
||||
similar to the following to the respective kernel Makefile:
|
||||
|
||||
- For a single file (e.g. main.o)::
|
||||
|
||||
KASAN_SANITIZE_main.o := n
|
||||
|
||||
- For all files in one directory::
|
||||
|
||||
KASAN_SANITIZE := n
|
||||
|
||||
Error reports
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
A typical out of bounds access report looks like this::
|
||||
|
||||
==================================================================
|
||||
BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3
|
||||
Write of size 1 by task modprobe/1689
|
||||
=============================================================================
|
||||
BUG kmalloc-128 (Not tainted): kasan error
|
||||
-----------------------------------------------------------------------------
|
||||
|
||||
Disabling lock debugging due to kernel taint
|
||||
INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689
|
||||
__slab_alloc+0x4b4/0x4f0
|
||||
kmem_cache_alloc_trace+0x10b/0x190
|
||||
kmalloc_oob_right+0x3d/0x75 [test_kasan]
|
||||
init_module+0x9/0x47 [test_kasan]
|
||||
do_one_initcall+0x99/0x200
|
||||
load_module+0x2cb3/0x3b20
|
||||
SyS_finit_module+0x76/0x80
|
||||
system_call_fastpath+0x12/0x17
|
||||
INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080
|
||||
INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720
|
||||
|
||||
Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
|
||||
Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
|
||||
Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
|
||||
Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
|
||||
Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
|
||||
Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
|
||||
Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
|
||||
Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
|
||||
Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk.
|
||||
Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc ........
|
||||
Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
|
||||
CPU: 0 PID: 1689 Comm: modprobe Tainted: G B 3.18.0-rc1-mm1+ #98
|
||||
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
|
||||
ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78
|
||||
ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8
|
||||
ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558
|
||||
Call Trace:
|
||||
[<ffffffff81cc68ae>] dump_stack+0x46/0x58
|
||||
[<ffffffff811fd848>] print_trailer+0xf8/0x160
|
||||
[<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan]
|
||||
[<ffffffff811ff0f5>] object_err+0x35/0x40
|
||||
[<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan]
|
||||
[<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0
|
||||
[<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40
|
||||
[<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40
|
||||
[<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40
|
||||
[<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan]
|
||||
[<ffffffff8120a995>] __asan_store1+0x75/0xb0
|
||||
[<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan]
|
||||
[<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan]
|
||||
[<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan]
|
||||
[<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan]
|
||||
[<ffffffff810002d9>] do_one_initcall+0x99/0x200
|
||||
[<ffffffff811e4e5c>] ? __vunmap+0xec/0x160
|
||||
[<ffffffff81114f63>] load_module+0x2cb3/0x3b20
|
||||
[<ffffffff8110fd70>] ? m_show+0x240/0x240
|
||||
[<ffffffff81115f06>] SyS_finit_module+0x76/0x80
|
||||
[<ffffffff81cd3129>] system_call_fastpath+0x12/0x17
|
||||
Memory state around the buggy address:
|
||||
ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
|
||||
ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc
|
||||
ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
|
||||
ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
|
||||
ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00
|
||||
>ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc
|
||||
^
|
||||
ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
|
||||
ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
|
||||
ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb
|
||||
ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
|
||||
ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
|
||||
==================================================================
|
||||
|
||||
The header of the report discribe what kind of bug happened and what kind of
|
||||
access caused it. It's followed by the description of the accessed slub object
|
||||
(see 'SLUB Debug output' section in Documentation/vm/slub.txt for details) and
|
||||
the description of the accessed memory page.
|
||||
|
||||
In the last section the report shows memory state around the accessed address.
|
||||
Reading this part requires some understanding of how KASAN works.
|
||||
|
||||
The state of each 8 aligned bytes of memory is encoded in one shadow byte.
|
||||
Those 8 bytes can be accessible, partially accessible, freed or be a redzone.
|
||||
We use the following encoding for each shadow byte: 0 means that all 8 bytes
|
||||
of the corresponding memory region are accessible; number N (1 <= N <= 7) means
|
||||
that the first N bytes are accessible, and other (8 - N) bytes are not;
|
||||
any negative value indicates that the entire 8-byte word is inaccessible.
|
||||
We use different negative values to distinguish between different kinds of
|
||||
inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h).
|
||||
|
||||
In the report above the arrows point to the shadow byte 03, which means that
|
||||
the accessed address is partially accessible.
|
||||
|
||||
|
||||
Implementation details
|
||||
----------------------
|
||||
|
||||
From a high level, our approach to memory error detection is similar to that
|
||||
of kmemcheck: use shadow memory to record whether each byte of memory is safe
|
||||
to access, and use compile-time instrumentation to check shadow memory on each
|
||||
memory access.
|
||||
|
||||
AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory
|
||||
(e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and
|
||||
offset to translate a memory address to its corresponding shadow address.
|
||||
|
||||
Here is the function which translates an address to its corresponding shadow
|
||||
address::
|
||||
|
||||
static inline void *kasan_mem_to_shadow(const void *addr)
|
||||
{
|
||||
return ((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
|
||||
+ KASAN_SHADOW_OFFSET;
|
||||
}
|
||||
|
||||
where ``KASAN_SHADOW_SCALE_SHIFT = 3``.
|
||||
|
||||
Compile-time instrumentation used for checking memory accesses. Compiler inserts
|
||||
function calls (__asan_load*(addr), __asan_store*(addr)) before each memory
|
||||
access of size 1, 2, 4, 8 or 16. These functions check whether memory access is
|
||||
valid or not by checking corresponding shadow memory.
|
||||
|
||||
GCC 5.0 has possibility to perform inline instrumentation. Instead of making
|
||||
function calls GCC directly inserts the code to check the shadow memory.
|
||||
This option significantly enlarges kernel but it gives x1.1-x2 performance
|
||||
boost over outline instrumented kernel.
|
111
Documentation/dev-tools/kcov.rst
Normal file
111
Documentation/dev-tools/kcov.rst
Normal file
@ -0,0 +1,111 @@
|
||||
kcov: code coverage for fuzzing
|
||||
===============================
|
||||
|
||||
kcov exposes kernel code coverage information in a form suitable for coverage-
|
||||
guided fuzzing (randomized testing). Coverage data of a running kernel is
|
||||
exported via the "kcov" debugfs file. Coverage collection is enabled on a task
|
||||
basis, and thus it can capture precise coverage of a single system call.
|
||||
|
||||
Note that kcov does not aim to collect as much coverage as possible. It aims
|
||||
to collect more or less stable coverage that is function of syscall inputs.
|
||||
To achieve this goal it does not collect coverage in soft/hard interrupts
|
||||
and instrumentation of some inherently non-deterministic parts of kernel is
|
||||
disbled (e.g. scheduler, locking).
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
Configure the kernel with::
|
||||
|
||||
CONFIG_KCOV=y
|
||||
|
||||
CONFIG_KCOV requires gcc built on revision 231296 or later.
|
||||
Profiling data will only become accessible once debugfs has been mounted::
|
||||
|
||||
mount -t debugfs none /sys/kernel/debug
|
||||
|
||||
The following program demonstrates kcov usage from within a test program::
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <sys/mman.h>
|
||||
#include <unistd.h>
|
||||
#include <fcntl.h>
|
||||
|
||||
#define KCOV_INIT_TRACE _IOR('c', 1, unsigned long)
|
||||
#define KCOV_ENABLE _IO('c', 100)
|
||||
#define KCOV_DISABLE _IO('c', 101)
|
||||
#define COVER_SIZE (64<<10)
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int fd;
|
||||
unsigned long *cover, n, i;
|
||||
|
||||
/* A single fd descriptor allows coverage collection on a single
|
||||
* thread.
|
||||
*/
|
||||
fd = open("/sys/kernel/debug/kcov", O_RDWR);
|
||||
if (fd == -1)
|
||||
perror("open"), exit(1);
|
||||
/* Setup trace mode and trace size. */
|
||||
if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE))
|
||||
perror("ioctl"), exit(1);
|
||||
/* Mmap buffer shared between kernel- and user-space. */
|
||||
cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long),
|
||||
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
if ((void*)cover == MAP_FAILED)
|
||||
perror("mmap"), exit(1);
|
||||
/* Enable coverage collection on the current thread. */
|
||||
if (ioctl(fd, KCOV_ENABLE, 0))
|
||||
perror("ioctl"), exit(1);
|
||||
/* Reset coverage from the tail of the ioctl() call. */
|
||||
__atomic_store_n(&cover[0], 0, __ATOMIC_RELAXED);
|
||||
/* That's the target syscal call. */
|
||||
read(-1, NULL, 0);
|
||||
/* Read number of PCs collected. */
|
||||
n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED);
|
||||
for (i = 0; i < n; i++)
|
||||
printf("0x%lx\n", cover[i + 1]);
|
||||
/* Disable coverage collection for the current thread. After this call
|
||||
* coverage can be enabled for a different thread.
|
||||
*/
|
||||
if (ioctl(fd, KCOV_DISABLE, 0))
|
||||
perror("ioctl"), exit(1);
|
||||
/* Free resources. */
|
||||
if (munmap(cover, COVER_SIZE * sizeof(unsigned long)))
|
||||
perror("munmap"), exit(1);
|
||||
if (close(fd))
|
||||
perror("close"), exit(1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
After piping through addr2line output of the program looks as follows::
|
||||
|
||||
SyS_read
|
||||
fs/read_write.c:562
|
||||
__fdget_pos
|
||||
fs/file.c:774
|
||||
__fget_light
|
||||
fs/file.c:746
|
||||
__fget_light
|
||||
fs/file.c:750
|
||||
__fget_light
|
||||
fs/file.c:760
|
||||
__fdget_pos
|
||||
fs/file.c:784
|
||||
SyS_read
|
||||
fs/read_write.c:562
|
||||
|
||||
If a program needs to collect coverage from several threads (independently),
|
||||
it needs to open /sys/kernel/debug/kcov in each thread separately.
|
||||
|
||||
The interface is fine-grained to allow efficient forking of test processes.
|
||||
That is, a parent process opens /sys/kernel/debug/kcov, enables trace mode,
|
||||
mmaps coverage buffer and then forks child processes in a loop. Child processes
|
||||
only need to enable coverage (disable happens automatically on thread end).
|
733
Documentation/dev-tools/kmemcheck.rst
Normal file
733
Documentation/dev-tools/kmemcheck.rst
Normal file
@ -0,0 +1,733 @@
|
||||
Getting started with kmemcheck
|
||||
==============================
|
||||
|
||||
Vegard Nossum <vegardno@ifi.uio.no>
|
||||
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
kmemcheck is a debugging feature for the Linux Kernel. More specifically, it
|
||||
is a dynamic checker that detects and warns about some uses of uninitialized
|
||||
memory.
|
||||
|
||||
Userspace programmers might be familiar with Valgrind's memcheck. The main
|
||||
difference between memcheck and kmemcheck is that memcheck works for userspace
|
||||
programs only, and kmemcheck works for the kernel only. The implementations
|
||||
are of course vastly different. Because of this, kmemcheck is not as accurate
|
||||
as memcheck, but it turns out to be good enough in practice to discover real
|
||||
programmer errors that the compiler is not able to find through static
|
||||
analysis.
|
||||
|
||||
Enabling kmemcheck on a kernel will probably slow it down to the extent that
|
||||
the machine will not be usable for normal workloads such as e.g. an
|
||||
interactive desktop. kmemcheck will also cause the kernel to use about twice
|
||||
as much memory as normal. For this reason, kmemcheck is strictly a debugging
|
||||
feature.
|
||||
|
||||
|
||||
Downloading
|
||||
-----------
|
||||
|
||||
As of version 2.6.31-rc1, kmemcheck is included in the mainline kernel.
|
||||
|
||||
|
||||
Configuring and compiling
|
||||
-------------------------
|
||||
|
||||
kmemcheck only works for the x86 (both 32- and 64-bit) platform. A number of
|
||||
configuration variables must have specific settings in order for the kmemcheck
|
||||
menu to even appear in "menuconfig". These are:
|
||||
|
||||
- ``CONFIG_CC_OPTIMIZE_FOR_SIZE=n``
|
||||
This option is located under "General setup" / "Optimize for size".
|
||||
|
||||
Without this, gcc will use certain optimizations that usually lead to
|
||||
false positive warnings from kmemcheck. An example of this is a 16-bit
|
||||
field in a struct, where gcc may load 32 bits, then discard the upper
|
||||
16 bits. kmemcheck sees only the 32-bit load, and may trigger a
|
||||
warning for the upper 16 bits (if they're uninitialized).
|
||||
|
||||
- ``CONFIG_SLAB=y`` or ``CONFIG_SLUB=y``
|
||||
This option is located under "General setup" / "Choose SLAB
|
||||
allocator".
|
||||
|
||||
- ``CONFIG_FUNCTION_TRACER=n``
|
||||
This option is located under "Kernel hacking" / "Tracers" / "Kernel
|
||||
Function Tracer"
|
||||
|
||||
When function tracing is compiled in, gcc emits a call to another
|
||||
function at the beginning of every function. This means that when the
|
||||
page fault handler is called, the ftrace framework will be called
|
||||
before kmemcheck has had a chance to handle the fault. If ftrace then
|
||||
modifies memory that was tracked by kmemcheck, the result is an
|
||||
endless recursive page fault.
|
||||
|
||||
- ``CONFIG_DEBUG_PAGEALLOC=n``
|
||||
This option is located under "Kernel hacking" / "Memory Debugging"
|
||||
/ "Debug page memory allocations".
|
||||
|
||||
In addition, I highly recommend turning on ``CONFIG_DEBUG_INFO=y``. This is also
|
||||
located under "Kernel hacking". With this, you will be able to get line number
|
||||
information from the kmemcheck warnings, which is extremely valuable in
|
||||
debugging a problem. This option is not mandatory, however, because it slows
|
||||
down the compilation process and produces a much bigger kernel image.
|
||||
|
||||
Now the kmemcheck menu should be visible (under "Kernel hacking" / "Memory
|
||||
Debugging" / "kmemcheck: trap use of uninitialized memory"). Here follows
|
||||
a description of the kmemcheck configuration variables:
|
||||
|
||||
- ``CONFIG_KMEMCHECK``
|
||||
This must be enabled in order to use kmemcheck at all...
|
||||
|
||||
- ``CONFIG_KMEMCHECK_``[``DISABLED`` | ``ENABLED`` | ``ONESHOT``]``_BY_DEFAULT``
|
||||
This option controls the status of kmemcheck at boot-time. "Enabled"
|
||||
will enable kmemcheck right from the start, "disabled" will boot the
|
||||
kernel as normal (but with the kmemcheck code compiled in, so it can
|
||||
be enabled at run-time after the kernel has booted), and "one-shot" is
|
||||
a special mode which will turn kmemcheck off automatically after
|
||||
detecting the first use of uninitialized memory.
|
||||
|
||||
If you are using kmemcheck to actively debug a problem, then you
|
||||
probably want to choose "enabled" here.
|
||||
|
||||
The one-shot mode is mostly useful in automated test setups because it
|
||||
can prevent floods of warnings and increase the chances of the machine
|
||||
surviving in case something is really wrong. In other cases, the one-
|
||||
shot mode could actually be counter-productive because it would turn
|
||||
itself off at the very first error -- in the case of a false positive
|
||||
too -- and this would come in the way of debugging the specific
|
||||
problem you were interested in.
|
||||
|
||||
If you would like to use your kernel as normal, but with a chance to
|
||||
enable kmemcheck in case of some problem, it might be a good idea to
|
||||
choose "disabled" here. When kmemcheck is disabled, most of the run-
|
||||
time overhead is not incurred, and the kernel will be almost as fast
|
||||
as normal.
|
||||
|
||||
- ``CONFIG_KMEMCHECK_QUEUE_SIZE``
|
||||
Select the maximum number of error reports to store in an internal
|
||||
(fixed-size) buffer. Since errors can occur virtually anywhere and in
|
||||
any context, we need a temporary storage area which is guaranteed not
|
||||
to generate any other page faults when accessed. The queue will be
|
||||
emptied as soon as a tasklet may be scheduled. If the queue is full,
|
||||
new error reports will be lost.
|
||||
|
||||
The default value of 64 is probably fine. If some code produces more
|
||||
than 64 errors within an irqs-off section, then the code is likely to
|
||||
produce many, many more, too, and these additional reports seldom give
|
||||
any more information (the first report is usually the most valuable
|
||||
anyway).
|
||||
|
||||
This number might have to be adjusted if you are not using serial
|
||||
console or similar to capture the kernel log. If you are using the
|
||||
"dmesg" command to save the log, then getting a lot of kmemcheck
|
||||
warnings might overflow the kernel log itself, and the earlier reports
|
||||
will get lost in that way instead. Try setting this to 10 or so on
|
||||
such a setup.
|
||||
|
||||
- ``CONFIG_KMEMCHECK_SHADOW_COPY_SHIFT``
|
||||
Select the number of shadow bytes to save along with each entry of the
|
||||
error-report queue. These bytes indicate what parts of an allocation
|
||||
are initialized, uninitialized, etc. and will be displayed when an
|
||||
error is detected to help the debugging of a particular problem.
|
||||
|
||||
The number entered here is actually the logarithm of the number of
|
||||
bytes that will be saved. So if you pick for example 5 here, kmemcheck
|
||||
will save 2^5 = 32 bytes.
|
||||
|
||||
The default value should be fine for debugging most problems. It also
|
||||
fits nicely within 80 columns.
|
||||
|
||||
- ``CONFIG_KMEMCHECK_PARTIAL_OK``
|
||||
This option (when enabled) works around certain GCC optimizations that
|
||||
produce 32-bit reads from 16-bit variables where the upper 16 bits are
|
||||
thrown away afterwards.
|
||||
|
||||
The default value (enabled) is recommended. This may of course hide
|
||||
some real errors, but disabling it would probably produce a lot of
|
||||
false positives.
|
||||
|
||||
- ``CONFIG_KMEMCHECK_BITOPS_OK``
|
||||
This option silences warnings that would be generated for bit-field
|
||||
accesses where not all the bits are initialized at the same time. This
|
||||
may also hide some real bugs.
|
||||
|
||||
This option is probably obsolete, or it should be replaced with
|
||||
the kmemcheck-/bitfield-annotations for the code in question. The
|
||||
default value is therefore fine.
|
||||
|
||||
Now compile the kernel as usual.
|
||||
|
||||
|
||||
How to use
|
||||
----------
|
||||
|
||||
Booting
|
||||
~~~~~~~
|
||||
|
||||
First some information about the command-line options. There is only one
|
||||
option specific to kmemcheck, and this is called "kmemcheck". It can be used
|
||||
to override the default mode as chosen by the ``CONFIG_KMEMCHECK_*_BY_DEFAULT``
|
||||
option. Its possible settings are:
|
||||
|
||||
- ``kmemcheck=0`` (disabled)
|
||||
- ``kmemcheck=1`` (enabled)
|
||||
- ``kmemcheck=2`` (one-shot mode)
|
||||
|
||||
If SLUB debugging has been enabled in the kernel, it may take precedence over
|
||||
kmemcheck in such a way that the slab caches which are under SLUB debugging
|
||||
will not be tracked by kmemcheck. In order to ensure that this doesn't happen
|
||||
(even though it shouldn't by default), use SLUB's boot option ``slub_debug``,
|
||||
like this: ``slub_debug=-``
|
||||
|
||||
In fact, this option may also be used for fine-grained control over SLUB vs.
|
||||
kmemcheck. For example, if the command line includes
|
||||
``kmemcheck=1 slub_debug=,dentry``, then SLUB debugging will be used only
|
||||
for the "dentry" slab cache, and with kmemcheck tracking all the other
|
||||
caches. This is advanced usage, however, and is not generally recommended.
|
||||
|
||||
|
||||
Run-time enable/disable
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
When the kernel has booted, it is possible to enable or disable kmemcheck at
|
||||
run-time. WARNING: This feature is still experimental and may cause false
|
||||
positive warnings to appear. Therefore, try not to use this. If you find that
|
||||
it doesn't work properly (e.g. you see an unreasonable amount of warnings), I
|
||||
will be happy to take bug reports.
|
||||
|
||||
Use the file ``/proc/sys/kernel/kmemcheck`` for this purpose, e.g.::
|
||||
|
||||
$ echo 0 > /proc/sys/kernel/kmemcheck # disables kmemcheck
|
||||
|
||||
The numbers are the same as for the ``kmemcheck=`` command-line option.
|
||||
|
||||
|
||||
Debugging
|
||||
~~~~~~~~~
|
||||
|
||||
A typical report will look something like this::
|
||||
|
||||
WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (ffff88003e4a2024)
|
||||
80000000000000000000000000000000000000000088ffff0000000000000000
|
||||
i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
|
||||
^
|
||||
|
||||
Pid: 1856, comm: ntpdate Not tainted 2.6.29-rc5 #264 945P-A
|
||||
RIP: 0010:[<ffffffff8104ede8>] [<ffffffff8104ede8>] __dequeue_signal+0xc8/0x190
|
||||
RSP: 0018:ffff88003cdf7d98 EFLAGS: 00210002
|
||||
RAX: 0000000000000030 RBX: ffff88003d4ea968 RCX: 0000000000000009
|
||||
RDX: ffff88003e5d6018 RSI: ffff88003e5d6024 RDI: ffff88003cdf7e84
|
||||
RBP: ffff88003cdf7db8 R08: ffff88003e5d6000 R09: 0000000000000000
|
||||
R10: 0000000000000080 R11: 0000000000000000 R12: 000000000000000e
|
||||
R13: ffff88003cdf7e78 R14: ffff88003d530710 R15: ffff88003d5a98c8
|
||||
FS: 0000000000000000(0000) GS:ffff880001982000(0063) knlGS:00000
|
||||
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
|
||||
CR2: ffff88003f806ea0 CR3: 000000003c036000 CR4: 00000000000006a0
|
||||
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
|
||||
DR3: 0000000000000000 DR6: 00000000ffff4ff0 DR7: 0000000000000400
|
||||
[<ffffffff8104f04e>] dequeue_signal+0x8e/0x170
|
||||
[<ffffffff81050bd8>] get_signal_to_deliver+0x98/0x390
|
||||
[<ffffffff8100b87d>] do_notify_resume+0xad/0x7d0
|
||||
[<ffffffff8100c7b5>] int_signal+0x12/0x17
|
||||
[<ffffffffffffffff>] 0xffffffffffffffff
|
||||
|
||||
The single most valuable information in this report is the RIP (or EIP on 32-
|
||||
bit) value. This will help us pinpoint exactly which instruction that caused
|
||||
the warning.
|
||||
|
||||
If your kernel was compiled with ``CONFIG_DEBUG_INFO=y``, then all we have to do
|
||||
is give this address to the addr2line program, like this::
|
||||
|
||||
$ addr2line -e vmlinux -i ffffffff8104ede8
|
||||
arch/x86/include/asm/string_64.h:12
|
||||
include/asm-generic/siginfo.h:287
|
||||
kernel/signal.c:380
|
||||
kernel/signal.c:410
|
||||
|
||||
The "``-e vmlinux``" tells addr2line which file to look in. **IMPORTANT:**
|
||||
This must be the vmlinux of the kernel that produced the warning in the
|
||||
first place! If not, the line number information will almost certainly be
|
||||
wrong.
|
||||
|
||||
The "``-i``" tells addr2line to also print the line numbers of inlined
|
||||
functions. In this case, the flag was very important, because otherwise,
|
||||
it would only have printed the first line, which is just a call to
|
||||
``memcpy()``, which could be called from a thousand places in the kernel, and
|
||||
is therefore not very useful. These inlined functions would not show up in
|
||||
the stack trace above, simply because the kernel doesn't load the extra
|
||||
debugging information. This technique can of course be used with ordinary
|
||||
kernel oopses as well.
|
||||
|
||||
In this case, it's the caller of ``memcpy()`` that is interesting, and it can be
|
||||
found in ``include/asm-generic/siginfo.h``, line 287::
|
||||
|
||||
281 static inline void copy_siginfo(struct siginfo *to, struct siginfo *from)
|
||||
282 {
|
||||
283 if (from->si_code < 0)
|
||||
284 memcpy(to, from, sizeof(*to));
|
||||
285 else
|
||||
286 /* _sigchld is currently the largest know union member */
|
||||
287 memcpy(to, from, __ARCH_SI_PREAMBLE_SIZE + sizeof(from->_sifields._sigchld));
|
||||
288 }
|
||||
|
||||
Since this was a read (kmemcheck usually warns about reads only, though it can
|
||||
warn about writes to unallocated or freed memory as well), it was probably the
|
||||
"from" argument which contained some uninitialized bytes. Following the chain
|
||||
of calls, we move upwards to see where "from" was allocated or initialized,
|
||||
``kernel/signal.c``, line 380::
|
||||
|
||||
359 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
|
||||
360 {
|
||||
...
|
||||
367 list_for_each_entry(q, &list->list, list) {
|
||||
368 if (q->info.si_signo == sig) {
|
||||
369 if (first)
|
||||
370 goto still_pending;
|
||||
371 first = q;
|
||||
...
|
||||
377 if (first) {
|
||||
378 still_pending:
|
||||
379 list_del_init(&first->list);
|
||||
380 copy_siginfo(info, &first->info);
|
||||
381 __sigqueue_free(first);
|
||||
...
|
||||
392 }
|
||||
393 }
|
||||
|
||||
Here, it is ``&first->info`` that is being passed on to ``copy_siginfo()``. The
|
||||
variable ``first`` was found on a list -- passed in as the second argument to
|
||||
``collect_signal()``. We continue our journey through the stack, to figure out
|
||||
where the item on "list" was allocated or initialized. We move to line 410::
|
||||
|
||||
395 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
|
||||
396 siginfo_t *info)
|
||||
397 {
|
||||
...
|
||||
410 collect_signal(sig, pending, info);
|
||||
...
|
||||
414 }
|
||||
|
||||
Now we need to follow the ``pending`` pointer, since that is being passed on to
|
||||
``collect_signal()`` as ``list``. At this point, we've run out of lines from the
|
||||
"addr2line" output. Not to worry, we just paste the next addresses from the
|
||||
kmemcheck stack dump, i.e.::
|
||||
|
||||
[<ffffffff8104f04e>] dequeue_signal+0x8e/0x170
|
||||
[<ffffffff81050bd8>] get_signal_to_deliver+0x98/0x390
|
||||
[<ffffffff8100b87d>] do_notify_resume+0xad/0x7d0
|
||||
[<ffffffff8100c7b5>] int_signal+0x12/0x17
|
||||
|
||||
$ addr2line -e vmlinux -i ffffffff8104f04e ffffffff81050bd8 \
|
||||
ffffffff8100b87d ffffffff8100c7b5
|
||||
kernel/signal.c:446
|
||||
kernel/signal.c:1806
|
||||
arch/x86/kernel/signal.c:805
|
||||
arch/x86/kernel/signal.c:871
|
||||
arch/x86/kernel/entry_64.S:694
|
||||
|
||||
Remember that since these addresses were found on the stack and not as the
|
||||
RIP value, they actually point to the _next_ instruction (they are return
|
||||
addresses). This becomes obvious when we look at the code for line 446::
|
||||
|
||||
422 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
|
||||
423 {
|
||||
...
|
||||
431 signr = __dequeue_signal(&tsk->signal->shared_pending,
|
||||
432 mask, info);
|
||||
433 /*
|
||||
434 * itimer signal ?
|
||||
435 *
|
||||
436 * itimers are process shared and we restart periodic
|
||||
437 * itimers in the signal delivery path to prevent DoS
|
||||
438 * attacks in the high resolution timer case. This is
|
||||
439 * compliant with the old way of self restarting
|
||||
440 * itimers, as the SIGALRM is a legacy signal and only
|
||||
441 * queued once. Changing the restart behaviour to
|
||||
442 * restart the timer in the signal dequeue path is
|
||||
443 * reducing the timer noise on heavy loaded !highres
|
||||
444 * systems too.
|
||||
445 */
|
||||
446 if (unlikely(signr == SIGALRM)) {
|
||||
...
|
||||
489 }
|
||||
|
||||
So instead of looking at 446, we should be looking at 431, which is the line
|
||||
that executes just before 446. Here we see that what we are looking for is
|
||||
``&tsk->signal->shared_pending``.
|
||||
|
||||
Our next task is now to figure out which function that puts items on this
|
||||
``shared_pending`` list. A crude, but efficient tool, is ``git grep``::
|
||||
|
||||
$ git grep -n 'shared_pending' kernel/
|
||||
...
|
||||
kernel/signal.c:828: pending = group ? &t->signal->shared_pending : &t->pending;
|
||||
kernel/signal.c:1339: pending = group ? &t->signal->shared_pending : &t->pending;
|
||||
...
|
||||
|
||||
There were more results, but none of them were related to list operations,
|
||||
and these were the only assignments. We inspect the line numbers more closely
|
||||
and find that this is indeed where items are being added to the list::
|
||||
|
||||
816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
|
||||
817 int group)
|
||||
818 {
|
||||
...
|
||||
828 pending = group ? &t->signal->shared_pending : &t->pending;
|
||||
...
|
||||
851 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
|
||||
852 (is_si_special(info) ||
|
||||
853 info->si_code >= 0)));
|
||||
854 if (q) {
|
||||
855 list_add_tail(&q->list, &pending->list);
|
||||
...
|
||||
890 }
|
||||
|
||||
and::
|
||||
|
||||
1309 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
|
||||
1310 {
|
||||
....
|
||||
1339 pending = group ? &t->signal->shared_pending : &t->pending;
|
||||
1340 list_add_tail(&q->list, &pending->list);
|
||||
....
|
||||
1347 }
|
||||
|
||||
In the first case, the list element we are looking for, ``q``, is being
|
||||
returned from the function ``__sigqueue_alloc()``, which looks like an
|
||||
allocation function. Let's take a look at it::
|
||||
|
||||
187 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
|
||||
188 int override_rlimit)
|
||||
189 {
|
||||
190 struct sigqueue *q = NULL;
|
||||
191 struct user_struct *user;
|
||||
192
|
||||
193 /*
|
||||
194 * We won't get problems with the target's UID changing under us
|
||||
195 * because changing it requires RCU be used, and if t != current, the
|
||||
196 * caller must be holding the RCU readlock (by way of a spinlock) and
|
||||
197 * we use RCU protection here
|
||||
198 */
|
||||
199 user = get_uid(__task_cred(t)->user);
|
||||
200 atomic_inc(&user->sigpending);
|
||||
201 if (override_rlimit ||
|
||||
202 atomic_read(&user->sigpending) <=
|
||||
203 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
|
||||
204 q = kmem_cache_alloc(sigqueue_cachep, flags);
|
||||
205 if (unlikely(q == NULL)) {
|
||||
206 atomic_dec(&user->sigpending);
|
||||
207 free_uid(user);
|
||||
208 } else {
|
||||
209 INIT_LIST_HEAD(&q->list);
|
||||
210 q->flags = 0;
|
||||
211 q->user = user;
|
||||
212 }
|
||||
213
|
||||
214 return q;
|
||||
215 }
|
||||
|
||||
We see that this function initializes ``q->list``, ``q->flags``, and
|
||||
``q->user``. It seems that now is the time to look at the definition of
|
||||
``struct sigqueue``, e.g.::
|
||||
|
||||
14 struct sigqueue {
|
||||
15 struct list_head list;
|
||||
16 int flags;
|
||||
17 siginfo_t info;
|
||||
18 struct user_struct *user;
|
||||
19 };
|
||||
|
||||
And, you might remember, it was a ``memcpy()`` on ``&first->info`` that
|
||||
caused the warning, so this makes perfect sense. It also seems reasonable
|
||||
to assume that it is the caller of ``__sigqueue_alloc()`` that has the
|
||||
responsibility of filling out (initializing) this member.
|
||||
|
||||
But just which fields of the struct were uninitialized? Let's look at
|
||||
kmemcheck's report again::
|
||||
|
||||
WARNING: kmemcheck: Caught 32-bit read from uninitialized memory (ffff88003e4a2024)
|
||||
80000000000000000000000000000000000000000088ffff0000000000000000
|
||||
i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
|
||||
^
|
||||
|
||||
These first two lines are the memory dump of the memory object itself, and
|
||||
the shadow bytemap, respectively. The memory object itself is in this case
|
||||
``&first->info``. Just beware that the start of this dump is NOT the start
|
||||
of the object itself! The position of the caret (^) corresponds with the
|
||||
address of the read (ffff88003e4a2024).
|
||||
|
||||
The shadow bytemap dump legend is as follows:
|
||||
|
||||
- i: initialized
|
||||
- u: uninitialized
|
||||
- a: unallocated (memory has been allocated by the slab layer, but has not
|
||||
yet been handed off to anybody)
|
||||
- f: freed (memory has been allocated by the slab layer, but has been freed
|
||||
by the previous owner)
|
||||
|
||||
In order to figure out where (relative to the start of the object) the
|
||||
uninitialized memory was located, we have to look at the disassembly. For
|
||||
that, we'll need the RIP address again::
|
||||
|
||||
RIP: 0010:[<ffffffff8104ede8>] [<ffffffff8104ede8>] __dequeue_signal+0xc8/0x190
|
||||
|
||||
$ objdump -d --no-show-raw-insn vmlinux | grep -C 8 ffffffff8104ede8:
|
||||
ffffffff8104edc8: mov %r8,0x8(%r8)
|
||||
ffffffff8104edcc: test %r10d,%r10d
|
||||
ffffffff8104edcf: js ffffffff8104ee88 <__dequeue_signal+0x168>
|
||||
ffffffff8104edd5: mov %rax,%rdx
|
||||
ffffffff8104edd8: mov $0xc,%ecx
|
||||
ffffffff8104eddd: mov %r13,%rdi
|
||||
ffffffff8104ede0: mov $0x30,%eax
|
||||
ffffffff8104ede5: mov %rdx,%rsi
|
||||
ffffffff8104ede8: rep movsl %ds:(%rsi),%es:(%rdi)
|
||||
ffffffff8104edea: test $0x2,%al
|
||||
ffffffff8104edec: je ffffffff8104edf0 <__dequeue_signal+0xd0>
|
||||
ffffffff8104edee: movsw %ds:(%rsi),%es:(%rdi)
|
||||
ffffffff8104edf0: test $0x1,%al
|
||||
ffffffff8104edf2: je ffffffff8104edf5 <__dequeue_signal+0xd5>
|
||||
ffffffff8104edf4: movsb %ds:(%rsi),%es:(%rdi)
|
||||
ffffffff8104edf5: mov %r8,%rdi
|
||||
ffffffff8104edf8: callq ffffffff8104de60 <__sigqueue_free>
|
||||
|
||||
As expected, it's the "``rep movsl``" instruction from the ``memcpy()``
|
||||
that causes the warning. We know about ``REP MOVSL`` that it uses the register
|
||||
``RCX`` to count the number of remaining iterations. By taking a look at the
|
||||
register dump again (from the kmemcheck report), we can figure out how many
|
||||
bytes were left to copy::
|
||||
|
||||
RAX: 0000000000000030 RBX: ffff88003d4ea968 RCX: 0000000000000009
|
||||
|
||||
By looking at the disassembly, we also see that ``%ecx`` is being loaded
|
||||
with the value ``$0xc`` just before (ffffffff8104edd8), so we are very
|
||||
lucky. Keep in mind that this is the number of iterations, not bytes. And
|
||||
since this is a "long" operation, we need to multiply by 4 to get the
|
||||
number of bytes. So this means that the uninitialized value was encountered
|
||||
at 4 * (0xc - 0x9) = 12 bytes from the start of the object.
|
||||
|
||||
We can now try to figure out which field of the "``struct siginfo``" that
|
||||
was not initialized. This is the beginning of the struct::
|
||||
|
||||
40 typedef struct siginfo {
|
||||
41 int si_signo;
|
||||
42 int si_errno;
|
||||
43 int si_code;
|
||||
44
|
||||
45 union {
|
||||
..
|
||||
92 } _sifields;
|
||||
93 } siginfo_t;
|
||||
|
||||
On 64-bit, the int is 4 bytes long, so it must the union member that has
|
||||
not been initialized. We can verify this using gdb::
|
||||
|
||||
$ gdb vmlinux
|
||||
...
|
||||
(gdb) p &((struct siginfo *) 0)->_sifields
|
||||
$1 = (union {...} *) 0x10
|
||||
|
||||
Actually, it seems that the union member is located at offset 0x10 -- which
|
||||
means that gcc has inserted 4 bytes of padding between the members ``si_code``
|
||||
and ``_sifields``. We can now get a fuller picture of the memory dump::
|
||||
|
||||
_----------------------------=> si_code
|
||||
/ _--------------------=> (padding)
|
||||
| / _------------=> _sifields(._kill._pid)
|
||||
| | / _----=> _sifields(._kill._uid)
|
||||
| | | /
|
||||
-------|-------|-------|-------|
|
||||
80000000000000000000000000000000000000000088ffff0000000000000000
|
||||
i i i i u u u u i i i i i i i i u u u u u u u u u u u u u u u u
|
||||
|
||||
This allows us to realize another important fact: ``si_code`` contains the
|
||||
value 0x80. Remember that x86 is little endian, so the first 4 bytes
|
||||
"80000000" are really the number 0x00000080. With a bit of research, we
|
||||
find that this is actually the constant ``SI_KERNEL`` defined in
|
||||
``include/asm-generic/siginfo.h``::
|
||||
|
||||
144 #define SI_KERNEL 0x80 /* sent by the kernel from somewhere */
|
||||
|
||||
This macro is used in exactly one place in the x86 kernel: In ``send_signal()``
|
||||
in ``kernel/signal.c``::
|
||||
|
||||
816 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
|
||||
817 int group)
|
||||
818 {
|
||||
...
