Merge branch 'ipv6-defrag-rbtree'
Peter Oskolkov says:
====================
net: IP defrag: use rbtrees in IPv6 defragmentation
Currently, IPv6 defragmentation code drops non-last fragments that
are smaller than 1280 bytes: see
commit 0ed4229b08
("ipv6: defrag: drop non-last frags smaller than min mtu")
This behavior is not specified in IPv6 RFCs and appears to break compatibility
with some IPv6 implementations, as reported here:
https://www.spinics.net/lists/netdev/msg543846.html
This patchset contains four patches:
- patch 1 moves rbtree-related code from IPv4 to files shared b/w
IPv4/IPv6
- patch 2 changes IPv6 defragmenation code to use rbtrees for defrag
queue
- patch 3 changes nf_conntrack IPv6 defragmentation code to use rbtrees
- patch 4 changes ip_defrag selftest to test changes made in the
previous three patches.
Along the way, the 1280-byte restrictions are removed.
I plan to introduce similar changes to 6lowpan defragmentation code
once I figure out how to test it.
====================
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
commit
dda6a7a368
@ -77,8 +77,8 @@ struct inet_frag_queue {
|
||||
struct timer_list timer;
|
||||
spinlock_t lock;
|
||||
refcount_t refcnt;
|
||||
struct sk_buff *fragments; /* Used in IPv6. */
|
||||
struct rb_root rb_fragments; /* Used in IPv4. */
|
||||
struct sk_buff *fragments; /* used in 6lopwpan IPv6. */
|
||||
struct rb_root rb_fragments; /* Used in IPv4/IPv6. */
|
||||
struct sk_buff *fragments_tail;
|
||||
struct sk_buff *last_run_head;
|
||||
ktime_t stamp;
|
||||
@ -153,4 +153,16 @@ static inline void add_frag_mem_limit(struct netns_frags *nf, long val)
|
||||
|
||||
extern const u8 ip_frag_ecn_table[16];
|
||||
|
||||
/* Return values of inet_frag_queue_insert() */
|
||||
#define IPFRAG_OK 0
|
||||
#define IPFRAG_DUP 1
|
||||
#define IPFRAG_OVERLAP 2
|
||||
int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
|
||||
int offset, int end);
|
||||
void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
|
||||
struct sk_buff *parent);
|
||||
void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
|
||||
void *reasm_data);
|
||||
struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q);
|
||||
|
||||
#endif
|
||||
|
@ -82,8 +82,15 @@ ip6frag_expire_frag_queue(struct net *net, struct frag_queue *fq)
|
||||
__IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT);
|
||||
|
||||
/* Don't send error if the first segment did not arrive. */
|
||||
head = fq->q.fragments;
|
||||
if (!(fq->q.flags & INET_FRAG_FIRST_IN) || !head)
|
||||
if (!(fq->q.flags & INET_FRAG_FIRST_IN))
|
||||
goto out;
|
||||
|
||||
/* sk_buff::dev and sk_buff::rbnode are unionized. So we
|
||||
* pull the head out of the tree in order to be able to
|
||||
* deal with head->dev.
|
||||
*/
|
||||
head = inet_frag_pull_head(&fq->q);
|
||||
if (!head)
|
||||
goto out;
|
||||
|
||||
head->dev = dev;
|
||||
|
@ -25,6 +25,62 @@
|
||||
#include <net/sock.h>
|
||||
#include <net/inet_frag.h>
|
||||
#include <net/inet_ecn.h>
|
||||
#include <net/ip.h>
|
||||
#include <net/ipv6.h>
|
||||
|
||||
/* Use skb->cb to track consecutive/adjacent fragments coming at
|
||||
* the end of the queue. Nodes in the rb-tree queue will
|
||||
* contain "runs" of one or more adjacent fragments.
|
||||
*
|
||||
* Invariants:
|
||||
* - next_frag is NULL at the tail of a "run";
|
||||
* - the head of a "run" has the sum of all fragment lengths in frag_run_len.
|
||||
*/
|
||||
struct ipfrag_skb_cb {
|
||||
union {
|
||||
struct inet_skb_parm h4;
|
||||
struct inet6_skb_parm h6;
|
||||
};
|
||||
struct sk_buff *next_frag;
|
||||
int frag_run_len;
|
||||
};
|
||||
|
||||
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
|
||||
|
||||
static void fragcb_clear(struct sk_buff *skb)
|
||||
{
|
||||
RB_CLEAR_NODE(&skb->rbnode);
|
||||
FRAG_CB(skb)->next_frag = NULL;
|
||||
FRAG_CB(skb)->frag_run_len = skb->len;
|
||||
}
|
||||
|
||||
/* Append skb to the last "run". */
|
||||
static void fragrun_append_to_last(struct inet_frag_queue *q,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
fragcb_clear(skb);
|
||||
|
||||
FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
|
||||
FRAG_CB(q->fragments_tail)->next_frag = skb;
|
||||
q->fragments_tail = skb;
|
||||
}
|
||||
|
||||
/* Create a new "run" with the skb. */
|
||||
static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
|
||||
{
|
||||
BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
|
||||
fragcb_clear(skb);
|
||||
|
||||
if (q->last_run_head)
|
||||
rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
|
||||
&q->last_run_head->rbnode.rb_right);
|
||||
else
|
||||
rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
|
||||
rb_insert_color(&skb->rbnode, &q->rb_fragments);
|
||||
|
||||
q->fragments_tail = skb;
|
||||
q->last_run_head = skb;
|
||||
}
|
||||
|
||||
/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
|
||||
* Value : 0xff if frame should be dropped.
|
||||
@ -123,6 +179,28 @@ static void inet_frag_destroy_rcu(struct rcu_head *head)
|
||||
kmem_cache_free(f->frags_cachep, q);
|
||||
}
|
||||
|
||||
unsigned int inet_frag_rbtree_purge(struct rb_root *root)
|
||||
{
|
||||
struct rb_node *p = rb_first(root);
|
||||
unsigned int sum = 0;
|
||||
|
||||
while (p) {
|
||||
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
|
||||
|
||||
p = rb_next(p);
|
||||
rb_erase(&skb->rbnode, root);
|
||||
while (skb) {
|
||||
struct sk_buff *next = FRAG_CB(skb)->next_frag;
|
||||
|
||||
sum += skb->truesize;
|
||||
kfree_skb(skb);
|
||||
skb = next;
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_frag_rbtree_purge);
|
||||
|
||||
void inet_frag_destroy(struct inet_frag_queue *q)
|
||||
{
|
||||
struct sk_buff *fp;
|
||||
@ -224,3 +302,218 @@ struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key)
|
||||
return fq;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_frag_find);
|
||||
|
||||
int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
|
||||
int offset, int end)
|
||||
{
|
||||
struct sk_buff *last = q->fragments_tail;
|
||||
|
||||
/* RFC5722, Section 4, amended by Errata ID : 3089
|
||||
* When reassembling an IPv6 datagram, if
|
||||
* one or more its constituent fragments is determined to be an
|
||||
* overlapping fragment, the entire datagram (and any constituent
|
||||
* fragments) MUST be silently discarded.
|
||||
*
|
||||
* Duplicates, however, should be ignored (i.e. skb dropped, but the
|
||||
* queue/fragments kept for later reassembly).
|
||||
*/
|
||||
if (!last)
|
||||
fragrun_create(q, skb); /* First fragment. */
|
||||
else if (last->ip_defrag_offset + last->len < end) {
|
||||
/* This is the common case: skb goes to the end. */
|
||||
/* Detect and discard overlaps. */
|
||||
if (offset < last->ip_defrag_offset + last->len)
|
||||
return IPFRAG_OVERLAP;
|
||||
if (offset == last->ip_defrag_offset + last->len)
|
||||
fragrun_append_to_last(q, skb);
|
||||
else
|
||||
fragrun_create(q, skb);
|
||||
} else {
|
||||
/* Binary search. Note that skb can become the first fragment,
|
||||
* but not the last (covered above).
|
||||
*/
|
||||
struct rb_node **rbn, *parent;
|
||||
|
||||
rbn = &q->rb_fragments.rb_node;
|
||||
do {
|
||||
struct sk_buff *curr;
|
||||
int curr_run_end;
|
||||
|
||||
parent = *rbn;
|
||||
curr = rb_to_skb(parent);
|
||||
curr_run_end = curr->ip_defrag_offset +
|
||||
FRAG_CB(curr)->frag_run_len;
|
||||
if (end <= curr->ip_defrag_offset)
|
||||
rbn = &parent->rb_left;
|
||||
else if (offset >= curr_run_end)
|
||||
rbn = &parent->rb_right;
|
||||
else if (offset >= curr->ip_defrag_offset &&
|
||||
end <= curr_run_end)
|
||||
return IPFRAG_DUP;
|
||||
else
|
||||
return IPFRAG_OVERLAP;
|
||||
} while (*rbn);
|
||||
/* Here we have parent properly set, and rbn pointing to
|
||||
* one of its NULL left/right children. Insert skb.
