md: tidy up status_resync to handle large arrays.
Two problems in status_resync. 1/ It still used Kilobytes as the basic block unit, while most code now uses sectors uniformly. 2/ It doesn't allow for the possibility that max_sectors exceeds the range of "unsigned long". So - change "max_blocks" to "max_sectors", and store sector numbers in there and in 'resync' - Make 'rt' a 'sector_t' so it can temporarily hold the number of remaining sectors. - use sector_div rather than normal division. - change the magic '100' used to preserve precision to '32'. + making it a power of 2 makes division easier + it doesn't need to be as large as it was chosen when we averaged speed over the entire run. Now we average speed over the last 30 seconds or so. Reported-by: "Mario 'BitKoenig' Holbe" <Mario.Holbe@TU-Ilmenau.DE> Signed-off-by: NeilBrown <neilb@suse.de>
This commit is contained in:
parent
db305e507d
commit
dd71cf6b27
@ -5705,37 +5705,38 @@ static void status_unused(struct seq_file *seq)
|
||||
|
||||
static void status_resync(struct seq_file *seq, mddev_t * mddev)
|
||||
{
|
||||
sector_t max_blocks, resync, res;
|
||||
unsigned long dt, db, rt;
|
||||
sector_t max_sectors, resync, res;
|
||||
unsigned long dt, db;
|
||||
sector_t rt;
|
||||
int scale;
|
||||
unsigned int per_milli;
|
||||
|
||||
resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
|
||||
resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
|
||||
|
||||
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
|
||||
max_blocks = mddev->resync_max_sectors >> 1;
|
||||
max_sectors = mddev->resync_max_sectors;
|
||||
else
|
||||
max_blocks = mddev->dev_sectors / 2;
|
||||
max_sectors = mddev->dev_sectors;
|
||||
|
||||
/*
|
||||
* Should not happen.
|
||||
*/
|
||||
if (!max_blocks) {
|
||||
if (!max_sectors) {
|
||||
MD_BUG();
|
||||
return;
|
||||
}
|
||||
/* Pick 'scale' such that (resync>>scale)*1000 will fit
|
||||
* in a sector_t, and (max_blocks>>scale) will fit in a
|
||||
* in a sector_t, and (max_sectors>>scale) will fit in a
|
||||
* u32, as those are the requirements for sector_div.
|
||||
* Thus 'scale' must be at least 10
|
||||
*/
|
||||
scale = 10;
|
||||
if (sizeof(sector_t) > sizeof(unsigned long)) {
|
||||
while ( max_blocks/2 > (1ULL<<(scale+32)))
|
||||
while ( max_sectors/2 > (1ULL<<(scale+32)))
|
||||
scale++;
|
||||
}
|
||||
res = (resync>>scale)*1000;
|
||||
sector_div(res, (u32)((max_blocks>>scale)+1));
|
||||
sector_div(res, (u32)((max_sectors>>scale)+1));
|
||||
|
||||
per_milli = res;
|
||||
{
|
||||
@ -5756,25 +5757,35 @@ static void status_resync(struct seq_file *seq, mddev_t * mddev)
|
||||
(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
|
||||
"resync" : "recovery"))),
|
||||
per_milli/10, per_milli % 10,
|
||||
(unsigned long long) resync,
|
||||
(unsigned long long) max_blocks);
|
||||
(unsigned long long) resync/2,
|
||||
(unsigned long long) max_sectors/2);
|
||||
|
||||
/*
|
||||
* We do not want to overflow, so the order of operands and
|
||||
* the * 100 / 100 trick are important. We do a +1 to be
|
||||
* safe against division by zero. We only estimate anyway.
|
||||
*
|
||||
* dt: time from mark until now
|
||||
* db: blocks written from mark until now
|
||||
* rt: remaining time
|
||||
*
|
||||
* rt is a sector_t, so could be 32bit or 64bit.
|
||||
* So we divide before multiply in case it is 32bit and close
|
||||
* to the limit.
|
||||
* We scale the divisor (db) by 32 to avoid loosing precision
|
||||
* near the end of resync when the number of remaining sectors
|
||||
* is close to 'db'.
|
||||
* We then divide rt by 32 after multiplying by db to compensate.
|
||||
* The '+1' avoids division by zero if db is very small.
|
||||
*/
|
||||
dt = ((jiffies - mddev->resync_mark) / HZ);
|
||||
if (!dt) dt++;
|
||||
db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
|
||||
- mddev->resync_mark_cnt;
|
||||
rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
|
||||
|
||||
seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
|
||||
rt = max_sectors - resync; /* number of remaining sectors */
|
||||
sector_div(rt, db/32+1);
|
||||
rt *= dt;
|
||||
rt >>= 5;
|
||||
|
||||
seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
|
||||
((unsigned long)rt % 60)/6);
|
||||
|
||||
seq_printf(seq, " speed=%ldK/sec", db/2/dt);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user