|
||||
828 pending = group ? &t->signal->shared_pending : &t->pending;
|
||||
...
|
||||
851 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
|
||||
852 (is_si_special(info) ||
|
||||
853 info->si_code >= 0)));
|
||||
854 if (q) {
|
||||
855 list_add_tail(&q->list, &pending->list);
|
||||
856 switch ((unsigned long) info) {
|
||||
...
|
||||
865 case (unsigned long) SEND_SIG_PRIV:
|
||||
866 q->info.si_signo = sig;
|
||||
867 q->info.si_errno = 0;
|
||||
868 q->info.si_code = SI_KERNEL;
|
||||
869 q->info.si_pid = 0;
|
||||
870 q->info.si_uid = 0;
|
||||
871 break;
|
||||
...
|
||||
890 }
|
||||
|
||||
Not only does this match with the ``.si_code`` member, it also matches the place
|
||||
we found earlier when looking for where siginfo_t objects are enqueued on the
|
||||
``shared_pending`` list.
|
||||
|
||||
So to sum up: It seems that it is the padding introduced by the compiler
|
||||
between two struct fields that is uninitialized, and this gets reported when
|
||||
we do a ``memcpy()`` on the struct. This means that we have identified a false
|
||||
positive warning.
|
||||
|
||||
Normally, kmemcheck will not report uninitialized accesses in ``memcpy()`` calls
|
||||
when both the source and destination addresses are tracked. (Instead, we copy
|
||||
the shadow bytemap as well). In this case, the destination address clearly
|
||||
was not tracked. We can dig a little deeper into the stack trace from above::
|
||||
|
||||
arch/x86/kernel/signal.c:805
|
||||
arch/x86/kernel/signal.c:871
|
||||
arch/x86/kernel/entry_64.S:694
|
||||
|
||||
And we clearly see that the destination siginfo object is located on the
|
||||
stack::
|
||||
|
||||
782 static void do_signal(struct pt_regs *regs)
|
||||
783 {
|
||||
784 struct k_sigaction ka;
|
||||
785 siginfo_t info;
|
||||
...
|
||||
804 signr = get_signal_to_deliver(&info, &ka, regs, NULL);
|
||||
...
|
||||
854 }
|
||||
|
||||
And this ``&info`` is what eventually gets passed to ``copy_siginfo()`` as the
|
||||
destination argument.
|
||||
|
||||
Now, even though we didn't find an actual error here, the example is still a
|
||||
good one, because it shows how one would go about to find out what the report
|
||||
was all about.
|
||||
|
||||
|
||||
Annotating false positives
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
There are a few different ways to make annotations in the source code that
|
||||
will keep kmemcheck from checking and reporting certain allocations. Here
|
||||
they are:
|
||||
|
||||
- ``__GFP_NOTRACK_FALSE_POSITIVE``
|
||||
This flag can be passed to ``kmalloc()`` or ``kmem_cache_alloc()``
|
||||
(therefore also to other functions that end up calling one of
|
||||
these) to indicate that the allocation should not be tracked
|
||||
because it would lead to a false positive report. This is a "big
|
||||
hammer" way of silencing kmemcheck; after all, even if the false
|
||||
positive pertains to particular field in a struct, for example, we
|
||||
will now lose the ability to find (real) errors in other parts of
|
||||
the same struct.
|
||||
|
||||
Example::
|
||||
|
||||
/* No warnings will ever trigger on accessing any part of x */
|
||||
x = kmalloc(sizeof *x, GFP_KERNEL | __GFP_NOTRACK_FALSE_POSITIVE);
|
||||
|
||||
- ``kmemcheck_bitfield_begin(name)``/``kmemcheck_bitfield_end(name)`` and
|
||||
``kmemcheck_annotate_bitfield(ptr, name)``
|
||||
The first two of these three macros can be used inside struct
|
||||
definitions to signal, respectively, the beginning and end of a
|
||||
bitfield. Additionally, this will assign the bitfield a name, which
|
||||
is given as an argument to the macros.
|
||||
|
||||
Having used these markers, one can later use
|
||||
kmemcheck_annotate_bitfield() at the point of allocation, to indicate
|
||||
which parts of the allocation is part of a bitfield.
|
||||
|
||||
Example::
|
||||
|
||||
struct foo {
|
||||
int x;
|
||||
|
||||
kmemcheck_bitfield_begin(flags);
|
||||
int flag_a:1;
|
||||
int flag_b:1;
|
||||
kmemcheck_bitfield_end(flags);
|
||||
|
||||
int y;
|
||||
};
|
||||
|
||||
struct foo *x = kmalloc(sizeof *x);
|
||||
|
||||
/* No warnings will trigger on accessing the bitfield of x */
|
||||
kmemcheck_annotate_bitfield(x, flags);
|
||||
|
||||
Note that ``kmemcheck_annotate_bitfield()`` can be used even before the
|
||||
return value of ``kmalloc()`` is checked -- in other words, passing NULL
|
||||
as the first argument is legal (and will do nothing).
|
||||
|
||||
|
||||
Reporting errors
|
||||
----------------
|
||||
|
||||
As we have seen, kmemcheck will produce false positive reports. Therefore, it
|
||||
is not very wise to blindly post kmemcheck warnings to mailing lists and
|
||||
maintainers. Instead, I encourage maintainers and developers to find errors
|
||||
in their own code. If you get a warning, you can try to work around it, try
|
||||
to figure out if it's a real error or not, or simply ignore it. Most
|
||||
developers know their own code and will quickly and efficiently determine the
|
||||
root cause of a kmemcheck report. This is therefore also the most efficient
|
||||
way to work with kmemcheck.
|
||||
|
||||
That said, we (the kmemcheck maintainers) will always be on the lookout for
|
||||
false positives that we can annotate and silence. So whatever you find,
|
||||
please drop us a note privately! Kernel configs and steps to reproduce (if
|
||||
available) are of course a great help too.
|
||||
|
||||
Happy hacking!
|
||||
|
||||
|
||||
Technical description
|
||||
---------------------
|
||||
|
||||
kmemcheck works by marking memory pages non-present. This means that whenever
|
||||
somebody attempts to access the page, a page fault is generated. The page
|
||||
fault handler notices that the page was in fact only hidden, and so it calls
|
||||
on the kmemcheck code to make further investigations.
|
||||
|
||||
When the investigations are completed, kmemcheck "shows" the page by marking
|
||||
it present (as it would be under normal circumstances). This way, the
|
||||
interrupted code can continue as usual.
|
||||
|
||||
But after the instruction has been executed, we should hide the page again, so
|
||||
that we can catch the next access too! Now kmemcheck makes use of a debugging
|
||||
feature of the processor, namely single-stepping. When the processor has
|
||||
finished the one instruction that generated the memory access, a debug
|
||||
exception is raised. From here, we simply hide the page again and continue
|
||||
execution, this time with the single-stepping feature turned off.
|
||||
|
||||
kmemcheck requires some assistance from the memory allocator in order to work.
|
||||
The memory allocator needs to
|
||||
|
||||
1. Tell kmemcheck about newly allocated pages and pages that are about to
|
||||
be freed. This allows kmemcheck to set up and tear down the shadow memory
|
||||
for the pages in question. The shadow memory stores the status of each
|
||||
byte in the allocation proper, e.g. whether it is initialized or
|
||||
uninitialized.
|
||||
|
||||
2. Tell kmemcheck which parts of memory should be marked uninitialized.
|
||||
There are actually a few more states, such as "not yet allocated" and
|
||||
"recently freed".
|
||||
|
||||
If a slab cache is set up using the SLAB_NOTRACK flag, it will never return
|
||||
memory that can take page faults because of kmemcheck.
|
||||
|
||||
If a slab cache is NOT set up using the SLAB_NOTRACK flag, callers can still
|
||||
request memory with the __GFP_NOTRACK or __GFP_NOTRACK_FALSE_POSITIVE flags.
|
||||
This does not prevent the page faults from occurring, however, but marks the
|
||||
object in question as being initialized so that no warnings will ever be
|
||||
produced for this object.
|
||||
|
||||
Currently, the SLAB and SLUB allocators are supported by kmemcheck.
|
219
Documentation/dev-tools/kmemleak.rst
Normal file
219
Documentation/dev-tools/kmemleak.rst
Normal file
@ -0,0 +1,219 @@
|
||||
Kernel Memory Leak Detector
|
||||
===========================
|
||||
|
||||
Kmemleak provides a way of detecting possible kernel memory leaks in a
|
||||
way similar to a tracing garbage collector
|
||||
(https://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29#Tracing_garbage_collectors),
|
||||
with the difference that the orphan objects are not freed but only
|
||||
reported via /sys/kernel/debug/kmemleak. A similar method is used by the
|
||||
Valgrind tool (``memcheck --leak-check``) to detect the memory leaks in
|
||||
user-space applications.
|
||||
Kmemleak is supported on x86, arm, powerpc, sparc, sh, microblaze, ppc, mips, s390, metag and tile.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel
|
||||
thread scans the memory every 10 minutes (by default) and prints the
|
||||
number of new unreferenced objects found. To display the details of all
|
||||
the possible memory leaks::
|
||||
|
||||
# mount -t debugfs nodev /sys/kernel/debug/
|
||||
# cat /sys/kernel/debug/kmemleak
|
||||
|
||||
To trigger an intermediate memory scan::
|
||||
|
||||
# echo scan > /sys/kernel/debug/kmemleak
|
||||
|
||||
To clear the list of all current possible memory leaks::
|
||||
|
||||
# echo clear > /sys/kernel/debug/kmemleak
|
||||
|
||||
New leaks will then come up upon reading ``/sys/kernel/debug/kmemleak``
|
||||
again.
|
||||
|
||||
Note that the orphan objects are listed in the order they were allocated
|
||||
and one object at the beginning of the list may cause other subsequent
|
||||
objects to be reported as orphan.
|
||||
|
||||
Memory scanning parameters can be modified at run-time by writing to the
|
||||
``/sys/kernel/debug/kmemleak`` file. The following parameters are supported:
|
||||
|
||||
- off
|
||||
disable kmemleak (irreversible)
|
||||
- stack=on
|
||||
enable the task stacks scanning (default)
|
||||
- stack=off
|
||||
disable the tasks stacks scanning
|
||||
- scan=on
|
||||
start the automatic memory scanning thread (default)
|
||||
- scan=off
|
||||
stop the automatic memory scanning thread
|
||||
- scan=<secs>
|
||||
set the automatic memory scanning period in seconds
|
||||
(default 600, 0 to stop the automatic scanning)
|
||||
- scan
|
||||
trigger a memory scan
|
||||
- clear
|
||||
clear list of current memory leak suspects, done by
|
||||
marking all current reported unreferenced objects grey,
|
||||
or free all kmemleak objects if kmemleak has been disabled.
|
||||
- dump=<addr>
|
||||
dump information about the object found at <addr>
|
||||
|
||||
Kmemleak can also be disabled at boot-time by passing ``kmemleak=off`` on
|
||||
the kernel command line.
|
||||
|
||||
Memory may be allocated or freed before kmemleak is initialised and
|
||||
these actions are stored in an early log buffer. The size of this buffer
|
||||
is configured via the CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE option.
|
||||
|
||||
If CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF are enabled, the kmemleak is
|
||||
disabled by default. Passing ``kmemleak=on`` on the kernel command
|
||||
line enables the function.
|
||||
|
||||
Basic Algorithm
|
||||
---------------
|
||||
|
||||
The memory allocations via :c:func:`kmalloc`, :c:func:`vmalloc`,
|
||||
:c:func:`kmem_cache_alloc` and
|
||||
friends are traced and the pointers, together with additional
|
||||
information like size and stack trace, are stored in a rbtree.
|
||||
The corresponding freeing function calls are tracked and the pointers
|
||||
removed from the kmemleak data structures.
|
||||
|
||||
An allocated block of memory is considered orphan if no pointer to its
|
||||
start address or to any location inside the block can be found by
|
||||
scanning the memory (including saved registers). This means that there
|
||||
might be no way for the kernel to pass the address of the allocated
|
||||
block to a freeing function and therefore the block is considered a
|
||||
memory leak.
|
||||
|
||||
The scanning algorithm steps:
|
||||
|
||||
1. mark all objects as white (remaining white objects will later be
|
||||
considered orphan)
|
||||
2. scan the memory starting with the data section and stacks, checking
|
||||
the values against the addresses stored in the rbtree. If
|
||||
a pointer to a white object is found, the object is added to the
|
||||
gray list
|
||||
3. scan the gray objects for matching addresses (some white objects
|
||||
can become gray and added at the end of the gray list) until the
|
||||
gray set is finished
|
||||
4. the remaining white objects are considered orphan and reported via
|
||||
/sys/kernel/debug/kmemleak
|
||||
|
||||
Some allocated memory blocks have pointers stored in the kernel's
|
||||
internal data structures and they cannot be detected as orphans. To
|
||||
avoid this, kmemleak can also store the number of values pointing to an
|
||||
address inside the block address range that need to be found so that the
|
||||
block is not considered a leak. One example is __vmalloc().
|
||||
|
||||
Testing specific sections with kmemleak
|
||||
---------------------------------------
|
||||
|
||||
Upon initial bootup your /sys/kernel/debug/kmemleak output page may be
|
||||
quite extensive. This can also be the case if you have very buggy code
|
||||
when doing development. To work around these situations you can use the
|
||||
'clear' command to clear all reported unreferenced objects from the
|
||||
/sys/kernel/debug/kmemleak output. By issuing a 'scan' after a 'clear'
|
||||
you can find new unreferenced objects; this should help with testing
|
||||
specific sections of code.
|
||||
|
||||
To test a critical section on demand with a clean kmemleak do::
|
||||
|
||||
# echo clear > /sys/kernel/debug/kmemleak
|
||||
... test your kernel or modules ...
|
||||
# echo scan > /sys/kernel/debug/kmemleak
|
||||
|
||||
Then as usual to get your report with::
|
||||
|
||||
# cat /sys/kernel/debug/kmemleak
|
||||
|
||||
Freeing kmemleak internal objects
|
||||
---------------------------------
|
||||
|
||||
To allow access to previously found memory leaks after kmemleak has been
|
||||
disabled by the user or due to an fatal error, internal kmemleak objects
|
||||
won't be freed when kmemleak is disabled, and those objects may occupy
|
||||
a large part of physical memory.
|
||||
|
||||
In this situation, you may reclaim memory with::
|
||||
|
||||
# echo clear > /sys/kernel/debug/kmemleak
|
||||
|
||||
Kmemleak API
|
||||
------------
|
||||
|
||||
See the include/linux/kmemleak.h header for the functions prototype.
|
||||
|
||||
- ``kmemleak_init`` - initialize kmemleak
|
||||
- ``kmemleak_alloc`` - notify of a memory block allocation
|
||||
- ``kmemleak_alloc_percpu`` - notify of a percpu memory block allocation
|
||||
- ``kmemleak_free`` - notify of a memory block freeing
|
||||
- ``kmemleak_free_part`` - notify of a partial memory block freeing
|
||||
- ``kmemleak_free_percpu`` - notify of a percpu memory block freeing
|
||||
- ``kmemleak_update_trace`` - update object allocation stack trace
|
||||
- ``kmemleak_not_leak`` - mark an object as not a leak
|
||||
- ``kmemleak_ignore`` - do not scan or report an object as leak
|
||||
- ``kmemleak_scan_area`` - add scan areas inside a memory block
|
||||
- ``kmemleak_no_scan`` - do not scan a memory block
|
||||
- ``kmemleak_erase`` - erase an old value in a pointer variable
|
||||
- ``kmemleak_alloc_recursive`` - as kmemleak_alloc but checks the recursiveness
|
||||
- ``kmemleak_free_recursive`` - as kmemleak_free but checks the recursiveness
|
||||
|
||||
The following functions take a physical address as the object pointer
|
||||
and only perform the corresponding action if the address has a lowmem
|
||||
mapping:
|
||||
|
||||
- ``kmemleak_alloc_phys``
|
||||
- ``kmemleak_free_part_phys``
|
||||
- ``kmemleak_not_leak_phys``
|
||||
- ``kmemleak_ignore_phys``
|
||||
|
||||
Dealing with false positives/negatives
|
||||
--------------------------------------
|
||||
|
||||
The false negatives are real memory leaks (orphan objects) but not
|
||||
reported by kmemleak because values found during the memory scanning
|
||||
point to such objects. To reduce the number of false negatives, kmemleak
|
||||
provides the kmemleak_ignore, kmemleak_scan_area, kmemleak_no_scan and
|
||||
kmemleak_erase functions (see above). The task stacks also increase the
|
||||
amount of false negatives and their scanning is not enabled by default.
|
||||
|
||||
The false positives are objects wrongly reported as being memory leaks
|
||||
(orphan). For objects known not to be leaks, kmemleak provides the
|
||||
kmemleak_not_leak function. The kmemleak_ignore could also be used if
|
||||
the memory block is known not to contain other pointers and it will no
|
||||
longer be scanned.
|
||||
|
||||
Some of the reported leaks are only transient, especially on SMP
|
||||
systems, because of pointers temporarily stored in CPU registers or
|
||||
stacks. Kmemleak defines MSECS_MIN_AGE (defaulting to 1000) representing
|
||||
the minimum age of an object to be reported as a memory leak.
|
||||
|
||||
Limitations and Drawbacks
|
||||
-------------------------
|
||||
|
||||
The main drawback is the reduced performance of memory allocation and
|
||||
freeing. To avoid other penalties, the memory scanning is only performed
|
||||
when the /sys/kernel/debug/kmemleak file is read. Anyway, this tool is
|
||||
intended for debugging purposes where the performance might not be the
|
||||
most important requirement.
|
||||
|
||||
To keep the algorithm simple, kmemleak scans for values pointing to any
|
||||
address inside a block's address range. This may lead to an increased
|
||||
number of false negatives. However, it is likely that a real memory leak
|
||||
will eventually become visible.
|
||||
|
||||
Another source of false negatives is the data stored in non-pointer
|
||||
values. In a future version, kmemleak could only scan the pointer
|
||||
members in the allocated structures. This feature would solve many of
|
||||
the false negative cases described above.
|
||||
|
||||
The tool can report false positives. These are cases where an allocated
|
||||
block doesn't need to be freed (some cases in the init_call functions),
|
||||
the pointer is calculated by other methods than the usual container_of
|
||||
macro or the pointer is stored in a location not scanned by kmemleak.
|
||||
|
||||
Page allocations and ioremap are not tracked.
|
117
Documentation/dev-tools/sparse.rst
Normal file
117
Documentation/dev-tools/sparse.rst
Normal file
@ -0,0 +1,117 @@
|
||||
.. Copyright 2004 Linus Torvalds
|
||||
.. Copyright 2004 Pavel Machek <pavel@ucw.cz>
|
||||
.. Copyright 2006 Bob Copeland <me@bobcopeland.com>
|
||||
|
||||
Sparse
|
||||
======
|
||||
|
||||
Sparse is a semantic checker for C programs; it can be used to find a
|
||||
number of potential problems with kernel code. See
|
||||
https://lwn.net/Articles/689907/ for an overview of sparse; this document
|
||||
contains some kernel-specific sparse information.
|
||||
|
||||
|
||||
Using sparse for typechecking
|
||||
-----------------------------
|
||||
|
||||
"__bitwise" is a type attribute, so you have to do something like this::
|
||||
|
||||
typedef int __bitwise pm_request_t;
|
||||
|
||||
enum pm_request {
|
||||
PM_SUSPEND = (__force pm_request_t) 1,
|
||||
PM_RESUME = (__force pm_request_t) 2
|
||||
};
|
||||
|
||||
which makes PM_SUSPEND and PM_RESUME "bitwise" integers (the "__force" is
|
||||
there because sparse will complain about casting to/from a bitwise type,
|
||||
but in this case we really _do_ want to force the conversion). And because
|
||||
the enum values are all the same type, now "enum pm_request" will be that
|
||||
type too.
|
||||
|
||||
And with gcc, all the "__bitwise"/"__force stuff" goes away, and it all
|
||||
ends up looking just like integers to gcc.
|
||||
|
||||
Quite frankly, you don't need the enum there. The above all really just
|
||||
boils down to one special "int __bitwise" type.
|
||||
|
||||
So the simpler way is to just do::
|
||||
|
||||
typedef int __bitwise pm_request_t;
|
||||
|
||||
#define PM_SUSPEND ((__force pm_request_t) 1)
|
||||
#define PM_RESUME ((__force pm_request_t) 2)
|
||||
|
||||
and you now have all the infrastructure needed for strict typechecking.
|
||||
|
||||
One small note: the constant integer "0" is special. You can use a
|
||||
constant zero as a bitwise integer type without sparse ever complaining.
|
||||
This is because "bitwise" (as the name implies) was designed for making
|
||||
sure that bitwise types don't get mixed up (little-endian vs big-endian
|
||||
vs cpu-endian vs whatever), and there the constant "0" really _is_
|
||||
special.
|
||||
|
||||
__bitwise__ - to be used for relatively compact stuff (gfp_t, etc.) that
|
||||
is mostly warning-free and is supposed to stay that way. Warnings will
|
||||
be generated without __CHECK_ENDIAN__.
|
||||
|
||||
__bitwise - noisy stuff; in particular, __le*/__be* are that. We really
|
||||
don't want to drown in noise unless we'd explicitly asked for it.
|
||||
|
||||
Using sparse for lock checking
|
||||
------------------------------
|
||||
|
||||
The following macros are undefined for gcc and defined during a sparse
|
||||
run to use the "context" tracking feature of sparse, applied to
|
||||
locking. These annotations tell sparse when a lock is held, with
|
||||
regard to the annotated function's entry and exit.
|
||||
|
||||
__must_hold - The specified lock is held on function entry and exit.
|
||||
|
||||
__acquires - The specified lock is held on function exit, but not entry.
|
||||
|
||||
__releases - The specified lock is held on function entry, but not exit.
|
||||
|
||||
If the function enters and exits without the lock held, acquiring and
|
||||
releasing the lock inside the function in a balanced way, no
|
||||
annotation is needed. The tree annotations above are for cases where
|
||||
sparse would otherwise report a context imbalance.
|
||||
|
||||
Getting sparse
|
||||
--------------
|
||||
|
||||
You can get latest released versions from the Sparse homepage at
|
||||
https://sparse.wiki.kernel.org/index.php/Main_Page
|
||||
|
||||
Alternatively, you can get snapshots of the latest development version
|
||||
of sparse using git to clone::
|
||||
|
||||
git://git.kernel.org/pub/scm/devel/sparse/sparse.git
|
||||
|
||||
DaveJ has hourly generated tarballs of the git tree available at::
|
||||
|
||||
http://www.codemonkey.org.uk/projects/git-snapshots/sparse/
|
||||
|
||||
|
||||
Once you have it, just do::
|
||||
|
||||
make
|
||||
make install
|
||||
|
||||
as a regular user, and it will install sparse in your ~/bin directory.
|
||||
|
||||
Using sparse
|
||||
------------
|
||||
|
||||
Do a kernel make with "make C=1" to run sparse on all the C files that get
|
||||
recompiled, or use "make C=2" to run sparse on the files whether they need to
|
||||
be recompiled or not. The latter is a fast way to check the whole tree if you
|
||||
have already built it.
|
||||
|
||||
The optional make variable CF can be used to pass arguments to sparse. The
|
||||
build system passes -Wbitwise to sparse automatically. To perform endianness
|
||||
checks, you may define __CHECK_ENDIAN__::
|
||||
|
||||
make C=2 CF="-D__CHECK_ENDIAN__"
|
||||
|
||||
These checks are disabled by default as they generate a host of warnings.
|
25
Documentation/dev-tools/tools.rst
Normal file
25
Documentation/dev-tools/tools.rst
Normal file
@ -0,0 +1,25 @@
|
||||
================================
|
||||
Development tools for the kernel
|
||||
================================
|
||||
|
||||
This document is a collection of documents about development tools that can
|
||||
be used to work on the kernel. For now, the documents have been pulled
|
||||
together without any significant effot to integrate them into a coherent
|
||||
whole; patches welcome!
|
||||
|
||||
.. class:: toc-title
|
||||
|
||||
Table of contents
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
coccinelle
|
||||
sparse
|
||||
kcov
|
||||
gcov
|
||||
kasan
|
||||
ubsan
|
||||
kmemleak
|
||||
kmemcheck
|
||||
gdb-kernel-debugging
|
88
Documentation/dev-tools/ubsan.rst
Normal file
88
Documentation/dev-tools/ubsan.rst
Normal file
@ -0,0 +1,88 @@
|
||||
The Undefined Behavior Sanitizer - UBSAN
|
||||
========================================
|
||||
|
||||
UBSAN is a runtime undefined behaviour checker.
|
||||
|
||||
UBSAN uses compile-time instrumentation to catch undefined behavior (UB).
|
||||
Compiler inserts code that perform certain kinds of checks before operations
|
||||
that may cause UB. If check fails (i.e. UB detected) __ubsan_handle_*
|
||||
function called to print error message.
|
||||
|
||||
GCC has that feature since 4.9.x [1_] (see ``-fsanitize=undefined`` option and
|
||||
its suboptions). GCC 5.x has more checkers implemented [2_].
|
||||
|
||||
Report example
|
||||
--------------
|
||||
|
||||
::
|
||||
|
||||
================================================================================
|
||||
UBSAN: Undefined behaviour in ../include/linux/bitops.h:110:33
|
||||
shift exponent 32 is to large for 32-bit type 'unsigned int'
|
||||
CPU: 0 PID: 0 Comm: swapper Not tainted 4.4.0-rc1+ #26
|
||||
0000000000000000 ffffffff82403cc8 ffffffff815e6cd6 0000000000000001
|
||||
ffffffff82403cf8 ffffffff82403ce0 ffffffff8163a5ed 0000000000000020
|
||||
ffffffff82403d78 ffffffff8163ac2b ffffffff815f0001 0000000000000002
|
||||
Call Trace:
|
||||
[<ffffffff815e6cd6>] dump_stack+0x45/0x5f
|
||||
[<ffffffff8163a5ed>] ubsan_epilogue+0xd/0x40
|
||||
[<ffffffff8163ac2b>] __ubsan_handle_shift_out_of_bounds+0xeb/0x130
|
||||
[<ffffffff815f0001>] ? radix_tree_gang_lookup_slot+0x51/0x150
|
||||
[<ffffffff8173c586>] _mix_pool_bytes+0x1e6/0x480
|
||||
[<ffffffff83105653>] ? dmi_walk_early+0x48/0x5c
|
||||
[<ffffffff8173c881>] add_device_randomness+0x61/0x130
|
||||
[<ffffffff83105b35>] ? dmi_save_one_device+0xaa/0xaa
|
||||
[<ffffffff83105653>] dmi_walk_early+0x48/0x5c
|
||||
[<ffffffff831066ae>] dmi_scan_machine+0x278/0x4b4
|
||||
[<ffffffff8111d58a>] ? vprintk_default+0x1a/0x20
|
||||
[<ffffffff830ad120>] ? early_idt_handler_array+0x120/0x120
|
||||
[<ffffffff830b2240>] setup_arch+0x405/0xc2c
|
||||
[<ffffffff830ad120>] ? early_idt_handler_array+0x120/0x120
|
||||
[<ffffffff830ae053>] start_kernel+0x83/0x49a
|
||||
[<ffffffff830ad120>] ? early_idt_handler_array+0x120/0x120
|
||||
[<ffffffff830ad386>] x86_64_start_reservations+0x2a/0x2c
|
||||
[<ffffffff830ad4f3>] x86_64_start_kernel+0x16b/0x17a
|
||||
================================================================================
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
To enable UBSAN configure kernel with::
|
||||
|
||||
CONFIG_UBSAN=y
|
||||
|
||||
and to check the entire kernel::
|
||||
|
||||
CONFIG_UBSAN_SANITIZE_ALL=y
|
||||
|
||||
To enable instrumentation for specific files or directories, add a line
|
||||
similar to the following to the respective kernel Makefile:
|
||||
|
||||
- For a single file (e.g. main.o)::
|
||||
|
||||
UBSAN_SANITIZE_main.o := y
|
||||
|
||||
- For all files in one directory::
|
||||
|
||||
UBSAN_SANITIZE := y
|
||||
|
||||
To exclude files from being instrumented even if
|
||||
``CONFIG_UBSAN_SANITIZE_ALL=y``, use::
|
||||
|
||||
UBSAN_SANITIZE_main.o := n
|
||||
|
||||
and::
|
||||
|
||||
UBSAN_SANITIZE := n
|
||||
|
||||
Detection of unaligned accesses controlled through the separate option -
|
||||
CONFIG_UBSAN_ALIGNMENT. It's off by default on architectures that support
|
||||
unaligned accesses (CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS=y). One could
|
||||
still enable it in config, just note that it will produce a lot of UBSAN
|
||||
reports.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
.. _1: https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Debugging-Options.html
|
||||
.. _2: https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
|
@ -1,274 +0,0 @@
|
||||
1: A GUIDE TO THE KERNEL DEVELOPMENT PROCESS
|
||||
|
||||
The purpose of this document is to help developers (and their managers)
|
||||
work with the development community with a minimum of frustration. It is
|
||||
an attempt to document how this community works in a way which is
|
||||
accessible to those who are not intimately familiar with Linux kernel
|
||||
development (or, indeed, free software development in general). While
|
||||
there is some technical material here, this is very much a process-oriented
|
||||
discussion which does not require a deep knowledge of kernel programming to
|
||||
understand.
|
||||
|
||||
|
||||
1.1: EXECUTIVE SUMMARY
|
||||
|
||||
The rest of this section covers the scope of the kernel development process
|
||||
and the kinds of frustrations that developers and their employers can
|
||||
encounter there. There are a great many reasons why kernel code should be
|
||||
merged into the official ("mainline") kernel, including automatic
|
||||
availability to users, community support in many forms, and the ability to
|
||||
influence the direction of kernel development. Code contributed to the
|
||||
Linux kernel must be made available under a GPL-compatible license.
|
||||
|
||||
Section 2 introduces the development process, the kernel release cycle, and
|
||||
the mechanics of the merge window. The various phases in the patch
|
||||
development, review, and merging cycle are covered. There is some
|
||||
discussion of tools and mailing lists. Developers wanting to get started
|
||||
with kernel development are encouraged to track down and fix bugs as an
|
||||
initial exercise.
|
||||
|
||||
Section 3 covers early-stage project planning, with an emphasis on
|
||||
involving the development community as soon as possible.
|
||||
|
||||
Section 4 is about the coding process; several pitfalls which have been
|
||||
encountered by other developers are discussed. Some requirements for
|
||||
patches are covered, and there is an introduction to some of the tools
|
||||
which can help to ensure that kernel patches are correct.
|
||||
|
||||
Section 5 talks about the process of posting patches for review. To be
|
||||
taken seriously by the development community, patches must be properly
|
||||
formatted and described, and they must be sent to the right place.
|
||||
Following the advice in this section should help to ensure the best
|
||||
possible reception for your work.
|
||||
|
||||
Section 6 covers what happens after posting patches; the job is far from
|
||||
done at that point. Working with reviewers is a crucial part of the
|
||||
development process; this section offers a number of tips on how to avoid
|
||||
problems at this important stage. Developers are cautioned against
|
||||
assuming that the job is done when a patch is merged into the mainline.
|
||||
|
||||
Section 7 introduces a couple of "advanced" topics: managing patches with
|
||||
git and reviewing patches posted by others.
|
||||
|
||||
Section 8 concludes the document with pointers to sources for more
|
||||
information on kernel development.
|
||||
|
||||
|
||||
1.2: WHAT THIS DOCUMENT IS ABOUT
|
||||
|
||||
The Linux kernel, at over 8 million lines of code and well over 1000
|
||||
contributors to each release, is one of the largest and most active free
|
||||
software projects in existence. Since its humble beginning in 1991, this
|
||||
kernel has evolved into a best-of-breed operating system component which
|
||||
runs on pocket-sized digital music players, desktop PCs, the largest
|
||||
supercomputers in existence, and all types of systems in between. It is a
|
||||
robust, efficient, and scalable solution for almost any situation.
|
||||
|
||||
With the growth of Linux has come an increase in the number of developers
|
||||
(and companies) wishing to participate in its development. Hardware
|
||||
vendors want to ensure that Linux supports their products well, making
|
||||
those products attractive to Linux users. Embedded systems vendors, who
|
||||
use Linux as a component in an integrated product, want Linux to be as
|
||||
capable and well-suited to the task at hand as possible. Distributors and
|
||||
other software vendors who base their products on Linux have a clear
|
||||
interest in the capabilities, performance, and reliability of the Linux
|
||||
kernel. And end users, too, will often wish to change Linux to make it
|
||||
better suit their needs.
|
||||
|
||||
One of the most compelling features of Linux is that it is accessible to
|
||||
these developers; anybody with the requisite skills can improve Linux and
|
||||
influence the direction of its development. Proprietary products cannot
|
||||
offer this kind of openness, which is a characteristic of the free software
|
||||
process. But, if anything, the kernel is even more open than most other
|
||||
free software projects. A typical three-month kernel development cycle can
|
||||
involve over 1000 developers working for more than 100 different companies
|
||||
(or for no company at all).
|
||||
|
||||
Working with the kernel development community is not especially hard. But,
|
||||
that notwithstanding, many potential contributors have experienced
|
||||
difficulties when trying to do kernel work. The kernel community has
|
||||
evolved its own distinct ways of operating which allow it to function
|
||||
smoothly (and produce a high-quality product) in an environment where
|
||||
thousands of lines of code are being changed every day. So it is not
|
||||
surprising that Linux kernel development process differs greatly from
|
||||
proprietary development methods.
|
||||
|
||||
The kernel's development process may come across as strange and
|
||||
intimidating to new developers, but there are good reasons and solid
|
||||
experience behind it. A developer who does not understand the kernel
|
||||
community's ways (or, worse, who tries to flout or circumvent them) will
|
||||
have a frustrating experience in store. The development community, while
|
||||
being helpful to those who are trying to learn, has little time for those
|
||||
who will not listen or who do not care about the development process.
|
||||
|
||||
It is hoped that those who read this document will be able to avoid that
|
||||
frustrating experience. There is a lot of material here, but the effort
|
||||
involved in reading it will be repaid in short order. The development
|
||||
community is always in need of developers who will help to make the kernel
|
||||
better; the following text should help you - or those who work for you -
|
||||
join our community.
|
||||
|
||||
|
||||
1.3: CREDITS
|
||||
|
||||
This document was written by Jonathan Corbet, corbet@lwn.net. It has been
|
||||
improved by comments from Johannes Berg, James Berry, Alex Chiang, Roland
|
||||
Dreier, Randy Dunlap, Jake Edge, Jiri Kosina, Matt Mackall, Arthur Marsh,
|
||||
Amanda McPherson, Andrew Morton, Andrew Price, Tsugikazu Shibata, and
|
||||
Jochen Voß.
|
||||
|
||||
This work was supported by the Linux Foundation; thanks especially to
|
||||
Amanda McPherson, who saw the value of this effort and made it all happen.
|
||||
|
||||
|
||||
1.4: THE IMPORTANCE OF GETTING CODE INTO THE MAINLINE
|
||||
|
||||
Some companies and developers occasionally wonder why they should bother
|
||||
learning how to work with the kernel community and get their code into the
|
||||
mainline kernel (the "mainline" being the kernel maintained by Linus
|
||||
Torvalds and used as a base by Linux distributors). In the short term,
|
||||
contributing code can look like an avoidable expense; it seems easier to
|
||||
just keep the code separate and support users directly. The truth of the
|
||||
matter is that keeping code separate ("out of tree") is a false economy.
|
||||
|
||||
As a way of illustrating the costs of out-of-tree code, here are a few
|
||||
relevant aspects of the kernel development process; most of these will be
|
||||
discussed in greater detail later in this document. Consider:
|
||||
|
||||
- Code which has been merged into the mainline kernel is available to all
|
||||
Linux users. It will automatically be present on all distributions which
|
||||
enable it. There is no need for driver disks, downloads, or the hassles
|
||||
of supporting multiple versions of multiple distributions; it all just
|
||||
works, for the developer and for the user. Incorporation into the
|
||||
mainline solves a large number of distribution and support problems.
|
||||
|
||||
- While kernel developers strive to maintain a stable interface to user
|
||||
space, the internal kernel API is in constant flux. The lack of a stable
|
||||
internal interface is a deliberate design decision; it allows fundamental
|
||||
improvements to be made at any time and results in higher-quality code.
|
||||
But one result of that policy is that any out-of-tree code requires
|
||||
constant upkeep if it is to work with new kernels. Maintaining
|
||||
out-of-tree code requires significant amounts of work just to keep that
|
||||
code working.