|
||||
*/
|
||||
fragcb_clear(skb);
|
||||
rb_link_node(&skb->rbnode, parent, rbn);
|
||||
rb_insert_color(&skb->rbnode, &q->rb_fragments);
|
||||
}
|
||||
|
||||
skb->ip_defrag_offset = offset;
|
||||
|
||||
return IPFRAG_OK;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_frag_queue_insert);
|
||||
|
||||
void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
|
||||
struct sk_buff *parent)
|
||||
{
|
||||
struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
|
||||
struct sk_buff **nextp;
|
||||
int delta;
|
||||
|
||||
if (head != skb) {
|
||||
fp = skb_clone(skb, GFP_ATOMIC);
|
||||
if (!fp)
|
||||
return NULL;
|
||||
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
|
||||
if (RB_EMPTY_NODE(&skb->rbnode))
|
||||
FRAG_CB(parent)->next_frag = fp;
|
||||
else
|
||||
rb_replace_node(&skb->rbnode, &fp->rbnode,
|
||||
&q->rb_fragments);
|
||||
if (q->fragments_tail == skb)
|
||||
q->fragments_tail = fp;
|
||||
skb_morph(skb, head);
|
||||
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
|
||||
rb_replace_node(&head->rbnode, &skb->rbnode,
|
||||
&q->rb_fragments);
|
||||
consume_skb(head);
|
||||
head = skb;
|
||||
}
|
||||
WARN_ON(head->ip_defrag_offset != 0);
|
||||
|
||||
delta = -head->truesize;
|
||||
|
||||
/* Head of list must not be cloned. */
|
||||
if (skb_unclone(head, GFP_ATOMIC))
|
||||
return NULL;
|
||||
|
||||
delta += head->truesize;
|
||||
if (delta)
|
||||
add_frag_mem_limit(q->net, delta);
|
||||
|
||||
/* If the first fragment is fragmented itself, we split
|
||||
* it to two chunks: the first with data and paged part
|
||||
* and the second, holding only fragments.
|
||||
*/
|
||||
if (skb_has_frag_list(head)) {
|
||||
struct sk_buff *clone;
|
||||
int i, plen = 0;
|
||||
|
||||
clone = alloc_skb(0, GFP_ATOMIC);
|
||||
if (!clone)
|
||||
return NULL;
|
||||
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
|
||||
skb_frag_list_init(head);
|
||||
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
|
||||
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
|
||||
clone->data_len = head->data_len - plen;
|
||||
clone->len = clone->data_len;
|
||||
head->truesize += clone->truesize;
|
||||
clone->csum = 0;
|
||||
clone->ip_summed = head->ip_summed;
|
||||
add_frag_mem_limit(q->net, clone->truesize);
|
||||
skb_shinfo(head)->frag_list = clone;
|
||||
nextp = &clone->next;
|
||||
} else {
|
||||
nextp = &skb_shinfo(head)->frag_list;
|
||||
}
|
||||
|
||||
return nextp;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_frag_reasm_prepare);
|
||||
|
||||
void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
|
||||
void *reasm_data)
|
||||
{
|
||||
struct sk_buff **nextp = (struct sk_buff **)reasm_data;
|
||||
struct rb_node *rbn;
|
||||
struct sk_buff *fp;
|
||||
|
||||
skb_push(head, head->data - skb_network_header(head));
|
||||
|
||||
/* Traverse the tree in order, to build frag_list. */
|
||||
fp = FRAG_CB(head)->next_frag;
|
||||
rbn = rb_next(&head->rbnode);
|
||||
rb_erase(&head->rbnode, &q->rb_fragments);
|
||||
while (rbn || fp) {
|
||||
/* fp points to the next sk_buff in the current run;
|
||||
* rbn points to the next run.
|
||||
*/
|
||||
/* Go through the current run. */
|
||||
while (fp) {
|
||||
*nextp = fp;
|
||||
nextp = &fp->next;
|
||||
fp->prev = NULL;
|
||||
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
|
||||
fp->sk = NULL;
|
||||
head->data_len += fp->len;
|
||||
head->len += fp->len;
|
||||
if (head->ip_summed != fp->ip_summed)
|
||||
head->ip_summed = CHECKSUM_NONE;
|
||||
else if (head->ip_summed == CHECKSUM_COMPLETE)
|
||||
head->csum = csum_add(head->csum, fp->csum);
|
||||
head->truesize += fp->truesize;
|
||||
fp = FRAG_CB(fp)->next_frag;
|
||||
}
|
||||
/* Move to the next run. */
|
||||
if (rbn) {
|
||||
struct rb_node *rbnext = rb_next(rbn);
|
||||
|
||||
fp = rb_to_skb(rbn);
|
||||
rb_erase(rbn, &q->rb_fragments);
|
||||
rbn = rbnext;
|
||||
}
|
||||
}
|
||||
sub_frag_mem_limit(q->net, head->truesize);
|
||||
|
||||
*nextp = NULL;
|
||||
skb_mark_not_on_list(head);
|
||||
head->prev = NULL;
|
||||
head->tstamp = q->stamp;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_frag_reasm_finish);
|
||||
|
||||
struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
|
||||
{
|
||||
struct sk_buff *head;
|
||||
|
||||
if (q->fragments) {
|
||||
head = q->fragments;
|
||||
q->fragments = head->next;
|
||||
} else {
|
||||
struct sk_buff *skb;
|
||||
|
||||
head = skb_rb_first(&q->rb_fragments);
|
||||
if (!head)
|
||||
return NULL;
|
||||
skb = FRAG_CB(head)->next_frag;
|
||||
if (skb)
|
||||
rb_replace_node(&head->rbnode, &skb->rbnode,
|
||||
&q->rb_fragments);
|
||||
else
|
||||
rb_erase(&head->rbnode, &q->rb_fragments);
|
||||
memset(&head->rbnode, 0, sizeof(head->rbnode));
|
||||
barrier();
|
||||
}
|
||||
if (head == q->fragments_tail)
|
||||
q->fragments_tail = NULL;
|
||||
|
||||
sub_frag_mem_limit(q->net, head->truesize);
|
||||
|
||||
return head;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_frag_pull_head);
|
||||
|
@ -57,57 +57,6 @@
|
||||
*/
|
||||
static const char ip_frag_cache_name[] = "ip4-frags";
|
||||
|
||||
/* Use skb->cb to track consecutive/adjacent fragments coming at
|
||||
* the end of the queue. Nodes in the rb-tree queue will
|
||||
* contain "runs" of one or more adjacent fragments.
|
||||
*
|
||||
* Invariants:
|
||||
* - next_frag is NULL at the tail of a "run";
|
||||
* - the head of a "run" has the sum of all fragment lengths in frag_run_len.
|
||||
*/
|
||||
struct ipfrag_skb_cb {
|
||||
struct inet_skb_parm h;
|
||||
struct sk_buff *next_frag;
|
||||
int frag_run_len;
|
||||
};
|
||||
|
||||
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
|
||||
|
||||
static void ip4_frag_init_run(struct sk_buff *skb)
|
||||
{
|
||||
BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
|
||||
|
||||
FRAG_CB(skb)->next_frag = NULL;
|
||||
FRAG_CB(skb)->frag_run_len = skb->len;
|
||||
}
|
||||
|
||||
/* Append skb to the last "run". */
|
||||
static void ip4_frag_append_to_last_run(struct inet_frag_queue *q,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
RB_CLEAR_NODE(&skb->rbnode);
|
||||
FRAG_CB(skb)->next_frag = NULL;
|
||||
|
||||
FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
|
||||
FRAG_CB(q->fragments_tail)->next_frag = skb;
|
||||
q->fragments_tail = skb;
|
||||
}
|
||||
|
||||
/* Create a new "run" with the skb. */
|
||||
static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb)
|
||||
{
|
||||
if (q->last_run_head)
|
||||
rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
|
||||
&q->last_run_head->rbnode.rb_right);
|
||||
else
|
||||
rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
|
||||
rb_insert_color(&skb->rbnode, &q->rb_fragments);
|
||||
|
||||
ip4_frag_init_run(skb);
|
||||
q->fragments_tail = skb;
|
||||
q->last_run_head = skb;
|
||||
}
|
||||
|
||||
/* Describe an entry in the "incomplete datagrams" queue. */
|
||||
struct ipq {
|
||||
struct inet_frag_queue q;
|
||||
@ -212,27 +161,9 @@ static void ip_expire(struct timer_list *t)
|
||||
* pull the head out of the tree in order to be able to
|
||||
* deal with head->dev.
