iio: ltr501: Add interrupt rate control support

Added rate control support for ALS and proximity
threshold interrupts.Also, Added support to modify
and read ALS & proximity sensor sampling frequency.

LTR-501 supports interrupt rate control using persistence
register settings. Writing <n> to persistence register
would generate interrupt only if there are <n> consecutive
data values outside the threshold range.

Since we don't have any existing ABI's to directly
control the persistence register count, we have implemented
the rate control using IIO_EV_INFO_PERIOD. _period event
attribute represents the amount of time in seconds an
event should be true for the device to generate the
interrupt. So using _period value and device frequency,
persistence count is calculated in driver using following
logic.

count =  period / measurement_rate

If the given period is not a multiple of measurement rate then
we round up the value to next multiple.

This patch also handles change to persistence count whenever
there is change in frequency.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Jonathan Cameron <jic23@kernel.org>
This commit is contained in:
Kuppuswamy Sathyanarayanan 2015-04-19 02:10:03 -07:00 committed by Jonathan Cameron
parent 7ac702b314
commit eea53b4a25

View File

@ -9,7 +9,7 @@
* *
* 7-bit I2C slave address 0x23 * 7-bit I2C slave address 0x23
* *
* TODO: measurement rate, IR LED characteristics * TODO: IR LED characteristics
*/ */
#include <linux/module.h> #include <linux/module.h>
@ -29,6 +29,7 @@
#define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
#define LTR501_PS_CONTR 0x81 /* PS operation mode */ #define LTR501_PS_CONTR 0x81 /* PS operation mode */
#define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
#define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/ #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
#define LTR501_PART_ID 0x86 #define LTR501_PART_ID 0x86
#define LTR501_MANUFAC_ID 0x87 #define LTR501_MANUFAC_ID 0x87
@ -41,6 +42,7 @@
#define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */ #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
#define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */ #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
#define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */ #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
#define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
#define LTR501_MAX_REG 0x9f #define LTR501_MAX_REG 0x9f
#define LTR501_ALS_CONTR_SW_RESET BIT(2) #define LTR501_ALS_CONTR_SW_RESET BIT(2)
@ -58,6 +60,9 @@
#define LTR501_PS_THRESH_MASK 0x7ff #define LTR501_PS_THRESH_MASK 0x7ff
#define LTR501_ALS_THRESH_MASK 0xffff #define LTR501_ALS_THRESH_MASK 0xffff
#define LTR501_ALS_DEF_PERIOD 500000
#define LTR501_PS_DEF_PERIOD 100000
#define LTR501_REGMAP_NAME "ltr501_regmap" #define LTR501_REGMAP_NAME "ltr501_regmap"
static const int int_time_mapping[] = {100000, 50000, 200000, 400000}; static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
@ -68,17 +73,171 @@ static const struct reg_field reg_field_als_intr =
REG_FIELD(LTR501_INTR, 0, 0); REG_FIELD(LTR501_INTR, 0, 0);
static const struct reg_field reg_field_ps_intr = static const struct reg_field reg_field_ps_intr =
REG_FIELD(LTR501_INTR, 1, 1); REG_FIELD(LTR501_INTR, 1, 1);
static const struct reg_field reg_field_als_rate =
REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
static const struct reg_field reg_field_ps_rate =
REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
static const struct reg_field reg_field_als_prst =
REG_FIELD(LTR501_INTR_PRST, 0, 3);
static const struct reg_field reg_field_ps_prst =
REG_FIELD(LTR501_INTR_PRST, 4, 7);
struct ltr501_samp_table {
int freq_val; /* repetition frequency in micro HZ*/
int time_val; /* repetition rate in micro seconds */
};
struct ltr501_data { struct ltr501_data {
struct i2c_client *client; struct i2c_client *client;
struct mutex lock_als, lock_ps; struct mutex lock_als, lock_ps;
u8 als_contr, ps_contr; u8 als_contr, ps_contr;
int als_period, ps_period; /* period in micro seconds */
struct regmap *regmap; struct regmap *regmap;