|
||||
|
||||
Code which is in the mainline, instead, does not require this work as the
|
||||
result of a simple rule requiring any developer who makes an API change
|
||||
to also fix any code that breaks as the result of that change. So code
|
||||
which has been merged into the mainline has significantly lower
|
||||
maintenance costs.
|
||||
|
||||
- Beyond that, code which is in the kernel will often be improved by other
|
||||
developers. Surprising results can come from empowering your user
|
||||
community and customers to improve your product.
|
||||
|
||||
- Kernel code is subjected to review, both before and after merging into
|
||||
the mainline. No matter how strong the original developer's skills are,
|
||||
this review process invariably finds ways in which the code can be
|
||||
improved. Often review finds severe bugs and security problems. This is
|
||||
especially true for code which has been developed in a closed
|
||||
environment; such code benefits strongly from review by outside
|
||||
developers. Out-of-tree code is lower-quality code.
|
||||
|
||||
- Participation in the development process is your way to influence the
|
||||
direction of kernel development. Users who complain from the sidelines
|
||||
are heard, but active developers have a stronger voice - and the ability
|
||||
to implement changes which make the kernel work better for their needs.
|
||||
|
||||
- When code is maintained separately, the possibility that a third party
|
||||
will contribute a different implementation of a similar feature always
|
||||
exists. Should that happen, getting your code merged will become much
|
||||
harder - to the point of impossibility. Then you will be faced with the
|
||||
unpleasant alternatives of either (1) maintaining a nonstandard feature
|
||||
out of tree indefinitely, or (2) abandoning your code and migrating your
|
||||
users over to the in-tree version.
|
||||
|
||||
- Contribution of code is the fundamental action which makes the whole
|
||||
process work. By contributing your code you can add new functionality to
|
||||
the kernel and provide capabilities and examples which are of use to
|
||||
other kernel developers. If you have developed code for Linux (or are
|
||||
thinking about doing so), you clearly have an interest in the continued
|
||||
success of this platform; contributing code is one of the best ways to
|
||||
help ensure that success.
|
||||
|
||||
All of the reasoning above applies to any out-of-tree kernel code,
|
||||
including code which is distributed in proprietary, binary-only form.
|
||||
There are, however, additional factors which should be taken into account
|
||||
before considering any sort of binary-only kernel code distribution. These
|
||||
include:
|
||||
|
||||
- The legal issues around the distribution of proprietary kernel modules
|
||||
are cloudy at best; quite a few kernel copyright holders believe that
|
||||
most binary-only modules are derived products of the kernel and that, as
|
||||
a result, their distribution is a violation of the GNU General Public
|
||||
license (about which more will be said below). Your author is not a
|
||||
lawyer, and nothing in this document can possibly be considered to be
|
||||
legal advice. The true legal status of closed-source modules can only be
|
||||
determined by the courts. But the uncertainty which haunts those modules
|
||||
is there regardless.
|
||||
|
||||
- Binary modules greatly increase the difficulty of debugging kernel
|
||||
problems, to the point that most kernel developers will not even try. So
|
||||
the distribution of binary-only modules will make it harder for your
|
||||
users to get support from the community.
|
||||
|
||||
- Support is also harder for distributors of binary-only modules, who must
|
||||
provide a version of the module for every distribution and every kernel
|
||||
version they wish to support. Dozens of builds of a single module can
|
||||
be required to provide reasonably comprehensive coverage, and your users
|
||||
will have to upgrade your module separately every time they upgrade their
|
||||
kernel.
|
||||
|
||||
- Everything that was said above about code review applies doubly to
|
||||
closed-source code. Since this code is not available at all, it cannot
|
||||
have been reviewed by the community and will, beyond doubt, have serious
|
||||
problems.
|
||||
|
||||
Makers of embedded systems, in particular, may be tempted to disregard much
|
||||
of what has been said in this section in the belief that they are shipping
|
||||
a self-contained product which uses a frozen kernel version and requires no
|
||||
more development after its release. This argument misses the value of
|
||||
widespread code review and the value of allowing your users to add
|
||||
capabilities to your product. But these products, too, have a limited
|
||||
commercial life, after which a new version must be released. At that
|
||||
point, vendors whose code is in the mainline and well maintained will be
|
||||
much better positioned to get the new product ready for market quickly.
|
||||
|
||||
|
||||
1.5: LICENSING
|
||||
|
||||
Code is contributed to the Linux kernel under a number of licenses, but all
|
||||
code must be compatible with version 2 of the GNU General Public License
|
||||
(GPLv2), which is the license covering the kernel distribution as a whole.
|
||||
In practice, that means that all code contributions are covered either by
|
||||
GPLv2 (with, optionally, language allowing distribution under later
|
||||
versions of the GPL) or the three-clause BSD license. Any contributions
|
||||
which are not covered by a compatible license will not be accepted into the
|
||||
kernel.
|
||||
|
||||
Copyright assignments are not required (or requested) for code contributed
|
||||
to the kernel. All code merged into the mainline kernel retains its
|
||||
original ownership; as a result, the kernel now has thousands of owners.
|
||||
|
||||
One implication of this ownership structure is that any attempt to change
|
||||
the licensing of the kernel is doomed to almost certain failure. There are
|
||||
few practical scenarios where the agreement of all copyright holders could
|
||||
be obtained (or their code removed from the kernel). So, in particular,
|
||||
there is no prospect of a migration to version 3 of the GPL in the
|
||||
foreseeable future.
|
||||
|
||||
It is imperative that all code contributed to the kernel be legitimately
|
||||
free software. For that reason, code from anonymous (or pseudonymous)
|
||||
contributors will not be accepted. All contributors are required to "sign
|
||||
off" on their code, stating that the code can be distributed with the
|
||||
kernel under the GPL. Code which has not been licensed as free software by
|
||||
its owner, or which risks creating copyright-related problems for the
|
||||
kernel (such as code which derives from reverse-engineering efforts lacking
|
||||
proper safeguards) cannot be contributed.
|
||||
|
||||
Questions about copyright-related issues are common on Linux development
|
||||
mailing lists. Such questions will normally receive no shortage of
|
||||
answers, but one should bear in mind that the people answering those
|
||||
questions are not lawyers and cannot provide legal advice. If you have
|
||||
legal questions relating to Linux source code, there is no substitute for
|
||||
talking with a lawyer who understands this field. Relying on answers
|
||||
obtained on technical mailing lists is a risky affair.
|
266
Documentation/development-process/1.Intro.rst
Normal file
266
Documentation/development-process/1.Intro.rst
Normal file
@ -0,0 +1,266 @@
|
||||
Introdution
|
||||
===========
|
||||
|
||||
Executive summary
|
||||
-----------------
|
||||
|
||||
The rest of this section covers the scope of the kernel development process
|
||||
and the kinds of frustrations that developers and their employers can
|
||||
encounter there. There are a great many reasons why kernel code should be
|
||||
merged into the official ("mainline") kernel, including automatic
|
||||
availability to users, community support in many forms, and the ability to
|
||||
influence the direction of kernel development. Code contributed to the
|
||||
Linux kernel must be made available under a GPL-compatible license.
|
||||
|
||||
:ref:`development_process` introduces the development process, the kernel
|
||||
release cycle, and the mechanics of the merge window. The various phases in
|
||||
the patch development, review, and merging cycle are covered. There is some
|
||||
discussion of tools and mailing lists. Developers wanting to get started
|
||||
with kernel development are encouraged to track down and fix bugs as an
|
||||
initial exercise.
|
||||
|
||||
:ref:`development_early_stage` covers early-stage project planning, with an
|
||||
emphasis on involving the development community as soon as possible.
|
||||
|
||||
:ref:`development_coding` is about the coding process; several pitfalls which
|
||||
have been encountered by other developers are discussed. Some requirements for
|
||||
patches are covered, and there is an introduction to some of the tools
|
||||
which can help to ensure that kernel patches are correct.
|
||||
|
||||
:ref:`development_posting` talks about the process of posting patches for
|
||||
review. To be taken seriously by the development community, patches must be
|
||||
properly formatted and described, and they must be sent to the right place.
|
||||
Following the advice in this section should help to ensure the best
|
||||
possible reception for your work.
|
||||
|
||||
:ref:`development_followthrough` covers what happens after posting patches; the
|
||||
job is far from done at that point. Working with reviewers is a crucial part
|
||||
of the development process; this section offers a number of tips on how to
|
||||
avoid problems at this important stage. Developers are cautioned against
|
||||
assuming that the job is done when a patch is merged into the mainline.
|
||||
|
||||
:ref:`development_advancedtopics` introduces a couple of "advanced" topics:
|
||||
managing patches with git and reviewing patches posted by others.
|
||||
|
||||
:ref:`development_conclusion` concludes the document with pointers to sources
|
||||
for more information on kernel development.
|
||||
|
||||
What this document is about
|
||||
---------------------------
|
||||
|
||||
The Linux kernel, at over 8 million lines of code and well over 1000
|
||||
contributors to each release, is one of the largest and most active free
|
||||
software projects in existence. Since its humble beginning in 1991, this
|
||||
kernel has evolved into a best-of-breed operating system component which
|
||||
runs on pocket-sized digital music players, desktop PCs, the largest
|
||||
supercomputers in existence, and all types of systems in between. It is a
|
||||
robust, efficient, and scalable solution for almost any situation.
|
||||
|
||||
With the growth of Linux has come an increase in the number of developers
|
||||
(and companies) wishing to participate in its development. Hardware
|
||||
vendors want to ensure that Linux supports their products well, making
|
||||
those products attractive to Linux users. Embedded systems vendors, who
|
||||
use Linux as a component in an integrated product, want Linux to be as
|
||||
capable and well-suited to the task at hand as possible. Distributors and
|
||||
other software vendors who base their products on Linux have a clear
|
||||
interest in the capabilities, performance, and reliability of the Linux
|
||||
kernel. And end users, too, will often wish to change Linux to make it
|
||||
better suit their needs.
|
||||
|
||||
One of the most compelling features of Linux is that it is accessible to
|
||||
these developers; anybody with the requisite skills can improve Linux and
|
||||
influence the direction of its development. Proprietary products cannot
|
||||
offer this kind of openness, which is a characteristic of the free software
|
||||
process. But, if anything, the kernel is even more open than most other
|
||||
free software projects. A typical three-month kernel development cycle can
|
||||
involve over 1000 developers working for more than 100 different companies
|
||||
(or for no company at all).
|
||||
|
||||
Working with the kernel development community is not especially hard. But,
|
||||
that notwithstanding, many potential contributors have experienced
|
||||
difficulties when trying to do kernel work. The kernel community has
|
||||
evolved its own distinct ways of operating which allow it to function
|
||||
smoothly (and produce a high-quality product) in an environment where
|
||||
thousands of lines of code are being changed every day. So it is not
|
||||
surprising that Linux kernel development process differs greatly from
|
||||
proprietary development methods.
|
||||
|
||||
The kernel's development process may come across as strange and
|
||||
intimidating to new developers, but there are good reasons and solid
|
||||
experience behind it. A developer who does not understand the kernel
|
||||
community's ways (or, worse, who tries to flout or circumvent them) will
|
||||
have a frustrating experience in store. The development community, while
|
||||
being helpful to those who are trying to learn, has little time for those
|
||||
who will not listen or who do not care about the development process.
|
||||
|
||||
It is hoped that those who read this document will be able to avoid that
|
||||
frustrating experience. There is a lot of material here, but the effort
|
||||
involved in reading it will be repaid in short order. The development
|
||||
community is always in need of developers who will help to make the kernel
|
||||
better; the following text should help you - or those who work for you -
|
||||
join our community.
|
||||
|
||||
Credits
|
||||
-------
|
||||
|
||||
This document was written by Jonathan Corbet, corbet@lwn.net. It has been
|
||||
improved by comments from Johannes Berg, James Berry, Alex Chiang, Roland
|
||||
Dreier, Randy Dunlap, Jake Edge, Jiri Kosina, Matt Mackall, Arthur Marsh,
|
||||
Amanda McPherson, Andrew Morton, Andrew Price, Tsugikazu Shibata, and
|
||||
Jochen Voß.
|
||||
|
||||
This work was supported by the Linux Foundation; thanks especially to
|
||||
Amanda McPherson, who saw the value of this effort and made it all happen.
|
||||
|
||||
The importance of getting code into the mainline
|
||||
------------------------------------------------
|
||||
|
||||
Some companies and developers occasionally wonder why they should bother
|
||||
learning how to work with the kernel community and get their code into the
|
||||
mainline kernel (the "mainline" being the kernel maintained by Linus
|
||||
Torvalds and used as a base by Linux distributors). In the short term,
|
||||
contributing code can look like an avoidable expense; it seems easier to
|
||||
just keep the code separate and support users directly. The truth of the
|
||||
matter is that keeping code separate ("out of tree") is a false economy.
|
||||
|
||||
As a way of illustrating the costs of out-of-tree code, here are a few
|
||||
relevant aspects of the kernel development process; most of these will be
|
||||
discussed in greater detail later in this document. Consider:
|
||||
|
||||
- Code which has been merged into the mainline kernel is available to all
|
||||
Linux users. It will automatically be present on all distributions which
|
||||
enable it. There is no need for driver disks, downloads, or the hassles
|
||||
of supporting multiple versions of multiple distributions; it all just
|
||||
works, for the developer and for the user. Incorporation into the
|
||||
mainline solves a large number of distribution and support problems.
|
||||
|
||||
- While kernel developers strive to maintain a stable interface to user
|
||||
space, the internal kernel API is in constant flux. The lack of a stable
|
||||
internal interface is a deliberate design decision; it allows fundamental
|
||||
improvements to be made at any time and results in higher-quality code.
|
||||
But one result of that policy is that any out-of-tree code requires
|
||||
constant upkeep if it is to work with new kernels. Maintaining
|
||||
out-of-tree code requires significant amounts of work just to keep that
|
||||
code working.
|
||||
|
||||
Code which is in the mainline, instead, does not require this work as the
|
||||
result of a simple rule requiring any developer who makes an API change
|
||||
to also fix any code that breaks as the result of that change. So code
|
||||
which has been merged into the mainline has significantly lower
|
||||
maintenance costs.
|
||||
|
||||
- Beyond that, code which is in the kernel will often be improved by other
|
||||
developers. Surprising results can come from empowering your user
|
||||
community and customers to improve your product.
|
||||
|
||||
- Kernel code is subjected to review, both before and after merging into
|
||||
the mainline. No matter how strong the original developer's skills are,
|
||||
this review process invariably finds ways in which the code can be
|
||||
improved. Often review finds severe bugs and security problems. This is
|
||||
especially true for code which has been developed in a closed
|
||||
environment; such code benefits strongly from review by outside
|
||||
developers. Out-of-tree code is lower-quality code.
|
||||
|
||||
- Participation in the development process is your way to influence the
|
||||
direction of kernel development. Users who complain from the sidelines
|
||||
are heard, but active developers have a stronger voice - and the ability
|
||||
to implement changes which make the kernel work better for their needs.
|
||||
|
||||
- When code is maintained separately, the possibility that a third party
|
||||
will contribute a different implementation of a similar feature always
|
||||
exists. Should that happen, getting your code merged will become much
|
||||
harder - to the point of impossibility. Then you will be faced with the
|
||||
unpleasant alternatives of either (1) maintaining a nonstandard feature
|
||||
out of tree indefinitely, or (2) abandoning your code and migrating your
|
||||
users over to the in-tree version.
|
||||
|
||||
- Contribution of code is the fundamental action which makes the whole
|
||||
process work. By contributing your code you can add new functionality to
|
||||
the kernel and provide capabilities and examples which are of use to
|
||||
other kernel developers. If you have developed code for Linux (or are
|
||||
thinking about doing so), you clearly have an interest in the continued
|
||||
success of this platform; contributing code is one of the best ways to
|
||||
help ensure that success.
|
||||
|
||||
All of the reasoning above applies to any out-of-tree kernel code,
|
||||
including code which is distributed in proprietary, binary-only form.
|
||||
There are, however, additional factors which should be taken into account
|
||||
before considering any sort of binary-only kernel code distribution. These
|
||||
include:
|
||||
|
||||
- The legal issues around the distribution of proprietary kernel modules
|
||||
are cloudy at best; quite a few kernel copyright holders believe that
|
||||
most binary-only modules are derived products of the kernel and that, as
|
||||
a result, their distribution is a violation of the GNU General Public
|
||||
license (about which more will be said below). Your author is not a
|
||||
lawyer, and nothing in this document can possibly be considered to be
|
||||
legal advice. The true legal status of closed-source modules can only be
|
||||
determined by the courts. But the uncertainty which haunts those modules
|
||||
is there regardless.
|
||||
|
||||
- Binary modules greatly increase the difficulty of debugging kernel
|
||||
problems, to the point that most kernel developers will not even try. So
|
||||
the distribution of binary-only modules will make it harder for your
|
||||
users to get support from the community.
|
||||
|
||||
- Support is also harder for distributors of binary-only modules, who must
|
||||
provide a version of the module for every distribution and every kernel
|
||||
version they wish to support. Dozens of builds of a single module can
|
||||
be required to provide reasonably comprehensive coverage, and your users
|
||||
will have to upgrade your module separately every time they upgrade their
|
||||
kernel.
|
||||
|
||||
- Everything that was said above about code review applies doubly to
|
||||
closed-source code. Since this code is not available at all, it cannot
|
||||
have been reviewed by the community and will, beyond doubt, have serious
|
||||
problems.
|
||||
|
||||
Makers of embedded systems, in particular, may be tempted to disregard much
|
||||
of what has been said in this section in the belief that they are shipping
|
||||
a self-contained product which uses a frozen kernel version and requires no
|
||||
more development after its release. This argument misses the value of
|
||||
widespread code review and the value of allowing your users to add
|
||||
capabilities to your product. But these products, too, have a limited
|
||||
commercial life, after which a new version must be released. At that
|
||||
point, vendors whose code is in the mainline and well maintained will be
|
||||
much better positioned to get the new product ready for market quickly.
|
||||
|
||||
Licensing
|
||||
---------
|
||||
|
||||
Code is contributed to the Linux kernel under a number of licenses, but all
|
||||
code must be compatible with version 2 of the GNU General Public License
|
||||
(GPLv2), which is the license covering the kernel distribution as a whole.
|
||||
In practice, that means that all code contributions are covered either by
|
||||
GPLv2 (with, optionally, language allowing distribution under later
|
||||
versions of the GPL) or the three-clause BSD license. Any contributions
|
||||
which are not covered by a compatible license will not be accepted into the
|
||||
kernel.
|
||||
|
||||
Copyright assignments are not required (or requested) for code contributed
|
||||
to the kernel. All code merged into the mainline kernel retains its
|
||||
original ownership; as a result, the kernel now has thousands of owners.
|
||||
|
||||
One implication of this ownership structure is that any attempt to change
|
||||
the licensing of the kernel is doomed to almost certain failure. There are
|
||||
few practical scenarios where the agreement of all copyright holders could
|
||||
be obtained (or their code removed from the kernel). So, in particular,
|
||||
there is no prospect of a migration to version 3 of the GPL in the
|
||||
foreseeable future.
|
||||
|
||||
It is imperative that all code contributed to the kernel be legitimately
|
||||
free software. For that reason, code from anonymous (or pseudonymous)
|
||||
contributors will not be accepted. All contributors are required to "sign
|
||||
off" on their code, stating that the code can be distributed with the
|
||||
kernel under the GPL. Code which has not been licensed as free software by
|
||||
its owner, or which risks creating copyright-related problems for the
|
||||
kernel (such as code which derives from reverse-engineering efforts lacking
|
||||
proper safeguards) cannot be contributed.
|
||||
|
||||
Questions about copyright-related issues are common on Linux development
|
||||
mailing lists. Such questions will normally receive no shortage of
|
||||
answers, but one should bear in mind that the people answering those
|
||||
questions are not lawyers and cannot provide legal advice. If you have
|
||||
legal questions relating to Linux source code, there is no substitute for
|
||||
talking with a lawyer who understands this field. Relying on answers
|
||||
obtained on technical mailing lists is a risky affair.
|
@ -1,478 +0,0 @@
|
||||
2: HOW THE DEVELOPMENT PROCESS WORKS
|
||||
|
||||
Linux kernel development in the early 1990's was a pretty loose affair,
|
||||
with relatively small numbers of users and developers involved. With a
|
||||
user base in the millions and with some 2,000 developers involved over the
|
||||
course of one year, the kernel has since had to evolve a number of
|
||||
processes to keep development happening smoothly. A solid understanding of
|
||||
how the process works is required in order to be an effective part of it.
|
||||
|
||||
|
||||
2.1: THE BIG PICTURE
|
||||
|
||||
The kernel developers use a loosely time-based release process, with a new
|
||||
major kernel release happening every two or three months. The recent
|
||||
release history looks like this:
|
||||
|
||||
2.6.38 March 14, 2011
|
||||
2.6.37 January 4, 2011
|
||||
2.6.36 October 20, 2010
|
||||
2.6.35 August 1, 2010
|
||||
2.6.34 May 15, 2010
|
||||
2.6.33 February 24, 2010
|
||||
|
||||
Every 2.6.x release is a major kernel release with new features, internal
|
||||
API changes, and more. A typical 2.6 release can contain nearly 10,000
|
||||
changesets with changes to several hundred thousand lines of code. 2.6 is
|
||||
thus the leading edge of Linux kernel development; the kernel uses a
|
||||
rolling development model which is continually integrating major changes.
|
||||
|
||||
A relatively straightforward discipline is followed with regard to the
|
||||
merging of patches for each release. At the beginning of each development
|
||||
cycle, the "merge window" is said to be open. At that time, code which is
|
||||
deemed to be sufficiently stable (and which is accepted by the development
|
||||
community) is merged into the mainline kernel. The bulk of changes for a
|
||||
new development cycle (and all of the major changes) will be merged during
|
||||
this time, at a rate approaching 1,000 changes ("patches," or "changesets")
|
||||
per day.
|
||||
|
||||
(As an aside, it is worth noting that the changes integrated during the
|
||||
merge window do not come out of thin air; they have been collected, tested,
|
||||
and staged ahead of time. How that process works will be described in
|
||||
detail later on).
|
||||
|
||||
The merge window lasts for approximately two weeks. At the end of this
|
||||
time, Linus Torvalds will declare that the window is closed and release the
|
||||
first of the "rc" kernels. For the kernel which is destined to be 2.6.40,
|
||||
for example, the release which happens at the end of the merge window will
|
||||
be called 2.6.40-rc1. The -rc1 release is the signal that the time to
|
||||
merge new features has passed, and that the time to stabilize the next
|
||||
kernel has begun.
|
||||
|
||||
Over the next six to ten weeks, only patches which fix problems should be
|
||||
submitted to the mainline. On occasion a more significant change will be
|
||||
allowed, but such occasions are rare; developers who try to merge new
|
||||
features outside of the merge window tend to get an unfriendly reception.
|
||||
As a general rule, if you miss the merge window for a given feature, the
|
||||
best thing to do is to wait for the next development cycle. (An occasional
|
||||
exception is made for drivers for previously-unsupported hardware; if they
|
||||
touch no in-tree code, they cannot cause regressions and should be safe to
|
||||
add at any time).
|
||||
|
||||
As fixes make their way into the mainline, the patch rate will slow over
|
||||
time. Linus releases new -rc kernels about once a week; a normal series
|
||||
will get up to somewhere between -rc6 and -rc9 before the kernel is
|
||||
considered to be sufficiently stable and the final 2.6.x release is made.
|
||||
At that point the whole process starts over again.
|
||||
|
||||
As an example, here is how the 2.6.38 development cycle went (all dates in
|
||||
2011):
|
||||
|
||||
January 4 2.6.37 stable release
|
||||
January 18 2.6.38-rc1, merge window closes
|
||||
January 21 2.6.38-rc2
|
||||
February 1 2.6.38-rc3
|
||||
February 7 2.6.38-rc4
|
||||
February 15 2.6.38-rc5
|
||||
February 21 2.6.38-rc6
|
||||
March 1 2.6.38-rc7
|
||||
March 7 2.6.38-rc8
|
||||
March 14 2.6.38 stable release
|
||||
|
||||
How do the developers decide when to close the development cycle and create
|
||||
the stable release? The most significant metric used is the list of
|
||||
regressions from previous releases. No bugs are welcome, but those which
|
||||
break systems which worked in the past are considered to be especially
|
||||
serious. For this reason, patches which cause regressions are looked upon
|
||||
unfavorably and are quite likely to be reverted during the stabilization
|
||||
period.
|
||||
|
||||
The developers' goal is to fix all known regressions before the stable
|
||||
release is made. In the real world, this kind of perfection is hard to
|
||||
achieve; there are just too many variables in a project of this size.
|
||||
There comes a point where delaying the final release just makes the problem
|
||||
worse; the pile of changes waiting for the next merge window will grow
|
||||
larger, creating even more regressions the next time around. So most 2.6.x
|
||||
kernels go out with a handful of known regressions though, hopefully, none
|
||||
of them are serious.
|
||||
|
||||
Once a stable release is made, its ongoing maintenance is passed off to the
|
||||
"stable team," currently consisting of Greg Kroah-Hartman. The stable team
|
||||
will release occasional updates to the stable release using the 2.6.x.y
|
||||
numbering scheme. To be considered for an update release, a patch must (1)
|
||||
fix a significant bug, and (2) already be merged into the mainline for the
|
||||
next development kernel. Kernels will typically receive stable updates for
|
||||
a little more than one development cycle past their initial release. So,
|
||||
for example, the 2.6.36 kernel's history looked like:
|
||||
|
||||
October 10 2.6.36 stable release
|
||||
November 22 2.6.36.1
|
||||
December 9 2.6.36.2
|
||||
January 7 2.6.36.3
|
||||
February 17 2.6.36.4
|
||||
|
||||
2.6.36.4 was the final stable update for the 2.6.36 release.
|
||||
|
||||
Some kernels are designated "long term" kernels; they will receive support
|
||||
for a longer period. As of this writing, the current long term kernels
|
||||
and their maintainers are:
|
||||
|
||||
2.6.27 Willy Tarreau (Deep-frozen stable kernel)
|
||||
2.6.32 Greg Kroah-Hartman
|
||||
2.6.35 Andi Kleen (Embedded flag kernel)
|
||||
|
||||
The selection of a kernel for long-term support is purely a matter of a
|
||||
maintainer having the need and the time to maintain that release. There
|
||||
are no known plans for long-term support for any specific upcoming
|
||||
release.
|
||||
|
||||
|
||||
2.2: THE LIFECYCLE OF A PATCH
|
||||
|
||||
Patches do not go directly from the developer's keyboard into the mainline
|
||||
kernel. There is, instead, a somewhat involved (if somewhat informal)
|
||||
process designed to ensure that each patch is reviewed for quality and that
|
||||
each patch implements a change which is desirable to have in the mainline.
|
||||
This process can happen quickly for minor fixes, or, in the case of large
|
||||
and controversial changes, go on for years. Much developer frustration
|
||||
comes from a lack of understanding of this process or from attempts to
|
||||
circumvent it.
|
||||
|
||||
In the hopes of reducing that frustration, this document will describe how
|
||||
a patch gets into the kernel. What follows below is an introduction which
|
||||
describes the process in a somewhat idealized way. A much more detailed
|
||||
treatment will come in later sections.
|
||||
|
||||
The stages that a patch goes through are, generally:
|
||||
|
||||
- Design. This is where the real requirements for the patch - and the way
|
||||
those requirements will be met - are laid out. Design work is often
|
||||
done without involving the community, but it is better to do this work
|
||||
in the open if at all possible; it can save a lot of time redesigning
|
||||
things later.
|
||||
|
||||
- Early review. Patches are posted to the relevant mailing list, and
|
||||
developers on that list reply with any comments they may have. This
|
||||
process should turn up any major problems with a patch if all goes
|
||||
well.
|
||||
|
||||
- Wider review. When the patch is getting close to ready for mainline
|
||||
inclusion, it should be accepted by a relevant subsystem maintainer -
|
||||
though this acceptance is not a guarantee that the patch will make it
|
||||
all the way to the mainline. The patch will show up in the maintainer's
|
||||
subsystem tree and into the -next trees (described below). When the
|
||||
process works, this step leads to more extensive review of the patch and
|
||||
the discovery of any problems resulting from the integration of this
|
||||
patch with work being done by others.
|
||||
|
||||
- Please note that most maintainers also have day jobs, so merging
|
||||
your patch may not be their highest priority. If your patch is
|
||||
getting feedback about changes that are needed, you should either
|
||||
make those changes or justify why they should not be made. If your
|
||||
patch has no review complaints but is not being merged by its
|
||||
appropriate subsystem or driver maintainer, you should be persistent
|
||||
in updating the patch to the current kernel so that it applies cleanly
|
||||
and keep sending it for review and merging.
|
||||
|
||||
- Merging into the mainline. Eventually, a successful patch will be
|
||||
merged into the mainline repository managed by Linus Torvalds. More
|
||||
comments and/or problems may surface at this time; it is important that
|
||||
the developer be responsive to these and fix any issues which arise.
|
||||
|
||||
- Stable release. The number of users potentially affected by the patch
|
||||
is now large, so, once again, new problems may arise.
|
||||
|
||||
- Long-term maintenance. While it is certainly possible for a developer
|
||||
to forget about code after merging it, that sort of behavior tends to
|
||||
leave a poor impression in the development community. Merging code
|
||||
eliminates some of the maintenance burden, in that others will fix
|
||||
problems caused by API changes. But the original developer should
|
||||
continue to take responsibility for the code if it is to remain useful
|
||||
in the longer term.
|
||||
|
||||
One of the largest mistakes made by kernel developers (or their employers)
|
||||
is to try to cut the process down to a single "merging into the mainline"
|
||||
step. This approach invariably leads to frustration for everybody
|
||||
involved.
|
||||
|
||||
|
||||
2.3: HOW PATCHES GET INTO THE KERNEL
|
||||
|
||||
There is exactly one person who can merge patches into the mainline kernel
|
||||
repository: Linus Torvalds. But, of the over 9,500 patches which went
|
||||
into the 2.6.38 kernel, only 112 (around 1.3%) were directly chosen by Linus
|
||||
himself. The kernel project has long since grown to a size where no single
|
||||
developer could possibly inspect and select every patch unassisted. The
|
||||
way the kernel developers have addressed this growth is through the use of
|
||||
a lieutenant system built around a chain of trust.
|
||||
|
||||
The kernel code base is logically broken down into a set of subsystems:
|
||||
networking, specific architecture support, memory management, video
|
||||
devices, etc. Most subsystems have a designated maintainer, a developer
|
||||
who has overall responsibility for the code within that subsystem. These
|
||||
subsystem maintainers are the gatekeepers (in a loose way) for the portion
|
||||
of the kernel they manage; they are the ones who will (usually) accept a
|
||||
patch for inclusion into the mainline kernel.
|
||||
|
||||
Subsystem maintainers each manage their own version of the kernel source
|
||||
tree, usually (but certainly not always) using the git source management
|
||||
tool. Tools like git (and related tools like quilt or mercurial) allow
|
||||
maintainers to track a list of patches, including authorship information
|
||||
and other metadata. At any given time, the maintainer can identify which
|
||||
patches in his or her repository are not found in the mainline.
|
||||
|
||||
When the merge window opens, top-level maintainers will ask Linus to "pull"
|
||||
the patches they have selected for merging from their repositories. If
|
||||
Linus agrees, the stream of patches will flow up into his repository,
|
||||
becoming part of the mainline kernel. The amount of attention that Linus
|
||||
pays to specific patches received in a pull operation varies. It is clear
|
||||
that, sometimes, he looks quite closely. But, as a general rule, Linus
|
||||
trusts the subsystem maintainers to not send bad patches upstream.
|
||||
|
||||
Subsystem maintainers, in turn, can pull patches from other maintainers.
|
||||
For example, the networking tree is built from patches which accumulated
|
||||
first in trees dedicated to network device drivers, wireless networking,
|
||||
etc. This chain of repositories can be arbitrarily long, though it rarely
|
||||
exceeds two or three links. Since each maintainer in the chain trusts
|
||||
those managing lower-level trees, this process is known as the "chain of
|
||||
trust."
|
||||
|
||||
Clearly, in a system like this, getting patches into the kernel depends on
|
||||
finding the right maintainer. Sending patches directly to Linus is not
|
||||
normally the right way to go.
|
||||
|
||||
|
||||
2.4: NEXT TREES
|
||||
|
||||
The chain of subsystem trees guides the flow of patches into the kernel,
|
||||
but it also raises an interesting question: what if somebody wants to look
|
||||
at all of the patches which are being prepared for the next merge window?
|
||||
Developers will be interested in what other changes are pending to see
|
||||
whether there are any conflicts to worry about; a patch which changes a
|
||||
core kernel function prototype, for example, will conflict with any other
|
||||
patches which use the older form of that function. Reviewers and testers
|
||||
want access to the changes in their integrated form before all of those
|
||||
changes land in the mainline kernel. One could pull changes from all of
|
||||
the interesting subsystem trees, but that would be a big and error-prone
|
||||
job.
|
||||
|
||||
The answer comes in the form of -next trees, where subsystem trees are
|
||||
collected for testing and review. The older of these trees, maintained by
|
||||
Andrew Morton, is called "-mm" (for memory management, which is how it got
|
||||
started). The -mm tree integrates patches from a long list of subsystem
|
||||
trees; it also has some patches aimed at helping with debugging.
|
||||
|
||||
Beyond that, -mm contains a significant collection of patches which have
|
||||
been selected by Andrew directly. These patches may have been posted on a
|
||||
mailing list, or they may apply to a part of the kernel for which there is
|
||||
no designated subsystem tree. As a result, -mm operates as a sort of
|
||||
subsystem tree of last resort; if there is no other obvious path for a
|
||||
patch into the mainline, it is likely to end up in -mm. Miscellaneous
|
||||
patches which accumulate in -mm will eventually either be forwarded on to
|
||||
an appropriate subsystem tree or be sent directly to Linus. In a typical
|
||||
development cycle, approximately 5-10% of the patches going into the
|
||||
mainline get there via -mm.
|
||||
|
||||
The current -mm patch is available in the "mmotm" (-mm of the moment)
|
||||
directory at:
|
||||
|
||||
http://www.ozlabs.org/~akpm/mmotm/
|
||||
|
||||
Use of the MMOTM tree is likely to be a frustrating experience, though;
|
||||
there is a definite chance that it will not even compile.
|
||||
|
||||
The primary tree for next-cycle patch merging is linux-next, maintained by
|
||||
Stephen Rothwell. The linux-next tree is, by design, a snapshot of what
|
||||
the mainline is expected to look like after the next merge window closes.
|
||||
Linux-next trees are announced on the linux-kernel and linux-next mailing
|
||||
lists when they are assembled; they can be downloaded from:
|
||||
|
||||
http://www.kernel.org/pub/linux/kernel/next/
|
||||
|
||||
Linux-next has become an integral part of the kernel development process;
|
||||
all patches merged during a given merge window should really have found
|
||||
their way into linux-next some time before the merge window opens.
|
||||
|
||||
|
||||
2.4.1: STAGING TREES
|
||||
|
||||
The kernel source tree contains the drivers/staging/ directory, where
|
||||
many sub-directories for drivers or filesystems that are on their way to
|
||||
being added to the kernel tree live. They remain in drivers/staging while
|
||||
they still need more work; once complete, they can be moved into the
|
||||
kernel proper. This is a way to keep track of drivers that aren't
|
||||
up to Linux kernel coding or quality standards, but people may want to use
|
||||
them and track development.
|
||||
|
||||
Greg Kroah-Hartman currently maintains the staging tree. Drivers that
|
||||
still need work are sent to him, with each driver having its own
|
||||
subdirectory in drivers/staging/. Along with the driver source files, a
|
||||
TODO file should be present in the directory as well. The TODO file lists
|
||||
the pending work that the driver needs for acceptance into the kernel
|
||||
proper, as well as a list of people that should be Cc'd for any patches to
|
||||
the driver. Current rules require that drivers contributed to staging
|
||||
must, at a minimum, compile properly.
|
||||
|
||||
Staging can be a relatively easy way to get new drivers into the mainline
|
||||
where, with luck, they will come to the attention of other developers and
|
||||
improve quickly. Entry into staging is not the end of the story, though;
|
||||
code in staging which is not seeing regular progress will eventually be
|
||||
removed. Distributors also tend to be relatively reluctant to enable
|
||||
staging drivers. So staging is, at best, a stop on the way toward becoming
|
||||
a proper mainline driver.
|
||||
|
||||
|
||||
2.5: TOOLS
|
||||
|
||||
As can be seen from the above text, the kernel development process depends
|
||||
heavily on the ability to herd collections of patches in various
|
||||
directions. The whole thing would not work anywhere near as well as it
|
||||
does without suitably powerful tools. Tutorials on how to use these tools
|
||||
are well beyond the scope of this document, but there is space for a few
|
||||
pointers.
|
||||
|
||||
By far the dominant source code management system used by the kernel
|
||||
community is git. Git is one of a number of distributed version control
|
||||
systems being developed in the free software community. It is well tuned
|
||||
for kernel development, in that it performs quite well when dealing with
|
||||
large repositories and large numbers of patches. It also has a reputation
|
||||
for being difficult to learn and use, though it has gotten better over
|
||||
time. Some sort of familiarity with git is almost a requirement for kernel
|
||||
developers; even if they do not use it for their own work, they'll need git
|
||||
to keep up with what other developers (and the mainline) are doing.