|
||||
*/
|
||||
if (qp->q.fragments) {
|
||||
head = qp->q.fragments;
|
||||
qp->q.fragments = head->next;
|
||||
} else {
|
||||
head = skb_rb_first(&qp->q.rb_fragments);
|
||||
if (!head)
|
||||
goto out;
|
||||
if (FRAG_CB(head)->next_frag)
|
||||
rb_replace_node(&head->rbnode,
|
||||
&FRAG_CB(head)->next_frag->rbnode,
|
||||
&qp->q.rb_fragments);
|
||||
else
|
||||
rb_erase(&head->rbnode, &qp->q.rb_fragments);
|
||||
memset(&head->rbnode, 0, sizeof(head->rbnode));
|
||||
barrier();
|
||||
}
|
||||
if (head == qp->q.fragments_tail)
|
||||
qp->q.fragments_tail = NULL;
|
||||
|
||||
sub_frag_mem_limit(qp->q.net, head->truesize);
|
||||
|
||||
head = inet_frag_pull_head(&qp->q);
|
||||
if (!head)
|
||||
goto out;
|
||||
head->dev = dev_get_by_index_rcu(net, qp->iif);
|
||||
if (!head->dev)
|
||||
goto out;
|
||||
@ -344,12 +275,10 @@ static int ip_frag_reinit(struct ipq *qp)
|
||||
static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
|
||||
{
|
||||
struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
|
||||
struct rb_node **rbn, *parent;
|
||||
struct sk_buff *skb1, *prev_tail;
|
||||
int ihl, end, skb1_run_end;
|
||||
int ihl, end, flags, offset;
|
||||
struct sk_buff *prev_tail;
|
||||
struct net_device *dev;
|
||||
unsigned int fragsize;
|
||||
int flags, offset;
|
||||
int err = -ENOENT;
|
||||
u8 ecn;
|
||||
|
||||
@ -413,62 +342,13 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
|
||||
/* Makes sure compiler wont do silly aliasing games */
|
||||
barrier();
|
||||
|
||||
/* RFC5722, Section 4, amended by Errata ID : 3089
|
||||
* When reassembling an IPv6 datagram, if
|
||||
* one or more its constituent fragments is determined to be an
|
||||
* overlapping fragment, the entire datagram (and any constituent
|
||||
* fragments) MUST be silently discarded.
|
||||
*
|
||||
* We do the same here for IPv4 (and increment an snmp counter) but
|
||||
* we do not want to drop the whole queue in response to a duplicate
|
||||
* fragment.
|
||||
*/
|
||||
|
||||
err = -EINVAL;
|
||||
/* Find out where to put this fragment. */
|
||||
prev_tail = qp->q.fragments_tail;
|
||||
if (!prev_tail)
|
||||
ip4_frag_create_run(&qp->q, skb); /* First fragment. */
|
||||
else if (prev_tail->ip_defrag_offset + prev_tail->len < end) {
|
||||
/* This is the common case: skb goes to the end. */
|
||||
/* Detect and discard overlaps. */
|
||||
if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
|
||||
goto overlap;
|
||||
if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
|
||||
ip4_frag_append_to_last_run(&qp->q, skb);
|
||||
else
|
||||
ip4_frag_create_run(&qp->q, skb);
|
||||
} else {
|
||||
/* Binary search. Note that skb can become the first fragment,
|
||||
* but not the last (covered above).
|
||||
*/
|
||||
rbn = &qp->q.rb_fragments.rb_node;
|
||||
do {
|
||||
parent = *rbn;
|
||||
skb1 = rb_to_skb(parent);
|
||||
skb1_run_end = skb1->ip_defrag_offset +
|
||||
FRAG_CB(skb1)->frag_run_len;
|
||||
if (end <= skb1->ip_defrag_offset)
|
||||
rbn = &parent->rb_left;
|
||||
else if (offset >= skb1_run_end)
|
||||
rbn = &parent->rb_right;
|
||||
else if (offset >= skb1->ip_defrag_offset &&
|
||||
end <= skb1_run_end)
|
||||
goto err; /* No new data, potential duplicate */
|
||||
else
|
||||
goto overlap; /* Found an overlap */
|
||||
} while (*rbn);
|
||||
/* Here we have parent properly set, and rbn pointing to
|
||||
* one of its NULL left/right children. Insert skb.
|
||||
*/
|
||||
ip4_frag_init_run(skb);
|
||||
rb_link_node(&skb->rbnode, parent, rbn);
|
||||
rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
|
||||
}
|
||||
err = inet_frag_queue_insert(&qp->q, skb, offset, end);
|
||||
if (err)
|
||||
goto insert_error;
|
||||
|
||||
if (dev)
|
||||
qp->iif = dev->ifindex;
|
||||
skb->ip_defrag_offset = offset;
|
||||
|
||||
qp->q.stamp = skb->tstamp;
|
||||
qp->q.meat += skb->len;
|
||||
@ -501,10 +381,16 @@ static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
|
||||
skb_dst_drop(skb);
|
||||
return -EINPROGRESS;
|
||||
|
||||
overlap:
|
||||
insert_error:
|
||||
if (err == IPFRAG_DUP) {
|
||||
kfree_skb(skb);
|
||||
return -EINVAL;
|
||||
}
|
||||
err = -EINVAL;
|
||||
__IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS);
|
||||
discard_qp:
|
||||
inet_frag_kill(&qp->q);
|
||||
__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
|
||||
err:
|
||||
kfree_skb(skb);
|
||||
return err;
|
||||
@ -516,13 +402,8 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
||||
{
|
||||
struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
|
||||
struct iphdr *iph;
|
||||
struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments);
|
||||
struct sk_buff **nextp; /* To build frag_list. */
|
||||
struct rb_node *rbn;
|
||||
int len;
|
||||
int ihlen;
|
||||
int delta;
|
||||
int err;
|
||||
void *reasm_data;
|
||||
int len, err;
|
||||
u8 ecn;
|
||||
|
||||
ipq_kill(qp);
|
||||
@ -532,117 +413,23 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
||||
err = -EINVAL;
|
||||
goto out_fail;
|
||||
}
|
||||
|
||||
/* Make the one we just received the head. */
|
||||
if (head != skb) {
|
||||
fp = skb_clone(skb, GFP_ATOMIC);
|
||||
if (!fp)
|
||||
goto out_nomem;
|
||||
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
|
||||
if (RB_EMPTY_NODE(&skb->rbnode))
|
||||
FRAG_CB(prev_tail)->next_frag = fp;
|
||||
else
|
||||
rb_replace_node(&skb->rbnode, &fp->rbnode,
|
||||
&qp->q.rb_fragments);
|
||||
if (qp->q.fragments_tail == skb)
|
||||
qp->q.fragments_tail = fp;
|
||||
skb_morph(skb, head);
|
||||
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
|
||||
rb_replace_node(&head->rbnode, &skb->rbnode,
|
||||
&qp->q.rb_fragments);
|
||||
consume_skb(head);
|
||||
head = skb;
|
||||
}
|
||||
|
||||
WARN_ON(head->ip_defrag_offset != 0);
|
||||
|
||||
/* Allocate a new buffer for the datagram. */
|
||||
ihlen = ip_hdrlen(head);
|
||||
len = ihlen + qp->q.len;
|
||||
reasm_data = inet_frag_reasm_prepare(&qp->q, skb, prev_tail);
|
||||
if (!reasm_data)
|
||||
goto out_nomem;
|
||||
|
||||
len = ip_hdrlen(skb) + qp->q.len;
|
||||
err = -E2BIG;
|
||||
if (len > 65535)
|
||||
goto out_oversize;
|
||||
|
||||
delta = - head->truesize;
|
||||
inet_frag_reasm_finish(&qp->q, skb, reasm_data);
|
||||
|
||||
/* Head of list must not be cloned. */
|
||||
if (skb_unclone(head, GFP_ATOMIC))
|
||||
goto out_nomem;
|
||||
skb->dev = dev;
|
||||
IPCB(skb)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
|
||||
|
||||
delta += head->truesize;
|
||||
if (delta)
|
||||
add_frag_mem_limit(qp->q.net, delta);
|
||||
|
||||
/* If the first fragment is fragmented itself, we split
|
||||
* it to two chunks: the first with data and paged part
|
||||
* and the second, holding only fragments. */
|
||||
if (skb_has_frag_list(head)) {
|
||||
struct sk_buff *clone;
|
||||
int i, plen = 0;
|
||||
|
||||
clone = alloc_skb(0, GFP_ATOMIC);
|
||||
if (!clone)
|
||||
goto out_nomem;
|
||||
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
|
||||
skb_frag_list_init(head);
|
||||
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
|
||||
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
|
||||
clone->len = clone->data_len = head->data_len - plen;
|
||||
head->truesize += clone->truesize;
|
||||
clone->csum = 0;
|
||||
clone->ip_summed = head->ip_summed;
|
||||
add_frag_mem_limit(qp->q.net, clone->truesize);
|
||||
skb_shinfo(head)->frag_list = clone;
|
||||
nextp = &clone->next;
|
||||
} else {
|
||||
nextp = &skb_shinfo(head)->frag_list;
|
||||
}
|
||||
|
||||
skb_push(head, head->data - skb_network_header(head));
|
||||
|
||||
/* Traverse the tree in order, to build frag_list. */
|
||||
fp = FRAG_CB(head)->next_frag;
|
||||
rbn = rb_next(&head->rbnode);
|
||||
rb_erase(&head->rbnode, &qp->q.rb_fragments);
|
||||
while (rbn || fp) {
|
||||
/* fp points to the next sk_buff in the current run;
|
||||
* rbn points to the next run.
