net: caif: pass struct device to DMA API functions

The DMA API generally relies on a struct device to work properly, and
only barely works without one for legacy reasons.  Pass the easily
available struct device from the platform_device to remedy this.

Also use the proper Kconfig symbol to check for DMA API availability.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Christoph Hellwig 2019-02-11 14:19:57 +01:00 committed by David S. Miller
parent 99e1311475
commit e222822f9b

View File

@ -73,35 +73,37 @@ MODULE_PARM_DESC(spi_down_tail_align, "SPI downlink tail alignment.");
#define LOW_WATER_MARK 100
#define HIGH_WATER_MARK (LOW_WATER_MARK*5)
#ifdef CONFIG_UML
#ifndef CONFIG_HAS_DMA
/*
* We sometimes use UML for debugging, but it cannot handle
* dma_alloc_coherent so we have to wrap it.
*/
static inline void *dma_alloc(dma_addr_t *daddr)
static inline void *dma_alloc(struct cfspi *cfspi, dma_addr_t *daddr)
{
return kmalloc(SPI_DMA_BUF_LEN, GFP_KERNEL);
}
static inline void dma_free(void *cpu_addr, dma_addr_t handle)
static inline void dma_free(struct cfspi *cfspi, void *cpu_addr,
dma_addr_t handle)
{
kfree(cpu_addr);
}
#else
static inline void *dma_alloc(dma_addr_t *daddr)
static inline void *dma_alloc(struct cfspi *cfspi, dma_addr_t *daddr)
{
return dma_alloc_coherent(NULL, SPI_DMA_BUF_LEN, daddr,
return dma_alloc_coherent(&cfspi->pdev->dev, SPI_DMA_BUF_LEN, daddr,
GFP_KERNEL);
}
static inline void dma_free(void *cpu_addr, dma_addr_t handle)
static inline void dma_free(struct cfspi *cfspi, void *cpu_addr,
dma_addr_t handle)
{
dma_free_coherent(NULL, SPI_DMA_BUF_LEN, cpu_addr, handle);
dma_free_coherent(&cfspi->pdev->dev, SPI_DMA_BUF_LEN, cpu_addr, handle);
}
#endif /* CONFIG_UML */
#endif /* CONFIG_HAS_DMA */
#ifdef CONFIG_DEBUG_FS
@ -610,13 +612,13 @@ static int cfspi_init(struct net_device *dev)
}
/* Allocate DMA buffers. */
cfspi->xfer.va_tx[0] = dma_alloc(&cfspi->xfer.pa_tx[0]);
cfspi->xfer.va_tx[0] = dma_alloc(cfspi, &cfspi->xfer.pa_tx[0]);
if (!cfspi->xfer.va_tx[0]) {
res = -ENODEV;
goto err_dma_alloc_tx_0;
}
cfspi->xfer.va_rx = dma_alloc(&cfspi->xfer.pa_rx);
cfspi->xfer.va_rx = dma_alloc(cfspi, &cfspi->xfer.pa_rx);
if (!cfspi->xfer.va_rx) {
res = -ENODEV;
@ -665,9 +667,9 @@ static int cfspi_init(struct net_device *dev)
return 0;
err_create_wq:
dma_free(cfspi->xfer.va_rx, cfspi->xfer.pa_rx);
dma_free(cfspi, cfspi->xfer.va_rx, cfspi->xfer.pa_rx);
err_dma_alloc_rx:
dma_free(cfspi->xfer.va_tx[0], cfspi->xfer.pa_tx[0]);
dma_free(cfspi, cfspi->xfer.va_tx[0], cfspi->xfer.pa_tx[0]);
err_dma_alloc_tx_0:
return res;
}
@ -683,8 +685,8 @@ static void cfspi_uninit(struct net_device *dev)
cfspi->ndev = NULL;
/* Free DMA buffers. */
dma_free(cfspi->xfer.va_rx, cfspi->xfer.pa_rx);
dma_free(cfspi->xfer.va_tx[0], cfspi->xfer.pa_tx[0]);
dma_free(cfspi, cfspi->xfer.va_rx, cfspi->xfer.pa_rx);
dma_free(cfspi, cfspi->xfer.va_tx[0], cfspi->xfer.pa_tx[0]);
set_bit(SPI_TERMINATE, &cfspi->state);
wake_up_interruptible(&cfspi->wait);
destroy_workqueue(cfspi->wq);