|
||||
|
||||
Git is now packaged by almost all Linux distributions. There is a home
|
||||
page at:
|
||||
|
||||
http://git-scm.com/
|
||||
|
||||
That page has pointers to documentation and tutorials.
|
||||
|
||||
Among the kernel developers who do not use git, the most popular choice is
|
||||
almost certainly Mercurial:
|
||||
|
||||
http://www.selenic.com/mercurial/
|
||||
|
||||
Mercurial shares many features with git, but it provides an interface which
|
||||
many find easier to use.
|
||||
|
||||
The other tool worth knowing about is Quilt:
|
||||
|
||||
http://savannah.nongnu.org/projects/quilt/
|
||||
|
||||
Quilt is a patch management system, rather than a source code management
|
||||
system. It does not track history over time; it is, instead, oriented
|
||||
toward tracking a specific set of changes against an evolving code base.
|
||||
Some major subsystem maintainers use quilt to manage patches intended to go
|
||||
upstream. For the management of certain kinds of trees (-mm, for example),
|
||||
quilt is the best tool for the job.
|
||||
|
||||
|
||||
2.6: MAILING LISTS
|
||||
|
||||
A great deal of Linux kernel development work is done by way of mailing
|
||||
lists. It is hard to be a fully-functioning member of the community
|
||||
without joining at least one list somewhere. But Linux mailing lists also
|
||||
represent a potential hazard to developers, who risk getting buried under a
|
||||
load of electronic mail, running afoul of the conventions used on the Linux
|
||||
lists, or both.
|
||||
|
||||
Most kernel mailing lists are run on vger.kernel.org; the master list can
|
||||
be found at:
|
||||
|
||||
http://vger.kernel.org/vger-lists.html
|
||||
|
||||
There are lists hosted elsewhere, though; a number of them are at
|
||||
lists.redhat.com.
|
||||
|
||||
The core mailing list for kernel development is, of course, linux-kernel.
|
||||
This list is an intimidating place to be; volume can reach 500 messages per
|
||||
day, the amount of noise is high, the conversation can be severely
|
||||
technical, and participants are not always concerned with showing a high
|
||||
degree of politeness. But there is no other place where the kernel
|
||||
development community comes together as a whole; developers who avoid this
|
||||
list will miss important information.
|
||||
|
||||
There are a few hints which can help with linux-kernel survival:
|
||||
|
||||
- Have the list delivered to a separate folder, rather than your main
|
||||
mailbox. One must be able to ignore the stream for sustained periods of
|
||||
time.
|
||||
|
||||
- Do not try to follow every conversation - nobody else does. It is
|
||||
important to filter on both the topic of interest (though note that
|
||||
long-running conversations can drift away from the original subject
|
||||
without changing the email subject line) and the people who are
|
||||
participating.
|
||||
|
||||
- Do not feed the trolls. If somebody is trying to stir up an angry
|
||||
response, ignore them.
|
||||
|
||||
- When responding to linux-kernel email (or that on other lists) preserve
|
||||
the Cc: header for all involved. In the absence of a strong reason (such
|
||||
as an explicit request), you should never remove recipients. Always make
|
||||
sure that the person you are responding to is in the Cc: list. This
|
||||
convention also makes it unnecessary to explicitly ask to be copied on
|
||||
replies to your postings.
|
||||
|
||||
- Search the list archives (and the net as a whole) before asking
|
||||
questions. Some developers can get impatient with people who clearly
|
||||
have not done their homework.
|
||||
|
||||
- Avoid top-posting (the practice of putting your answer above the quoted
|
||||
text you are responding to). It makes your response harder to read and
|
||||
makes a poor impression.
|
||||
|
||||
- Ask on the correct mailing list. Linux-kernel may be the general meeting
|
||||
point, but it is not the best place to find developers from all
|
||||
subsystems.
|
||||
|
||||
The last point - finding the correct mailing list - is a common place for
|
||||
beginning developers to go wrong. Somebody who asks a networking-related
|
||||
question on linux-kernel will almost certainly receive a polite suggestion
|
||||
to ask on the netdev list instead, as that is the list frequented by most
|
||||
networking developers. Other lists exist for the SCSI, video4linux, IDE,
|
||||
filesystem, etc. subsystems. The best place to look for mailing lists is
|
||||
in the MAINTAINERS file packaged with the kernel source.
|
||||
|
||||
|
||||
2.7: GETTING STARTED WITH KERNEL DEVELOPMENT
|
||||
|
||||
Questions about how to get started with the kernel development process are
|
||||
common - from both individuals and companies. Equally common are missteps
|
||||
which make the beginning of the relationship harder than it has to be.
|
||||
|
||||
Companies often look to hire well-known developers to get a development
|
||||
group started. This can, in fact, be an effective technique. But it also
|
||||
tends to be expensive and does not do much to grow the pool of experienced
|
||||
kernel developers. It is possible to bring in-house developers up to speed
|
||||
on Linux kernel development, given the investment of a bit of time. Taking
|
||||
this time can endow an employer with a group of developers who understand
|
||||
the kernel and the company both, and who can help to train others as well.
|
||||
Over the medium term, this is often the more profitable approach.
|
||||
|
||||
Individual developers are often, understandably, at a loss for a place to
|
||||
start. Beginning with a large project can be intimidating; one often wants
|
||||
to test the waters with something smaller first. This is the point where
|
||||
some developers jump into the creation of patches fixing spelling errors or
|
||||
minor coding style issues. Unfortunately, such patches create a level of
|
||||
noise which is distracting for the development community as a whole, so,
|
||||
increasingly, they are looked down upon. New developers wishing to
|
||||
introduce themselves to the community will not get the sort of reception
|
||||
they wish for by these means.
|
||||
|
||||
Andrew Morton gives this advice for aspiring kernel developers
|
||||
|
||||
The #1 project for all kernel beginners should surely be "make sure
|
||||
that the kernel runs perfectly at all times on all machines which
|
||||
you can lay your hands on". Usually the way to do this is to work
|
||||
with others on getting things fixed up (this can require
|
||||
persistence!) but that's fine - it's a part of kernel development.
|
||||
|
||||
(http://lwn.net/Articles/283982/).
|
||||
|
||||
In the absence of obvious problems to fix, developers are advised to look
|
||||
at the current lists of regressions and open bugs in general. There is
|
||||
never any shortage of issues in need of fixing; by addressing these issues,
|
||||
developers will gain experience with the process while, at the same time,
|
||||
building respect with the rest of the development community.
|
497
Documentation/development-process/2.Process.rst
Normal file
497
Documentation/development-process/2.Process.rst
Normal file
@ -0,0 +1,497 @@
|
||||
.. _development_process:
|
||||
|
||||
How the development process works
|
||||
=================================
|
||||
|
||||
Linux kernel development in the early 1990's was a pretty loose affair,
|
||||
with relatively small numbers of users and developers involved. With a
|
||||
user base in the millions and with some 2,000 developers involved over the
|
||||
course of one year, the kernel has since had to evolve a number of
|
||||
processes to keep development happening smoothly. A solid understanding of
|
||||
how the process works is required in order to be an effective part of it.
|
||||
|
||||
The big picture
|
||||
---------------
|
||||
|
||||
The kernel developers use a loosely time-based release process, with a new
|
||||
major kernel release happening every two or three months. The recent
|
||||
release history looks like this:
|
||||
|
||||
====== =================
|
||||
2.6.38 March 14, 2011
|
||||
2.6.37 January 4, 2011
|
||||
2.6.36 October 20, 2010
|
||||
2.6.35 August 1, 2010
|
||||
2.6.34 May 15, 2010
|
||||
2.6.33 February 24, 2010
|
||||
====== =================
|
||||
|
||||
Every 2.6.x release is a major kernel release with new features, internal
|
||||
API changes, and more. A typical 2.6 release can contain nearly 10,000
|
||||
changesets with changes to several hundred thousand lines of code. 2.6 is
|
||||
thus the leading edge of Linux kernel development; the kernel uses a
|
||||
rolling development model which is continually integrating major changes.
|
||||
|
||||
A relatively straightforward discipline is followed with regard to the
|
||||
merging of patches for each release. At the beginning of each development
|
||||
cycle, the "merge window" is said to be open. At that time, code which is
|
||||
deemed to be sufficiently stable (and which is accepted by the development
|
||||
community) is merged into the mainline kernel. The bulk of changes for a
|
||||
new development cycle (and all of the major changes) will be merged during
|
||||
this time, at a rate approaching 1,000 changes ("patches," or "changesets")
|
||||
per day.
|
||||
|
||||
(As an aside, it is worth noting that the changes integrated during the
|
||||
merge window do not come out of thin air; they have been collected, tested,
|
||||
and staged ahead of time. How that process works will be described in
|
||||
detail later on).
|
||||
|
||||
The merge window lasts for approximately two weeks. At the end of this
|
||||
time, Linus Torvalds will declare that the window is closed and release the
|
||||
first of the "rc" kernels. For the kernel which is destined to be 2.6.40,
|
||||
for example, the release which happens at the end of the merge window will
|
||||
be called 2.6.40-rc1. The -rc1 release is the signal that the time to
|
||||
merge new features has passed, and that the time to stabilize the next
|
||||
kernel has begun.
|
||||
|
||||
Over the next six to ten weeks, only patches which fix problems should be
|
||||
submitted to the mainline. On occasion a more significant change will be
|
||||
allowed, but such occasions are rare; developers who try to merge new
|
||||
features outside of the merge window tend to get an unfriendly reception.
|
||||
As a general rule, if you miss the merge window for a given feature, the
|
||||
best thing to do is to wait for the next development cycle. (An occasional
|
||||
exception is made for drivers for previously-unsupported hardware; if they
|
||||
touch no in-tree code, they cannot cause regressions and should be safe to
|
||||
add at any time).
|
||||
|
||||
As fixes make their way into the mainline, the patch rate will slow over
|
||||
time. Linus releases new -rc kernels about once a week; a normal series
|
||||
will get up to somewhere between -rc6 and -rc9 before the kernel is
|
||||
considered to be sufficiently stable and the final 2.6.x release is made.
|
||||
At that point the whole process starts over again.
|
||||
|
||||
As an example, here is how the 2.6.38 development cycle went (all dates in
|
||||
2011):
|
||||
|
||||
============== ===============================
|
||||
January 4 2.6.37 stable release
|
||||
January 18 2.6.38-rc1, merge window closes
|
||||
January 21 2.6.38-rc2
|
||||
February 1 2.6.38-rc3
|
||||
February 7 2.6.38-rc4
|
||||
February 15 2.6.38-rc5
|
||||
February 21 2.6.38-rc6
|
||||
March 1 2.6.38-rc7
|
||||
March 7 2.6.38-rc8
|
||||
March 14 2.6.38 stable release
|
||||
============== ===============================
|
||||
|
||||
How do the developers decide when to close the development cycle and create
|
||||
the stable release? The most significant metric used is the list of
|
||||
regressions from previous releases. No bugs are welcome, but those which
|
||||
break systems which worked in the past are considered to be especially
|
||||
serious. For this reason, patches which cause regressions are looked upon
|
||||
unfavorably and are quite likely to be reverted during the stabilization
|
||||
period.
|
||||
|
||||
The developers' goal is to fix all known regressions before the stable
|
||||
release is made. In the real world, this kind of perfection is hard to
|
||||
achieve; there are just too many variables in a project of this size.
|
||||
There comes a point where delaying the final release just makes the problem
|
||||
worse; the pile of changes waiting for the next merge window will grow
|
||||
larger, creating even more regressions the next time around. So most 2.6.x
|
||||
kernels go out with a handful of known regressions though, hopefully, none
|
||||
of them are serious.
|
||||
|
||||
Once a stable release is made, its ongoing maintenance is passed off to the
|
||||
"stable team," currently consisting of Greg Kroah-Hartman. The stable team
|
||||
will release occasional updates to the stable release using the 2.6.x.y
|
||||
numbering scheme. To be considered for an update release, a patch must (1)
|
||||
fix a significant bug, and (2) already be merged into the mainline for the
|
||||
next development kernel. Kernels will typically receive stable updates for
|
||||
a little more than one development cycle past their initial release. So,
|
||||
for example, the 2.6.36 kernel's history looked like:
|
||||
|
||||
============== ===============================
|
||||
October 10 2.6.36 stable release
|
||||
November 22 2.6.36.1
|
||||
December 9 2.6.36.2
|
||||
January 7 2.6.36.3
|
||||
February 17 2.6.36.4
|
||||
============== ===============================
|
||||
|
||||
2.6.36.4 was the final stable update for the 2.6.36 release.
|
||||
|
||||
Some kernels are designated "long term" kernels; they will receive support
|
||||
for a longer period. As of this writing, the current long term kernels
|
||||
and their maintainers are:
|
||||
|
||||
====== ====================== ===========================
|
||||
2.6.27 Willy Tarreau (Deep-frozen stable kernel)
|
||||
2.6.32 Greg Kroah-Hartman
|
||||
2.6.35 Andi Kleen (Embedded flag kernel)
|
||||
====== ====================== ===========================
|
||||
|
||||
The selection of a kernel for long-term support is purely a matter of a
|
||||
maintainer having the need and the time to maintain that release. There
|
||||
are no known plans for long-term support for any specific upcoming
|
||||
release.
|
||||
|
||||
|
||||
The lifecycle of a patch
|
||||
------------------------
|
||||
|
||||
Patches do not go directly from the developer's keyboard into the mainline
|
||||
kernel. There is, instead, a somewhat involved (if somewhat informal)
|
||||
process designed to ensure that each patch is reviewed for quality and that
|
||||
each patch implements a change which is desirable to have in the mainline.
|
||||
This process can happen quickly for minor fixes, or, in the case of large
|
||||
and controversial changes, go on for years. Much developer frustration
|
||||
comes from a lack of understanding of this process or from attempts to
|
||||
circumvent it.
|
||||
|
||||
In the hopes of reducing that frustration, this document will describe how
|
||||
a patch gets into the kernel. What follows below is an introduction which
|
||||
describes the process in a somewhat idealized way. A much more detailed
|
||||
treatment will come in later sections.
|
||||
|
||||
The stages that a patch goes through are, generally:
|
||||
|
||||
- Design. This is where the real requirements for the patch - and the way
|
||||
those requirements will be met - are laid out. Design work is often
|
||||
done without involving the community, but it is better to do this work
|
||||
in the open if at all possible; it can save a lot of time redesigning
|
||||
things later.
|
||||
|
||||
- Early review. Patches are posted to the relevant mailing list, and
|
||||
developers on that list reply with any comments they may have. This
|
||||
process should turn up any major problems with a patch if all goes
|
||||
well.
|
||||
|
||||
- Wider review. When the patch is getting close to ready for mainline
|
||||
inclusion, it should be accepted by a relevant subsystem maintainer -
|
||||
though this acceptance is not a guarantee that the patch will make it
|
||||
all the way to the mainline. The patch will show up in the maintainer's
|
||||
subsystem tree and into the -next trees (described below). When the
|
||||
process works, this step leads to more extensive review of the patch and
|
||||
the discovery of any problems resulting from the integration of this
|
||||
patch with work being done by others.
|
||||
|
||||
- Please note that most maintainers also have day jobs, so merging
|
||||
your patch may not be their highest priority. If your patch is
|
||||
getting feedback about changes that are needed, you should either
|
||||
make those changes or justify why they should not be made. If your
|
||||
patch has no review complaints but is not being merged by its
|
||||
appropriate subsystem or driver maintainer, you should be persistent
|
||||
in updating the patch to the current kernel so that it applies cleanly
|
||||
and keep sending it for review and merging.
|
||||
|
||||
- Merging into the mainline. Eventually, a successful patch will be
|
||||
merged into the mainline repository managed by Linus Torvalds. More
|
||||
comments and/or problems may surface at this time; it is important that
|
||||
the developer be responsive to these and fix any issues which arise.
|
||||
|
||||
- Stable release. The number of users potentially affected by the patch
|
||||
is now large, so, once again, new problems may arise.
|
||||
|
||||
- Long-term maintenance. While it is certainly possible for a developer
|
||||
to forget about code after merging it, that sort of behavior tends to
|
||||
leave a poor impression in the development community. Merging code
|
||||
eliminates some of the maintenance burden, in that others will fix
|
||||
problems caused by API changes. But the original developer should
|
||||
continue to take responsibility for the code if it is to remain useful
|
||||
in the longer term.
|
||||
|
||||
One of the largest mistakes made by kernel developers (or their employers)
|
||||
is to try to cut the process down to a single "merging into the mainline"
|
||||
step. This approach invariably leads to frustration for everybody
|
||||
involved.
|
||||
|
||||
How patches get into the Kernel
|
||||
-------------------------------
|
||||
|
||||
There is exactly one person who can merge patches into the mainline kernel
|
||||
repository: Linus Torvalds. But, of the over 9,500 patches which went
|
||||
into the 2.6.38 kernel, only 112 (around 1.3%) were directly chosen by Linus
|
||||
himself. The kernel project has long since grown to a size where no single
|
||||
developer could possibly inspect and select every patch unassisted. The
|
||||
way the kernel developers have addressed this growth is through the use of
|
||||
a lieutenant system built around a chain of trust.
|
||||
|
||||
The kernel code base is logically broken down into a set of subsystems:
|
||||
networking, specific architecture support, memory management, video
|
||||
devices, etc. Most subsystems have a designated maintainer, a developer
|
||||
who has overall responsibility for the code within that subsystem. These
|
||||
subsystem maintainers are the gatekeepers (in a loose way) for the portion
|
||||
of the kernel they manage; they are the ones who will (usually) accept a
|
||||
patch for inclusion into the mainline kernel.
|
||||
|
||||
Subsystem maintainers each manage their own version of the kernel source
|
||||
tree, usually (but certainly not always) using the git source management
|
||||
tool. Tools like git (and related tools like quilt or mercurial) allow
|
||||
maintainers to track a list of patches, including authorship information
|
||||
and other metadata. At any given time, the maintainer can identify which
|
||||
patches in his or her repository are not found in the mainline.
|
||||
|
||||
When the merge window opens, top-level maintainers will ask Linus to "pull"
|
||||
the patches they have selected for merging from their repositories. If
|
||||
Linus agrees, the stream of patches will flow up into his repository,
|
||||
becoming part of the mainline kernel. The amount of attention that Linus
|
||||
pays to specific patches received in a pull operation varies. It is clear
|
||||
that, sometimes, he looks quite closely. But, as a general rule, Linus
|
||||
trusts the subsystem maintainers to not send bad patches upstream.
|
||||
|
||||
Subsystem maintainers, in turn, can pull patches from other maintainers.
|
||||
For example, the networking tree is built from patches which accumulated
|
||||
first in trees dedicated to network device drivers, wireless networking,
|
||||
etc. This chain of repositories can be arbitrarily long, though it rarely
|
||||
exceeds two or three links. Since each maintainer in the chain trusts
|
||||
those managing lower-level trees, this process is known as the "chain of
|
||||
trust."
|
||||
|
||||
Clearly, in a system like this, getting patches into the kernel depends on
|
||||
finding the right maintainer. Sending patches directly to Linus is not
|
||||
normally the right way to go.
|
||||
|
||||
|
||||
Next trees
|
||||
----------
|
||||
|
||||
The chain of subsystem trees guides the flow of patches into the kernel,
|
||||
but it also raises an interesting question: what if somebody wants to look
|
||||
at all of the patches which are being prepared for the next merge window?
|
||||
Developers will be interested in what other changes are pending to see
|
||||
whether there are any conflicts to worry about; a patch which changes a
|
||||
core kernel function prototype, for example, will conflict with any other
|
||||
patches which use the older form of that function. Reviewers and testers
|
||||
want access to the changes in their integrated form before all of those
|
||||
changes land in the mainline kernel. One could pull changes from all of
|
||||
the interesting subsystem trees, but that would be a big and error-prone
|
||||
job.
|
||||
|
||||
The answer comes in the form of -next trees, where subsystem trees are
|
||||
collected for testing and review. The older of these trees, maintained by
|
||||
Andrew Morton, is called "-mm" (for memory management, which is how it got
|
||||
started). The -mm tree integrates patches from a long list of subsystem
|
||||
trees; it also has some patches aimed at helping with debugging.
|
||||
|
||||
Beyond that, -mm contains a significant collection of patches which have
|
||||
been selected by Andrew directly. These patches may have been posted on a
|
||||
mailing list, or they may apply to a part of the kernel for which there is
|
||||
no designated subsystem tree. As a result, -mm operates as a sort of
|
||||
subsystem tree of last resort; if there is no other obvious path for a
|
||||
patch into the mainline, it is likely to end up in -mm. Miscellaneous
|
||||
patches which accumulate in -mm will eventually either be forwarded on to
|
||||
an appropriate subsystem tree or be sent directly to Linus. In a typical
|
||||
development cycle, approximately 5-10% of the patches going into the
|
||||
mainline get there via -mm.
|
||||
|
||||
The current -mm patch is available in the "mmotm" (-mm of the moment)
|
||||
directory at:
|
||||
|
||||
http://www.ozlabs.org/~akpm/mmotm/
|
||||
|
||||
Use of the MMOTM tree is likely to be a frustrating experience, though;
|
||||
there is a definite chance that it will not even compile.
|
||||
|
||||
The primary tree for next-cycle patch merging is linux-next, maintained by
|
||||
Stephen Rothwell. The linux-next tree is, by design, a snapshot of what
|
||||
the mainline is expected to look like after the next merge window closes.
|
||||
Linux-next trees are announced on the linux-kernel and linux-next mailing
|
||||
lists when they are assembled; they can be downloaded from:
|
||||
|
||||
http://www.kernel.org/pub/linux/kernel/next/
|
||||
|
||||
Linux-next has become an integral part of the kernel development process;
|
||||
all patches merged during a given merge window should really have found
|
||||
their way into linux-next some time before the merge window opens.
|
||||
|
||||
|
||||
Staging trees
|
||||
-------------
|
||||
|
||||
The kernel source tree contains the drivers/staging/ directory, where
|
||||
many sub-directories for drivers or filesystems that are on their way to
|
||||
being added to the kernel tree live. They remain in drivers/staging while
|
||||
they still need more work; once complete, they can be moved into the
|
||||
kernel proper. This is a way to keep track of drivers that aren't
|
||||
up to Linux kernel coding or quality standards, but people may want to use
|
||||
them and track development.
|
||||
|
||||
Greg Kroah-Hartman currently maintains the staging tree. Drivers that
|
||||
still need work are sent to him, with each driver having its own
|
||||
subdirectory in drivers/staging/. Along with the driver source files, a
|
||||
TODO file should be present in the directory as well. The TODO file lists
|
||||
the pending work that the driver needs for acceptance into the kernel
|
||||
proper, as well as a list of people that should be Cc'd for any patches to
|
||||
the driver. Current rules require that drivers contributed to staging
|
||||
must, at a minimum, compile properly.
|
||||
|
||||
Staging can be a relatively easy way to get new drivers into the mainline
|
||||
where, with luck, they will come to the attention of other developers and
|
||||
improve quickly. Entry into staging is not the end of the story, though;
|
||||
code in staging which is not seeing regular progress will eventually be
|
||||
removed. Distributors also tend to be relatively reluctant to enable
|
||||
staging drivers. So staging is, at best, a stop on the way toward becoming
|
||||
a proper mainline driver.
|
||||
|
||||
|
||||
Tools
|
||||
-----
|
||||
|
||||
As can be seen from the above text, the kernel development process depends
|
||||
heavily on the ability to herd collections of patches in various
|
||||
directions. The whole thing would not work anywhere near as well as it
|
||||
does without suitably powerful tools. Tutorials on how to use these tools
|
||||
are well beyond the scope of this document, but there is space for a few
|
||||
pointers.
|
||||
|
||||
By far the dominant source code management system used by the kernel
|
||||
community is git. Git is one of a number of distributed version control
|
||||
systems being developed in the free software community. It is well tuned
|
||||
for kernel development, in that it performs quite well when dealing with
|
||||
large repositories and large numbers of patches. It also has a reputation
|
||||
for being difficult to learn and use, though it has gotten better over
|
||||
time. Some sort of familiarity with git is almost a requirement for kernel
|
||||
developers; even if they do not use it for their own work, they'll need git
|
||||
to keep up with what other developers (and the mainline) are doing.
|
||||
|
||||
Git is now packaged by almost all Linux distributions. There is a home
|
||||
page at:
|
||||
|
||||
http://git-scm.com/
|
||||
|
||||
That page has pointers to documentation and tutorials.
|
||||
|
||||
Among the kernel developers who do not use git, the most popular choice is
|
||||
almost certainly Mercurial:
|
||||
|
||||
http://www.selenic.com/mercurial/
|
||||
|
||||
Mercurial shares many features with git, but it provides an interface which
|
||||
many find easier to use.
|
||||
|
||||
The other tool worth knowing about is Quilt:
|
||||
|
||||
http://savannah.nongnu.org/projects/quilt/
|
||||
|
||||
Quilt is a patch management system, rather than a source code management
|
||||
system. It does not track history over time; it is, instead, oriented
|
||||
toward tracking a specific set of changes against an evolving code base.
|
||||
Some major subsystem maintainers use quilt to manage patches intended to go
|
||||
upstream. For the management of certain kinds of trees (-mm, for example),
|
||||
quilt is the best tool for the job.
|
||||
|
||||
|
||||
Mailing lists
|
||||
-------------
|
||||
|
||||
A great deal of Linux kernel development work is done by way of mailing
|
||||
lists. It is hard to be a fully-functioning member of the community
|
||||
without joining at least one list somewhere. But Linux mailing lists also
|
||||
represent a potential hazard to developers, who risk getting buried under a
|
||||
load of electronic mail, running afoul of the conventions used on the Linux
|
||||
lists, or both.
|
||||
|
||||
Most kernel mailing lists are run on vger.kernel.org; the master list can
|
||||
be found at:
|
||||
|
||||
http://vger.kernel.org/vger-lists.html
|
||||
|
||||
There are lists hosted elsewhere, though; a number of them are at
|
||||
lists.redhat.com.
|
||||
|
||||
The core mailing list for kernel development is, of course, linux-kernel.
|
||||
This list is an intimidating place to be; volume can reach 500 messages per
|
||||
day, the amount of noise is high, the conversation can be severely
|
||||
technical, and participants are not always concerned with showing a high
|
||||
degree of politeness. But there is no other place where the kernel
|
||||
development community comes together as a whole; developers who avoid this
|
||||
list will miss important information.
|
||||
|
||||
There are a few hints which can help with linux-kernel survival:
|
||||
|
||||
- Have the list delivered to a separate folder, rather than your main
|
||||
mailbox. One must be able to ignore the stream for sustained periods of
|
||||
time.
|
||||
|
||||
- Do not try to follow every conversation - nobody else does. It is
|
||||
important to filter on both the topic of interest (though note that
|
||||
long-running conversations can drift away from the original subject
|
||||
without changing the email subject line) and the people who are
|
||||
participating.
|
||||
|
||||
- Do not feed the trolls. If somebody is trying to stir up an angry
|
||||
response, ignore them.
|
||||
|
||||
- When responding to linux-kernel email (or that on other lists) preserve
|
||||
the Cc: header for all involved. In the absence of a strong reason (such
|
||||
as an explicit request), you should never remove recipients. Always make
|
||||
sure that the person you are responding to is in the Cc: list. This
|
||||
convention also makes it unnecessary to explicitly ask to be copied on
|
||||
replies to your postings.
|
||||
|
||||
- Search the list archives (and the net as a whole) before asking
|
||||
questions. Some developers can get impatient with people who clearly
|
||||
have not done their homework.
|
||||
|
||||
- Avoid top-posting (the practice of putting your answer above the quoted
|
||||
text you are responding to). It makes your response harder to read and
|
||||
makes a poor impression.
|
||||
|
||||
- Ask on the correct mailing list. Linux-kernel may be the general meeting
|
||||
point, but it is not the best place to find developers from all
|
||||
subsystems.
|
||||
|
||||
The last point - finding the correct mailing list - is a common place for
|
||||
beginning developers to go wrong. Somebody who asks a networking-related
|
||||
question on linux-kernel will almost certainly receive a polite suggestion
|
||||
to ask on the netdev list instead, as that is the list frequented by most
|
||||
networking developers. Other lists exist for the SCSI, video4linux, IDE,
|
||||
filesystem, etc. subsystems. The best place to look for mailing lists is
|
||||
in the MAINTAINERS file packaged with the kernel source.
|
||||
|
||||
|
||||
Getting started with Kernel development
|
||||
---------------------------------------
|
||||
|
||||
Questions about how to get started with the kernel development process are
|
||||
common - from both individuals and companies. Equally common are missteps
|
||||
which make the beginning of the relationship harder than it has to be.
|
||||
|
||||
Companies often look to hire well-known developers to get a development
|
||||
group started. This can, in fact, be an effective technique. But it also
|
||||
tends to be expensive and does not do much to grow the pool of experienced
|
||||
kernel developers. It is possible to bring in-house developers up to speed
|
||||
on Linux kernel development, given the investment of a bit of time. Taking
|
||||
this time can endow an employer with a group of developers who understand
|
||||
the kernel and the company both, and who can help to train others as well.
|
||||
Over the medium term, this is often the more profitable approach.
|
||||
|
||||
Individual developers are often, understandably, at a loss for a place to
|
||||
start. Beginning with a large project can be intimidating; one often wants
|
||||
to test the waters with something smaller first. This is the point where
|
||||
some developers jump into the creation of patches fixing spelling errors or
|
||||
minor coding style issues. Unfortunately, such patches create a level of
|
||||
noise which is distracting for the development community as a whole, so,
|
||||
increasingly, they are looked down upon. New developers wishing to
|
||||
introduce themselves to the community will not get the sort of reception
|
||||
they wish for by these means.
|
||||
|
||||
Andrew Morton gives this advice for aspiring kernel developers
|
||||
|
||||
::
|
||||
|
||||
The #1 project for all kernel beginners should surely be "make sure
|
||||
that the kernel runs perfectly at all times on all machines which
|
||||
you can lay your hands on". Usually the way to do this is to work
|
||||
with others on getting things fixed up (this can require
|
||||
persistence!) but that's fine - it's a part of kernel development.
|
||||
|
||||
(http://lwn.net/Articles/283982/).
|
||||
|
||||
In the absence of obvious problems to fix, developers are advised to look
|
||||
at the current lists of regressions and open bugs in general. There is
|
||||
never any shortage of issues in need of fixing; by addressing these issues,
|
||||
developers will gain experience with the process while, at the same time,
|
||||
building respect with the rest of the development community.
|
@ -1,212 +0,0 @@
|
||||
3: EARLY-STAGE PLANNING
|
||||
|
||||
When contemplating a Linux kernel development project, it can be tempting
|
||||
to jump right in and start coding. As with any significant project,
|
||||
though, much of the groundwork for success is best laid before the first
|
||||
line of code is written. Some time spent in early planning and
|
||||
communication can save far more time later on.
|
||||
|
||||
|
||||
3.1: SPECIFYING THE PROBLEM
|
||||
|
||||
Like any engineering project, a successful kernel enhancement starts with a
|
||||
clear description of the problem to be solved. In some cases, this step is
|
||||
easy: when a driver is needed for a specific piece of hardware, for
|
||||
example. In others, though, it is tempting to confuse the real problem
|
||||
with the proposed solution, and that can lead to difficulties.
|
||||
|
||||
Consider an example: some years ago, developers working with Linux audio
|
||||
sought a way to run applications without dropouts or other artifacts caused
|
||||
by excessive latency in the system. The solution they arrived at was a
|
||||
kernel module intended to hook into the Linux Security Module (LSM)
|
||||
framework; this module could be configured to give specific applications
|
||||
access to the realtime scheduler. This module was implemented and sent to
|
||||
the linux-kernel mailing list, where it immediately ran into problems.
|
||||
|
||||
To the audio developers, this security module was sufficient to solve their
|
||||
immediate problem. To the wider kernel community, though, it was seen as a
|
||||
misuse of the LSM framework (which is not intended to confer privileges
|
||||
onto processes which they would not otherwise have) and a risk to system
|
||||
stability. Their preferred solutions involved realtime scheduling access
|
||||
via the rlimit mechanism for the short term, and ongoing latency reduction
|
||||
work in the long term.
|
||||
|
||||
The audio community, however, could not see past the particular solution
|
||||
they had implemented; they were unwilling to accept alternatives. The
|
||||
resulting disagreement left those developers feeling disillusioned with the
|
||||
entire kernel development process; one of them went back to an audio list
|
||||
and posted this:
|
||||
|
||||
There are a number of very good Linux kernel developers, but they
|
||||
tend to get outshouted by a large crowd of arrogant fools. Trying
|
||||
to communicate user requirements to these people is a waste of
|
||||
time. They are much too "intelligent" to listen to lesser mortals.
|
||||
|
||||
(http://lwn.net/Articles/131776/).
|
||||
|
||||
The reality of the situation was different; the kernel developers were far
|
||||
more concerned about system stability, long-term maintenance, and finding
|
||||
the right solution to the problem than they were with a specific module.
|
||||
The moral of the story is to focus on the problem - not a specific solution
|
||||
- and to discuss it with the development community before investing in the
|
||||
creation of a body of code.
|
||||
|
||||
So, when contemplating a kernel development project, one should obtain
|
||||
answers to a short set of questions:
|
||||
|
||||
- What, exactly, is the problem which needs to be solved?
|
||||
|
||||
- Who are the users affected by this problem? Which use cases should the
|
||||
solution address?
|
||||
|
||||
- How does the kernel fall short in addressing that problem now?
|
||||
|
||||
Only then does it make sense to start considering possible solutions.
|
||||
|
||||
|
||||
3.2: EARLY DISCUSSION
|
||||
|
||||
When planning a kernel development project, it makes great sense to hold
|
||||
discussions with the community before launching into implementation. Early
|
||||
communication can save time and trouble in a number of ways:
|
||||
|
||||
- It may well be that the problem is addressed by the kernel in ways which
|
||||
you have not understood. The Linux kernel is large and has a number of
|
||||
features and capabilities which are not immediately obvious. Not all
|
||||
kernel capabilities are documented as well as one might like, and it is
|
||||
easy to miss things. Your author has seen the posting of a complete
|
||||
driver which duplicated an existing driver that the new author had been
|
||||
unaware of. Code which reinvents existing wheels is not only wasteful;
|
||||
it will also not be accepted into the mainline kernel.
|
||||
|
||||
- There may be elements of the proposed solution which will not be
|
||||
acceptable for mainline merging. It is better to find out about
|
||||
problems like this before writing the code.
|
||||
|
||||
- It's entirely possible that other developers have thought about the
|
||||
problem; they may have ideas for a better solution, and may be willing
|
||||
to help in the creation of that solution.
|
||||
|
||||
Years of experience with the kernel development community have taught a
|
||||
clear lesson: kernel code which is designed and developed behind closed
|
||||
doors invariably has problems which are only revealed when the code is
|
||||
released into the community. Sometimes these problems are severe,
|
||||
requiring months or years of effort before the code can be brought up to
|
||||
the kernel community's standards. Some examples include:
|
||||
|
||||
- The Devicescape network stack was designed and implemented for
|
||||
single-processor systems. It could not be merged into the mainline
|
||||
until it was made suitable for multiprocessor systems. Retrofitting
|
||||
locking and such into code is a difficult task; as a result, the merging
|
||||
of this code (now called mac80211) was delayed for over a year.
|
||||
|
||||
- The Reiser4 filesystem included a number of capabilities which, in the
|
||||
core kernel developers' opinion, should have been implemented in the
|
||||
virtual filesystem layer instead. It also included features which could
|
||||
not easily be implemented without exposing the system to user-caused
|
||||
deadlocks. The late revelation of these problems - and refusal to
|
||||
address some of them - has caused Reiser4 to stay out of the mainline
|
||||
kernel.
|
||||
|
||||
- The AppArmor security module made use of internal virtual filesystem
|
||||
data structures in ways which were considered to be unsafe and
|
||||
unreliable. This concern (among others) kept AppArmor out of the
|
||||
mainline for years.
|
||||
|
||||
In each of these cases, a great deal of pain and extra work could have been
|
||||
avoided with some early discussion with the kernel developers.
|
||||
|
||||
|
||||
3.3: WHO DO YOU TALK TO?
|
||||
|
||||
When developers decide to take their plans public, the next question will
|
||||
be: where do we start? The answer is to find the right mailing list(s) and
|
||||
the right maintainer. For mailing lists, the best approach is to look in
|
||||
the MAINTAINERS file for a relevant place to post. If there is a suitable
|
||||
subsystem list, posting there is often preferable to posting on
|
||||
linux-kernel; you are more likely to reach developers with expertise in the
|
||||
relevant subsystem and the environment may be more supportive.
|
||||
|
||||
Finding maintainers can be a bit harder. Again, the MAINTAINERS file is
|
||||
the place to start. That file tends to not always be up to date, though,
|
||||
and not all subsystems are represented there. The person listed in the
|
||||
MAINTAINERS file may, in fact, not be the person who is actually acting in
|
||||
that role currently. So, when there is doubt about who to contact, a
|
||||
useful trick is to use git (and "git log" in particular) to see who is
|
||||
currently active within the subsystem of interest. Look at who is writing
|
||||
patches, and who, if anybody, is attaching Signed-off-by lines to those
|
||||
patches. Those are the people who will be best placed to help with a new
|
||||
development project.