|
||||
*/
|
||||
/* Go through the current run. */
|
||||
while (fp) {
|
||||
*nextp = fp;
|
||||
nextp = &fp->next;
|
||||
fp->prev = NULL;
|
||||
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
|
||||
fp->sk = NULL;
|
||||
head->data_len += fp->len;
|
||||
head->len += fp->len;
|
||||
if (head->ip_summed != fp->ip_summed)
|
||||
head->ip_summed = CHECKSUM_NONE;
|
||||
else if (head->ip_summed == CHECKSUM_COMPLETE)
|
||||
head->csum = csum_add(head->csum, fp->csum);
|
||||
head->truesize += fp->truesize;
|
||||
fp = FRAG_CB(fp)->next_frag;
|
||||
}
|
||||
/* Move to the next run. */
|
||||
if (rbn) {
|
||||
struct rb_node *rbnext = rb_next(rbn);
|
||||
|
||||
fp = rb_to_skb(rbn);
|
||||
rb_erase(rbn, &qp->q.rb_fragments);
|
||||
rbn = rbnext;
|
||||
}
|
||||
}
|
||||
sub_frag_mem_limit(qp->q.net, head->truesize);
|
||||
|
||||
*nextp = NULL;
|
||||
skb_mark_not_on_list(head);
|
||||
head->prev = NULL;
|
||||
head->dev = dev;
|
||||
head->tstamp = qp->q.stamp;
|
||||
IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
|
||||
|
||||
iph = ip_hdr(head);
|
||||
iph = ip_hdr(skb);
|
||||
iph->tot_len = htons(len);
|
||||
iph->tos |= ecn;
|
||||
|
||||
@ -655,7 +442,7 @@ static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
|
||||
* from one very small df-fragment and one large non-df frag.
|
||||
*/
|
||||
if (qp->max_df_size == qp->q.max_size) {
|
||||
IPCB(head)->flags |= IPSKB_FRAG_PMTU;
|
||||
IPCB(skb)->flags |= IPSKB_FRAG_PMTU;
|
||||
iph->frag_off = htons(IP_DF);
|
||||
} else {
|
||||
iph->frag_off = 0;
|
||||
@ -753,28 +540,6 @@ struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
|
||||
}
|
||||
EXPORT_SYMBOL(ip_check_defrag);
|
||||
|
||||
unsigned int inet_frag_rbtree_purge(struct rb_root *root)
|
||||
{
|
||||
struct rb_node *p = rb_first(root);
|
||||
unsigned int sum = 0;
|
||||
|
||||
while (p) {
|
||||
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
|
||||
|
||||
p = rb_next(p);
|
||||
rb_erase(&skb->rbnode, root);
|
||||
while (skb) {
|
||||
struct sk_buff *next = FRAG_CB(skb)->next_frag;
|
||||
|
||||
sum += skb->truesize;
|
||||
kfree_skb(skb);
|
||||
skb = next;
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
EXPORT_SYMBOL(inet_frag_rbtree_purge);
|
||||
|
||||
#ifdef CONFIG_SYSCTL
|
||||
static int dist_min;
|
||||
|
||||
|
@ -136,6 +136,9 @@ static void __net_exit nf_ct_frags6_sysctl_unregister(struct net *net)
|
||||
}
|
||||
#endif
|
||||
|
||||
static int nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *skb,
|
||||
struct sk_buff *prev_tail, struct net_device *dev);
|
||||
|
||||
static inline u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h)
|
||||
{
|
||||
return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK);
|
||||
@ -177,9 +180,10 @@ static struct frag_queue *fq_find(struct net *net, __be32 id, u32 user,
|
||||
static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb,
|
||||
const struct frag_hdr *fhdr, int nhoff)
|
||||
{
|
||||
struct sk_buff *prev, *next;
|
||||
unsigned int payload_len;
|
||||
int offset, end;
|
||||
struct net_device *dev;
|
||||
struct sk_buff *prev;
|
||||
int offset, end, err;
|
||||
u8 ecn;
|
||||
|
||||
if (fq->q.flags & INET_FRAG_COMPLETE) {
|
||||
@ -254,55 +258,18 @@ static int nf_ct_frag6_queue(struct frag_queue *fq, struct sk_buff *skb,
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Find out which fragments are in front and at the back of us
|
||||
* in the chain of fragments so far. We must know where to put
|
||||
* this fragment, right?
|
||||
*/
|
||||
prev = fq->q.fragments_tail;
|
||||
if (!prev || prev->ip_defrag_offset < offset) {
|
||||
next = NULL;
|
||||
goto found;
|
||||
}
|
||||
prev = NULL;
|
||||
for (next = fq->q.fragments; next != NULL; next = next->next) {
|
||||
if (next->ip_defrag_offset >= offset)
|
||||
break; /* bingo! */
|
||||
prev = next;
|
||||
}
|
||||
|
||||
found:
|
||||
/* RFC5722, Section 4:
|
||||
* When reassembling an IPv6 datagram, if
|
||||
* one or more its constituent fragments is determined to be an
|
||||
* overlapping fragment, the entire datagram (and any constituent
|
||||
* fragments, including those not yet received) MUST be silently
|
||||
* discarded.
|
||||
*/
|
||||
|
||||
/* Check for overlap with preceding fragment. */
|
||||
if (prev &&
|
||||
(prev->ip_defrag_offset + prev->len) > offset)
|
||||
goto discard_fq;
|
||||
|
||||
/* Look for overlap with succeeding segment. */
|
||||
if (next && next->ip_defrag_offset < end)
|
||||
goto discard_fq;
|
||||
|
||||
/* Note : skb->ip_defrag_offset and skb->dev share the same location */
|
||||
if (skb->dev)
|
||||
fq->iif = skb->dev->ifindex;
|
||||
/* Note : skb->rbnode and skb->dev share the same location. */
|
||||
dev = skb->dev;
|
||||
/* Makes sure compiler wont do silly aliasing games */
|
||||
barrier();
|
||||
skb->ip_defrag_offset = offset;
|
||||
|
||||
/* Insert this fragment in the chain of fragments. */
|
||||
skb->next = next;
|
||||
if (!next)
|
||||
fq->q.fragments_tail = skb;
|
||||
if (prev)
|
||||
prev->next = skb;
|
||||
else
|
||||
fq->q.fragments = skb;
|
||||
prev = fq->q.fragments_tail;
|
||||
err = inet_frag_queue_insert(&fq->q, skb, offset, end);
|
||||
if (err)
|
||||
goto insert_error;
|
||||
|
||||
if (dev)
|
||||
fq->iif = dev->ifindex;
|
||||
|
||||
fq->q.stamp = skb->tstamp;
|
||||
fq->q.meat += skb->len;
|
||||
@ -319,11 +286,25 @@ found:
|
||||
fq->q.flags |= INET_FRAG_FIRST_IN;
|
||||
}
|
||||
|
||||
return 0;
|
||||
if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
|
||||
fq->q.meat == fq->q.len) {
|
||||
unsigned long orefdst = skb->_skb_refdst;
|
||||
|
||||
discard_fq:
|
||||
skb->_skb_refdst = 0UL;
|
||||
err = nf_ct_frag6_reasm(fq, skb, prev, dev);
|
||||
skb->_skb_refdst = orefdst;
|
||||
return err;
|
||||
}
|
||||
|
||||
skb_dst_drop(skb);
|
||||
return -EINPROGRESS;
|
||||
|
||||
insert_error:
|
||||
if (err == IPFRAG_DUP)
|
||||
goto err;
|
||||
inet_frag_kill(&fq->q);
|
||||
err:
|
||||
skb_dst_drop(skb);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
@ -333,147 +314,67 @@ err:
|
||||
* It is called with locked fq, and caller must check that
|
||||
* queue is eligible for reassembly i.e. it is not COMPLETE,
|
||||
* the last and the first frames arrived and all the bits are here.