struct regmap_field *reg_it; struct regmap_field *reg_it;
struct regmap_field *reg_als_intr; struct regmap_field *reg_als_intr;
struct regmap_field *reg_ps_intr; struct regmap_field *reg_ps_intr;
struct regmap_field *reg_als_rate;
struct regmap_field *reg_ps_rate;
struct regmap_field *reg_als_prst;
struct regmap_field *reg_ps_prst;
}; };
static const struct ltr501_samp_table ltr501_als_samp_table[] = {
{20000000, 50000}, {10000000, 100000},
{5000000, 200000}, {2000000, 500000},
{1000000, 1000000}, {500000, 2000000},
{500000, 2000000}, {500000, 2000000}
};
static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
{20000000, 50000}, {14285714, 70000},
{10000000, 100000}, {5000000, 200000},
{2000000, 500000}, {1000000, 1000000},
{500000, 2000000}, {500000, 2000000},
{500000, 2000000}
};
static unsigned int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
int len, int val, int val2)
{
int i, freq;
freq = val * 1000000 + val2;
for (i = 0; i < len; i++) {
if (tab[i].freq_val == freq)
return i;
}
return -EINVAL;
}
static int ltr501_als_read_samp_freq(struct ltr501_data *data,
int *val, int *val2)
{
int ret, i;
ret = regmap_field_read(data->reg_als_rate, &i);
if (ret < 0)
return ret;
if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
return -EINVAL;
*val = ltr501_als_samp_table[i].freq_val / 1000000;
*val2 = ltr501_als_samp_table[i].freq_val % 1000000;
return IIO_VAL_INT_PLUS_MICRO;
}
static int ltr501_ps_read_samp_freq(struct ltr501_data *data,
int *val, int *val2)
{
int ret, i;
ret = regmap_field_read(data->reg_ps_rate, &i);
if (ret < 0)
return ret;
if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
return -EINVAL;
*val = ltr501_ps_samp_table[i].freq_val / 1000000;
*val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
return IIO_VAL_INT_PLUS_MICRO;
}
static int ltr501_als_write_samp_freq(struct ltr501_data *data,
int val, int val2)
{
int i, ret;
i = ltr501_match_samp_freq(ltr501_als_samp_table,
ARRAY_SIZE(ltr501_als_samp_table),
val, val2);
if (i < 0)
return i;
mutex_lock(&data->lock_als);
ret = regmap_field_write(data->reg_als_rate, i);
mutex_unlock(&data->lock_als);
return ret;
}
static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
int val, int val2)
{
int i, ret;
i = ltr501_match_samp_freq(ltr501_ps_samp_table,
ARRAY_SIZE(ltr501_ps_samp_table),
val, val2);
if (i < 0)
return i;
mutex_lock(&data->lock_ps);
ret = regmap_field_write(data->reg_ps_rate, i);
mutex_unlock(&data->lock_ps);
return ret;
}
static int ltr501_als_read_samp_period(struct ltr501_data *data, int *val)
{
int ret, i;
ret = regmap_field_read(data->reg_als_rate, &i);
if (ret < 0)
return ret;
if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
return -EINVAL;
*val = ltr501_als_samp_table[i].time_val;
return IIO_VAL_INT;
}
static int ltr501_ps_read_samp_period(struct ltr501_data *data, int *val)
{
int ret, i;
ret = regmap_field_read(data->reg_ps_rate, &i);
if (ret < 0)
return ret;
if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
return -EINVAL;
*val = ltr501_ps_samp_table[i].time_val;
return IIO_VAL_INT;
}
static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask) static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask)
{ {
int tries = 100; int tries = 100;
@ -177,6 +336,104 @@ static int ltr501_read_ps(struct ltr501_data *data)
return status; return status;
} }
static int ltr501_read_intr_prst(struct ltr501_data *data,
enum iio_chan_type type,
int *val2)
{
int ret, samp_period, prst;
switch (type) {
case IIO_INTENSITY:
ret = regmap_field_read(data->reg_als_prst, &prst);
if (ret < 0)
return ret;
ret = ltr501_als_read_samp_period(data, &samp_period);
if (ret < 0)
return ret;
*val2 = samp_period * prst;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_PROXIMITY:
ret = regmap_field_read(data->reg_ps_prst, &prst);
if (ret < 0)
return ret;
ret = ltr501_ps_read_samp_period(data, &samp_period);
if (ret < 0)
return ret;
*val2 = samp_period * prst;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
return -EINVAL;
}
static int ltr501_write_intr_prst(struct ltr501_data *data,
enum iio_chan_type type,
int val, int val2)
{
int ret, samp_period, new_val;
unsigned long period;
if (val < 0 || val2 < 0)