|
||||
|
||||
The task of finding the right maintainer is sometimes challenging enough
|
||||
that the kernel developers have added a script to ease the process:
|
||||
|
||||
.../scripts/get_maintainer.pl
|
||||
|
||||
This script will return the current maintainer(s) for a given file or
|
||||
directory when given the "-f" option. If passed a patch on the
|
||||
command line, it will list the maintainers who should probably receive
|
||||
copies of the patch. There are a number of options regulating how hard
|
||||
get_maintainer.pl will search for maintainers; please be careful about
|
||||
using the more aggressive options as you may end up including developers
|
||||
who have no real interest in the code you are modifying.
|
||||
|
||||
If all else fails, talking to Andrew Morton can be an effective way to
|
||||
track down a maintainer for a specific piece of code.
|
||||
|
||||
|
||||
3.4: WHEN TO POST?
|
||||
|
||||
If possible, posting your plans during the early stages can only be
|
||||
helpful. Describe the problem being solved and any plans that have been
|
||||
made on how the implementation will be done. Any information you can
|
||||
provide can help the development community provide useful input on the
|
||||
project.
|
||||
|
||||
One discouraging thing which can happen at this stage is not a hostile
|
||||
reaction, but, instead, little or no reaction at all. The sad truth of the
|
||||
matter is (1) kernel developers tend to be busy, (2) there is no shortage
|
||||
of people with grand plans and little code (or even prospect of code) to
|
||||
back them up, and (3) nobody is obligated to review or comment on ideas
|
||||
posted by others. Beyond that, high-level designs often hide problems
|
||||
which are only reviewed when somebody actually tries to implement those
|
||||
designs; for that reason, kernel developers would rather see the code.
|
||||
|
||||
If a request-for-comments posting yields little in the way of comments, do
|
||||
not assume that it means there is no interest in the project.
|
||||
Unfortunately, you also cannot assume that there are no problems with your
|
||||
idea. The best thing to do in this situation is to proceed, keeping the
|
||||
community informed as you go.
|
||||
|
||||
|
||||
3.5: GETTING OFFICIAL BUY-IN
|
||||
|
||||
If your work is being done in a corporate environment - as most Linux
|
||||
kernel work is - you must, obviously, have permission from suitably
|
||||
empowered managers before you can post your company's plans or code to a
|
||||
public mailing list. The posting of code which has not been cleared for
|
||||
release under a GPL-compatible license can be especially problematic; the
|
||||
sooner that a company's management and legal staff can agree on the posting
|
||||
of a kernel development project, the better off everybody involved will be.
|
||||
|
||||
Some readers may be thinking at this point that their kernel work is
|
||||
intended to support a product which does not yet have an officially
|
||||
acknowledged existence. Revealing their employer's plans on a public
|
||||
mailing list may not be a viable option. In cases like this, it is worth
|
||||
considering whether the secrecy is really necessary; there is often no real
|
||||
need to keep development plans behind closed doors.
|
||||
|
||||
That said, there are also cases where a company legitimately cannot
|
||||
disclose its plans early in the development process. Companies with
|
||||
experienced kernel developers may choose to proceed in an open-loop manner
|
||||
on the assumption that they will be able to avoid serious integration
|
||||
problems later. For companies without that sort of in-house expertise, the
|
||||
best option is often to hire an outside developer to review the plans under
|
||||
a non-disclosure agreement. The Linux Foundation operates an NDA program
|
||||
designed to help with this sort of situation; more information can be found
|
||||
at:
|
||||
|
||||
http://www.linuxfoundation.org/en/NDA_program
|
||||
|
||||
This kind of review is often enough to avoid serious problems later on
|
||||
without requiring public disclosure of the project.
|
222
Documentation/development-process/3.Early-stage.rst
Normal file
222
Documentation/development-process/3.Early-stage.rst
Normal file
@ -0,0 +1,222 @@
|
||||
.. _development_early_stage:
|
||||
|
||||
Early-stage planning
|
||||
====================
|
||||
|
||||
When contemplating a Linux kernel development project, it can be tempting
|
||||
to jump right in and start coding. As with any significant project,
|
||||
though, much of the groundwork for success is best laid before the first
|
||||
line of code is written. Some time spent in early planning and
|
||||
communication can save far more time later on.
|
||||
|
||||
|
||||
Specifying the problem
|
||||
----------------------
|
||||
|
||||
Like any engineering project, a successful kernel enhancement starts with a
|
||||
clear description of the problem to be solved. In some cases, this step is
|
||||
easy: when a driver is needed for a specific piece of hardware, for
|
||||
example. In others, though, it is tempting to confuse the real problem
|
||||
with the proposed solution, and that can lead to difficulties.
|
||||
|
||||
Consider an example: some years ago, developers working with Linux audio
|
||||
sought a way to run applications without dropouts or other artifacts caused
|
||||
by excessive latency in the system. The solution they arrived at was a
|
||||
kernel module intended to hook into the Linux Security Module (LSM)
|
||||
framework; this module could be configured to give specific applications
|
||||
access to the realtime scheduler. This module was implemented and sent to
|
||||
the linux-kernel mailing list, where it immediately ran into problems.
|
||||
|
||||
To the audio developers, this security module was sufficient to solve their
|
||||
immediate problem. To the wider kernel community, though, it was seen as a
|
||||
misuse of the LSM framework (which is not intended to confer privileges
|
||||
onto processes which they would not otherwise have) and a risk to system
|
||||
stability. Their preferred solutions involved realtime scheduling access
|
||||
via the rlimit mechanism for the short term, and ongoing latency reduction
|
||||
work in the long term.
|
||||
|
||||
The audio community, however, could not see past the particular solution
|
||||
they had implemented; they were unwilling to accept alternatives. The
|
||||
resulting disagreement left those developers feeling disillusioned with the
|
||||
entire kernel development process; one of them went back to an audio list
|
||||
and posted this:
|
||||
|
||||
There are a number of very good Linux kernel developers, but they
|
||||
tend to get outshouted by a large crowd of arrogant fools. Trying
|
||||
to communicate user requirements to these people is a waste of
|
||||
time. They are much too "intelligent" to listen to lesser mortals.
|
||||
|
||||
(http://lwn.net/Articles/131776/).
|
||||
|
||||
The reality of the situation was different; the kernel developers were far
|
||||
more concerned about system stability, long-term maintenance, and finding
|
||||
the right solution to the problem than they were with a specific module.
|
||||
The moral of the story is to focus on the problem - not a specific solution
|
||||
- and to discuss it with the development community before investing in the
|
||||
creation of a body of code.
|
||||
|
||||
So, when contemplating a kernel development project, one should obtain
|
||||
answers to a short set of questions:
|
||||
|
||||
- What, exactly, is the problem which needs to be solved?
|
||||
|
||||
- Who are the users affected by this problem? Which use cases should the
|
||||
solution address?
|
||||
|
||||
- How does the kernel fall short in addressing that problem now?
|
||||
|
||||
Only then does it make sense to start considering possible solutions.
|
||||
|
||||
|
||||
Early discussion
|
||||
----------------
|
||||
|
||||
When planning a kernel development project, it makes great sense to hold
|
||||
discussions with the community before launching into implementation. Early
|
||||
communication can save time and trouble in a number of ways:
|
||||
|
||||
- It may well be that the problem is addressed by the kernel in ways which
|
||||
you have not understood. The Linux kernel is large and has a number of
|
||||
features and capabilities which are not immediately obvious. Not all
|
||||
kernel capabilities are documented as well as one might like, and it is
|
||||
easy to miss things. Your author has seen the posting of a complete
|
||||
driver which duplicated an existing driver that the new author had been
|
||||
unaware of. Code which reinvents existing wheels is not only wasteful;
|
||||
it will also not be accepted into the mainline kernel.
|
||||
|
||||
- There may be elements of the proposed solution which will not be
|
||||
acceptable for mainline merging. It is better to find out about
|
||||
problems like this before writing the code.
|
||||
|
||||
- It's entirely possible that other developers have thought about the
|
||||
problem; they may have ideas for a better solution, and may be willing
|
||||
to help in the creation of that solution.
|
||||
|
||||
Years of experience with the kernel development community have taught a
|
||||
clear lesson: kernel code which is designed and developed behind closed
|
||||
doors invariably has problems which are only revealed when the code is
|
||||
released into the community. Sometimes these problems are severe,
|
||||
requiring months or years of effort before the code can be brought up to
|
||||
the kernel community's standards. Some examples include:
|
||||
|
||||
- The Devicescape network stack was designed and implemented for
|
||||
single-processor systems. It could not be merged into the mainline
|
||||
until it was made suitable for multiprocessor systems. Retrofitting
|
||||
locking and such into code is a difficult task; as a result, the merging
|
||||
of this code (now called mac80211) was delayed for over a year.
|
||||
|
||||
- The Reiser4 filesystem included a number of capabilities which, in the
|
||||
core kernel developers' opinion, should have been implemented in the
|
||||
virtual filesystem layer instead. It also included features which could
|
||||
not easily be implemented without exposing the system to user-caused
|
||||
deadlocks. The late revelation of these problems - and refusal to
|
||||
address some of them - has caused Reiser4 to stay out of the mainline
|
||||
kernel.
|
||||
|
||||
- The AppArmor security module made use of internal virtual filesystem
|
||||
data structures in ways which were considered to be unsafe and
|
||||
unreliable. This concern (among others) kept AppArmor out of the
|
||||
mainline for years.
|
||||
|
||||
In each of these cases, a great deal of pain and extra work could have been
|
||||
avoided with some early discussion with the kernel developers.
|
||||
|
||||
|
||||
Who do you talk to?
|
||||
-------------------
|
||||
|
||||
When developers decide to take their plans public, the next question will
|
||||
be: where do we start? The answer is to find the right mailing list(s) and
|
||||
the right maintainer. For mailing lists, the best approach is to look in
|
||||
the MAINTAINERS file for a relevant place to post. If there is a suitable
|
||||
subsystem list, posting there is often preferable to posting on
|
||||
linux-kernel; you are more likely to reach developers with expertise in the
|
||||
relevant subsystem and the environment may be more supportive.
|
||||
|
||||
Finding maintainers can be a bit harder. Again, the MAINTAINERS file is
|
||||
the place to start. That file tends to not always be up to date, though,
|
||||
and not all subsystems are represented there. The person listed in the
|
||||
MAINTAINERS file may, in fact, not be the person who is actually acting in
|
||||
that role currently. So, when there is doubt about who to contact, a
|
||||
useful trick is to use git (and "git log" in particular) to see who is
|
||||
currently active within the subsystem of interest. Look at who is writing
|
||||
patches, and who, if anybody, is attaching Signed-off-by lines to those
|
||||
patches. Those are the people who will be best placed to help with a new
|
||||
development project.
|
||||
|
||||
The task of finding the right maintainer is sometimes challenging enough
|
||||
that the kernel developers have added a script to ease the process:
|
||||
|
||||
::
|
||||
|
||||
.../scripts/get_maintainer.pl
|
||||
|
||||
This script will return the current maintainer(s) for a given file or
|
||||
directory when given the "-f" option. If passed a patch on the
|
||||
command line, it will list the maintainers who should probably receive
|
||||
copies of the patch. There are a number of options regulating how hard
|
||||
get_maintainer.pl will search for maintainers; please be careful about
|
||||
using the more aggressive options as you may end up including developers
|
||||
who have no real interest in the code you are modifying.
|
||||
|
||||
If all else fails, talking to Andrew Morton can be an effective way to
|
||||
track down a maintainer for a specific piece of code.
|
||||
|
||||
|
||||
When to post?
|
||||
-------------
|
||||
|
||||
If possible, posting your plans during the early stages can only be
|
||||
helpful. Describe the problem being solved and any plans that have been
|
||||
made on how the implementation will be done. Any information you can
|
||||
provide can help the development community provide useful input on the
|
||||
project.
|
||||
|
||||
One discouraging thing which can happen at this stage is not a hostile
|
||||
reaction, but, instead, little or no reaction at all. The sad truth of the
|
||||
matter is (1) kernel developers tend to be busy, (2) there is no shortage
|
||||
of people with grand plans and little code (or even prospect of code) to
|
||||
back them up, and (3) nobody is obligated to review or comment on ideas
|
||||
posted by others. Beyond that, high-level designs often hide problems
|
||||
which are only reviewed when somebody actually tries to implement those
|
||||
designs; for that reason, kernel developers would rather see the code.
|
||||
|
||||
If a request-for-comments posting yields little in the way of comments, do
|
||||
not assume that it means there is no interest in the project.
|
||||
Unfortunately, you also cannot assume that there are no problems with your
|
||||
idea. The best thing to do in this situation is to proceed, keeping the
|
||||
community informed as you go.
|
||||
|
||||
|
||||
Getting official buy-in
|
||||
-----------------------
|
||||
|
||||
If your work is being done in a corporate environment - as most Linux
|
||||
kernel work is - you must, obviously, have permission from suitably
|
||||
empowered managers before you can post your company's plans or code to a
|
||||
public mailing list. The posting of code which has not been cleared for
|
||||
release under a GPL-compatible license can be especially problematic; the
|
||||
sooner that a company's management and legal staff can agree on the posting
|
||||
of a kernel development project, the better off everybody involved will be.
|
||||
|
||||
Some readers may be thinking at this point that their kernel work is
|
||||
intended to support a product which does not yet have an officially
|
||||
acknowledged existence. Revealing their employer's plans on a public
|
||||
mailing list may not be a viable option. In cases like this, it is worth
|
||||
considering whether the secrecy is really necessary; there is often no real
|
||||
need to keep development plans behind closed doors.
|
||||
|
||||
That said, there are also cases where a company legitimately cannot
|
||||
disclose its plans early in the development process. Companies with
|
||||
experienced kernel developers may choose to proceed in an open-loop manner
|
||||
on the assumption that they will be able to avoid serious integration
|
||||
problems later. For companies without that sort of in-house expertise, the
|
||||
best option is often to hire an outside developer to review the plans under
|
||||
a non-disclosure agreement. The Linux Foundation operates an NDA program
|
||||
designed to help with this sort of situation; more information can be found
|
||||
at:
|
||||
|
||||
http://www.linuxfoundation.org/en/NDA_program
|
||||
|
||||
This kind of review is often enough to avoid serious problems later on
|
||||
without requiring public disclosure of the project.
|
@ -1,399 +0,0 @@
|
||||
4: GETTING THE CODE RIGHT
|
||||
|
||||
While there is much to be said for a solid and community-oriented design
|
||||
process, the proof of any kernel development project is in the resulting
|
||||
code. It is the code which will be examined by other developers and merged
|
||||
(or not) into the mainline tree. So it is the quality of this code which
|
||||
will determine the ultimate success of the project.
|
||||
|
||||
This section will examine the coding process. We'll start with a look at a
|
||||
number of ways in which kernel developers can go wrong. Then the focus
|
||||
will shift toward doing things right and the tools which can help in that
|
||||
quest.
|
||||
|
||||
|
||||
4.1: PITFALLS
|
||||
|
||||
* Coding style
|
||||
|
||||
The kernel has long had a standard coding style, described in
|
||||
Documentation/CodingStyle. For much of that time, the policies described
|
||||
in that file were taken as being, at most, advisory. As a result, there is
|
||||
a substantial amount of code in the kernel which does not meet the coding
|
||||
style guidelines. The presence of that code leads to two independent
|
||||
hazards for kernel developers.
|
||||
|
||||
The first of these is to believe that the kernel coding standards do not
|
||||
matter and are not enforced. The truth of the matter is that adding new
|
||||
code to the kernel is very difficult if that code is not coded according to
|
||||
the standard; many developers will request that the code be reformatted
|
||||
before they will even review it. A code base as large as the kernel
|
||||
requires some uniformity of code to make it possible for developers to
|
||||
quickly understand any part of it. So there is no longer room for
|
||||
strangely-formatted code.
|
||||
|
||||
Occasionally, the kernel's coding style will run into conflict with an
|
||||
employer's mandated style. In such cases, the kernel's style will have to
|
||||
win before the code can be merged. Putting code into the kernel means
|
||||
giving up a degree of control in a number of ways - including control over
|
||||
how the code is formatted.
|
||||
|
||||
The other trap is to assume that code which is already in the kernel is
|
||||
urgently in need of coding style fixes. Developers may start to generate
|
||||
reformatting patches as a way of gaining familiarity with the process, or
|
||||
as a way of getting their name into the kernel changelogs - or both. But
|
||||
pure coding style fixes are seen as noise by the development community;
|
||||
they tend to get a chilly reception. So this type of patch is best
|
||||
avoided. It is natural to fix the style of a piece of code while working
|
||||
on it for other reasons, but coding style changes should not be made for
|
||||
their own sake.
|
||||
|
||||
The coding style document also should not be read as an absolute law which
|
||||
can never be transgressed. If there is a good reason to go against the
|
||||
style (a line which becomes far less readable if split to fit within the
|
||||
80-column limit, for example), just do it.
|
||||
|
||||
|
||||
* Abstraction layers
|
||||
|
||||
Computer Science professors teach students to make extensive use of
|
||||
abstraction layers in the name of flexibility and information hiding.
|
||||
Certainly the kernel makes extensive use of abstraction; no project
|
||||
involving several million lines of code could do otherwise and survive.
|
||||
But experience has shown that excessive or premature abstraction can be
|
||||
just as harmful as premature optimization. Abstraction should be used to
|
||||
the level required and no further.
|
||||
|
||||
At a simple level, consider a function which has an argument which is
|
||||
always passed as zero by all callers. One could retain that argument just
|
||||
in case somebody eventually needs to use the extra flexibility that it
|
||||
provides. By that time, though, chances are good that the code which
|
||||
implements this extra argument has been broken in some subtle way which was
|
||||
never noticed - because it has never been used. Or, when the need for
|
||||
extra flexibility arises, it does not do so in a way which matches the
|
||||
programmer's early expectation. Kernel developers will routinely submit
|
||||
patches to remove unused arguments; they should, in general, not be added
|
||||
in the first place.
|
||||
|
||||
Abstraction layers which hide access to hardware - often to allow the bulk
|
||||
of a driver to be used with multiple operating systems - are especially
|
||||
frowned upon. Such layers obscure the code and may impose a performance
|
||||
penalty; they do not belong in the Linux kernel.
|
||||
|
||||
On the other hand, if you find yourself copying significant amounts of code
|
||||
from another kernel subsystem, it is time to ask whether it would, in fact,
|
||||
make sense to pull out some of that code into a separate library or to
|
||||
implement that functionality at a higher level. There is no value in
|
||||
replicating the same code throughout the kernel.
|
||||
|
||||
|
||||
* #ifdef and preprocessor use in general
|
||||
|
||||
The C preprocessor seems to present a powerful temptation to some C
|
||||
programmers, who see it as a way to efficiently encode a great deal of
|
||||
flexibility into a source file. But the preprocessor is not C, and heavy
|
||||
use of it results in code which is much harder for others to read and
|
||||
harder for the compiler to check for correctness. Heavy preprocessor use
|
||||
is almost always a sign of code which needs some cleanup work.
|
||||
|
||||
Conditional compilation with #ifdef is, indeed, a powerful feature, and it
|
||||
is used within the kernel. But there is little desire to see code which is
|
||||
sprinkled liberally with #ifdef blocks. As a general rule, #ifdef use
|
||||
should be confined to header files whenever possible.
|
||||
Conditionally-compiled code can be confined to functions which, if the code
|
||||
is not to be present, simply become empty. The compiler will then quietly
|
||||
optimize out the call to the empty function. The result is far cleaner
|
||||
code which is easier to follow.
|
||||
|
||||
C preprocessor macros present a number of hazards, including possible
|
||||
multiple evaluation of expressions with side effects and no type safety.
|
||||
If you are tempted to define a macro, consider creating an inline function
|
||||
instead. The code which results will be the same, but inline functions are
|
||||
easier to read, do not evaluate their arguments multiple times, and allow
|
||||
the compiler to perform type checking on the arguments and return value.
|
||||
|
||||
|
||||
* Inline functions
|
||||
|
||||
Inline functions present a hazard of their own, though. Programmers can
|
||||
become enamored of the perceived efficiency inherent in avoiding a function
|
||||
call and fill a source file with inline functions. Those functions,
|
||||
however, can actually reduce performance. Since their code is replicated
|
||||
at each call site, they end up bloating the size of the compiled kernel.
|
||||
That, in turn, creates pressure on the processor's memory caches, which can
|
||||
slow execution dramatically. Inline functions, as a rule, should be quite
|
||||
small and relatively rare. The cost of a function call, after all, is not
|
||||
that high; the creation of large numbers of inline functions is a classic
|
||||
example of premature optimization.
|
||||
|
||||
In general, kernel programmers ignore cache effects at their peril. The
|
||||
classic time/space tradeoff taught in beginning data structures classes
|
||||
often does not apply to contemporary hardware. Space *is* time, in that a
|
||||
larger program will run slower than one which is more compact.
|
||||
|
||||
More recent compilers take an increasingly active role in deciding whether
|
||||
a given function should actually be inlined or not. So the liberal
|
||||
placement of "inline" keywords may not just be excessive; it could also be
|
||||
irrelevant.
|
||||
|
||||
|
||||
* Locking
|
||||
|
||||
In May, 2006, the "Devicescape" networking stack was, with great
|
||||
fanfare, released under the GPL and made available for inclusion in the
|
||||
mainline kernel. This donation was welcome news; support for wireless
|
||||
networking in Linux was considered substandard at best, and the Devicescape
|
||||
stack offered the promise of fixing that situation. Yet, this code did not
|
||||
actually make it into the mainline until June, 2007 (2.6.22). What
|
||||
happened?
|
||||
|
||||
This code showed a number of signs of having been developed behind
|
||||
corporate doors. But one large problem in particular was that it was not
|
||||
designed to work on multiprocessor systems. Before this networking stack
|
||||
(now called mac80211) could be merged, a locking scheme needed to be
|
||||
retrofitted onto it.
|
||||
|
||||
Once upon a time, Linux kernel code could be developed without thinking
|
||||
about the concurrency issues presented by multiprocessor systems. Now,
|
||||
however, this document is being written on a dual-core laptop. Even on
|
||||
single-processor systems, work being done to improve responsiveness will
|
||||
raise the level of concurrency within the kernel. The days when kernel
|
||||
code could be written without thinking about locking are long past.
|
||||
|
||||
Any resource (data structures, hardware registers, etc.) which could be
|
||||
accessed concurrently by more than one thread must be protected by a lock.
|
||||
New code should be written with this requirement in mind; retrofitting
|
||||
locking after the fact is a rather more difficult task. Kernel developers
|
||||
should take the time to understand the available locking primitives well
|
||||
enough to pick the right tool for the job. Code which shows a lack of
|
||||
attention to concurrency will have a difficult path into the mainline.
|
||||
|
||||
|
||||
* Regressions
|
||||
|
||||
One final hazard worth mentioning is this: it can be tempting to make a
|
||||
change (which may bring big improvements) which causes something to break
|
||||
for existing users. This kind of change is called a "regression," and
|
||||
regressions have become most unwelcome in the mainline kernel. With few
|
||||
exceptions, changes which cause regressions will be backed out if the
|
||||
regression cannot be fixed in a timely manner. Far better to avoid the
|
||||
regression in the first place.
|
||||
|
||||
It is often argued that a regression can be justified if it causes things
|
||||
to work for more people than it creates problems for. Why not make a
|
||||
change if it brings new functionality to ten systems for each one it
|
||||
breaks? The best answer to this question was expressed by Linus in July,
|
||||
2007:
|
||||
|
||||
So we don't fix bugs by introducing new problems. That way lies
|
||||
madness, and nobody ever knows if you actually make any real
|
||||
progress at all. Is it two steps forwards, one step back, or one
|
||||
step forward and two steps back?
|
||||
|
||||
(http://lwn.net/Articles/243460/).
|
||||
|
||||
An especially unwelcome type of regression is any sort of change to the
|
||||
user-space ABI. Once an interface has been exported to user space, it must
|
||||
be supported indefinitely. This fact makes the creation of user-space
|
||||
interfaces particularly challenging: since they cannot be changed in
|
||||
incompatible ways, they must be done right the first time. For this
|
||||
reason, a great deal of thought, clear documentation, and wide review for
|
||||
user-space interfaces is always required.
|
||||
|
||||
|
||||
|
||||
4.2: CODE CHECKING TOOLS
|
||||
|
||||
For now, at least, the writing of error-free code remains an ideal that few
|
||||
of us can reach. What we can hope to do, though, is to catch and fix as
|
||||
many of those errors as possible before our code goes into the mainline
|
||||
kernel. To that end, the kernel developers have put together an impressive
|
||||
array of tools which can catch a wide variety of obscure problems in an
|
||||
automated way. Any problem caught by the computer is a problem which will
|
||||
not afflict a user later on, so it stands to reason that the automated
|
||||
tools should be used whenever possible.
|
||||
|
||||
The first step is simply to heed the warnings produced by the compiler.
|
||||
Contemporary versions of gcc can detect (and warn about) a large number of
|
||||
potential errors. Quite often, these warnings point to real problems.
|
||||
Code submitted for review should, as a rule, not produce any compiler
|
||||
warnings. When silencing warnings, take care to understand the real cause
|
||||
and try to avoid "fixes" which make the warning go away without addressing
|
||||
its cause.
|
||||
|
||||
Note that not all compiler warnings are enabled by default. Build the
|
||||
kernel with "make EXTRA_CFLAGS=-W" to get the full set.
|
||||
|
||||
The kernel provides several configuration options which turn on debugging
|
||||
features; most of these are found in the "kernel hacking" submenu. Several
|
||||
of these options should be turned on for any kernel used for development or
|
||||
testing purposes. In particular, you should turn on:
|
||||
|
||||
- ENABLE_WARN_DEPRECATED, ENABLE_MUST_CHECK, and FRAME_WARN to get an
|
||||
extra set of warnings for problems like the use of deprecated interfaces
|
||||
or ignoring an important return value from a function. The output
|
||||
generated by these warnings can be verbose, but one need not worry about
|
||||
warnings from other parts of the kernel.
|
||||
|
||||
- DEBUG_OBJECTS will add code to track the lifetime of various objects
|
||||
created by the kernel and warn when things are done out of order. If
|
||||
you are adding a subsystem which creates (and exports) complex objects
|
||||
of its own, consider adding support for the object debugging
|
||||
infrastructure.
|
||||
|
||||
- DEBUG_SLAB can find a variety of memory allocation and use errors; it
|
||||
should be used on most development kernels.
|
||||
|
||||
- DEBUG_SPINLOCK, DEBUG_ATOMIC_SLEEP, and DEBUG_MUTEXES will find a
|
||||
number of common locking errors.
|
||||
|
||||
There are quite a few other debugging options, some of which will be
|
||||
discussed below. Some of them have a significant performance impact and
|
||||
should not be used all of the time. But some time spent learning the
|
||||
available options will likely be paid back many times over in short order.
|
||||
|
||||
One of the heavier debugging tools is the locking checker, or "lockdep."
|
||||
This tool will track the acquisition and release of every lock (spinlock or
|
||||
mutex) in the system, the order in which locks are acquired relative to
|
||||
each other, the current interrupt environment, and more. It can then
|
||||
ensure that locks are always acquired in the same order, that the same
|
||||
interrupt assumptions apply in all situations, and so on. In other words,
|
||||
lockdep can find a number of scenarios in which the system could, on rare
|
||||
occasion, deadlock. This kind of problem can be painful (for both
|
||||
developers and users) in a deployed system; lockdep allows them to be found
|
||||
in an automated manner ahead of time. Code with any sort of non-trivial
|
||||
locking should be run with lockdep enabled before being submitted for
|
||||
inclusion.
|
||||
|
||||
As a diligent kernel programmer, you will, beyond doubt, check the return
|
||||
status of any operation (such as a memory allocation) which can fail. The
|
||||
fact of the matter, though, is that the resulting failure recovery paths
|
||||
are, probably, completely untested. Untested code tends to be broken code;
|
||||
you could be much more confident of your code if all those error-handling
|
||||
paths had been exercised a few times.
|
||||
|
||||
The kernel provides a fault injection framework which can do exactly that,
|
||||
especially where memory allocations are involved. With fault injection
|
||||
enabled, a configurable percentage of memory allocations will be made to
|
||||
fail; these failures can be restricted to a specific range of code.
|
||||
Running with fault injection enabled allows the programmer to see how the
|
||||
code responds when things go badly. See
|
||||
Documentation/fault-injection/fault-injection.txt for more information on
|
||||
how to use this facility.
|
||||
|
||||
Other kinds of errors can be found with the "sparse" static analysis tool.
|
||||
With sparse, the programmer can be warned about confusion between
|
||||
user-space and kernel-space addresses, mixture of big-endian and
|
||||
small-endian quantities, the passing of integer values where a set of bit
|
||||
flags is expected, and so on. Sparse must be installed separately (it can
|
||||
be found at https://sparse.wiki.kernel.org/index.php/Main_Page if your
|
||||
distributor does not package it); it can then be run on the code by adding
|
||||
"C=1" to your make command.
|
||||
|
||||
The "Coccinelle" tool (http://coccinelle.lip6.fr/) is able to find a wide
|
||||
variety of potential coding problems; it can also propose fixes for those
|
||||
problems. Quite a few "semantic patches" for the kernel have been packaged
|
||||
under the scripts/coccinelle directory; running "make coccicheck" will run
|
||||
through those semantic patches and report on any problems found. See
|
||||
Documentation/coccinelle.txt for more information.
|
||||
|
||||
Other kinds of portability errors are best found by compiling your code for
|
||||
other architectures. If you do not happen to have an S/390 system or a
|
||||
Blackfin development board handy, you can still perform the compilation
|
||||
step. A large set of cross compilers for x86 systems can be found at
|
||||
|
||||
http://www.kernel.org/pub/tools/crosstool/
|
||||
|
||||
Some time spent installing and using these compilers will help avoid
|
||||
embarrassment later.
|
||||
|
||||
|
||||
4.3: DOCUMENTATION
|
||||
|
||||
Documentation has often been more the exception than the rule with kernel
|
||||
development. Even so, adequate documentation will help to ease the merging
|
||||
of new code into the kernel, make life easier for other developers, and
|
||||
will be helpful for your users. In many cases, the addition of
|
||||
documentation has become essentially mandatory.
|
||||
|
||||
The first piece of documentation for any patch is its associated
|
||||
changelog. Log entries should describe the problem being solved, the form
|
||||
of the solution, the people who worked on the patch, any relevant
|
||||
effects on performance, and anything else that might be needed to
|
||||
understand the patch. Be sure that the changelog says *why* the patch is
|
||||
worth applying; a surprising number of developers fail to provide that
|
||||
information.
|
||||
|
||||
Any code which adds a new user-space interface - including new sysfs or
|
||||
/proc files - should include documentation of that interface which enables
|
||||
user-space developers to know what they are working with. See
|
||||
Documentation/ABI/README for a description of how this documentation should
|
||||
be formatted and what information needs to be provided.
|
||||
|
||||
The file Documentation/kernel-parameters.txt describes all of the kernel's
|
||||
boot-time parameters. Any patch which adds new parameters should add the
|
||||
appropriate entries to this file.
|
||||
|
||||
Any new configuration options must be accompanied by help text which
|
||||
clearly explains the options and when the user might want to select them.
|
||||
|
||||
Internal API information for many subsystems is documented by way of
|
||||
specially-formatted comments; these comments can be extracted and formatted
|
||||
in a number of ways by the "kernel-doc" script. If you are working within
|
||||
a subsystem which has kerneldoc comments, you should maintain them and add
|
||||
them, as appropriate, for externally-available functions. Even in areas
|
||||
which have not been so documented, there is no harm in adding kerneldoc
|
||||
comments for the future; indeed, this can be a useful activity for
|
||||
beginning kernel developers. The format of these comments, along with some
|
||||
information on how to create kerneldoc templates can be found in the file
|
||||
Documentation/kernel-documentation.rst.
|
||||
|
||||
Anybody who reads through a significant amount of existing kernel code will
|
||||
note that, often, comments are most notable by their absence. Once again,
|
||||
the expectations for new code are higher than they were in the past;
|
||||
merging uncommented code will be harder. That said, there is little desire
|
||||
for verbosely-commented code. The code should, itself, be readable, with
|
||||
comments explaining the more subtle aspects.
|
||||
|
||||
Certain things should always be commented. Uses of memory barriers should
|
||||
be accompanied by a line explaining why the barrier is necessary. The
|
||||
locking rules for data structures generally need to be explained somewhere.
|
||||
Major data structures need comprehensive documentation in general.
|
||||
Non-obvious dependencies between separate bits of code should be pointed
|
||||
out. Anything which might tempt a code janitor to make an incorrect
|
||||
"cleanup" needs a comment saying why it is done the way it is. And so on.
|
||||
|
||||
|
||||
4.4: INTERNAL API CHANGES
|
||||
|
||||
The binary interface provided by the kernel to user space cannot be broken
|
||||
except under the most severe circumstances. The kernel's internal
|
||||
programming interfaces, instead, are highly fluid and can be changed when
|
||||
the need arises. If you find yourself having to work around a kernel API,
|
||||
or simply not using a specific functionality because it does not meet your
|
||||
needs, that may be a sign that the API needs to change. As a kernel
|
||||
developer, you are empowered to make such changes.
|
||||
|
||||
There are, of course, some catches. API changes can be made, but they need
|
||||
to be well justified. So any patch making an internal API change should be
|
||||
accompanied by a description of what the change is and why it is
|
||||
necessary. This kind of change should also be broken out into a separate
|
||||
patch, rather than buried within a larger patch.
|
||||
|
||||
The other catch is that a developer who changes an internal API is
|
||||
generally charged with the task of fixing any code within the kernel tree
|
||||
which is broken by the change. For a widely-used function, this duty can
|
||||
lead to literally hundreds or thousands of changes - many of which are
|
||||
likely to conflict with work being done by other developers. Needless to
|
||||
say, this can be a large job, so it is best to be sure that the
|
||||
justification is solid. Note that the Coccinelle tool can help with
|
||||
wide-ranging API changes.
|
||||
|
||||
When making an incompatible API change, one should, whenever possible,
|
||||
ensure that code which has not been updated is caught by the compiler.
|
||||
This will help you to be sure that you have found all in-tree uses of that
|
||||
interface. It will also alert developers of out-of-tree code that there is
|
||||
a change that they need to respond to. Supporting out-of-tree code is not
|
||||
something that kernel developers need to be worried about, but we also do
|
||||
not have to make life harder for out-of-tree developers than it needs to
|
||||
be.
|
413
Documentation/development-process/4.Coding.rst
Normal file
413
Documentation/development-process/4.Coding.rst
Normal file
@ -0,0 +1,413 @@
|
||||
.. _development_coding:
|
||||
|
||||
Getting the code right
|
||||
======================
|
||||
|
||||
While there is much to be said for a solid and community-oriented design
|
||||
process, the proof of any kernel development project is in the resulting
|
||||
code. It is the code which will be examined by other developers and merged
|
||||
(or not) into the mainline tree. So it is the quality of this code which
|
||||
will determine the ultimate success of the project.
|
||||
|
||||
This section will examine the coding process. We'll start with a look at a
|
||||
number of ways in which kernel developers can go wrong. Then the focus
|
||||
will shift toward doing things right and the tools which can help in that
|
||||
quest.
|
||||
|
||||
|
||||
Pitfalls
|
||||
---------
|
||||
|
||||
Coding style
|
||||
************
|
||||
|
||||
The kernel has long had a standard coding style, described in
|
||||
Documentation/CodingStyle. For much of that time, the policies described
|
||||
in that file were taken as being, at most, advisory. As a result, there is
|
||||
a substantial amount of code in the kernel which does not meet the coding
|
||||
style guidelines. The presence of that code leads to two independent
|
||||
hazards for kernel developers.
|
||||
|
||||
The first of these is to believe that the kernel coding standards do not
|
||||
matter and are not enforced. The truth of the matter is that adding new
|
||||
code to the kernel is very difficult if that code is not coded according to
|
||||
the standard; many developers will request that the code be reformatted
|
||||
before they will even review it. A code base as large as the kernel
|
||||
requires some uniformity of code to make it possible for developers to
|
||||
quickly understand any part of it. So there is no longer room for
|
||||
strangely-formatted code.
|
||||
|
||||
Occasionally, the kernel's coding style will run into conflict with an
|
||||
employer's mandated style. In such cases, the kernel's style will have to
|
||||
win before the code can be merged. Putting code into the kernel means
|
||||
giving up a degree of control in a number of ways - including control over
|
||||
how the code is formatted.
|
||||
|
||||
The other trap is to assume that code which is already in the kernel is
|
||||
urgently in need of coding style fixes. Developers may start to generate
|
||||
reformatting patches as a way of gaining familiarity with the process, or
|
||||
as a way of getting their name into the kernel changelogs - or both. But
|
||||
pure coding style fixes are seen as noise by the development community;
|
||||
they tend to get a chilly reception. So this type of patch is best
|
||||
avoided. It is natural to fix the style of a piece of code while working
|
||||
on it for other reasons, but coding style changes should not be made for
|
||||
their own sake.