|
||||
*
|
||||
* returns true if *prev skb has been transformed into the reassembled
|
||||
* skb, false otherwise.
|
||||
*/
|
||||
static bool
|
||||
nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *prev, struct net_device *dev)
|
||||
static int nf_ct_frag6_reasm(struct frag_queue *fq, struct sk_buff *skb,
|
||||
struct sk_buff *prev_tail, struct net_device *dev)
|
||||
{
|
||||
struct sk_buff *fp, *head = fq->q.fragments;
|
||||
int payload_len, delta;
|
||||
void *reasm_data;
|
||||
int payload_len;
|
||||
u8 ecn;
|
||||
|
||||
inet_frag_kill(&fq->q);
|
||||
|
||||
WARN_ON(head == NULL);
|
||||
WARN_ON(head->ip_defrag_offset != 0);
|
||||
|
||||
ecn = ip_frag_ecn_table[fq->ecn];
|
||||
if (unlikely(ecn == 0xff))
|
||||
return false;
|
||||
goto err;
|
||||
|
||||
/* Unfragmented part is taken from the first segment. */
|
||||
payload_len = ((head->data - skb_network_header(head)) -
|
||||
reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail);
|
||||
if (!reasm_data)
|
||||
goto err;
|
||||
|
||||
payload_len = ((skb->data - skb_network_header(skb)) -
|
||||
sizeof(struct ipv6hdr) + fq->q.len -
|
||||
sizeof(struct frag_hdr));
|
||||
if (payload_len > IPV6_MAXPLEN) {
|
||||
net_dbg_ratelimited("nf_ct_frag6_reasm: payload len = %d\n",
|
||||
payload_len);
|
||||
return false;
|
||||
}
|
||||
|
||||
delta = - head->truesize;
|
||||
|
||||
/* Head of list must not be cloned. */
|
||||
if (skb_unclone(head, GFP_ATOMIC))
|
||||
return false;
|
||||
|
||||
delta += head->truesize;
|
||||
if (delta)
|
||||
add_frag_mem_limit(fq->q.net, delta);
|
||||
|
||||
/* If the first fragment is fragmented itself, we split
|
||||
* it to two chunks: the first with data and paged part
|
||||
* and the second, holding only fragments. */
|
||||
if (skb_has_frag_list(head)) {
|
||||
struct sk_buff *clone;
|
||||
int i, plen = 0;
|
||||
|
||||
clone = alloc_skb(0, GFP_ATOMIC);
|
||||
if (clone == NULL)
|
||||
return false;
|
||||
|
||||
clone->next = head->next;
|
||||
head->next = clone;
|
||||
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
|
||||
skb_frag_list_init(head);
|
||||
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
|
||||
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
|
||||
clone->len = clone->data_len = head->data_len - plen;
|
||||
head->data_len -= clone->len;
|
||||
head->len -= clone->len;
|
||||
clone->csum = 0;
|
||||
clone->ip_summed = head->ip_summed;
|
||||
|
||||
add_frag_mem_limit(fq->q.net, clone->truesize);
|
||||
}
|
||||
|
||||
/* morph head into last received skb: prev.
|
||||
*
|
||||
* This allows callers of ipv6 conntrack defrag to continue
|
||||
* to use the last skb(frag) passed into the reasm engine.
|
||||
* The last skb frag 'silently' turns into the full reassembled skb.
|
||||
*
|
||||
* Since prev is also part of q->fragments we have to clone it first.
|
||||
*/
|
||||
if (head != prev) {
|
||||
struct sk_buff *iter;
|
||||
|
||||
fp = skb_clone(prev, GFP_ATOMIC);
|
||||
if (!fp)
|
||||
return false;
|
||||
|
||||
fp->next = prev->next;
|
||||
|
||||
iter = head;
|
||||
while (iter) {
|
||||
if (iter->next == prev) {
|
||||
iter->next = fp;
|
||||
break;
|
||||
}
|
||||
iter = iter->next;
|
||||
}
|
||||
|
||||
skb_morph(prev, head);
|
||||
prev->next = head->next;
|
||||
consume_skb(head);
|
||||
head = prev;
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* We have to remove fragment header from datagram and to relocate
|
||||
* header in order to calculate ICV correctly. */
|
||||
skb_network_header(head)[fq->nhoffset] = skb_transport_header(head)[0];
|
||||
memmove(head->head + sizeof(struct frag_hdr), head->head,
|
||||
(head->data - head->head) - sizeof(struct frag_hdr));
|
||||
head->mac_header += sizeof(struct frag_hdr);
|
||||
head->network_header += sizeof(struct frag_hdr);
|
||||
skb_network_header(skb)[fq->nhoffset] = skb_transport_header(skb)[0];
|
||||
memmove(skb->head + sizeof(struct frag_hdr), skb->head,
|
||||
(skb->data - skb->head) - sizeof(struct frag_hdr));
|
||||
skb->mac_header += sizeof(struct frag_hdr);
|
||||
skb->network_header += sizeof(struct frag_hdr);
|
||||
|
||||
skb_shinfo(head)->frag_list = head->next;
|
||||
skb_reset_transport_header(head);
|
||||
skb_push(head, head->data - skb_network_header(head));
|
||||
skb_reset_transport_header(skb);
|
||||
|
||||
for (fp = head->next; fp; fp = fp->next) {
|
||||
head->data_len += fp->len;
|
||||
head->len += fp->len;
|
||||
if (head->ip_summed != fp->ip_summed)
|
||||
head->ip_summed = CHECKSUM_NONE;
|
||||
else if (head->ip_summed == CHECKSUM_COMPLETE)
|
||||
head->csum = csum_add(head->csum, fp->csum);
|
||||
head->truesize += fp->truesize;
|
||||
fp->sk = NULL;
|
||||
}
|
||||
sub_frag_mem_limit(fq->q.net, head->truesize);
|
||||
inet_frag_reasm_finish(&fq->q, skb, reasm_data);
|
||||
|
||||
head->ignore_df = 1;
|
||||
skb_mark_not_on_list(head);
|
||||
head->dev = dev;
|
||||
head->tstamp = fq->q.stamp;
|
||||
ipv6_hdr(head)->payload_len = htons(payload_len);
|
||||
ipv6_change_dsfield(ipv6_hdr(head), 0xff, ecn);
|
||||
IP6CB(head)->frag_max_size = sizeof(struct ipv6hdr) + fq->q.max_size;
|
||||
skb->ignore_df = 1;
|
||||
skb->dev = dev;
|
||||
ipv6_hdr(skb)->payload_len = htons(payload_len);
|
||||
ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn);
|
||||
IP6CB(skb)->frag_max_size = sizeof(struct ipv6hdr) + fq->q.max_size;
|
||||
|
||||
/* Yes, and fold redundant checksum back. 8) */
|
||||
if (head->ip_summed == CHECKSUM_COMPLETE)
|
||||
head->csum = csum_partial(skb_network_header(head),
|
||||
skb_network_header_len(head),
|
||||
head->csum);
|
||||
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
||||
skb->csum = csum_partial(skb_network_header(skb),
|
||||
skb_network_header_len(skb),
|
||||
skb->csum);
|
||||
|
||||
fq->q.fragments = NULL;
|
||||
fq->q.rb_fragments = RB_ROOT;
|
||||
fq->q.fragments_tail = NULL;
|
||||
fq->q.last_run_head = NULL;
|
||||
|
||||
return true;
|
||||
return 0;
|
||||
|
||||
err:
|
||||
inet_frag_kill(&fq->q);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -542,7 +443,6 @@ find_prev_fhdr(struct sk_buff *skb, u8 *prevhdrp, int *prevhoff, int *fhoff)
|
||||
int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user)
|
||||
{
|
||||
u16 savethdr = skb->transport_header;
|
||||
struct net_device *dev = skb->dev;
|
||||
int fhoff, nhoff, ret;
|
||||
struct frag_hdr *fhdr;
|
||||
struct frag_queue *fq;
|
||||
@ -565,10 +465,6 @@ int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user)
|
||||
hdr = ipv6_hdr(skb);
|
||||
fhdr = (struct frag_hdr *)skb_transport_header(skb);
|
||||
|
||||
if (skb->len - skb_network_offset(skb) < IPV6_MIN_MTU &&
|
||||
fhdr->frag_off & htons(IP6_MF))
|
||||
return -EINVAL;
|
||||
|
||||
skb_orphan(skb);
|
||||
fq = fq_find(net, fhdr->identification, user, hdr,
|
||||
skb->dev ? skb->dev->ifindex : 0);
|
||||
@ -580,31 +476,17 @@ int nf_ct_frag6_gather(struct net *net, struct sk_buff *skb, u32 user)
|
||||
spin_lock_bh(&fq->q.lock);
|
||||
|
||||
ret = nf_ct_frag6_queue(fq, skb, fhdr, nhoff);
|
||||
if (ret < 0) {
|
||||
if (ret == -EPROTO) {
|
||||
skb->transport_header = savethdr;
|
||||
ret = 0;
|
||||
}
|
||||
goto out_unlock;
|
||||
if (ret == -EPROTO) {
|
||||
skb->transport_header = savethdr;
|
||||
ret = 0;
|
||||
}
|
||||
|
||||
/* after queue has assumed skb ownership, only 0 or -EINPROGRESS
|
||||
* must be returned.