return -EINVAL;
/* period in microseconds */
period = ((val * 1000000) + val2);
switch (type) {
case IIO_INTENSITY:
ret = ltr501_als_read_samp_period(data, &samp_period);
if (ret < 0)
return ret;
/* period should be atleast equal to sampling period */
if (period < samp_period)
return -EINVAL;
new_val = DIV_ROUND_UP(period, samp_period);
if (new_val < 0 || new_val > 0x0f)
return -EINVAL;
mutex_lock(&data->lock_als);
ret = regmap_field_write(data->reg_als_prst, new_val);
mutex_unlock(&data->lock_als);
if (ret >= 0)
data->als_period = period;
return ret;
case IIO_PROXIMITY:
ret = ltr501_ps_read_samp_period(data, &samp_period);
if (ret < 0)
return ret;
/* period should be atleast equal to rate */
if (period < samp_period)
return -EINVAL;
new_val = DIV_ROUND_UP(period, samp_period);
if (new_val < 0 || new_val > 0x0f)
return -EINVAL;
mutex_lock(&data->lock_ps);
ret = regmap_field_write(data->reg_ps_prst, new_val);
mutex_unlock(&data->lock_ps);
if (ret >= 0)
data->ps_period = period;
return ret;
default:
return -EINVAL;
}
return -EINVAL;
}
static const struct iio_event_spec ltr501_als_event_spec[] = { static const struct iio_event_spec ltr501_als_event_spec[] = {
{ {
.type = IIO_EV_TYPE_THRESH, .type = IIO_EV_TYPE_THRESH,
@ -189,7 +446,8 @@ static const struct iio_event_spec ltr501_als_event_spec[] = {
}, { }, {
.type = IIO_EV_TYPE_THRESH, .type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER, .dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_PERIOD),
}, },
}; };
@ -206,7 +464,8 @@ static const struct iio_event_spec ltr501_pxs_event_spec[] = {
}, { }, {
.type = IIO_EV_TYPE_THRESH, .type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER, .dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_ENABLE), .mask_separate = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_PERIOD),
}, },
}; };
@ -235,7 +494,8 @@ static const struct iio_chan_spec ltr501_channels[] = {
ARRAY_SIZE(ltr501_als_event_spec)), ARRAY_SIZE(ltr501_als_event_spec)),
LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_INT_TIME), BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
NULL, 0), NULL, 0),
{ {
.type = IIO_PROXIMITY, .type = IIO_PROXIMITY,
@ -320,6 +580,15 @@ static int ltr501_read_raw(struct iio_dev *indio_dev,
default: default:
return -EINVAL; return -EINVAL;
} }
case IIO_CHAN_INFO_SAMP_FREQ:
switch (chan->type) {
case IIO_INTENSITY:
return ltr501_als_read_samp_freq(data, val, val2);
case IIO_PROXIMITY:
return ltr501_ps_read_samp_freq(data, val, val2);
default:
return -EINVAL;
}
} }
return -EINVAL; return -EINVAL;
} }
@ -340,7 +609,7 @@ static int ltr501_write_raw(struct iio_dev *indio_dev,
int val, int val2, long mask) int val, int val2, long mask)
{ {
struct ltr501_data *data = iio_priv(indio_dev); struct ltr501_data *data = iio_priv(indio_dev);
int i; int i, ret, freq_val, freq_val2;
if (iio_buffer_enabled(indio_dev)) if (iio_buffer_enabled(indio_dev))
return -EBUSY; return -EBUSY;
@ -382,6 +651,49 @@ static int ltr501_write_raw(struct iio_dev *indio_dev,
default: default:
return -EINVAL; return -EINVAL;
} }
case IIO_CHAN_INFO_SAMP_FREQ:
switch (chan->type) {
case IIO_INTENSITY:
ret = ltr501_als_read_samp_freq(data, &freq_val,
&freq_val2);
if (ret < 0)
return ret;
ret = ltr501_als_write_samp_freq(data, val, val2);
if (ret < 0)
return ret;
/* update persistence count when changing frequency */
ret = ltr501_write_intr_prst(data, chan->type,
0, data->als_period);
if (ret < 0)
return ltr501_als_write_samp_freq(data,
freq_val,
freq_val2);
return ret;
case IIO_PROXIMITY:
ret = ltr501_ps_read_samp_freq(data, &freq_val,
&freq_val2);
if (ret < 0)
return ret;
ret = ltr501_ps_write_samp_freq(data, val, val2);
if (ret < 0)
return ret;
/* update persistence count when changing frequency */
ret = ltr501_write_intr_prst(data, chan->type,
0, data->ps_period);
if (ret < 0)
return ltr501_ps_write_samp_freq(data,
freq_val,
freq_val2);
return ret;
default:
return -EINVAL;
}
} }
return -EINVAL; return -EINVAL;
} }
@ -509,6 +821,55 @@ static int ltr501_write_thresh(struct iio_dev *indio_dev,
return -EINVAL; return -EINVAL;
} }
static int ltr501_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
int ret;