|
||||
|
||||
The coding style document also should not be read as an absolute law which
|
||||
can never be transgressed. If there is a good reason to go against the
|
||||
style (a line which becomes far less readable if split to fit within the
|
||||
80-column limit, for example), just do it.
|
||||
|
||||
|
||||
Abstraction layers
|
||||
******************
|
||||
|
||||
Computer Science professors teach students to make extensive use of
|
||||
abstraction layers in the name of flexibility and information hiding.
|
||||
Certainly the kernel makes extensive use of abstraction; no project
|
||||
involving several million lines of code could do otherwise and survive.
|
||||
But experience has shown that excessive or premature abstraction can be
|
||||
just as harmful as premature optimization. Abstraction should be used to
|
||||
the level required and no further.
|
||||
|
||||
At a simple level, consider a function which has an argument which is
|
||||
always passed as zero by all callers. One could retain that argument just
|
||||
in case somebody eventually needs to use the extra flexibility that it
|
||||
provides. By that time, though, chances are good that the code which
|
||||
implements this extra argument has been broken in some subtle way which was
|
||||
never noticed - because it has never been used. Or, when the need for
|
||||
extra flexibility arises, it does not do so in a way which matches the
|
||||
programmer's early expectation. Kernel developers will routinely submit
|
||||
patches to remove unused arguments; they should, in general, not be added
|
||||
in the first place.
|
||||
|
||||
Abstraction layers which hide access to hardware - often to allow the bulk
|
||||
of a driver to be used with multiple operating systems - are especially
|
||||
frowned upon. Such layers obscure the code and may impose a performance
|
||||
penalty; they do not belong in the Linux kernel.
|
||||
|
||||
On the other hand, if you find yourself copying significant amounts of code
|
||||
from another kernel subsystem, it is time to ask whether it would, in fact,
|
||||
make sense to pull out some of that code into a separate library or to
|
||||
implement that functionality at a higher level. There is no value in
|
||||
replicating the same code throughout the kernel.
|
||||
|
||||
|
||||
#ifdef and preprocessor use in general
|
||||
**************************************
|
||||
|
||||
The C preprocessor seems to present a powerful temptation to some C
|
||||
programmers, who see it as a way to efficiently encode a great deal of
|
||||
flexibility into a source file. But the preprocessor is not C, and heavy
|
||||
use of it results in code which is much harder for others to read and
|
||||
harder for the compiler to check for correctness. Heavy preprocessor use
|
||||
is almost always a sign of code which needs some cleanup work.
|
||||
|
||||
Conditional compilation with #ifdef is, indeed, a powerful feature, and it
|
||||
is used within the kernel. But there is little desire to see code which is
|
||||
sprinkled liberally with #ifdef blocks. As a general rule, #ifdef use
|
||||
should be confined to header files whenever possible.
|
||||
Conditionally-compiled code can be confined to functions which, if the code
|
||||
is not to be present, simply become empty. The compiler will then quietly
|
||||
optimize out the call to the empty function. The result is far cleaner
|
||||
code which is easier to follow.
|
||||
|
||||
C preprocessor macros present a number of hazards, including possible
|
||||
multiple evaluation of expressions with side effects and no type safety.
|
||||
If you are tempted to define a macro, consider creating an inline function
|
||||
instead. The code which results will be the same, but inline functions are
|
||||
easier to read, do not evaluate their arguments multiple times, and allow
|
||||
the compiler to perform type checking on the arguments and return value.
|
||||
|
||||
|
||||
Inline functions
|
||||
****************
|
||||
|
||||
Inline functions present a hazard of their own, though. Programmers can
|
||||
become enamored of the perceived efficiency inherent in avoiding a function
|
||||
call and fill a source file with inline functions. Those functions,
|
||||
however, can actually reduce performance. Since their code is replicated
|
||||
at each call site, they end up bloating the size of the compiled kernel.
|
||||
That, in turn, creates pressure on the processor's memory caches, which can
|
||||
slow execution dramatically. Inline functions, as a rule, should be quite
|
||||
small and relatively rare. The cost of a function call, after all, is not
|
||||
that high; the creation of large numbers of inline functions is a classic
|
||||
example of premature optimization.
|
||||
|
||||
In general, kernel programmers ignore cache effects at their peril. The
|
||||
classic time/space tradeoff taught in beginning data structures classes
|
||||
often does not apply to contemporary hardware. Space *is* time, in that a
|
||||
larger program will run slower than one which is more compact.
|
||||
|
||||
More recent compilers take an increasingly active role in deciding whether
|
||||
a given function should actually be inlined or not. So the liberal
|
||||
placement of "inline" keywords may not just be excessive; it could also be
|
||||
irrelevant.
|
||||
|
||||
|
||||
Locking
|
||||
*******
|
||||
|
||||
In May, 2006, the "Devicescape" networking stack was, with great
|
||||
fanfare, released under the GPL and made available for inclusion in the
|
||||
mainline kernel. This donation was welcome news; support for wireless
|
||||
networking in Linux was considered substandard at best, and the Devicescape
|
||||
stack offered the promise of fixing that situation. Yet, this code did not
|
||||
actually make it into the mainline until June, 2007 (2.6.22). What
|
||||
happened?
|
||||
|
||||
This code showed a number of signs of having been developed behind
|
||||
corporate doors. But one large problem in particular was that it was not
|
||||
designed to work on multiprocessor systems. Before this networking stack
|
||||
(now called mac80211) could be merged, a locking scheme needed to be
|
||||
retrofitted onto it.
|
||||
|
||||
Once upon a time, Linux kernel code could be developed without thinking
|
||||
about the concurrency issues presented by multiprocessor systems. Now,
|
||||
however, this document is being written on a dual-core laptop. Even on
|
||||
single-processor systems, work being done to improve responsiveness will
|
||||
raise the level of concurrency within the kernel. The days when kernel
|
||||
code could be written without thinking about locking are long past.
|
||||
|
||||
Any resource (data structures, hardware registers, etc.) which could be
|
||||
accessed concurrently by more than one thread must be protected by a lock.
|
||||
New code should be written with this requirement in mind; retrofitting
|
||||
locking after the fact is a rather more difficult task. Kernel developers
|
||||
should take the time to understand the available locking primitives well
|
||||
enough to pick the right tool for the job. Code which shows a lack of
|
||||
attention to concurrency will have a difficult path into the mainline.
|
||||
|
||||
|
||||
Regressions
|
||||
***********
|
||||
|
||||
One final hazard worth mentioning is this: it can be tempting to make a
|
||||
change (which may bring big improvements) which causes something to break
|
||||
for existing users. This kind of change is called a "regression," and
|
||||
regressions have become most unwelcome in the mainline kernel. With few
|
||||
exceptions, changes which cause regressions will be backed out if the
|
||||
regression cannot be fixed in a timely manner. Far better to avoid the
|
||||
regression in the first place.
|
||||
|
||||
It is often argued that a regression can be justified if it causes things
|
||||
to work for more people than it creates problems for. Why not make a
|
||||
change if it brings new functionality to ten systems for each one it
|
||||
breaks? The best answer to this question was expressed by Linus in July,
|
||||
2007:
|
||||
|
||||
::
|
||||
|
||||
So we don't fix bugs by introducing new problems. That way lies
|
||||
madness, and nobody ever knows if you actually make any real
|
||||
progress at all. Is it two steps forwards, one step back, or one
|
||||
step forward and two steps back?
|
||||
|
||||
(http://lwn.net/Articles/243460/).
|
||||
|
||||
An especially unwelcome type of regression is any sort of change to the
|
||||
user-space ABI. Once an interface has been exported to user space, it must
|
||||
be supported indefinitely. This fact makes the creation of user-space
|
||||
interfaces particularly challenging: since they cannot be changed in
|
||||
incompatible ways, they must be done right the first time. For this
|
||||
reason, a great deal of thought, clear documentation, and wide review for
|
||||
user-space interfaces is always required.
|
||||
|
||||
|
||||
Code checking tools
|
||||
-------------------
|
||||
|
||||
For now, at least, the writing of error-free code remains an ideal that few
|
||||
of us can reach. What we can hope to do, though, is to catch and fix as
|
||||
many of those errors as possible before our code goes into the mainline
|
||||
kernel. To that end, the kernel developers have put together an impressive
|
||||
array of tools which can catch a wide variety of obscure problems in an
|
||||
automated way. Any problem caught by the computer is a problem which will
|
||||
not afflict a user later on, so it stands to reason that the automated
|
||||
tools should be used whenever possible.
|
||||
|
||||
The first step is simply to heed the warnings produced by the compiler.
|
||||
Contemporary versions of gcc can detect (and warn about) a large number of
|
||||
potential errors. Quite often, these warnings point to real problems.
|
||||
Code submitted for review should, as a rule, not produce any compiler
|
||||
warnings. When silencing warnings, take care to understand the real cause
|
||||
and try to avoid "fixes" which make the warning go away without addressing
|
||||
its cause.
|
||||
|
||||
Note that not all compiler warnings are enabled by default. Build the
|
||||
kernel with "make EXTRA_CFLAGS=-W" to get the full set.
|
||||
|
||||
The kernel provides several configuration options which turn on debugging
|
||||
features; most of these are found in the "kernel hacking" submenu. Several
|
||||
of these options should be turned on for any kernel used for development or
|
||||
testing purposes. In particular, you should turn on:
|
||||
|
||||
- ENABLE_WARN_DEPRECATED, ENABLE_MUST_CHECK, and FRAME_WARN to get an
|
||||
extra set of warnings for problems like the use of deprecated interfaces
|
||||
or ignoring an important return value from a function. The output
|
||||
generated by these warnings can be verbose, but one need not worry about
|
||||
warnings from other parts of the kernel.
|
||||
|
||||
- DEBUG_OBJECTS will add code to track the lifetime of various objects
|
||||
created by the kernel and warn when things are done out of order. If
|
||||
you are adding a subsystem which creates (and exports) complex objects
|
||||
of its own, consider adding support for the object debugging
|
||||
infrastructure.
|
||||
|
||||
- DEBUG_SLAB can find a variety of memory allocation and use errors; it
|
||||
should be used on most development kernels.
|
||||
|
||||
- DEBUG_SPINLOCK, DEBUG_ATOMIC_SLEEP, and DEBUG_MUTEXES will find a
|
||||
number of common locking errors.
|
||||
|
||||
There are quite a few other debugging options, some of which will be
|
||||
discussed below. Some of them have a significant performance impact and
|
||||
should not be used all of the time. But some time spent learning the
|
||||
available options will likely be paid back many times over in short order.
|
||||
|
||||
One of the heavier debugging tools is the locking checker, or "lockdep."
|
||||
This tool will track the acquisition and release of every lock (spinlock or
|
||||
mutex) in the system, the order in which locks are acquired relative to
|
||||
each other, the current interrupt environment, and more. It can then
|
||||
ensure that locks are always acquired in the same order, that the same
|
||||
interrupt assumptions apply in all situations, and so on. In other words,
|
||||
lockdep can find a number of scenarios in which the system could, on rare
|
||||
occasion, deadlock. This kind of problem can be painful (for both
|
||||
developers and users) in a deployed system; lockdep allows them to be found
|
||||
in an automated manner ahead of time. Code with any sort of non-trivial
|
||||
locking should be run with lockdep enabled before being submitted for
|
||||
inclusion.
|
||||
|
||||
As a diligent kernel programmer, you will, beyond doubt, check the return
|
||||
status of any operation (such as a memory allocation) which can fail. The
|
||||
fact of the matter, though, is that the resulting failure recovery paths
|
||||
are, probably, completely untested. Untested code tends to be broken code;
|
||||
you could be much more confident of your code if all those error-handling
|
||||
paths had been exercised a few times.
|
||||
|
||||
The kernel provides a fault injection framework which can do exactly that,
|
||||
especially where memory allocations are involved. With fault injection
|
||||
enabled, a configurable percentage of memory allocations will be made to
|
||||
fail; these failures can be restricted to a specific range of code.
|
||||
Running with fault injection enabled allows the programmer to see how the
|
||||
code responds when things go badly. See
|
||||
Documentation/fault-injection/fault-injection.txt for more information on
|
||||
how to use this facility.
|
||||
|
||||
Other kinds of errors can be found with the "sparse" static analysis tool.
|
||||
With sparse, the programmer can be warned about confusion between
|
||||
user-space and kernel-space addresses, mixture of big-endian and
|
||||
small-endian quantities, the passing of integer values where a set of bit
|
||||
flags is expected, and so on. Sparse must be installed separately (it can
|
||||
be found at https://sparse.wiki.kernel.org/index.php/Main_Page if your
|
||||
distributor does not package it); it can then be run on the code by adding
|
||||
"C=1" to your make command.
|
||||
|
||||
The "Coccinelle" tool (http://coccinelle.lip6.fr/) is able to find a wide
|
||||
variety of potential coding problems; it can also propose fixes for those
|
||||
problems. Quite a few "semantic patches" for the kernel have been packaged
|
||||
under the scripts/coccinelle directory; running "make coccicheck" will run
|
||||
through those semantic patches and report on any problems found. See
|
||||
Documentation/coccinelle.txt for more information.
|
||||
|
||||
Other kinds of portability errors are best found by compiling your code for
|
||||
other architectures. If you do not happen to have an S/390 system or a
|
||||
Blackfin development board handy, you can still perform the compilation
|
||||
step. A large set of cross compilers for x86 systems can be found at
|
||||
|
||||
http://www.kernel.org/pub/tools/crosstool/
|
||||
|
||||
Some time spent installing and using these compilers will help avoid
|
||||
embarrassment later.
|
||||
|
||||
|
||||
Documentation
|
||||
-------------
|
||||
|
||||
Documentation has often been more the exception than the rule with kernel
|
||||
development. Even so, adequate documentation will help to ease the merging
|
||||
of new code into the kernel, make life easier for other developers, and
|
||||
will be helpful for your users. In many cases, the addition of
|
||||
documentation has become essentially mandatory.
|
||||
|
||||
The first piece of documentation for any patch is its associated
|
||||
changelog. Log entries should describe the problem being solved, the form
|
||||
of the solution, the people who worked on the patch, any relevant
|
||||
effects on performance, and anything else that might be needed to
|
||||
understand the patch. Be sure that the changelog says *why* the patch is
|
||||
worth applying; a surprising number of developers fail to provide that
|
||||
information.
|
||||
|
||||
Any code which adds a new user-space interface - including new sysfs or
|
||||
/proc files - should include documentation of that interface which enables
|
||||
user-space developers to know what they are working with. See
|
||||
Documentation/ABI/README for a description of how this documentation should
|
||||
be formatted and what information needs to be provided.
|
||||
|
||||
The file Documentation/kernel-parameters.txt describes all of the kernel's
|
||||
boot-time parameters. Any patch which adds new parameters should add the
|
||||
appropriate entries to this file.
|
||||
|
||||
Any new configuration options must be accompanied by help text which
|
||||
clearly explains the options and when the user might want to select them.
|
||||
|
||||
Internal API information for many subsystems is documented by way of
|
||||
specially-formatted comments; these comments can be extracted and formatted
|
||||
in a number of ways by the "kernel-doc" script. If you are working within
|
||||
a subsystem which has kerneldoc comments, you should maintain them and add
|
||||
them, as appropriate, for externally-available functions. Even in areas
|
||||
which have not been so documented, there is no harm in adding kerneldoc
|
||||
comments for the future; indeed, this can be a useful activity for
|
||||
beginning kernel developers. The format of these comments, along with some
|
||||
information on how to create kerneldoc templates can be found in the file
|
||||
Documentation/kernel-documentation.rst.
|
||||
|
||||
Anybody who reads through a significant amount of existing kernel code will
|
||||
note that, often, comments are most notable by their absence. Once again,
|
||||
the expectations for new code are higher than they were in the past;
|
||||
merging uncommented code will be harder. That said, there is little desire
|
||||
for verbosely-commented code. The code should, itself, be readable, with
|
||||
comments explaining the more subtle aspects.
|
||||
|
||||
Certain things should always be commented. Uses of memory barriers should
|
||||
be accompanied by a line explaining why the barrier is necessary. The
|
||||
locking rules for data structures generally need to be explained somewhere.
|
||||
Major data structures need comprehensive documentation in general.
|
||||
Non-obvious dependencies between separate bits of code should be pointed
|
||||
out. Anything which might tempt a code janitor to make an incorrect
|
||||
"cleanup" needs a comment saying why it is done the way it is. And so on.
|
||||
|
||||
|
||||
Internal API changes
|
||||
--------------------
|
||||
|
||||
The binary interface provided by the kernel to user space cannot be broken
|
||||
except under the most severe circumstances. The kernel's internal
|
||||
programming interfaces, instead, are highly fluid and can be changed when
|
||||
the need arises. If you find yourself having to work around a kernel API,
|
||||
or simply not using a specific functionality because it does not meet your
|
||||
needs, that may be a sign that the API needs to change. As a kernel
|
||||
developer, you are empowered to make such changes.
|
||||
|
||||
There are, of course, some catches. API changes can be made, but they need
|
||||
to be well justified. So any patch making an internal API change should be
|
||||
accompanied by a description of what the change is and why it is
|
||||
necessary. This kind of change should also be broken out into a separate
|
||||
patch, rather than buried within a larger patch.
|
||||
|
||||
The other catch is that a developer who changes an internal API is
|
||||
generally charged with the task of fixing any code within the kernel tree
|
||||
which is broken by the change. For a widely-used function, this duty can
|
||||
lead to literally hundreds or thousands of changes - many of which are
|
||||
likely to conflict with work being done by other developers. Needless to
|
||||
say, this can be a large job, so it is best to be sure that the
|
||||
justification is solid. Note that the Coccinelle tool can help with
|
||||
wide-ranging API changes.
|
||||
|
||||
When making an incompatible API change, one should, whenever possible,
|
||||
ensure that code which has not been updated is caught by the compiler.
|
||||
This will help you to be sure that you have found all in-tree uses of that
|
||||
interface. It will also alert developers of out-of-tree code that there is
|
||||
a change that they need to respond to. Supporting out-of-tree code is not
|
||||
something that kernel developers need to be worried about, but we also do
|
||||
not have to make life harder for out-of-tree developers than it needs to
|
||||
be.
|
@ -1,307 +0,0 @@
|
||||
5: POSTING PATCHES
|
||||
|
||||
Sooner or later, the time comes when your work is ready to be presented to
|
||||
the community for review and, eventually, inclusion into the mainline
|
||||
kernel. Unsurprisingly, the kernel development community has evolved a set
|
||||
of conventions and procedures which are used in the posting of patches;
|
||||
following them will make life much easier for everybody involved. This
|
||||
document will attempt to cover these expectations in reasonable detail;
|
||||
more information can also be found in the files SubmittingPatches,
|
||||
SubmittingDrivers, and SubmitChecklist in the kernel documentation
|
||||
directory.
|
||||
|
||||
|
||||
5.1: WHEN TO POST
|
||||
|
||||
There is a constant temptation to avoid posting patches before they are
|
||||
completely "ready." For simple patches, that is not a problem. If the
|
||||
work being done is complex, though, there is a lot to be gained by getting
|
||||
feedback from the community before the work is complete. So you should
|
||||
consider posting in-progress work, or even making a git tree available so
|
||||
that interested developers can catch up with your work at any time.
|
||||
|
||||
When posting code which is not yet considered ready for inclusion, it is a
|
||||
good idea to say so in the posting itself. Also mention any major work
|
||||
which remains to be done and any known problems. Fewer people will look at
|
||||
patches which are known to be half-baked, but those who do will come in
|
||||
with the idea that they can help you drive the work in the right direction.
|
||||
|
||||
|
||||
5.2: BEFORE CREATING PATCHES
|
||||
|
||||
There are a number of things which should be done before you consider
|
||||
sending patches to the development community. These include:
|
||||
|
||||
- Test the code to the extent that you can. Make use of the kernel's
|
||||
debugging tools, ensure that the kernel will build with all reasonable
|
||||
combinations of configuration options, use cross-compilers to build for
|
||||
different architectures, etc.
|
||||
|
||||
- Make sure your code is compliant with the kernel coding style
|
||||
guidelines.
|
||||
|
||||
- Does your change have performance implications? If so, you should run
|
||||
benchmarks showing what the impact (or benefit) of your change is; a
|
||||
summary of the results should be included with the patch.
|
||||
|
||||
- Be sure that you have the right to post the code. If this work was done
|
||||
for an employer, the employer likely has a right to the work and must be
|
||||
agreeable with its release under the GPL.
|
||||
|
||||
As a general rule, putting in some extra thought before posting code almost
|
||||
always pays back the effort in short order.
|
||||
|
||||
|
||||
5.3: PATCH PREPARATION
|
||||
|
||||
The preparation of patches for posting can be a surprising amount of work,
|
||||
but, once again, attempting to save time here is not generally advisable
|
||||
even in the short term.
|
||||
|
||||
Patches must be prepared against a specific version of the kernel. As a
|
||||
general rule, a patch should be based on the current mainline as found in
|
||||
Linus's git tree. When basing on mainline, start with a well-known release
|
||||
point - a stable or -rc release - rather than branching off the mainline at
|
||||
an arbitrary spot.
|
||||
|
||||
It may become necessary to make versions against -mm, linux-next, or a
|
||||
subsystem tree, though, to facilitate wider testing and review. Depending
|
||||
on the area of your patch and what is going on elsewhere, basing a patch
|
||||
against these other trees can require a significant amount of work
|
||||
resolving conflicts and dealing with API changes.
|
||||
|
||||
Only the most simple changes should be formatted as a single patch;
|
||||
everything else should be made as a logical series of changes. Splitting
|
||||
up patches is a bit of an art; some developers spend a long time figuring
|
||||
out how to do it in the way that the community expects. There are a few
|
||||
rules of thumb, however, which can help considerably:
|
||||
|
||||
- The patch series you post will almost certainly not be the series of
|
||||
changes found in your working revision control system. Instead, the
|
||||
changes you have made need to be considered in their final form, then
|
||||
split apart in ways which make sense. The developers are interested in
|
||||
discrete, self-contained changes, not the path you took to get to those
|
||||
changes.
|
||||
|
||||
- Each logically independent change should be formatted as a separate
|
||||
patch. These changes can be small ("add a field to this structure") or
|
||||
large (adding a significant new driver, for example), but they should be
|
||||
conceptually small and amenable to a one-line description. Each patch
|
||||
should make a specific change which can be reviewed on its own and
|
||||
verified to do what it says it does.
|
||||
|
||||
- As a way of restating the guideline above: do not mix different types of
|
||||
changes in the same patch. If a single patch fixes a critical security
|
||||
bug, rearranges a few structures, and reformats the code, there is a
|
||||
good chance that it will be passed over and the important fix will be
|
||||
lost.
|
||||
|
||||
- Each patch should yield a kernel which builds and runs properly; if your
|
||||
patch series is interrupted in the middle, the result should still be a
|
||||
working kernel. Partial application of a patch series is a common
|
||||
scenario when the "git bisect" tool is used to find regressions; if the
|
||||
result is a broken kernel, you will make life harder for developers and
|
||||
users who are engaging in the noble work of tracking down problems.
|
||||
|
||||
- Do not overdo it, though. One developer once posted a set of edits
|
||||
to a single file as 500 separate patches - an act which did not make him
|
||||
the most popular person on the kernel mailing list. A single patch can
|
||||
be reasonably large as long as it still contains a single *logical*
|
||||
change.
|
||||
|
||||
- It can be tempting to add a whole new infrastructure with a series of
|
||||
patches, but to leave that infrastructure unused until the final patch
|
||||
in the series enables the whole thing. This temptation should be
|
||||
avoided if possible; if that series adds regressions, bisection will
|
||||
finger the last patch as the one which caused the problem, even though
|
||||
the real bug is elsewhere. Whenever possible, a patch which adds new
|
||||
code should make that code active immediately.
|
||||
|
||||
Working to create the perfect patch series can be a frustrating process
|
||||
which takes quite a bit of time and thought after the "real work" has been
|
||||
done. When done properly, though, it is time well spent.
|
||||
|
||||
|
||||
5.4: PATCH FORMATTING AND CHANGELOGS
|
||||
|
||||
So now you have a perfect series of patches for posting, but the work is
|
||||
not done quite yet. Each patch needs to be formatted into a message which
|
||||
quickly and clearly communicates its purpose to the rest of the world. To
|
||||
that end, each patch will be composed of the following:
|
||||
|
||||
- An optional "From" line naming the author of the patch. This line is
|
||||
only necessary if you are passing on somebody else's patch via email,
|
||||
but it never hurts to add it when in doubt.
|
||||
|
||||
- A one-line description of what the patch does. This message should be
|
||||
enough for a reader who sees it with no other context to figure out the
|
||||
scope of the patch; it is the line that will show up in the "short form"
|
||||
changelogs. This message is usually formatted with the relevant
|
||||
subsystem name first, followed by the purpose of the patch. For
|
||||
example:
|
||||
|
||||
gpio: fix build on CONFIG_GPIO_SYSFS=n
|
||||
|
||||
- A blank line followed by a detailed description of the contents of the
|
||||
patch. This description can be as long as is required; it should say
|
||||
what the patch does and why it should be applied to the kernel.
|
||||
|
||||
- One or more tag lines, with, at a minimum, one Signed-off-by: line from
|
||||
the author of the patch. Tags will be described in more detail below.
|
||||
|
||||
The items above, together, form the changelog for the patch. Writing good
|
||||
changelogs is a crucial but often-neglected art; it's worth spending
|
||||
another moment discussing this issue. When writing a changelog, you should
|
||||
bear in mind that a number of different people will be reading your words.
|
||||
These include subsystem maintainers and reviewers who need to decide
|
||||
whether the patch should be included, distributors and other maintainers
|
||||
trying to decide whether a patch should be backported to other kernels, bug
|
||||
hunters wondering whether the patch is responsible for a problem they are
|
||||
chasing, users who want to know how the kernel has changed, and more. A
|
||||
good changelog conveys the needed information to all of these people in the
|
||||
most direct and concise way possible.
|
||||
|
||||
To that end, the summary line should describe the effects of and motivation
|
||||
for the change as well as possible given the one-line constraint. The
|
||||
detailed description can then amplify on those topics and provide any
|
||||
needed additional information. If the patch fixes a bug, cite the commit
|
||||
which introduced the bug if possible (and please provide both the commit ID
|
||||
and the title when citing commits). If a problem is associated with
|
||||
specific log or compiler output, include that output to help others
|
||||
searching for a solution to the same problem. If the change is meant to
|
||||
support other changes coming in later patch, say so. If internal APIs are
|
||||
changed, detail those changes and how other developers should respond. In
|
||||
general, the more you can put yourself into the shoes of everybody who will
|
||||
be reading your changelog, the better that changelog (and the kernel as a
|
||||
whole) will be.
|
||||
|
||||
Needless to say, the changelog should be the text used when committing the
|
||||
change to a revision control system. It will be followed by:
|
||||
|
||||
- The patch itself, in the unified ("-u") patch format. Using the "-p"
|
||||
option to diff will associate function names with changes, making the
|
||||
resulting patch easier for others to read.
|
||||
|
||||
You should avoid including changes to irrelevant files (those generated by
|
||||
the build process, for example, or editor backup files) in the patch. The
|
||||
file "dontdiff" in the Documentation directory can help in this regard;
|
||||
pass it to diff with the "-X" option.
|
||||
|
||||
The tags mentioned above are used to describe how various developers have
|
||||
been associated with the development of this patch. They are described in
|
||||
detail in the SubmittingPatches document; what follows here is a brief
|
||||
summary. Each of these lines has the format:
|
||||
|
||||
tag: Full Name <email address> optional-other-stuff
|
||||
|
||||
The tags in common use are:
|
||||
|
||||
- Signed-off-by: this is a developer's certification that he or she has
|
||||
the right to submit the patch for inclusion into the kernel. It is an
|
||||
agreement to the Developer's Certificate of Origin, the full text of
|
||||
which can be found in Documentation/SubmittingPatches. Code without a
|
||||
proper signoff cannot be merged into the mainline.
|
||||
|
||||
- Acked-by: indicates an agreement by another developer (often a
|
||||
maintainer of the relevant code) that the patch is appropriate for
|
||||
inclusion into the kernel.
|
||||
|
||||
- Tested-by: states that the named person has tested the patch and found
|
||||
it to work.
|
||||
|
||||
- Reviewed-by: the named developer has reviewed the patch for correctness;
|
||||
see the reviewer's statement in Documentation/SubmittingPatches for more
|
||||
detail.
|
||||
|
||||
- Reported-by: names a user who reported a problem which is fixed by this
|
||||
patch; this tag is used to give credit to the (often underappreciated)
|
||||
people who test our code and let us know when things do not work
|
||||
correctly.
|
||||
|
||||
- Cc: the named person received a copy of the patch and had the
|
||||
opportunity to comment on it.
|
||||
|
||||
Be careful in the addition of tags to your patches: only Cc: is appropriate
|
||||
for addition without the explicit permission of the person named.
|
||||
|
||||
|
||||
5.5: SENDING THE PATCH
|
||||
|
||||
Before you mail your patches, there are a couple of other things you should
|
||||
take care of:
|
||||
|
||||
- Are you sure that your mailer will not corrupt the patches? Patches
|
||||
which have had gratuitous white-space changes or line wrapping performed
|
||||
by the mail client will not apply at the other end, and often will not
|
||||
be examined in any detail. If there is any doubt at all, mail the patch
|
||||
to yourself and convince yourself that it shows up intact.
|
||||
|
||||
Documentation/email-clients.txt has some helpful hints on making
|
||||
specific mail clients work for sending patches.
|
||||
|
||||
- Are you sure your patch is free of silly mistakes? You should always
|
||||
run patches through scripts/checkpatch.pl and address the complaints it
|
||||
comes up with. Please bear in mind that checkpatch.pl, while being the
|
||||
embodiment of a fair amount of thought about what kernel patches should
|
||||
look like, is not smarter than you. If fixing a checkpatch.pl complaint
|
||||
would make the code worse, don't do it.
|
||||
|
||||
Patches should always be sent as plain text. Please do not send them as
|
||||
attachments; that makes it much harder for reviewers to quote sections of
|
||||
the patch in their replies. Instead, just put the patch directly into your
|
||||
message.
|
||||
|
||||
When mailing patches, it is important to send copies to anybody who might
|
||||
be interested in it. Unlike some other projects, the kernel encourages
|
||||
people to err on the side of sending too many copies; don't assume that the
|
||||
relevant people will see your posting on the mailing lists. In particular,
|
||||
copies should go to:
|
||||
|
||||
- The maintainer(s) of the affected subsystem(s). As described earlier,
|
||||
the MAINTAINERS file is the first place to look for these people.
|
||||
|
||||
- Other developers who have been working in the same area - especially
|
||||
those who might be working there now. Using git to see who else has
|
||||
modified the files you are working on can be helpful.
|
||||
|
||||
- If you are responding to a bug report or a feature request, copy the
|
||||
original poster as well.
|
||||
|
||||
- Send a copy to the relevant mailing list, or, if nothing else applies,
|
||||
the linux-kernel list.
|
||||
|
||||
- If you are fixing a bug, think about whether the fix should go into the
|
||||
next stable update. If so, stable@vger.kernel.org should get a copy of
|
||||
the patch. Also add a "Cc: stable@vger.kernel.org" to the tags within
|
||||
the patch itself; that will cause the stable team to get a notification
|
||||
when your fix goes into the mainline.
|
||||
|
||||
When selecting recipients for a patch, it is good to have an idea of who
|
||||
you think will eventually accept the patch and get it merged. While it
|
||||
is possible to send patches directly to Linus Torvalds and have him merge
|
||||
them, things are not normally done that way. Linus is busy, and there are
|
||||
subsystem maintainers who watch over specific parts of the kernel. Usually
|
||||
you will be wanting that maintainer to merge your patches. If there is no
|
||||
obvious maintainer, Andrew Morton is often the patch target of last resort.
|
||||
|
||||
Patches need good subject lines. The canonical format for a patch line is
|
||||
something like:
|
||||
|
||||
[PATCH nn/mm] subsys: one-line description of the patch
|
||||
|
||||
where "nn" is the ordinal number of the patch, "mm" is the total number of
|
||||
patches in the series, and "subsys" is the name of the affected subsystem.
|
||||
Clearly, nn/mm can be omitted for a single, standalone patch.
|
||||
|
||||
If you have a significant series of patches, it is customary to send an
|
||||
introductory description as part zero. This convention is not universally
|
||||
followed though; if you use it, remember that information in the
|
||||
introduction does not make it into the kernel changelogs. So please ensure
|
||||
that the patches, themselves, have complete changelog information.
|
||||
|
||||
In general, the second and following parts of a multi-part patch should be
|
||||
sent as a reply to the first part so that they all thread together at the
|
||||
receiving end. Tools like git and quilt have commands to mail out a set of
|
||||
patches with the proper threading. If you have a long series, though, and
|
||||
are using git, please stay away from the --chain-reply-to option to avoid
|
||||
creating exceptionally deep nesting.
|
321
Documentation/development-process/5.Posting.rst
Normal file
321
Documentation/development-process/5.Posting.rst
Normal file
@ -0,0 +1,321 @@
|
||||
.. _development_posting:
|
||||
|
||||
Posting patches
|
||||
===============
|
||||
|
||||
Sooner or later, the time comes when your work is ready to be presented to
|
||||
the community for review and, eventually, inclusion into the mainline
|
||||
kernel. Unsurprisingly, the kernel development community has evolved a set
|
||||
of conventions and procedures which are used in the posting of patches;
|
||||
following them will make life much easier for everybody involved. This
|
||||
document will attempt to cover these expectations in reasonable detail;
|
||||
more information can also be found in the files SubmittingPatches,
|
||||
SubmittingDrivers, and SubmitChecklist in the kernel documentation
|
||||
directory.
|
||||
|
||||
|
||||
When to post
|
||||
------------
|
||||
|
||||
There is a constant temptation to avoid posting patches before they are
|
||||
completely "ready." For simple patches, that is not a problem. If the
|
||||
work being done is complex, though, there is a lot to be gained by getting
|
||||
feedback from the community before the work is complete. So you should
|
||||
consider posting in-progress work, or even making a git tree available so
|
||||
that interested developers can catch up with your work at any time.
|
||||
|
||||
When posting code which is not yet considered ready for inclusion, it is a
|
||||
good idea to say so in the posting itself. Also mention any major work
|
||||
which remains to be done and any known problems. Fewer people will look at
|
||||
patches which are known to be half-baked, but those who do will come in
|
||||
with the idea that they can help you drive the work in the right direction.
|
||||
|
||||
|
||||
Before creating patches
|
||||
-----------------------
|
||||
|
||||
There are a number of things which should be done before you consider
|
||||
sending patches to the development community. These include:
|
||||
|
||||
- Test the code to the extent that you can. Make use of the kernel's
|
||||
debugging tools, ensure that the kernel will build with all reasonable
|
||||
combinations of configuration options, use cross-compilers to build for
|
||||
different architectures, etc.
|
||||
|
||||
- Make sure your code is compliant with the kernel coding style
|
||||
guidelines.
|
||||
|
||||
- Does your change have performance implications? If so, you should run
|
||||
benchmarks showing what the impact (or benefit) of your change is; a
|
||||
summary of the results should be included with the patch.
|
||||
|
||||
- Be sure that you have the right to post the code. If this work was done
|
||||
for an employer, the employer likely has a right to the work and must be
|
||||
agreeable with its release under the GPL.
|
||||
|
||||
As a general rule, putting in some extra thought before posting code almost
|
||||
always pays back the effort in short order.
|
||||
|
||||
|
||||
Patch preparation
|
||||
-----------------
|
||||
|
||||
The preparation of patches for posting can be a surprising amount of work,
|
||||
but, once again, attempting to save time here is not generally advisable
|
||||
even in the short term.
|
||||
|
||||
Patches must be prepared against a specific version of the kernel. As a
|
||||
general rule, a patch should be based on the current mainline as found in
|
||||
Linus's git tree. When basing on mainline, start with a well-known release
|
||||
point - a stable or -rc release - rather than branching off the mainline at
|
||||
an arbitrary spot.
|
||||
|
||||
It may become necessary to make versions against -mm, linux-next, or a
|
||||
subsystem tree, though, to facilitate wider testing and review. Depending
|
||||
on the area of your patch and what is going on elsewhere, basing a patch
|
||||
against these other trees can require a significant amount of work
|
||||
resolving conflicts and dealing with API changes.
|
||||
|
||||
Only the most simple changes should be formatted as a single patch;
|
||||
everything else should be made as a logical series of changes. Splitting
|
||||
up patches is a bit of an art; some developers spend a long time figuring
|
||||
out how to do it in the way that the community expects. There are a few
|
||||
rules of thumb, however, which can help considerably:
|
||||
|
||||
- The patch series you post will almost certainly not be the series of
|
||||
changes found in your working revision control system. Instead, the
|
||||
changes you have made need to be considered in their final form, then
|
||||
split apart in ways which make sense. The developers are interested in
|
||||
discrete, self-contained changes, not the path you took to get to those
|
||||
changes.