|
||||
*/
|
||||
ret = -EINPROGRESS;
|
||||
if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
|
||||
fq->q.meat == fq->q.len) {
|
||||
unsigned long orefdst = skb->_skb_refdst;
|
||||
if (ret)
|
||||
ret = -EINPROGRESS;
|
||||
|
||||
skb->_skb_refdst = 0UL;
|
||||
if (nf_ct_frag6_reasm(fq, skb, dev))
|
||||
ret = 0;
|
||||
skb->_skb_refdst = orefdst;
|
||||
} else {
|
||||
skb_dst_drop(skb);
|
||||
}
|
||||
|
||||
out_unlock:
|
||||
spin_unlock_bh(&fq->q.lock);
|
||||
inet_frag_put(&fq->q);
|
||||
return ret;
|
||||
|
@ -69,8 +69,8 @@ static u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h)
|
||||
|
||||
static struct inet_frags ip6_frags;
|
||||
|
||||
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
|
||||
struct net_device *dev);
|
||||
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb,
|
||||
struct sk_buff *prev_tail, struct net_device *dev);
|
||||
|
||||
static void ip6_frag_expire(struct timer_list *t)
|
||||
{
|
||||
@ -111,21 +111,26 @@ static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
|
||||
struct frag_hdr *fhdr, int nhoff,
|
||||
u32 *prob_offset)
|
||||
{
|
||||
struct sk_buff *prev, *next;
|
||||
struct net_device *dev;
|
||||
int offset, end, fragsize;
|
||||
struct net *net = dev_net(skb_dst(skb)->dev);
|
||||
int offset, end, fragsize;
|
||||
struct sk_buff *prev_tail;
|
||||
struct net_device *dev;
|
||||
int err = -ENOENT;
|
||||
u8 ecn;
|
||||
|
||||
if (fq->q.flags & INET_FRAG_COMPLETE)
|
||||
goto err;
|
||||
|
||||
err = -EINVAL;
|
||||
offset = ntohs(fhdr->frag_off) & ~0x7;
|
||||
end = offset + (ntohs(ipv6_hdr(skb)->payload_len) -
|
||||
((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1)));
|
||||
|
||||
if ((unsigned int)end > IPV6_MAXPLEN) {
|
||||
*prob_offset = (u8 *)&fhdr->frag_off - skb_network_header(skb);
|
||||
/* note that if prob_offset is set, the skb is freed elsewhere,
|
||||
* we do not free it here.
|
||||
*/
|
||||
return -1;
|
||||
}
|
||||
|
||||
@ -170,62 +175,27 @@ static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb,
|
||||
if (end == offset)
|
||||
goto discard_fq;
|
||||
|
||||
err = -ENOMEM;
|
||||
/* Point into the IP datagram 'data' part. */
|
||||
if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data))
|
||||
goto discard_fq;
|
||||
|
||||
if (pskb_trim_rcsum(skb, end - offset))
|
||||
err = pskb_trim_rcsum(skb, end - offset);
|
||||
if (err)
|
||||
goto discard_fq;
|
||||
|
||||
/* Find out which fragments are in front and at the back of us
|
||||
* in the chain of fragments so far. We must know where to put
|
||||
* this fragment, right?
|
||||
*/
|
||||
prev = fq->q.fragments_tail;
|
||||
if (!prev || prev->ip_defrag_offset < offset) {
|
||||
next = NULL;
|
||||
goto found;
|
||||
}
|
||||
prev = NULL;
|
||||
for (next = fq->q.fragments; next != NULL; next = next->next) {
|
||||
if (next->ip_defrag_offset >= offset)
|
||||
break; /* bingo! */
|
||||
prev = next;
|
||||
}
|
||||
|
||||
found:
|
||||
/* RFC5722, Section 4, amended by Errata ID : 3089
|
||||
* When reassembling an IPv6 datagram, if
|
||||
* one or more its constituent fragments is determined to be an
|
||||
* overlapping fragment, the entire datagram (and any constituent
|
||||
* fragments) MUST be silently discarded.
|
||||
*/
|
||||
|
||||
/* Check for overlap with preceding fragment. */
|
||||
if (prev &&
|
||||
(prev->ip_defrag_offset + prev->len) > offset)
|
||||
goto discard_fq;
|
||||
|
||||
/* Look for overlap with succeeding segment. */
|
||||
if (next && next->ip_defrag_offset < end)
|
||||
goto discard_fq;
|
||||
|
||||
/* Note : skb->ip_defrag_offset and skb->sk share the same location */
|
||||
/* Note : skb->rbnode and skb->dev share the same location. */
|
||||
dev = skb->dev;
|
||||
if (dev)
|
||||
fq->iif = dev->ifindex;
|
||||
/* Makes sure compiler wont do silly aliasing games */
|
||||
barrier();
|
||||
skb->ip_defrag_offset = offset;
|
||||
|
||||
/* Insert this fragment in the chain of fragments. */
|
||||
skb->next = next;
|
||||
if (!next)
|
||||
fq->q.fragments_tail = skb;
|
||||
if (prev)
|
||||
prev->next = skb;
|
||||
else
|
||||
fq->q.fragments = skb;
|
||||
prev_tail = fq->q.fragments_tail;
|
||||
err = inet_frag_queue_insert(&fq->q, skb, offset, end);
|
||||
if (err)
|
||||
goto insert_error;
|
||||
|
||||
if (dev)
|
||||
fq->iif = dev->ifindex;
|
||||
|
||||
fq->q.stamp = skb->tstamp;
|
||||
fq->q.meat += skb->len;
|
||||
@ -246,44 +216,48 @@ found:
|
||||
|
||||
if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
|
||||
fq->q.meat == fq->q.len) {
|
||||
int res;
|
||||
unsigned long orefdst = skb->_skb_refdst;
|
||||
|
||||
skb->_skb_refdst = 0UL;
|
||||
res = ip6_frag_reasm(fq, prev, dev);
|
||||
err = ip6_frag_reasm(fq, skb, prev_tail, dev);
|
||||
skb->_skb_refdst = orefdst;
|
||||
return res;
|
||||
return err;
|
||||
}
|
||||
|
||||
skb_dst_drop(skb);
|
||||
return -1;
|
||||
return -EINPROGRESS;
|
||||
|
||||
insert_error:
|
||||
if (err == IPFRAG_DUP) {
|
||||
kfree_skb(skb);
|
||||
return -EINVAL;
|
||||
}
|
||||
err = -EINVAL;
|
||||
__IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
|
||||
IPSTATS_MIB_REASM_OVERLAPS);
|
||||
discard_fq:
|
||||
inet_frag_kill(&fq->q);
|
||||
err:
|
||||
__IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
|
||||
IPSTATS_MIB_REASMFAILS);
|
||||
err:
|
||||
kfree_skb(skb);
|
||||
return -1;
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if this packet is complete.
|
||||
* Returns NULL on failure by any reason, and pointer
|
||||
* to current nexthdr field in reassembled frame.
|
||||
*
|
||||
* It is called with locked fq, and caller must check that
|
||||
* queue is eligible for reassembly i.e. it is not COMPLETE,
|
||||
* the last and the first frames arrived and all the bits are here.