switch (info) {
case IIO_EV_INFO_VALUE:
return ltr501_read_thresh(indio_dev, chan, type, dir,
info, val, val2);
case IIO_EV_INFO_PERIOD:
ret = ltr501_read_intr_prst(iio_priv(indio_dev),
chan->type, val2);
*val = *val2 / 1000000;
*val2 = *val2 % 1000000;
return ret;
default:
return -EINVAL;
}
return -EINVAL;
}
static int ltr501_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
switch (info) {
case IIO_EV_INFO_VALUE:
if (val2 != 0)
return -EINVAL;
return ltr501_write_thresh(indio_dev, chan, type, dir,
info, val, val2);
case IIO_EV_INFO_PERIOD:
return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
val, val2);
default:
return -EINVAL;
}
return -EINVAL;
}
static int ltr501_read_event_config(struct iio_dev *indio_dev, static int ltr501_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, const struct iio_chan_spec *chan,
enum iio_event_type type, enum iio_event_type type,
@ -568,11 +929,13 @@ static int ltr501_write_event_config(struct iio_dev *indio_dev,
static IIO_CONST_ATTR(in_proximity_scale_available, "1 0.25 0.125 0.0625"); static IIO_CONST_ATTR(in_proximity_scale_available, "1 0.25 0.125 0.0625");
static IIO_CONST_ATTR(in_intensity_scale_available, "1 0.005"); static IIO_CONST_ATTR(in_intensity_scale_available, "1 0.005");
static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4"); static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
static struct attribute *ltr501_attributes[] = { static struct attribute *ltr501_attributes[] = {
&iio_const_attr_in_proximity_scale_available.dev_attr.attr, &iio_const_attr_in_proximity_scale_available.dev_attr.attr,
&iio_const_attr_in_intensity_scale_available.dev_attr.attr, &iio_const_attr_in_intensity_scale_available.dev_attr.attr,
&iio_const_attr_integration_time_available.dev_attr.attr, &iio_const_attr_integration_time_available.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL NULL
}; };
@ -591,8 +954,8 @@ static const struct iio_info ltr501_info = {
.read_raw = ltr501_read_raw, .read_raw = ltr501_read_raw,
.write_raw = ltr501_write_raw, .write_raw = ltr501_write_raw,
.attrs = &ltr501_attribute_group, .attrs = &ltr501_attribute_group,
.read_event_value = &ltr501_read_thresh, .read_event_value = &ltr501_read_event,
.write_event_value = &ltr501_write_thresh, .write_event_value = &ltr501_write_event,
.read_event_config = &ltr501_read_event_config, .read_event_config = &ltr501_read_event_config,
.write_event_config = &ltr501_write_event_config, .write_event_config = &ltr501_write_event_config,
.driver_module = THIS_MODULE, .driver_module = THIS_MODULE,
@ -706,6 +1069,14 @@ static int ltr501_init(struct ltr501_data *data)
data->ps_contr = status | LTR501_CONTR_ACTIVE; data->ps_contr = status | LTR501_CONTR_ACTIVE;
ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
if (ret < 0)
return ret;
ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
if (ret < 0)
return ret;
return ltr501_write_contr(data, data->als_contr, data->ps_contr); return ltr501_write_contr(data, data->als_contr, data->ps_contr);
} }
@ -783,6 +1154,34 @@ static int ltr501_probe(struct i2c_client *client,
return PTR_ERR(data->reg_ps_intr); return PTR_ERR(data->reg_ps_intr);
} }
data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
reg_field_als_rate);
if (IS_ERR(data->reg_als_rate)) {
dev_err(&client->dev, "ALS samp rate field init failed.\n");
return PTR_ERR(data->reg_als_rate);
}
data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
reg_field_ps_rate);
if (IS_ERR(data->reg_ps_rate)) {
dev_err(&client->dev, "PS samp rate field init failed.\n");
return PTR_ERR(data->reg_ps_rate);
}
data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
reg_field_als_prst);
if (IS_ERR(data->reg_als_prst)) {
dev_err(&client->dev, "ALS prst reg field init failed\n");
return PTR_ERR(data->reg_als_prst);
}
data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
reg_field_ps_prst);
if (IS_ERR(data->reg_ps_prst)) {
dev_err(&client->dev, "PS prst reg field init failed.\n");
return PTR_ERR(data->reg_ps_prst);
}
ret = regmap_read(data->regmap, LTR501_PART_ID, &partid); ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
if (ret < 0) if (ret < 0)
return ret; return ret;