|
||||
|
||||
- Each logically independent change should be formatted as a separate
|
||||
patch. These changes can be small ("add a field to this structure") or
|
||||
large (adding a significant new driver, for example), but they should be
|
||||
conceptually small and amenable to a one-line description. Each patch
|
||||
should make a specific change which can be reviewed on its own and
|
||||
verified to do what it says it does.
|
||||
|
||||
- As a way of restating the guideline above: do not mix different types of
|
||||
changes in the same patch. If a single patch fixes a critical security
|
||||
bug, rearranges a few structures, and reformats the code, there is a
|
||||
good chance that it will be passed over and the important fix will be
|
||||
lost.
|
||||
|
||||
- Each patch should yield a kernel which builds and runs properly; if your
|
||||
patch series is interrupted in the middle, the result should still be a
|
||||
working kernel. Partial application of a patch series is a common
|
||||
scenario when the "git bisect" tool is used to find regressions; if the
|
||||
result is a broken kernel, you will make life harder for developers and
|
||||
users who are engaging in the noble work of tracking down problems.
|
||||
|
||||
- Do not overdo it, though. One developer once posted a set of edits
|
||||
to a single file as 500 separate patches - an act which did not make him
|
||||
the most popular person on the kernel mailing list. A single patch can
|
||||
be reasonably large as long as it still contains a single *logical*
|
||||
change.
|
||||
|
||||
- It can be tempting to add a whole new infrastructure with a series of
|
||||
patches, but to leave that infrastructure unused until the final patch
|
||||
in the series enables the whole thing. This temptation should be
|
||||
avoided if possible; if that series adds regressions, bisection will
|
||||
finger the last patch as the one which caused the problem, even though
|
||||
the real bug is elsewhere. Whenever possible, a patch which adds new
|
||||
code should make that code active immediately.
|
||||
|
||||
Working to create the perfect patch series can be a frustrating process
|
||||
which takes quite a bit of time and thought after the "real work" has been
|
||||
done. When done properly, though, it is time well spent.
|
||||
|
||||
|
||||
Patch formatting and changelogs
|
||||
-------------------------------
|
||||
|
||||
So now you have a perfect series of patches for posting, but the work is
|
||||
not done quite yet. Each patch needs to be formatted into a message which
|
||||
quickly and clearly communicates its purpose to the rest of the world. To
|
||||
that end, each patch will be composed of the following:
|
||||
|
||||
- An optional "From" line naming the author of the patch. This line is
|
||||
only necessary if you are passing on somebody else's patch via email,
|
||||
but it never hurts to add it when in doubt.
|
||||
|
||||
- A one-line description of what the patch does. This message should be
|
||||
enough for a reader who sees it with no other context to figure out the
|
||||
scope of the patch; it is the line that will show up in the "short form"
|
||||
changelogs. This message is usually formatted with the relevant
|
||||
subsystem name first, followed by the purpose of the patch. For
|
||||
example:
|
||||
|
||||
::
|
||||
|
||||
gpio: fix build on CONFIG_GPIO_SYSFS=n
|
||||
|
||||
- A blank line followed by a detailed description of the contents of the
|
||||
patch. This description can be as long as is required; it should say
|
||||
what the patch does and why it should be applied to the kernel.
|
||||
|
||||
- One or more tag lines, with, at a minimum, one Signed-off-by: line from
|
||||
the author of the patch. Tags will be described in more detail below.
|
||||
|
||||
The items above, together, form the changelog for the patch. Writing good
|
||||
changelogs is a crucial but often-neglected art; it's worth spending
|
||||
another moment discussing this issue. When writing a changelog, you should
|
||||
bear in mind that a number of different people will be reading your words.
|
||||
These include subsystem maintainers and reviewers who need to decide
|
||||
whether the patch should be included, distributors and other maintainers
|
||||
trying to decide whether a patch should be backported to other kernels, bug
|
||||
hunters wondering whether the patch is responsible for a problem they are
|
||||
chasing, users who want to know how the kernel has changed, and more. A
|
||||
good changelog conveys the needed information to all of these people in the
|
||||
most direct and concise way possible.
|
||||
|
||||
To that end, the summary line should describe the effects of and motivation
|
||||
for the change as well as possible given the one-line constraint. The
|
||||
detailed description can then amplify on those topics and provide any
|
||||
needed additional information. If the patch fixes a bug, cite the commit
|
||||
which introduced the bug if possible (and please provide both the commit ID
|
||||
and the title when citing commits). If a problem is associated with
|
||||
specific log or compiler output, include that output to help others
|
||||
searching for a solution to the same problem. If the change is meant to
|
||||
support other changes coming in later patch, say so. If internal APIs are
|
||||
changed, detail those changes and how other developers should respond. In
|
||||
general, the more you can put yourself into the shoes of everybody who will
|
||||
be reading your changelog, the better that changelog (and the kernel as a
|
||||
whole) will be.
|
||||
|
||||
Needless to say, the changelog should be the text used when committing the
|
||||
change to a revision control system. It will be followed by:
|
||||
|
||||
- The patch itself, in the unified ("-u") patch format. Using the "-p"
|
||||
option to diff will associate function names with changes, making the
|
||||
resulting patch easier for others to read.
|
||||
|
||||
You should avoid including changes to irrelevant files (those generated by
|
||||
the build process, for example, or editor backup files) in the patch. The
|
||||
file "dontdiff" in the Documentation directory can help in this regard;
|
||||
pass it to diff with the "-X" option.
|
||||
|
||||
The tags mentioned above are used to describe how various developers have
|
||||
been associated with the development of this patch. They are described in
|
||||
detail in the SubmittingPatches document; what follows here is a brief
|
||||
summary. Each of these lines has the format:
|
||||
|
||||
::
|
||||
|
||||
tag: Full Name <email address> optional-other-stuff
|
||||
|
||||
The tags in common use are:
|
||||
|
||||
- Signed-off-by: this is a developer's certification that he or she has
|
||||
the right to submit the patch for inclusion into the kernel. It is an
|
||||
agreement to the Developer's Certificate of Origin, the full text of
|
||||
which can be found in Documentation/SubmittingPatches. Code without a
|
||||
proper signoff cannot be merged into the mainline.
|
||||
|
||||
- Acked-by: indicates an agreement by another developer (often a
|
||||
maintainer of the relevant code) that the patch is appropriate for
|
||||
inclusion into the kernel.
|
||||
|
||||
- Tested-by: states that the named person has tested the patch and found
|
||||
it to work.
|
||||
|
||||
- Reviewed-by: the named developer has reviewed the patch for correctness;
|
||||
see the reviewer's statement in Documentation/SubmittingPatches for more
|
||||
detail.
|
||||
|
||||
- Reported-by: names a user who reported a problem which is fixed by this
|
||||
patch; this tag is used to give credit to the (often underappreciated)
|
||||
people who test our code and let us know when things do not work
|
||||
correctly.
|
||||
|
||||
- Cc: the named person received a copy of the patch and had the
|
||||
opportunity to comment on it.
|
||||
|
||||
Be careful in the addition of tags to your patches: only Cc: is appropriate
|
||||
for addition without the explicit permission of the person named.
|
||||
|
||||
|
||||
Sending the patch
|
||||
-----------------
|
||||
|
||||
Before you mail your patches, there are a couple of other things you should
|
||||
take care of:
|
||||
|
||||
- Are you sure that your mailer will not corrupt the patches? Patches
|
||||
which have had gratuitous white-space changes or line wrapping performed
|
||||
by the mail client will not apply at the other end, and often will not
|
||||
be examined in any detail. If there is any doubt at all, mail the patch
|
||||
to yourself and convince yourself that it shows up intact.
|
||||
|
||||
Documentation/email-clients.txt has some helpful hints on making
|
||||
specific mail clients work for sending patches.
|
||||
|
||||
- Are you sure your patch is free of silly mistakes? You should always
|
||||
run patches through scripts/checkpatch.pl and address the complaints it
|
||||
comes up with. Please bear in mind that checkpatch.pl, while being the
|
||||
embodiment of a fair amount of thought about what kernel patches should
|
||||
look like, is not smarter than you. If fixing a checkpatch.pl complaint
|
||||
would make the code worse, don't do it.
|
||||
|
||||
Patches should always be sent as plain text. Please do not send them as
|
||||
attachments; that makes it much harder for reviewers to quote sections of
|
||||
the patch in their replies. Instead, just put the patch directly into your
|
||||
message.
|
||||
|
||||
When mailing patches, it is important to send copies to anybody who might
|
||||
be interested in it. Unlike some other projects, the kernel encourages
|
||||
people to err on the side of sending too many copies; don't assume that the
|
||||
relevant people will see your posting on the mailing lists. In particular,
|
||||
copies should go to:
|
||||
|
||||
- The maintainer(s) of the affected subsystem(s). As described earlier,
|
||||
the MAINTAINERS file is the first place to look for these people.
|
||||
|
||||
- Other developers who have been working in the same area - especially
|
||||
those who might be working there now. Using git to see who else has
|
||||
modified the files you are working on can be helpful.
|
||||
|
||||
- If you are responding to a bug report or a feature request, copy the
|
||||
original poster as well.
|
||||
|
||||
- Send a copy to the relevant mailing list, or, if nothing else applies,
|
||||
the linux-kernel list.
|
||||
|
||||
- If you are fixing a bug, think about whether the fix should go into the
|
||||
next stable update. If so, stable@vger.kernel.org should get a copy of
|
||||
the patch. Also add a "Cc: stable@vger.kernel.org" to the tags within
|
||||
the patch itself; that will cause the stable team to get a notification
|
||||
when your fix goes into the mainline.
|
||||
|
||||
When selecting recipients for a patch, it is good to have an idea of who
|
||||
you think will eventually accept the patch and get it merged. While it
|
||||
is possible to send patches directly to Linus Torvalds and have him merge
|
||||
them, things are not normally done that way. Linus is busy, and there are
|
||||
subsystem maintainers who watch over specific parts of the kernel. Usually
|
||||
you will be wanting that maintainer to merge your patches. If there is no
|
||||
obvious maintainer, Andrew Morton is often the patch target of last resort.
|
||||
|
||||
Patches need good subject lines. The canonical format for a patch line is
|
||||
something like:
|
||||
|
||||
::
|
||||
|
||||
[PATCH nn/mm] subsys: one-line description of the patch
|
||||
|
||||
where "nn" is the ordinal number of the patch, "mm" is the total number of
|
||||
patches in the series, and "subsys" is the name of the affected subsystem.
|
||||
Clearly, nn/mm can be omitted for a single, standalone patch.
|
||||
|
||||
If you have a significant series of patches, it is customary to send an
|
||||
introductory description as part zero. This convention is not universally
|
||||
followed though; if you use it, remember that information in the
|
||||
introduction does not make it into the kernel changelogs. So please ensure
|
||||
that the patches, themselves, have complete changelog information.
|
||||
|
||||
In general, the second and following parts of a multi-part patch should be
|
||||
sent as a reply to the first part so that they all thread together at the
|
||||
receiving end. Tools like git and quilt have commands to mail out a set of
|
||||
patches with the proper threading. If you have a long series, though, and
|
||||
are using git, please stay away from the --chain-reply-to option to avoid
|
||||
creating exceptionally deep nesting.
|
@ -1,206 +0,0 @@
|
||||
6: FOLLOWTHROUGH
|
||||
|
||||
At this point, you have followed the guidelines given so far and, with the
|
||||
addition of your own engineering skills, have posted a perfect series of
|
||||
patches. One of the biggest mistakes that even experienced kernel
|
||||
developers can make is to conclude that their work is now done. In truth,
|
||||
posting patches indicates a transition into the next stage of the process,
|
||||
with, possibly, quite a bit of work yet to be done.
|
||||
|
||||
It is a rare patch which is so good at its first posting that there is no
|
||||
room for improvement. The kernel development process recognizes this fact,
|
||||
and, as a result, is heavily oriented toward the improvement of posted
|
||||
code. You, as the author of that code, will be expected to work with the
|
||||
kernel community to ensure that your code is up to the kernel's quality
|
||||
standards. A failure to participate in this process is quite likely to
|
||||
prevent the inclusion of your patches into the mainline.
|
||||
|
||||
|
||||
6.1: WORKING WITH REVIEWERS
|
||||
|
||||
A patch of any significance will result in a number of comments from other
|
||||
developers as they review the code. Working with reviewers can be, for
|
||||
many developers, the most intimidating part of the kernel development
|
||||
process. Life can be made much easier, though, if you keep a few things in
|
||||
mind:
|
||||
|
||||
- If you have explained your patch well, reviewers will understand its
|
||||
value and why you went to the trouble of writing it. But that value
|
||||
will not keep them from asking a fundamental question: what will it be
|
||||
like to maintain a kernel with this code in it five or ten years later?
|
||||
Many of the changes you may be asked to make - from coding style tweaks
|
||||
to substantial rewrites - come from the understanding that Linux will
|
||||
still be around and under development a decade from now.
|
||||
|
||||
- Code review is hard work, and it is a relatively thankless occupation;
|
||||
people remember who wrote kernel code, but there is little lasting fame
|
||||
for those who reviewed it. So reviewers can get grumpy, especially when
|
||||
they see the same mistakes being made over and over again. If you get a
|
||||
review which seems angry, insulting, or outright offensive, resist the
|
||||
impulse to respond in kind. Code review is about the code, not about
|
||||
the people, and code reviewers are not attacking you personally.
|
||||
|
||||
- Similarly, code reviewers are not trying to promote their employers'
|
||||
agendas at the expense of your own. Kernel developers often expect to
|
||||
be working on the kernel years from now, but they understand that their
|
||||
employer could change. They truly are, almost without exception,
|
||||
working toward the creation of the best kernel they can; they are not
|
||||
trying to create discomfort for their employers' competitors.
|
||||
|
||||
What all of this comes down to is that, when reviewers send you comments,
|
||||
you need to pay attention to the technical observations that they are
|
||||
making. Do not let their form of expression or your own pride keep that
|
||||
from happening. When you get review comments on a patch, take the time to
|
||||
understand what the reviewer is trying to say. If possible, fix the things
|
||||
that the reviewer is asking you to fix. And respond back to the reviewer:
|
||||
thank them, and describe how you will answer their questions.
|
||||
|
||||
Note that you do not have to agree with every change suggested by
|
||||
reviewers. If you believe that the reviewer has misunderstood your code,
|
||||
explain what is really going on. If you have a technical objection to a
|
||||
suggested change, describe it and justify your solution to the problem. If
|
||||
your explanations make sense, the reviewer will accept them. Should your
|
||||
explanation not prove persuasive, though, especially if others start to
|
||||
agree with the reviewer, take some time to think things over again. It can
|
||||
be easy to become blinded by your own solution to a problem to the point
|
||||
that you don't realize that something is fundamentally wrong or, perhaps,
|
||||
you're not even solving the right problem.
|
||||
|
||||
Andrew Morton has suggested that every review comment which does not result
|
||||
in a code change should result in an additional code comment instead; that
|
||||
can help future reviewers avoid the questions which came up the first time
|
||||
around.
|
||||
|
||||
One fatal mistake is to ignore review comments in the hope that they will
|
||||
go away. They will not go away. If you repost code without having
|
||||
responded to the comments you got the time before, you're likely to find
|
||||
that your patches go nowhere.
|
||||
|
||||
Speaking of reposting code: please bear in mind that reviewers are not
|
||||
going to remember all the details of the code you posted the last time
|
||||
around. So it is always a good idea to remind reviewers of previously
|
||||
raised issues and how you dealt with them; the patch changelog is a good
|
||||
place for this kind of information. Reviewers should not have to search
|
||||
through list archives to familiarize themselves with what was said last
|
||||
time; if you help them get a running start, they will be in a better mood
|
||||
when they revisit your code.
|
||||
|
||||
What if you've tried to do everything right and things still aren't going
|
||||
anywhere? Most technical disagreements can be resolved through discussion,
|
||||
but there are times when somebody simply has to make a decision. If you
|
||||
honestly believe that this decision is going against you wrongly, you can
|
||||
always try appealing to a higher power. As of this writing, that higher
|
||||
power tends to be Andrew Morton. Andrew has a great deal of respect in the
|
||||
kernel development community; he can often unjam a situation which seems to
|
||||
be hopelessly blocked. Appealing to Andrew should not be done lightly,
|
||||
though, and not before all other alternatives have been explored. And bear
|
||||
in mind, of course, that he may not agree with you either.
|
||||
|
||||
|
||||
6.2: WHAT HAPPENS NEXT
|
||||
|
||||
If a patch is considered to be a good thing to add to the kernel, and once
|
||||
most of the review issues have been resolved, the next step is usually
|
||||
entry into a subsystem maintainer's tree. How that works varies from one
|
||||
subsystem to the next; each maintainer has his or her own way of doing
|
||||
things. In particular, there may be more than one tree - one, perhaps,
|
||||
dedicated to patches planned for the next merge window, and another for
|
||||
longer-term work.
|
||||
|
||||
For patches applying to areas for which there is no obvious subsystem tree
|
||||
(memory management patches, for example), the default tree often ends up
|
||||
being -mm. Patches which affect multiple subsystems can also end up going
|
||||
through the -mm tree.
|
||||
|
||||
Inclusion into a subsystem tree can bring a higher level of visibility to a
|
||||
patch. Now other developers working with that tree will get the patch by
|
||||
default. Subsystem trees typically feed linux-next as well, making their
|
||||
contents visible to the development community as a whole. At this point,
|
||||
there's a good chance that you will get more comments from a new set of
|
||||
reviewers; these comments need to be answered as in the previous round.
|
||||
|
||||
What may also happen at this point, depending on the nature of your patch,
|
||||
is that conflicts with work being done by others turn up. In the worst
|
||||
case, heavy patch conflicts can result in some work being put on the back
|
||||
burner so that the remaining patches can be worked into shape and merged.
|
||||
Other times, conflict resolution will involve working with the other
|
||||
developers and, possibly, moving some patches between trees to ensure that
|
||||
everything applies cleanly. This work can be a pain, but count your
|
||||
blessings: before the advent of the linux-next tree, these conflicts often
|
||||
only turned up during the merge window and had to be addressed in a hurry.
|
||||
Now they can be resolved at leisure, before the merge window opens.
|
||||
|
||||
Some day, if all goes well, you'll log on and see that your patch has been
|
||||
merged into the mainline kernel. Congratulations! Once the celebration is
|
||||
complete (and you have added yourself to the MAINTAINERS file), though, it
|
||||
is worth remembering an important little fact: the job still is not done.
|
||||
Merging into the mainline brings its own challenges.
|
||||
|
||||
To begin with, the visibility of your patch has increased yet again. There
|
||||
may be a new round of comments from developers who had not been aware of
|
||||
the patch before. It may be tempting to ignore them, since there is no
|
||||
longer any question of your code being merged. Resist that temptation,
|
||||
though; you still need to be responsive to developers who have questions or
|
||||
suggestions.
|
||||
|
||||
More importantly, though: inclusion into the mainline puts your code into
|
||||
the hands of a much larger group of testers. Even if you have contributed
|
||||
a driver for hardware which is not yet available, you will be surprised by
|
||||
how many people will build your code into their kernels. And, of course,
|
||||
where there are testers, there will be bug reports.
|
||||
|
||||
The worst sort of bug reports are regressions. If your patch causes a
|
||||
regression, you'll find an uncomfortable number of eyes upon you;
|
||||
regressions need to be fixed as soon as possible. If you are unwilling or
|
||||
unable to fix the regression (and nobody else does it for you), your patch
|
||||
will almost certainly be removed during the stabilization period. Beyond
|
||||
negating all of the work you have done to get your patch into the mainline,
|
||||
having a patch pulled as the result of a failure to fix a regression could
|
||||
well make it harder for you to get work merged in the future.
|
||||
|
||||
After any regressions have been dealt with, there may be other, ordinary
|
||||
bugs to deal with. The stabilization period is your best opportunity to
|
||||
fix these bugs and ensure that your code's debut in a mainline kernel
|
||||
release is as solid as possible. So, please, answer bug reports, and fix
|
||||
the problems if at all possible. That's what the stabilization period is
|
||||
for; you can start creating cool new patches once any problems with the old
|
||||
ones have been taken care of.
|
||||
|
||||
And don't forget that there are other milestones which may also create bug
|
||||
reports: the next mainline stable release, when prominent distributors pick
|
||||
up a version of the kernel containing your patch, etc. Continuing to
|
||||
respond to these reports is a matter of basic pride in your work. If that
|
||||
is insufficient motivation, though, it's also worth considering that the
|
||||
development community remembers developers who lose interest in their code
|
||||
after it's merged. The next time you post a patch, they will be evaluating
|
||||
it with the assumption that you will not be around to maintain it
|
||||
afterward.
|
||||
|
||||
|
||||
6.3: OTHER THINGS THAT CAN HAPPEN
|
||||
|
||||
One day, you may open your mail client and see that somebody has mailed you
|
||||
a patch to your code. That is one of the advantages of having your code
|
||||
out there in the open, after all. If you agree with the patch, you can
|
||||
either forward it on to the subsystem maintainer (be sure to include a
|
||||
proper From: line so that the attribution is correct, and add a signoff of
|
||||
your own), or send an Acked-by: response back and let the original poster
|
||||
send it upward.
|
||||
|
||||
If you disagree with the patch, send a polite response explaining why. If
|
||||
possible, tell the author what changes need to be made to make the patch
|
||||
acceptable to you. There is a certain resistance to merging patches which
|
||||
are opposed by the author and maintainer of the code, but it only goes so
|
||||
far. If you are seen as needlessly blocking good work, those patches will
|
||||
eventually flow around you and get into the mainline anyway. In the Linux
|
||||
kernel, nobody has absolute veto power over any code. Except maybe Linus.
|
||||
|
||||
On very rare occasion, you may see something completely different: another
|
||||
developer posts a different solution to your problem. At that point,
|
||||
chances are that one of the two patches will not be merged, and "mine was
|
||||
here first" is not considered to be a compelling technical argument. If
|
||||
somebody else's patch displaces yours and gets into the mainline, there is
|
||||
really only one way to respond: be pleased that your problem got solved and
|
||||
get on with your work. Having one's work shoved aside in this manner can
|
||||
be hurtful and discouraging, but the community will remember your reaction
|
||||
long after they have forgotten whose patch actually got merged.
|
212
Documentation/development-process/6.Followthrough.rst
Normal file
212
Documentation/development-process/6.Followthrough.rst
Normal file
@ -0,0 +1,212 @@
|
||||
.. _development_followthrough:
|
||||
|
||||
Followthrough
|
||||
=============
|
||||
|
||||
At this point, you have followed the guidelines given so far and, with the
|
||||
addition of your own engineering skills, have posted a perfect series of
|
||||
patches. One of the biggest mistakes that even experienced kernel
|
||||
developers can make is to conclude that their work is now done. In truth,
|
||||
posting patches indicates a transition into the next stage of the process,
|
||||
with, possibly, quite a bit of work yet to be done.
|
||||
|
||||
It is a rare patch which is so good at its first posting that there is no
|
||||
room for improvement. The kernel development process recognizes this fact,
|
||||
and, as a result, is heavily oriented toward the improvement of posted
|
||||
code. You, as the author of that code, will be expected to work with the
|
||||
kernel community to ensure that your code is up to the kernel's quality
|
||||
standards. A failure to participate in this process is quite likely to
|
||||
prevent the inclusion of your patches into the mainline.
|
||||
|
||||
|
||||
Working with reviewers
|
||||
----------------------
|
||||
|
||||
A patch of any significance will result in a number of comments from other
|
||||
developers as they review the code. Working with reviewers can be, for
|
||||
many developers, the most intimidating part of the kernel development
|
||||
process. Life can be made much easier, though, if you keep a few things in
|
||||
mind:
|
||||
|
||||
- If you have explained your patch well, reviewers will understand its
|
||||
value and why you went to the trouble of writing it. But that value
|
||||
will not keep them from asking a fundamental question: what will it be
|
||||
like to maintain a kernel with this code in it five or ten years later?
|
||||
Many of the changes you may be asked to make - from coding style tweaks
|
||||
to substantial rewrites - come from the understanding that Linux will
|
||||
still be around and under development a decade from now.
|
||||
|
||||
- Code review is hard work, and it is a relatively thankless occupation;
|
||||
people remember who wrote kernel code, but there is little lasting fame
|
||||
for those who reviewed it. So reviewers can get grumpy, especially when
|
||||
they see the same mistakes being made over and over again. If you get a
|
||||
review which seems angry, insulting, or outright offensive, resist the
|
||||
impulse to respond in kind. Code review is about the code, not about
|
||||
the people, and code reviewers are not attacking you personally.
|
||||
|
||||
- Similarly, code reviewers are not trying to promote their employers'
|
||||
agendas at the expense of your own. Kernel developers often expect to
|
||||
be working on the kernel years from now, but they understand that their
|
||||
employer could change. They truly are, almost without exception,
|
||||
working toward the creation of the best kernel they can; they are not
|
||||
trying to create discomfort for their employers' competitors.
|
||||
|
||||
What all of this comes down to is that, when reviewers send you comments,
|
||||
you need to pay attention to the technical observations that they are
|
||||
making. Do not let their form of expression or your own pride keep that
|
||||
from happening. When you get review comments on a patch, take the time to
|
||||
understand what the reviewer is trying to say. If possible, fix the things
|
||||
that the reviewer is asking you to fix. And respond back to the reviewer:
|
||||
thank them, and describe how you will answer their questions.
|
||||
|
||||
Note that you do not have to agree with every change suggested by
|
||||
reviewers. If you believe that the reviewer has misunderstood your code,
|
||||
explain what is really going on. If you have a technical objection to a
|
||||
suggested change, describe it and justify your solution to the problem. If
|
||||
your explanations make sense, the reviewer will accept them. Should your
|
||||
explanation not prove persuasive, though, especially if others start to
|
||||
agree with the reviewer, take some time to think things over again. It can
|
||||
be easy to become blinded by your own solution to a problem to the point
|
||||
that you don't realize that something is fundamentally wrong or, perhaps,
|
||||
you're not even solving the right problem.
|
||||
|
||||
Andrew Morton has suggested that every review comment which does not result
|
||||
in a code change should result in an additional code comment instead; that
|
||||
can help future reviewers avoid the questions which came up the first time
|
||||
around.
|
||||
|
||||
One fatal mistake is to ignore review comments in the hope that they will
|
||||
go away. They will not go away. If you repost code without having
|
||||
responded to the comments you got the time before, you're likely to find
|
||||
that your patches go nowhere.
|
||||
|
||||
Speaking of reposting code: please bear in mind that reviewers are not
|
||||
going to remember all the details of the code you posted the last time
|
||||
around. So it is always a good idea to remind reviewers of previously
|
||||
raised issues and how you dealt with them; the patch changelog is a good
|
||||
place for this kind of information. Reviewers should not have to search
|
||||
through list archives to familiarize themselves with what was said last
|
||||
time; if you help them get a running start, they will be in a better mood
|
||||
when they revisit your code.
|
||||
|
||||
What if you've tried to do everything right and things still aren't going
|
||||
anywhere? Most technical disagreements can be resolved through discussion,
|
||||
but there are times when somebody simply has to make a decision. If you
|
||||
honestly believe that this decision is going against you wrongly, you can
|
||||
always try appealing to a higher power. As of this writing, that higher
|
||||
power tends to be Andrew Morton. Andrew has a great deal of respect in the
|
||||
kernel development community; he can often unjam a situation which seems to
|
||||
be hopelessly blocked. Appealing to Andrew should not be done lightly,
|
||||
though, and not before all other alternatives have been explored. And bear
|
||||
in mind, of course, that he may not agree with you either.
|
||||
|
||||
|
||||
What happens next
|
||||
-----------------
|
||||
|
||||
If a patch is considered to be a good thing to add to the kernel, and once
|
||||
most of the review issues have been resolved, the next step is usually
|
||||
entry into a subsystem maintainer's tree. How that works varies from one
|
||||
subsystem to the next; each maintainer has his or her own way of doing
|
||||
things. In particular, there may be more than one tree - one, perhaps,
|
||||
dedicated to patches planned for the next merge window, and another for
|
||||
longer-term work.
|
||||
|
||||
For patches applying to areas for which there is no obvious subsystem tree
|
||||
(memory management patches, for example), the default tree often ends up
|
||||
being -mm. Patches which affect multiple subsystems can also end up going
|
||||
through the -mm tree.
|
||||
|
||||
Inclusion into a subsystem tree can bring a higher level of visibility to a
|
||||
patch. Now other developers working with that tree will get the patch by
|
||||
default. Subsystem trees typically feed linux-next as well, making their
|
||||
contents visible to the development community as a whole. At this point,
|
||||
there's a good chance that you will get more comments from a new set of
|
||||
reviewers; these comments need to be answered as in the previous round.
|
||||
|
||||
What may also happen at this point, depending on the nature of your patch,
|
||||
is that conflicts with work being done by others turn up. In the worst
|
||||
case, heavy patch conflicts can result in some work being put on the back
|
||||
burner so that the remaining patches can be worked into shape and merged.
|
||||
Other times, conflict resolution will involve working with the other
|
||||
developers and, possibly, moving some patches between trees to ensure that
|
||||
everything applies cleanly. This work can be a pain, but count your
|
||||
blessings: before the advent of the linux-next tree, these conflicts often
|
||||
only turned up during the merge window and had to be addressed in a hurry.
|
||||
Now they can be resolved at leisure, before the merge window opens.
|
||||
|
||||
Some day, if all goes well, you'll log on and see that your patch has been
|
||||
merged into the mainline kernel. Congratulations! Once the celebration is
|
||||
complete (and you have added yourself to the MAINTAINERS file), though, it
|
||||
is worth remembering an important little fact: the job still is not done.
|
||||
Merging into the mainline brings its own challenges.
|
||||
|
||||
To begin with, the visibility of your patch has increased yet again. There
|
||||
may be a new round of comments from developers who had not been aware of
|
||||
the patch before. It may be tempting to ignore them, since there is no
|
||||
longer any question of your code being merged. Resist that temptation,
|
||||
though; you still need to be responsive to developers who have questions or
|
||||
suggestions.
|
||||
|
||||
More importantly, though: inclusion into the mainline puts your code into
|
||||
the hands of a much larger group of testers. Even if you have contributed
|
||||
a driver for hardware which is not yet available, you will be surprised by
|
||||
how many people will build your code into their kernels. And, of course,
|
||||
where there are testers, there will be bug reports.
|
||||
|
||||
The worst sort of bug reports are regressions. If your patch causes a
|
||||
regression, you'll find an uncomfortable number of eyes upon you;
|
||||
regressions need to be fixed as soon as possible. If you are unwilling or
|
||||
unable to fix the regression (and nobody else does it for you), your patch
|
||||
will almost certainly be removed during the stabilization period. Beyond
|
||||
negating all of the work you have done to get your patch into the mainline,
|
||||
having a patch pulled as the result of a failure to fix a regression could
|
||||
well make it harder for you to get work merged in the future.
|
||||
|
||||
After any regressions have been dealt with, there may be other, ordinary
|
||||
bugs to deal with. The stabilization period is your best opportunity to
|
||||
fix these bugs and ensure that your code's debut in a mainline kernel
|
||||
release is as solid as possible. So, please, answer bug reports, and fix
|
||||
the problems if at all possible. That's what the stabilization period is
|
||||
for; you can start creating cool new patches once any problems with the old
|
||||
ones have been taken care of.
|
||||
|
||||
And don't forget that there are other milestones which may also create bug
|
||||
reports: the next mainline stable release, when prominent distributors pick
|
||||
up a version of the kernel containing your patch, etc. Continuing to
|
||||
respond to these reports is a matter of basic pride in your work. If that
|
||||
is insufficient motivation, though, it's also worth considering that the
|
||||
development community remembers developers who lose interest in their code
|
||||
after it's merged. The next time you post a patch, they will be evaluating
|
||||
it with the assumption that you will not be around to maintain it
|
||||
afterward.
|
||||
|
||||
|
||||
Other things that can happen
|
||||
-----------------------------
|
||||
|
||||
One day, you may open your mail client and see that somebody has mailed you
|
||||
a patch to your code. That is one of the advantages of having your code
|
||||
out there in the open, after all. If you agree with the patch, you can
|
||||
either forward it on to the subsystem maintainer (be sure to include a
|
||||
proper From: line so that the attribution is correct, and add a signoff of
|
||||
your own), or send an Acked-by: response back and let the original poster
|
||||
send it upward.
|
||||
|
||||
If you disagree with the patch, send a polite response explaining why. If
|
||||
possible, tell the author what changes need to be made to make the patch
|
||||
acceptable to you. There is a certain resistance to merging patches which
|
||||
are opposed by the author and maintainer of the code, but it only goes so
|
||||
far. If you are seen as needlessly blocking good work, those patches will
|
||||
eventually flow around you and get into the mainline anyway. In the Linux
|
||||
kernel, nobody has absolute veto power over any code. Except maybe Linus.
|
||||
|
||||
On very rare occasion, you may see something completely different: another
|
||||
developer posts a different solution to your problem. At that point,
|
||||
chances are that one of the two patches will not be merged, and "mine was
|
||||
here first" is not considered to be a compelling technical argument. If
|
||||
somebody else's patch displaces yours and gets into the mainline, there is
|
||||
really only one way to respond: be pleased that your problem got solved and
|
||||
get on with your work. Having one's work shoved aside in this manner can
|
||||
be hurtful and discouraging, but the community will remember your reaction
|
||||
long after they have forgotten whose patch actually got merged.
|
@ -1,173 +0,0 @@
|
||||
7: ADVANCED TOPICS
|
||||
|
||||
At this point, hopefully, you have a handle on how the development process
|
||||
works. There is still more to learn, however! This section will cover a
|
||||
number of topics which can be helpful for developers wanting to become a
|
||||
regular part of the Linux kernel development process.
|
||||
|
||||
7.1: MANAGING PATCHES WITH GIT
|
||||
|
||||
The use of distributed version control for the kernel began in early 2002,
|
||||
when Linus first started playing with the proprietary BitKeeper
|
||||
application. While BitKeeper was controversial, the approach to software
|
||||
version management it embodied most certainly was not. Distributed version
|
||||
control enabled an immediate acceleration of the kernel development
|
||||
project. In current times, there are several free alternatives to
|
||||
BitKeeper. For better or for worse, the kernel project has settled on git
|
||||
as its tool of choice.
|
||||
|
||||
Managing patches with git can make life much easier for the developer,
|
||||
especially as the volume of those patches grows. Git also has its rough
|
||||
edges and poses certain hazards; it is a young and powerful tool which is
|
||||
still being civilized by its developers. This document will not attempt to
|
||||
teach the reader how to use git; that would be sufficient material for a
|
||||
long document in its own right. Instead, the focus here will be on how git
|
||||
fits into the kernel development process in particular. Developers who
|
||||
wish to come up to speed with git will find more information at:
|
||||
|
||||
http://git-scm.com/
|
||||
|
||||
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
|
||||
|
||||
and on various tutorials found on the web.
|
||||
|
||||
The first order of business is to read the above sites and get a solid
|
||||
understanding of how git works before trying to use it to make patches
|
||||
available to others. A git-using developer should be able to obtain a copy
|
||||
of the mainline repository, explore the revision history, commit changes to
|
||||
the tree, use branches, etc. An understanding of git's tools for the
|
||||
rewriting of history (such as rebase) is also useful. Git comes with its
|
||||
own terminology and concepts; a new user of git should know about refs,
|
||||
remote branches, the index, fast-forward merges, pushes and pulls, detached
|
||||
heads, etc. It can all be a little intimidating at the outset, but the
|
||||
concepts are not that hard to grasp with a bit of study.
|
||||
|
||||
Using git to generate patches for submission by email can be a good
|
||||
exercise while coming up to speed.
|
||||
|
||||
When you are ready to start putting up git trees for others to look at, you
|
||||
will, of course, need a server that can be pulled from. Setting up such a
|
||||
server with git-daemon is relatively straightforward if you have a system
|
||||
which is accessible to the Internet. Otherwise, free, public hosting sites
|
||||
(Github, for example) are starting to appear on the net. Established
|
||||
developers can get an account on kernel.org, but those are not easy to come
|
||||
by; see http://kernel.org/faq/ for more information.
|
||||
|
||||
The normal git workflow involves the use of a lot of branches. Each line
|
||||
of development can be separated into a separate "topic branch" and
|
||||
maintained independently. Branches in git are cheap, there is no reason to
|
||||
not make free use of them. And, in any case, you should not do your
|
||||
development in any branch which you intend to ask others to pull from.
|
||||
Publicly-available branches should be created with care; merge in patches
|
||||
from development branches when they are in complete form and ready to go -
|
||||
not before.
|
||||
|
||||
Git provides some powerful tools which can allow you to rewrite your
|
||||
development history. An inconvenient patch (one which breaks bisection,
|
||||
say, or which has some other sort of obvious bug) can be fixed in place or
|
||||
made to disappear from the history entirely. A patch series can be
|
||||
rewritten as if it had been written on top of today's mainline, even though
|
||||
you have been working on it for months. Changes can be transparently
|
||||
shifted from one branch to another. And so on. Judicious use of git's
|
||||
ability to revise history can help in the creation of clean patch sets with
|
||||
fewer problems.
|
||||
|
||||
Excessive use of this capability can lead to other problems, though, beyond
|
||||
a simple obsession for the creation of the perfect project history.