|
||||
*/
|
||||
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
|
||||
struct net_device *dev)
|
||||
static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb,
|
||||
struct sk_buff *prev_tail, struct net_device *dev)
|
||||
{
|
||||
struct net *net = container_of(fq->q.net, struct net, ipv6.frags);
|
||||
struct sk_buff *fp, *head = fq->q.fragments;
|
||||
int payload_len, delta;
|
||||
unsigned int nhoff;
|
||||
int sum_truesize;
|
||||
void *reasm_data;
|
||||
int payload_len;
|
||||
u8 ecn;
|
||||
|
||||
inet_frag_kill(&fq->q);
|
||||
@ -292,121 +266,40 @@ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
|
||||
if (unlikely(ecn == 0xff))
|
||||
goto out_fail;
|
||||
|
||||
/* Make the one we just received the head. */
|
||||
if (prev) {
|
||||
head = prev->next;
|
||||
fp = skb_clone(head, GFP_ATOMIC);
|
||||
reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail);
|
||||
if (!reasm_data)
|
||||
goto out_oom;
|
||||
|
||||
if (!fp)
|
||||
goto out_oom;
|
||||
|
||||
fp->next = head->next;
|
||||
if (!fp->next)
|
||||
fq->q.fragments_tail = fp;
|
||||
prev->next = fp;
|
||||
|
||||
skb_morph(head, fq->q.fragments);
|
||||
head->next = fq->q.fragments->next;
|
||||
|
||||
consume_skb(fq->q.fragments);
|
||||
fq->q.fragments = head;
|
||||
}
|
||||
|
||||
WARN_ON(head == NULL);
|
||||
WARN_ON(head->ip_defrag_offset != 0);
|
||||
|
||||
/* Unfragmented part is taken from the first segment. */
|
||||
payload_len = ((head->data - skb_network_header(head)) -
|
||||
payload_len = ((skb->data - skb_network_header(skb)) -
|
||||
sizeof(struct ipv6hdr) + fq->q.len -
|
||||
sizeof(struct frag_hdr));
|
||||
if (payload_len > IPV6_MAXPLEN)
|
||||
goto out_oversize;
|
||||
|
||||
delta = - head->truesize;
|
||||
|
||||
/* Head of list must not be cloned. */
|
||||
if (skb_unclone(head, GFP_ATOMIC))
|
||||
goto out_oom;
|
||||
|
||||
delta += head->truesize;
|
||||
if (delta)
|
||||
add_frag_mem_limit(fq->q.net, delta);
|
||||
|
||||
/* If the first fragment is fragmented itself, we split
|
||||
* it to two chunks: the first with data and paged part
|
||||
* and the second, holding only fragments. */
|
||||
if (skb_has_frag_list(head)) {
|
||||
struct sk_buff *clone;
|
||||
int i, plen = 0;
|
||||
|
||||
clone = alloc_skb(0, GFP_ATOMIC);
|
||||
if (!clone)
|
||||
goto out_oom;
|
||||
clone->next = head->next;
|
||||
head->next = clone;
|
||||
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
|
||||
skb_frag_list_init(head);
|
||||
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
|
||||
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
|
||||
clone->len = clone->data_len = head->data_len - plen;
|
||||
head->data_len -= clone->len;
|
||||
head->len -= clone->len;
|
||||
clone->csum = 0;
|
||||
clone->ip_summed = head->ip_summed;
|
||||
add_frag_mem_limit(fq->q.net, clone->truesize);
|
||||
}
|
||||
|
||||
/* We have to remove fragment header from datagram and to relocate
|
||||
* header in order to calculate ICV correctly. */
|
||||
nhoff = fq->nhoffset;
|
||||
skb_network_header(head)[nhoff] = skb_transport_header(head)[0];
|
||||
memmove(head->head + sizeof(struct frag_hdr), head->head,
|
||||
(head->data - head->head) - sizeof(struct frag_hdr));
|
||||
if (skb_mac_header_was_set(head))
|
||||
head->mac_header += sizeof(struct frag_hdr);
|
||||
head->network_header += sizeof(struct frag_hdr);
|
||||
skb_network_header(skb)[nhoff] = skb_transport_header(skb)[0];
|
||||
memmove(skb->head + sizeof(struct frag_hdr), skb->head,
|
||||
(skb->data - skb->head) - sizeof(struct frag_hdr));
|
||||
if (skb_mac_header_was_set(skb))
|
||||
skb->mac_header += sizeof(struct frag_hdr);
|
||||
skb->network_header += sizeof(struct frag_hdr);
|
||||
|
||||
skb_reset_transport_header(head);
|
||||
skb_push(head, head->data - skb_network_header(head));
|
||||
skb_reset_transport_header(skb);
|
||||
|
||||
sum_truesize = head->truesize;
|
||||
for (fp = head->next; fp;) {
|
||||
bool headstolen;
|
||||
int delta;
|
||||
struct sk_buff *next = fp->next;
|
||||
inet_frag_reasm_finish(&fq->q, skb, reasm_data);
|
||||
|
||||
sum_truesize += fp->truesize;
|
||||
if (head->ip_summed != fp->ip_summed)
|
||||
head->ip_summed = CHECKSUM_NONE;
|
||||
else if (head->ip_summed == CHECKSUM_COMPLETE)
|
||||
head->csum = csum_add(head->csum, fp->csum);
|
||||
|
||||
if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
|
||||
kfree_skb_partial(fp, headstolen);
|
||||
} else {
|
||||
fp->sk = NULL;
|
||||
if (!skb_shinfo(head)->frag_list)
|
||||
skb_shinfo(head)->frag_list = fp;
|
||||
head->data_len += fp->len;
|
||||
head->len += fp->len;
|
||||
head->truesize += fp->truesize;
|
||||
}
|
||||
fp = next;
|
||||
}
|
||||
sub_frag_mem_limit(fq->q.net, sum_truesize);
|
||||
|
||||
skb_mark_not_on_list(head);
|
||||
head->dev = dev;
|
||||
head->tstamp = fq->q.stamp;
|
||||
ipv6_hdr(head)->payload_len = htons(payload_len);
|
||||
ipv6_change_dsfield(ipv6_hdr(head), 0xff, ecn);
|
||||
IP6CB(head)->nhoff = nhoff;
|
||||
IP6CB(head)->flags |= IP6SKB_FRAGMENTED;
|
||||
IP6CB(head)->frag_max_size = fq->q.max_size;
|
||||
skb->dev = dev;
|
||||
ipv6_hdr(skb)->payload_len = htons(payload_len);
|
||||
ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn);
|
||||
IP6CB(skb)->nhoff = nhoff;
|
||||
IP6CB(skb)->flags |= IP6SKB_FRAGMENTED;
|
||||
IP6CB(skb)->frag_max_size = fq->q.max_size;
|
||||
|
||||
/* Yes, and fold redundant checksum back. 8) */
|
||||
skb_postpush_rcsum(head, skb_network_header(head),
|
||||
skb_network_header_len(head));
|
||||
skb_postpush_rcsum(skb, skb_network_header(skb),
|
||||
skb_network_header_len(skb));
|
||||
|
||||
rcu_read_lock();
|
||||
__IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMOKS);
|
||||
@ -414,6 +307,7 @@ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *prev,
|
||||
fq->q.fragments = NULL;
|
||||
fq->q.rb_fragments = RB_ROOT;
|
||||
fq->q.fragments_tail = NULL;
|
||||
fq->q.last_run_head = NULL;
|
||||
return 1;
|
||||
|
||||
out_oversize:
|
||||
@ -464,10 +358,6 @@ static int ipv6_frag_rcv(struct sk_buff *skb)
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (skb->len - skb_network_offset(skb) < IPV6_MIN_MTU &&
|
||||
fhdr->frag_off & htons(IP6_MF))
|
||||
goto fail_hdr;
|
||||
|
||||
iif = skb->dev ? skb->dev->ifindex : 0;
|
||||
fq = fq_find(net, fhdr->identification, hdr, iif);
|
||||
if (fq) {
|
||||
@ -485,6 +375,7 @@ static int ipv6_frag_rcv(struct sk_buff *skb)
|
||||
if (prob_offset) {
|
||||
__IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev),
|
||||
IPSTATS_MIB_INHDRERRORS);
|
||||
/* icmpv6_param_prob() calls kfree_skb(skb) */
|
||||
icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, prob_offset);
|
||||
}
|
||||
return ret;
|
||||
|
@ -20,6 +20,7 @@ static bool cfg_do_ipv4;
|
||||
static bool cfg_do_ipv6;
|
||||
static bool cfg_verbose;
|
||||
static bool cfg_overlap;
|
||||
static bool cfg_permissive;
|
||||
static unsigned short cfg_port = 9000;
|
||||
|
||||
const struct in_addr addr4 = { .s_addr = __constant_htonl(INADDR_LOOPBACK + 2) };
|
||||
@ -35,7 +36,7 @@ const struct in6_addr addr6 = IN6ADDR_LOOPBACK_INIT;
|
||||
static int payload_len;
|
||||
static int max_frag_len;
|
||||
|
||||
#define MSG_LEN_MAX 60000 /* Max UDP payload length. */
|
||||
#define MSG_LEN_MAX 10000 /* Max UDP payload length. */
|
||||
|
||||
#define IP4_MF (1u << 13) /* IPv4 MF flag. */
|
||||
#define IP6_MF (1) /* IPv6 MF flag. */
|
||||
@ -59,13 +60,14 @@ static void recv_validate_udp(int fd_udp)
|
||||
msg_counter++;
|
||||
|
||||
if (cfg_overlap) {
|
||||
if (ret != -1)
|
||||
error(1, 0, "recv: expected timeout; got %d",
|
||||
(int)ret);
|
||||
if (errno != ETIMEDOUT && errno != EAGAIN)
|
||||
error(1, errno, "recv: expected timeout: %d",
|
||||
errno);
|
||||
return; /* OK */
|
||||
if (ret == -1 && (errno == ETIMEDOUT || errno == EAGAIN))
|
||||
return; /* OK */
|
||||
if (!cfg_permissive) {
|
||||
if (ret != -1)
|
||||
error(1, 0, "recv: expected timeout; got %d",
|
||||
(int)ret);
|
||||
error(1, errno, "recv: expected timeout: %d", errno);
|
||||
}
|
||||
}
|
||||
|
||||
if (ret == -1)
|
||||
@ -203,7 +205,6 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr,
|
||||
{
|
||||
struct ip *iphdr = (struct ip *)ip_frame;
|
||||
struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame;
|
||||
const bool ipv4 = !ipv6;
|
||||
int res;
|
||||
int offset;
|
||||
int frag_len;
|
||||
@ -251,7 +252,7 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr,
|
||||
}
|
||||
|
||||
/* Occasionally test IPv4 "runs" (see net/ipv4/ip_fragment.c) */
|
||||
if (ipv4 && !cfg_overlap && (rand() % 100 < 20) &&
|
||||
if (!cfg_overlap && (rand() % 100 < 20) &&
|
||||
(payload_len > 9 * max_frag_len)) {
|
||||
offset = 6 * max_frag_len;
|
||||
while (offset < (UDP_HLEN + payload_len)) {
|
||||
@ -276,41 +277,38 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr,
|
||||
while (offset < (UDP_HLEN + payload_len)) {
|
||||
send_fragment(fd_raw, addr, alen, offset, ipv6);
|
||||
/* IPv4 ignores duplicates, so randomly send a duplicate. */
|
||||
if (ipv4 && (1 == rand() % 100))
|
||||
if (rand() % 100 == 1)
|
||||
send_fragment(fd_raw, addr, alen, offset, ipv6);
|
||||
offset += 2 * max_frag_len;
|
||||
}
|
||||
|
||||
if (cfg_overlap) {
|
||||
/* Send an extra random fragment. */
|
||||
/* Send an extra random fragment.
|
||||
*
|
||||
* Duplicates and some fragments completely inside
|
||||
* previously sent fragments are dropped/ignored. So
|
||||
* random offset and frag_len can result in a dropped
|
||||
* fragment instead of a dropped queue/packet. Thus we
|
||||
* hard-code offset and frag_len.
|
||||
*/
|
||||
if (max_frag_len * 4 < payload_len || max_frag_len < 16) {
|
||||
/* not enough payload for random offset and frag_len. */
|
||||
offset = 8;
|
||||
frag_len = UDP_HLEN + max_frag_len;
|
||||
} else {
|
||||
offset = rand() % (payload_len / 2);
|
||||
frag_len = 2 * max_frag_len + 1 + rand() % 256;
|
||||
}
|
||||
if (ipv6) {
|
||||
struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
|
||||
/* sendto() returns EINVAL if offset + frag_len is too small. */
|
||||
offset = rand() % (UDP_HLEN + payload_len - 1);
|
||||
frag_len = max_frag_len + rand() % 256;
|
||||
/* In IPv6 if !!(frag_len % 8), the fragment is dropped. */
|
||||
frag_len &= ~0x7;
|
||||
fraghdr->ip6f_offlg = htons(offset / 8 | IP6_MF);
|
||||
ip6hdr->ip6_plen = htons(frag_len);
|
||||
frag_len += IP6_HLEN;
|
||||
} else {
|
||||
/* In IPv4, duplicates and some fragments completely inside
|
||||
* previously sent fragments are dropped/ignored. So
|
||||
* random offset and frag_len can result in a dropped
|
||||
* fragment instead of a dropped queue/packet. So we
|
||||
* hard-code offset and frag_len.
|
||||
*
|
||||
* See ade446403bfb ("net: ipv4: do not handle duplicate
|
||||
* fragments as overlapping").
|
||||
*/
|
||||
if (max_frag_len * 4 < payload_len || max_frag_len < 16) {
|
||||
/* not enough payload to play with random offset and frag_len. */
|
||||
offset = 8;
|
||||
frag_len = IP4_HLEN + UDP_HLEN + max_frag_len;
|
||||
} else {
|
||||
offset = rand() % (payload_len / 2);
|
||||
frag_len = 2 * max_frag_len + 1 + rand() % 256;
|
||||
}
|
||||
frag_len += IP4_HLEN;
|
||||
iphdr->ip_off = htons(offset / 8 | IP4_MF);
|
||||
iphdr->ip_len = htons(frag_len);
|
||||
}
|
||||
@ -327,7 +325,7 @@ static void send_udp_frags(int fd_raw, struct sockaddr *addr,
|
||||
while (offset < (UDP_HLEN + payload_len)) {
|
||||
send_fragment(fd_raw, addr, alen, offset, ipv6);
|
||||
/* IPv4 ignores duplicates, so randomly send a duplicate. */
|
||||
if (ipv4 && (1 == rand() % 100))
|
||||
if (rand() % 100 == 1)
|
||||
send_fragment(fd_raw, addr, alen, offset, ipv6);
|
||||
offset += 2 * max_frag_len;
|
||||
}
|
||||
@ -342,7 +340,7 @@ static void run_test(struct sockaddr *addr, socklen_t alen, bool ipv6)
|
||||
*/
|
||||
struct timeval tv = { .tv_sec = 1, .tv_usec = 10 };
|
||||
int idx;
|
||||
int min_frag_len = ipv6 ? 1280 : 8;
|
||||
int min_frag_len = 8;
|
||||
|
||||
/* Initialize the payload. */
|
||||
for (idx = 0; idx < MSG_LEN_MAX; ++idx)
|
||||
@ -434,7 +432,7 @@ static void parse_opts(int argc, char **argv)
|
||||
{
|
||||
int c;
|
||||
|
||||
while ((c = getopt(argc, argv, "46ov")) != -1) {
|
||||
while ((c = getopt(argc, argv, "46opv")) != -1) {
|
||||
switch (c) {
|
||||
case '4':
|
||||
cfg_do_ipv4 = true;
|
||||
@ -445,6 +443,9 @@ static void parse_opts(int argc, char **argv)
|
||||
case 'o':
|
||||
cfg_overlap = true;
|
||||
break;
|
||||
case 'p':
|
||||
cfg_permissive = true;
|
||||
break;
|
||||
case 'v':
|
||||
cfg_verbose = true;
|
||||
break;
|
||||
|
@ -20,6 +20,10 @@ setup() {
|
||||
ip netns exec "${NETNS}" sysctl -w net.ipv6.ip6frag_low_thresh=7000000 >/dev/null 2>&1
|
||||
ip netns exec "${NETNS}" sysctl -w net.ipv6.ip6frag_time=1 >/dev/null 2>&1
|
||||
|
||||
ip netns exec "${NETNS}" sysctl -w net.netfilter.nf_conntrack_frag6_high_thresh=9000000 >/dev/null 2>&1
|
||||
ip netns exec "${NETNS}" sysctl -w net.netfilter.nf_conntrack_frag6_low_thresh=7000000 >/dev/null 2>&1
|
||||
ip netns exec "${NETNS}" sysctl -w net.netfilter.nf_conntrack_frag6_timeout=1 >/dev/null 2>&1
|
||||
|
||||
# DST cache can get full with a lot of frags, with GC not keeping up with the test.
|
||||
ip netns exec "${NETNS}" sysctl -w net.ipv6.route.max_size=65536 >/dev/null 2>&1
|
||||
}
|
||||
@ -43,4 +47,16 @@ ip netns exec "${NETNS}" ./ip_defrag -6
|
||||
echo "ipv6 defrag with overlaps"
|
||||
ip netns exec "${NETNS}" ./ip_defrag -6o
|
||||
|
||||
# insert an nf_conntrack rule so that the codepath in nf_conntrack_reasm.c taken
|
||||
ip netns exec "${NETNS}" ip6tables -A INPUT -m conntrack --ctstate INVALID -j ACCEPT
|
||||
|
||||
echo "ipv6 nf_conntrack defrag"
|
||||
ip netns exec "${NETNS}" ./ip_defrag -6
|
||||
|
||||
echo "ipv6 nf_conntrack defrag with overlaps"
|
||||
# netfilter will drop some invalid packets, so we run the test in
|
||||
# permissive mode: i.e. pass the test if the packet is correctly assembled
|
||||
# even if we sent an overlap
|
||||
ip netns exec "${NETNS}" ./ip_defrag -6op
|
||||
|
||||
echo "all tests done"
|
||||
|
Loading…
Reference in New Issue
Block a user