|
||||
Rewriting history will rewrite the changes contained in that history,
|
||||
turning a tested (hopefully) kernel tree into an untested one. But, beyond
|
||||
that, developers cannot easily collaborate if they do not have a shared
|
||||
view of the project history; if you rewrite history which other developers
|
||||
have pulled into their repositories, you will make life much more difficult
|
||||
for those developers. So a simple rule of thumb applies here: history
|
||||
which has been exported to others should generally be seen as immutable
|
||||
thereafter.
|
||||
|
||||
So, once you push a set of changes to your publicly-available server, those
|
||||
changes should not be rewritten. Git will attempt to enforce this rule if
|
||||
you try to push changes which do not result in a fast-forward merge
|
||||
(i.e. changes which do not share the same history). It is possible to
|
||||
override this check, and there may be times when it is necessary to rewrite
|
||||
an exported tree. Moving changesets between trees to avoid conflicts in
|
||||
linux-next is one example. But such actions should be rare. This is one
|
||||
of the reasons why development should be done in private branches (which
|
||||
can be rewritten if necessary) and only moved into public branches when
|
||||
it's in a reasonably advanced state.
|
||||
|
||||
As the mainline (or other tree upon which a set of changes is based)
|
||||
advances, it is tempting to merge with that tree to stay on the leading
|
||||
edge. For a private branch, rebasing can be an easy way to keep up with
|
||||
another tree, but rebasing is not an option once a tree is exported to the
|
||||
world. Once that happens, a full merge must be done. Merging occasionally
|
||||
makes good sense, but overly frequent merges can clutter the history
|
||||
needlessly. Suggested technique in this case is to merge infrequently, and
|
||||
generally only at specific release points (such as a mainline -rc
|
||||
release). If you are nervous about specific changes, you can always
|
||||
perform test merges in a private branch. The git "rerere" tool can be
|
||||
useful in such situations; it remembers how merge conflicts were resolved
|
||||
so that you don't have to do the same work twice.
|
||||
|
||||
One of the biggest recurring complaints about tools like git is this: the
|
||||
mass movement of patches from one repository to another makes it easy to
|
||||
slip in ill-advised changes which go into the mainline below the review
|
||||
radar. Kernel developers tend to get unhappy when they see that kind of
|
||||
thing happening; putting up a git tree with unreviewed or off-topic patches
|
||||
can affect your ability to get trees pulled in the future. Quoting Linus:
|
||||
|
||||
You can send me patches, but for me to pull a git patch from you, I
|
||||
need to know that you know what you're doing, and I need to be able
|
||||
to trust things *without* then having to go and check every
|
||||
individual change by hand.
|
||||
|
||||
(http://lwn.net/Articles/224135/).
|
||||
|
||||
To avoid this kind of situation, ensure that all patches within a given
|
||||
branch stick closely to the associated topic; a "driver fixes" branch
|
||||
should not be making changes to the core memory management code. And, most
|
||||
importantly, do not use a git tree to bypass the review process. Post an
|
||||
occasional summary of the tree to the relevant list, and, when the time is
|
||||
right, request that the tree be included in linux-next.
|
||||
|
||||
If and when others start to send patches for inclusion into your tree,
|
||||
don't forget to review them. Also ensure that you maintain the correct
|
||||
authorship information; the git "am" tool does its best in this regard, but
|
||||
you may have to add a "From:" line to the patch if it has been relayed to
|
||||
you via a third party.
|
||||
|
||||
When requesting a pull, be sure to give all the relevant information: where
|
||||
your tree is, what branch to pull, and what changes will result from the
|
||||
pull. The git request-pull command can be helpful in this regard; it will
|
||||
format the request as other developers expect, and will also check to be
|
||||
sure that you have remembered to push those changes to the public server.
|
||||
|
||||
|
||||
7.2: REVIEWING PATCHES
|
||||
|
||||
Some readers will certainly object to putting this section with "advanced
|
||||
topics" on the grounds that even beginning kernel developers should be
|
||||
reviewing patches. It is certainly true that there is no better way to
|
||||
learn how to program in the kernel environment than by looking at code
|
||||
posted by others. In addition, reviewers are forever in short supply; by
|
||||
looking at code you can make a significant contribution to the process as a
|
||||
whole.
|
||||
|
||||
Reviewing code can be an intimidating prospect, especially for a new kernel
|
||||
developer who may well feel nervous about questioning code - in public -
|
||||
which has been posted by those with more experience. Even code written by
|
||||
the most experienced developers can be improved, though. Perhaps the best
|
||||
piece of advice for reviewers (all reviewers) is this: phrase review
|
||||
comments as questions rather than criticisms. Asking "how does the lock
|
||||
get released in this path?" will always work better than stating "the
|
||||
locking here is wrong."
|
||||
|
||||
Different developers will review code from different points of view. Some
|
||||
are mostly concerned with coding style and whether code lines have trailing
|
||||
white space. Others will focus primarily on whether the change implemented
|
||||
by the patch as a whole is a good thing for the kernel or not. Yet others
|
||||
will check for problematic locking, excessive stack usage, possible
|
||||
security issues, duplication of code found elsewhere, adequate
|
||||
documentation, adverse effects on performance, user-space ABI changes, etc.
|
||||
All types of review, if they lead to better code going into the kernel, are
|
||||
welcome and worthwhile.
|
||||
|
||||
|
180
Documentation/development-process/7.AdvancedTopics.rst
Normal file
180
Documentation/development-process/7.AdvancedTopics.rst
Normal file
@ -0,0 +1,180 @@
|
||||
.. _development_advancedtopics:
|
||||
|
||||
Advanced topics
|
||||
===============
|
||||
|
||||
At this point, hopefully, you have a handle on how the development process
|
||||
works. There is still more to learn, however! This section will cover a
|
||||
number of topics which can be helpful for developers wanting to become a
|
||||
regular part of the Linux kernel development process.
|
||||
|
||||
Managing patches with git
|
||||
-------------------------
|
||||
|
||||
The use of distributed version control for the kernel began in early 2002,
|
||||
when Linus first started playing with the proprietary BitKeeper
|
||||
application. While BitKeeper was controversial, the approach to software
|
||||
version management it embodied most certainly was not. Distributed version
|
||||
control enabled an immediate acceleration of the kernel development
|
||||
project. In current times, there are several free alternatives to
|
||||
BitKeeper. For better or for worse, the kernel project has settled on git
|
||||
as its tool of choice.
|
||||
|
||||
Managing patches with git can make life much easier for the developer,
|
||||
especially as the volume of those patches grows. Git also has its rough
|
||||
edges and poses certain hazards; it is a young and powerful tool which is
|
||||
still being civilized by its developers. This document will not attempt to
|
||||
teach the reader how to use git; that would be sufficient material for a
|
||||
long document in its own right. Instead, the focus here will be on how git
|
||||
fits into the kernel development process in particular. Developers who
|
||||
wish to come up to speed with git will find more information at:
|
||||
|
||||
http://git-scm.com/
|
||||
|
||||
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
|
||||
|
||||
and on various tutorials found on the web.
|
||||
|
||||
The first order of business is to read the above sites and get a solid
|
||||
understanding of how git works before trying to use it to make patches
|
||||
available to others. A git-using developer should be able to obtain a copy
|
||||
of the mainline repository, explore the revision history, commit changes to
|
||||
the tree, use branches, etc. An understanding of git's tools for the
|
||||
rewriting of history (such as rebase) is also useful. Git comes with its
|
||||
own terminology and concepts; a new user of git should know about refs,
|
||||
remote branches, the index, fast-forward merges, pushes and pulls, detached
|
||||
heads, etc. It can all be a little intimidating at the outset, but the
|
||||
concepts are not that hard to grasp with a bit of study.
|
||||
|
||||
Using git to generate patches for submission by email can be a good
|
||||
exercise while coming up to speed.
|
||||
|
||||
When you are ready to start putting up git trees for others to look at, you
|
||||
will, of course, need a server that can be pulled from. Setting up such a
|
||||
server with git-daemon is relatively straightforward if you have a system
|
||||
which is accessible to the Internet. Otherwise, free, public hosting sites
|
||||
(Github, for example) are starting to appear on the net. Established
|
||||
developers can get an account on kernel.org, but those are not easy to come
|
||||
by; see http://kernel.org/faq/ for more information.
|
||||
|
||||
The normal git workflow involves the use of a lot of branches. Each line
|
||||
of development can be separated into a separate "topic branch" and
|
||||
maintained independently. Branches in git are cheap, there is no reason to
|
||||
not make free use of them. And, in any case, you should not do your
|
||||
development in any branch which you intend to ask others to pull from.
|
||||
Publicly-available branches should be created with care; merge in patches
|
||||
from development branches when they are in complete form and ready to go -
|
||||
not before.
|
||||
|
||||
Git provides some powerful tools which can allow you to rewrite your
|
||||
development history. An inconvenient patch (one which breaks bisection,
|
||||
say, or which has some other sort of obvious bug) can be fixed in place or
|
||||
made to disappear from the history entirely. A patch series can be
|
||||
rewritten as if it had been written on top of today's mainline, even though
|
||||
you have been working on it for months. Changes can be transparently
|
||||
shifted from one branch to another. And so on. Judicious use of git's
|
||||
ability to revise history can help in the creation of clean patch sets with
|
||||
fewer problems.
|
||||
|
||||
Excessive use of this capability can lead to other problems, though, beyond
|
||||
a simple obsession for the creation of the perfect project history.
|
||||
Rewriting history will rewrite the changes contained in that history,
|
||||
turning a tested (hopefully) kernel tree into an untested one. But, beyond
|
||||
that, developers cannot easily collaborate if they do not have a shared
|
||||
view of the project history; if you rewrite history which other developers
|
||||
have pulled into their repositories, you will make life much more difficult
|
||||
for those developers. So a simple rule of thumb applies here: history
|
||||
which has been exported to others should generally be seen as immutable
|
||||
thereafter.
|
||||
|
||||
So, once you push a set of changes to your publicly-available server, those
|
||||
changes should not be rewritten. Git will attempt to enforce this rule if
|
||||
you try to push changes which do not result in a fast-forward merge
|
||||
(i.e. changes which do not share the same history). It is possible to
|
||||
override this check, and there may be times when it is necessary to rewrite
|
||||
an exported tree. Moving changesets between trees to avoid conflicts in
|
||||
linux-next is one example. But such actions should be rare. This is one
|
||||
of the reasons why development should be done in private branches (which
|
||||
can be rewritten if necessary) and only moved into public branches when
|
||||
it's in a reasonably advanced state.
|
||||
|
||||
As the mainline (or other tree upon which a set of changes is based)
|
||||
advances, it is tempting to merge with that tree to stay on the leading
|
||||
edge. For a private branch, rebasing can be an easy way to keep up with
|
||||
another tree, but rebasing is not an option once a tree is exported to the
|
||||
world. Once that happens, a full merge must be done. Merging occasionally
|
||||
makes good sense, but overly frequent merges can clutter the history
|
||||
needlessly. Suggested technique in this case is to merge infrequently, and
|
||||
generally only at specific release points (such as a mainline -rc
|
||||
release). If you are nervous about specific changes, you can always
|
||||
perform test merges in a private branch. The git "rerere" tool can be
|
||||
useful in such situations; it remembers how merge conflicts were resolved
|
||||
so that you don't have to do the same work twice.
|
||||
|
||||
One of the biggest recurring complaints about tools like git is this: the
|
||||
mass movement of patches from one repository to another makes it easy to
|
||||
slip in ill-advised changes which go into the mainline below the review
|
||||
radar. Kernel developers tend to get unhappy when they see that kind of
|
||||
thing happening; putting up a git tree with unreviewed or off-topic patches
|
||||
can affect your ability to get trees pulled in the future. Quoting Linus:
|
||||
|
||||
::
|
||||
|
||||
You can send me patches, but for me to pull a git patch from you, I
|
||||
need to know that you know what you're doing, and I need to be able
|
||||
to trust things *without* then having to go and check every
|
||||
individual change by hand.
|
||||
|
||||
(http://lwn.net/Articles/224135/).
|
||||
|
||||
To avoid this kind of situation, ensure that all patches within a given
|
||||
branch stick closely to the associated topic; a "driver fixes" branch
|
||||
should not be making changes to the core memory management code. And, most
|
||||
importantly, do not use a git tree to bypass the review process. Post an
|
||||
occasional summary of the tree to the relevant list, and, when the time is
|
||||
right, request that the tree be included in linux-next.
|
||||
|
||||
If and when others start to send patches for inclusion into your tree,
|
||||
don't forget to review them. Also ensure that you maintain the correct
|
||||
authorship information; the git "am" tool does its best in this regard, but
|
||||
you may have to add a "From:" line to the patch if it has been relayed to
|
||||
you via a third party.
|
||||
|
||||
When requesting a pull, be sure to give all the relevant information: where
|
||||
your tree is, what branch to pull, and what changes will result from the
|
||||
pull. The git request-pull command can be helpful in this regard; it will
|
||||
format the request as other developers expect, and will also check to be
|
||||
sure that you have remembered to push those changes to the public server.
|
||||
|
||||
|
||||
Reviewing patches
|
||||
-----------------
|
||||
|
||||
Some readers will certainly object to putting this section with "advanced
|
||||
topics" on the grounds that even beginning kernel developers should be
|
||||
reviewing patches. It is certainly true that there is no better way to
|
||||
learn how to program in the kernel environment than by looking at code
|
||||
posted by others. In addition, reviewers are forever in short supply; by
|
||||
looking at code you can make a significant contribution to the process as a
|
||||
whole.
|
||||
|
||||
Reviewing code can be an intimidating prospect, especially for a new kernel
|
||||
developer who may well feel nervous about questioning code - in public -
|
||||
which has been posted by those with more experience. Even code written by
|
||||
the most experienced developers can be improved, though. Perhaps the best
|
||||
piece of advice for reviewers (all reviewers) is this: phrase review
|
||||
comments as questions rather than criticisms. Asking "how does the lock
|
||||
get released in this path?" will always work better than stating "the
|
||||
locking here is wrong."
|
||||
|
||||
Different developers will review code from different points of view. Some
|
||||
are mostly concerned with coding style and whether code lines have trailing
|
||||
white space. Others will focus primarily on whether the change implemented
|
||||
by the patch as a whole is a good thing for the kernel or not. Yet others
|
||||
will check for problematic locking, excessive stack usage, possible
|
||||
security issues, duplication of code found elsewhere, adequate
|
||||
documentation, adverse effects on performance, user-space ABI changes, etc.
|
||||
All types of review, if they lead to better code going into the kernel, are
|
||||
welcome and worthwhile.
|
||||
|
||||
|
@ -1,70 +0,0 @@
|
||||
8: FOR MORE INFORMATION
|
||||
|
||||
There are numerous sources of information on Linux kernel development and
|
||||
related topics. First among those will always be the Documentation
|
||||
directory found in the kernel source distribution. The top-level HOWTO
|
||||
file is an important starting point; SubmittingPatches and
|
||||
SubmittingDrivers are also something which all kernel developers should
|
||||
read. Many internal kernel APIs are documented using the kerneldoc
|
||||
mechanism; "make htmldocs" or "make pdfdocs" can be used to generate those
|
||||
documents in HTML or PDF format (though the version of TeX shipped by some
|
||||
distributions runs into internal limits and fails to process the documents
|
||||
properly).
|
||||
|
||||
Various web sites discuss kernel development at all levels of detail. Your
|
||||
author would like to humbly suggest http://lwn.net/ as a source;
|
||||
information on many specific kernel topics can be found via the LWN kernel
|
||||
index at:
|
||||
|
||||
http://lwn.net/Kernel/Index/
|
||||
|
||||
Beyond that, a valuable resource for kernel developers is:
|
||||
|
||||
http://kernelnewbies.org/
|
||||
|
||||
And, of course, one should not forget http://kernel.org/, the definitive
|
||||
location for kernel release information.
|
||||
|
||||
There are a number of books on kernel development:
|
||||
|
||||
Linux Device Drivers, 3rd Edition (Jonathan Corbet, Alessandro
|
||||
Rubini, and Greg Kroah-Hartman). Online at
|
||||
http://lwn.net/Kernel/LDD3/.
|
||||
|
||||
Linux Kernel Development (Robert Love).
|
||||
|
||||
Understanding the Linux Kernel (Daniel Bovet and Marco Cesati).
|
||||
|
||||
All of these books suffer from a common fault, though: they tend to be
|
||||
somewhat obsolete by the time they hit the shelves, and they have been on
|
||||
the shelves for a while now. Still, there is quite a bit of good
|
||||
information to be found there.
|
||||
|
||||
Documentation for git can be found at:
|
||||
|
||||
http://www.kernel.org/pub/software/scm/git/docs/
|
||||
|
||||
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
|
||||
|
||||
|
||||
9: CONCLUSION
|
||||
|
||||
Congratulations to anybody who has made it through this long-winded
|
||||
document. Hopefully it has provided a helpful understanding of how the
|
||||
Linux kernel is developed and how you can participate in that process.
|
||||
|
||||
In the end, it's the participation that matters. Any open source software
|
||||
project is no more than the sum of what its contributors put into it. The
|
||||
Linux kernel has progressed as quickly and as well as it has because it has
|
||||
been helped by an impressively large group of developers, all of whom are
|
||||
working to make it better. The kernel is a premier example of what can be
|
||||
done when thousands of people work together toward a common goal.
|
||||
|
||||
The kernel can always benefit from a larger developer base, though. There
|
||||
is always more work to do. But, just as importantly, most other
|
||||
participants in the Linux ecosystem can benefit through contributing to the
|
||||
kernel. Getting code into the mainline is the key to higher code quality,
|
||||
lower maintenance and distribution costs, a higher level of influence over
|
||||
the direction of kernel development, and more. It is a situation where
|
||||
everybody involved wins. Fire up your editor and come join us; you will be
|
||||
more than welcome.
|
74
Documentation/development-process/8.Conclusion.rst
Normal file
74
Documentation/development-process/8.Conclusion.rst
Normal file
@ -0,0 +1,74 @@
|
||||
.. _development_conclusion:
|
||||
|
||||
For more information
|
||||
====================
|
||||
|
||||
There are numerous sources of information on Linux kernel development and
|
||||
related topics. First among those will always be the Documentation
|
||||
directory found in the kernel source distribution. The top-level HOWTO
|
||||
file is an important starting point; SubmittingPatches and
|
||||
SubmittingDrivers are also something which all kernel developers should
|
||||
read. Many internal kernel APIs are documented using the kerneldoc
|
||||
mechanism; "make htmldocs" or "make pdfdocs" can be used to generate those
|
||||
documents in HTML or PDF format (though the version of TeX shipped by some
|
||||
distributions runs into internal limits and fails to process the documents
|
||||
properly).
|
||||
|
||||
Various web sites discuss kernel development at all levels of detail. Your
|
||||
author would like to humbly suggest http://lwn.net/ as a source;
|
||||
information on many specific kernel topics can be found via the LWN kernel
|
||||
index at:
|
||||
|
||||
http://lwn.net/Kernel/Index/
|
||||
|
||||
Beyond that, a valuable resource for kernel developers is:
|
||||
|
||||
http://kernelnewbies.org/
|
||||
|
||||
And, of course, one should not forget http://kernel.org/, the definitive
|
||||
location for kernel release information.
|
||||
|
||||
There are a number of books on kernel development:
|
||||
|
||||
Linux Device Drivers, 3rd Edition (Jonathan Corbet, Alessandro
|
||||
Rubini, and Greg Kroah-Hartman). Online at
|
||||
http://lwn.net/Kernel/LDD3/.
|
||||
|
||||
Linux Kernel Development (Robert Love).
|
||||
|
||||
Understanding the Linux Kernel (Daniel Bovet and Marco Cesati).
|
||||
|
||||
All of these books suffer from a common fault, though: they tend to be
|
||||
somewhat obsolete by the time they hit the shelves, and they have been on
|
||||
the shelves for a while now. Still, there is quite a bit of good
|
||||
information to be found there.
|
||||
|
||||
Documentation for git can be found at:
|
||||
|
||||
http://www.kernel.org/pub/software/scm/git/docs/
|
||||
|
||||
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
|
||||
|
||||
|
||||
Conclusion
|
||||
==========
|
||||
|
||||
Congratulations to anybody who has made it through this long-winded
|
||||
document. Hopefully it has provided a helpful understanding of how the
|
||||
Linux kernel is developed and how you can participate in that process.
|
||||
|
||||
In the end, it's the participation that matters. Any open source software
|
||||
project is no more than the sum of what its contributors put into it. The
|
||||
Linux kernel has progressed as quickly and as well as it has because it has
|
||||
been helped by an impressively large group of developers, all of whom are
|
||||
working to make it better. The kernel is a premier example of what can be
|
||||
done when thousands of people work together toward a common goal.
|
||||
|
||||
The kernel can always benefit from a larger developer base, though. There
|
||||
is always more work to do. But, just as importantly, most other
|
||||
participants in the Linux ecosystem can benefit through contributing to the
|
||||
kernel. Getting code into the mainline is the key to higher code quality,
|
||||
lower maintenance and distribution costs, a higher level of influence over
|
||||
the direction of kernel development, and more. It is a situation where
|
||||
everybody involved wins. Fire up your editor and come join us; you will be
|
||||
more than welcome.
|
10
Documentation/development-process/conf.py
Normal file
10
Documentation/development-process/conf.py
Normal file
@ -0,0 +1,10 @@
|
||||
# -*- coding: utf-8; mode: python -*-
|
||||
|
||||
project = 'Linux Kernel Development Documentation'
|
||||
|
||||
tags.add("subproject")
|
||||
|
||||
latex_documents = [
|
||||
('index', 'development-process.tex', 'Linux Kernel Development Documentation',
|
||||
'The kernel development community', 'manual'),
|
||||
]
|
29
Documentation/development-process/development-process.rst
Normal file
29
Documentation/development-process/development-process.rst
Normal file
@ -0,0 +1,29 @@
|
||||
.. _development_process_main:
|
||||
|
||||
A guide to the Kernel Development Process
|
||||
=========================================
|
||||
|
||||
Contents:
|
||||
|
||||
.. toctree::
|
||||
:numbered:
|
||||
:maxdepth: 2
|
||||
|
||||
1.Intro
|
||||
2.Process
|
||||
3.Early-stage
|
||||
4.Coding
|
||||
5.Posting
|
||||
6.Followthrough
|
||||
7.AdvancedTopics
|
||||
8.Conclusion
|
||||
|
||||
The purpose of this document is to help developers (and their managers)
|
||||
work with the development community with a minimum of frustration. It is
|
||||
an attempt to document how this community works in a way which is
|
||||
accessible to those who are not intimately familiar with Linux kernel
|
||||
development (or, indeed, free software development in general). While
|
||||
there is some technical material here, this is very much a process-oriented
|
||||
discussion which does not require a deep knowledge of kernel programming to
|
||||
understand.
|
||||
|
9
Documentation/development-process/index.rst
Normal file
9
Documentation/development-process/index.rst
Normal file
@ -0,0 +1,9 @@
|
||||
Linux Kernel Development Documentation
|
||||
======================================
|
||||
|
||||
Contents:
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
development-process
|
@ -90,6 +90,47 @@ Required Properties:
|
||||
- interrupts : Should be single bit error interrupt, then double bit error
|
||||
interrupt, in this order.
|
||||
|
||||
NAND FIFO ECC
|
||||
Required Properties:
|
||||
- compatible : Should be "altr,socfpga-nand-ecc"
|
||||
- reg : Address and size for ECC block registers.
|
||||
- altr,ecc-parent : phandle to parent NAND node.
|
||||
- interrupts : Should be single bit error interrupt, then double bit error
|
||||
interrupt, in this order.
|
||||
|
||||
DMA FIFO ECC
|
||||
Required Properties:
|
||||
- compatible : Should be "altr,socfpga-dma-ecc"
|
||||
- reg : Address and size for ECC block registers.
|
||||
- altr,ecc-parent : phandle to parent DMA node.
|
||||
- interrupts : Should be single bit error interrupt, then double bit error
|
||||
interrupt, in this order.
|
||||
|
||||
USB FIFO ECC
|
||||
Required Properties:
|
||||
- compatible : Should be "altr,socfpga-usb-ecc"
|
||||
- reg : Address and size for ECC block registers.
|
||||
- altr,ecc-parent : phandle to parent USB node.
|
||||
- interrupts : Should be single bit error interrupt, then double bit error
|
||||
interrupt, in this order.
|
||||
|
||||
QSPI FIFO ECC
|
||||
Required Properties:
|
||||
- compatible : Should be "altr,socfpga-qspi-ecc"
|
||||
- reg : Address and size for ECC block registers.
|
||||
- altr,ecc-parent : phandle to parent QSPI node.
|
||||
- interrupts : Should be single bit error interrupt, then double bit error
|
||||
interrupt, in this order.
|
||||
|
||||
SDMMC FIFO ECC
|
||||
Required Properties:
|
||||
- compatible : Should be "altr,socfpga-sdmmc-ecc"
|
||||
- reg : Address and size for ECC block registers.
|
||||
- altr,ecc-parent : phandle to parent SD/MMC node.
|
||||
- interrupts : Should be single bit error interrupt, then double bit error
|
||||
interrupt, in this order for port A, and then single bit error interrupt,
|
||||
then double bit error interrupt in this order for port B.
|
||||
|
||||
Example:
|
||||
|
||||
eccmgr: eccmgr@ffd06000 {
|
||||
@ -132,4 +173,61 @@ Example:
|
||||
interrupts = <5 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<37 IRQ_TYPE_LEVEL_HIGH>;
|
||||
};
|
||||
|
||||
nand-buf-ecc@ff8c2000 {
|
||||
compatible = "altr,socfpga-nand-ecc";
|
||||
reg = <0xff8c2000 0x400>;
|
||||
altr,ecc-parent = <&nand>;
|
||||
interrupts = <11 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<43 IRQ_TYPE_LEVEL_HIGH>;
|
||||
};
|
||||
|
||||
nand-rd-ecc@ff8c2400 {
|
||||
compatible = "altr,socfpga-nand-ecc";
|
||||
reg = <0xff8c2400 0x400>;
|
||||
altr,ecc-parent = <&nand>;
|
||||
interrupts = <13 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<45 IRQ_TYPE_LEVEL_HIGH>;
|
||||
};
|
||||
|
||||
nand-wr-ecc@ff8c2800 {
|
||||
compatible = "altr,socfpga-nand-ecc";
|
||||
reg = <0xff8c2800 0x400>;
|
||||
altr,ecc-parent = <&nand>;
|
||||
interrupts = <12 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<44 IRQ_TYPE_LEVEL_HIGH>;
|
||||
};
|
||||
|
||||
dma-ecc@ff8c8000 {
|
||||
compatible = "altr,socfpga-dma-ecc";
|
||||
reg = <0xff8c8000 0x400>;
|
||||
altr,ecc-parent = <&pdma>;
|
||||
interrupts = <10 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<42 IRQ_TYPE_LEVEL_HIGH>;
|
||||
|
||||
usb0-ecc@ff8c8800 {
|
||||
compatible = "altr,socfpga-usb-ecc";
|
||||
reg = <0xff8c8800 0x400>;
|
||||
altr,ecc-parent = <&usb0>;
|
||||
interrupts = <2 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<34 IRQ_TYPE_LEVEL_HIGH>;
|
||||
};
|
||||
|
||||
qspi-ecc@ff8c8400 {
|
||||
compatible = "altr,socfpga-qspi-ecc";
|
||||
reg = <0xff8c8400 0x400>;
|
||||
altr,ecc-parent = <&qspi>;
|
||||
interrupts = <14 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<46 IRQ_TYPE_LEVEL_HIGH>;
|
||||
};
|
||||
|
||||
sdmmc-ecc@ff8c2c00 {
|
||||
compatible = "altr,socfpga-sdmmc-ecc";
|
||||
reg = <0xff8c2c00 0x400>;
|
||||
altr,ecc-parent = <&mmc>;
|
||||
interrupts = <15 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<47 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<16 IRQ_TYPE_LEVEL_HIGH>,
|
||||
<48 IRQ_TYPE_LEVEL_HIGH>;
|
||||
};
|
||||
};
|
||||
|
@ -25,6 +25,12 @@ to deliver its interrupts via SPIs.
|
||||
- always-on : a boolean property. If present, the timer is powered through an
|
||||
always-on power domain, therefore it never loses context.
|
||||
|
||||
- fsl,erratum-a008585 : A boolean property. Indicates the presence of
|
||||
QorIQ erratum A-008585, which says that reading the counter is
|
||||
unreliable unless the same value is returned by back-to-back reads.
|
||||
This also affects writes to the tval register, due to the implicit
|
||||
counter read.
|
||||
|
||||
** Optional properties:
|
||||
|
||||
- arm,cpu-registers-not-fw-configured : Firmware does not initialize
|
||||
|
@ -38,6 +38,10 @@ Raspberry Pi Compute Module
|
||||
Required root node properties:
|
||||
compatible = "raspberrypi,compute-module", "brcm,bcm2835";
|
||||
|
||||
Raspberry Pi Zero
|
||||
Required root node properties:
|
||||
compatible = "raspberrypi,model-zero", "brcm,bcm2835";
|
||||
|
||||
Generic BCM2835 board
|
||||
Required root node properties:
|
||||
compatible = "brcm,bcm2835";
|
||||
|
@ -5,6 +5,10 @@ DA850/OMAP-L138/AM18x Evaluation Module (EVM) board
|
||||
Required root node properties:
|
||||
- compatible = "ti,da850-evm", "ti,da850";
|
||||
|
||||
DA850/OMAP-L138/AM18x L138/C6748 Development Kit (LCDK) board
|
||||
Required root node properties:
|
||||
- compatible = "ti,da850-lcdk", "ti,da850";
|
||||
|
||||
EnBW AM1808 based CMC board
|
||||
Required root node properties:
|
||||
- compatible = "enbw,cmc", "ti,da850;
|
||||
|
@ -175,38 +175,55 @@ Example:
|
||||
};
|
||||
|
||||
-----------------------------------------------------------------------
|
||||
Hisilicon HiP05 PCIe-SAS system controller
|
||||
Hisilicon HiP05/HiP06 PCIe-SAS sub system controller
|
||||
|
||||
Required properties:
|
||||
- compatible : "hisilicon,pcie-sas-subctrl", "syscon";
|
||||
- reg : Register address and size
|
||||
|
||||
The HiP05 PCIe-SAS system controller is shared by PCIe and SAS controllers in
|
||||
HiP05 Soc to implement some basic configurations.
|
||||
The PCIe-SAS sub system controller is shared by PCIe and SAS controllers in
|
||||
HiP05 or HiP06 Soc to implement some basic configurations.
|
||||
|
||||
Example:
|
||||
/* for HiP05 PCIe-SAS system */
|
||||
pcie_sas: system_controller@0xb0000000 {
|
||||
/* for HiP05 PCIe-SAS sub system */
|
||||
pcie_sas: system_controller@b0000000 {
|
||||
compatible = "hisilicon,pcie-sas-subctrl", "syscon";
|
||||
reg = <0xb0000000 0x10000>;
|
||||
};
|
||||
|
||||
Hisilicon HiP05 PERISUB system controller
|
||||
Hisilicon HiP05/HiP06 PERI sub system controller
|
||||
|
||||
Required properties:
|
||||
- compatible : "hisilicon,hip05-perisubc", "syscon";
|
||||
- compatible : "hisilicon,peri-subctrl", "syscon";
|
||||
- reg : Register address and size
|
||||
|
||||
The HiP05 PERISUB system controller is shared by peripheral controllers in
|
||||
HiP05 Soc to implement some basic configurations. The peripheral
|
||||
The PERI sub system controller is shared by peripheral controllers in
|
||||
HiP05 or HiP06 Soc to implement some basic configurations. The peripheral
|
||||
controllers include mdio, ddr, iic, uart, timer and so on.
|
||||
|
||||
Example:
|
||||
/* for HiP05 perisub-ctrl-c system */
|
||||
/* for HiP05 sub peri system */
|
||||
peri_c_subctrl: syscon@80000000 {
|
||||
compatible = "hisilicon,hip05-perisubc", "syscon";
|
||||
compatible = "hisilicon,peri-subctrl", "syscon";
|
||||
reg = <0x0 0x80000000 0x0 0x10000>;
|
||||
};
|
||||
|
||||
Hisilicon HiP05/HiP06 DSA sub system controller
|
||||
|
||||
Required properties:
|
||||
- compatible : "hisilicon,dsa-subctrl", "syscon";
|
||||
- reg : Register address and size
|
||||
|
||||
The DSA sub system controller is shared by peripheral controllers in
|
||||
HiP05 or HiP06 Soc to implement some basic configurations.
|
||||
|
||||
Example:
|
||||
/* for HiP05 dsa sub system */
|
||||
pcie_sas: system_controller@a0000000 {
|
||||
compatible = "hisilicon,dsa-subctrl", "syscon";
|
||||
reg = <0xa0000000 0x10000>;
|
||||
};
|
||||
|
||||
-----------------------------------------------------------------------
|
||||
Hisilicon CPU controller
|
||||
|
||||
|
@ -8,8 +8,19 @@ Required root node property:
|
||||
|
||||
- compatible: must contain "marvell,armada390"
|
||||
|
||||
In addition, boards using the Marvell Armada 398 SoC shall have the
|
||||
following property before the previous one:
|
||||
In addition, boards using the Marvell Armada 395 SoC shall have the
|
||||
following property before the common "marvell,armada390" one:
|
||||
|
||||
Required root node property:
|
||||
|
||||
compatible: must contain "marvell,armada395"
|
||||
|
||||
Example:
|
||||
|
||||
compatible = "marvell,a395-gp", "marvell,armada395", "marvell,armada390";
|
||||
|
||||
Boards using the Marvell Armada 398 SoC shall have the following
|
||||
property before the common "marvell,armada390" one:
|
||||
|
||||
Required root node property:
|
||||
|
||||
|
@ -0,0 +1,25 @@
|
||||
Marvell Orion SoC Family Device Tree Bindings
|
||||
---------------------------------------------
|
||||
|
||||
Boards with a SoC of the Marvell Orion family, eg 88f5181
|
||||
|
||||
* Required root node properties:
|
||||
compatible: must contain "marvell,orion5x"
|
||||
|
||||
In addition, the above compatible shall be extended with the specific
|
||||
SoC. Currently known SoC compatibles are:
|
||||
|
||||
"marvell,orion5x-88f5181"
|
||||
"marvell,orion5x-88f5182"
|
||||
|
||||
And in addition, the compatible shall be extended with the specific
|
||||
board. Currently known boards are:
|
||||
|
||||
"buffalo,lsgl"
|
||||
"buffalo,lswsgl"
|
||||
"buffalo,lswtgl"
|
||||
"lacie,ethernet-disk-mini-v2"
|
||||
"lacie,d2-network"
|
||||
"marvell,rd-88f5182-nas"
|
||||
"maxtor,shared-storage-2"
|
||||
"netgear,wnr854t"
|
@ -5,7 +5,8 @@ The Mediatek apmixedsys controller provides the PLLs to the system.
|
||||
|
||||
Required Properties:
|
||||
|
||||
- compatible: Should be:
|
||||
- compatible: Should be one of:
|
||||
- "mediatek,mt2701-apmixedsys"
|
||||
- "mediatek,mt8135-apmixedsys"
|
||||
- "mediatek,mt8173-apmixedsys"
|
||||
- #clock-cells: Must be 1
|
||||
|
@ -0,0 +1,22 @@
|
||||
Mediatek bdpsys controller
|
||||
============================
|
||||
|
||||
The Mediatek bdpsys controller provides various clocks to the system.
|
||||
|
||||
Required Properties:
|
||||
|
||||
- compatible: Should be:
|
||||
- "mediatek,mt2701-bdpsys", "syscon"
|
||||
- #clock-cells: Must be 1
|
||||
|
||||
The bdpsys controller uses the common clk binding from
|
||||
Documentation/devicetree/bindings/clock/clock-bindings.txt
|
||||
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
|
||||
|
||||
Example:
|
||||
|
||||
bdpsys: clock-controller@1c000000 {
|
||||
compatible = "mediatek,mt2701-bdpsys", "syscon";
|
||||
reg = <0 0x1c000000 0 0x1000>;
|
||||
#clock-cells = <1>;
|
||||
};
|
@ -0,0 +1,22 @@
|
||||
Mediatek ethsys controller
|
||||
============================
|
||||
|
||||
The Mediatek ethsys controller provides various clocks to the system.
|
||||
|
||||
Required Properties:
|
||||
|
||||
- compatible: Should be:
|
||||
- "mediatek,mt2701-ethsys", "syscon"
|
||||
- #clock-cells: Must be 1
|
||||
|
||||
The ethsys controller uses the common clk binding from
|
||||
Documentation/devicetree/bindings/clock/clock-bindings.txt
|
||||
The available clocks are defined in dt-bindings/clock/mt*-clk.h.
|
||||
|
||||
Example:
|
||||
|
||||
ethsys: clock-controller@1b000000 {
|
||||
compatible = "mediatek,mt2701-ethsys", "syscon";
|
||||
reg = <0 0x1b000000 0 0x1000>;
|
||||
#clock-cells = <1>;
|
||||
};
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user