alpha: Enable the rpcc clocksource for single processor

Don't depend on SMP, just check the number of processors online.
This allows a single distribution kernel to use the clocksource
when run on a single processor machine.  Do depend on whether or
not we're using WTINT.

Signed-off-by: Richard Henderson <rth@twiddle.net>
This commit is contained in:
Richard Henderson 2013-07-14 09:55:08 -07:00 committed by Matt Turner
parent 85d0b3a573
commit db2d326061

View File

@ -184,6 +184,37 @@ common_init_rtc(void)
init_rtc_irq();
}
#ifndef CONFIG_ALPHA_WTINT
/*
* The RPCC as a clocksource primitive.
*
* While we have free-running timecounters running on all CPUs, and we make
* a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
* with the wall clock, that initialization isn't kept up-to-date across
* different time counters in SMP mode. Therefore we can only use this
* method when there's only one CPU enabled.
*
* When using the WTINT PALcall, the RPCC may shift to a lower frequency,
* or stop altogether, while waiting for the interrupt. Therefore we cannot
* use this method when WTINT is in use.
*/
static cycle_t read_rpcc(struct clocksource *cs)
{
return rpcc();
}
static struct clocksource clocksource_rpcc = {
.name = "rpcc",
.rating = 300,
.read = read_rpcc,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS
};
#endif /* ALPHA_WTINT */
/* Validate a computed cycle counter result against the known bounds for
the given processor core. There's too much brokenness in the way of
timing hardware for any one method to work everywhere. :-(
@ -294,33 +325,6 @@ rpcc_after_update_in_progress(void)
return rpcc();
}
#ifndef CONFIG_SMP
/* Until and unless we figure out how to get cpu cycle counters
in sync and keep them there, we can't use the rpcc. */
static cycle_t read_rpcc(struct clocksource *cs)
{
cycle_t ret = (cycle_t)rpcc();
return ret;
}
static struct clocksource clocksource_rpcc = {
.name = "rpcc",
.rating = 300,
.read = read_rpcc,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS
};
static inline void register_rpcc_clocksource(long cycle_freq)
{
clocksource_register_hz(&clocksource_rpcc, cycle_freq);
}
#else /* !CONFIG_SMP */
static inline void register_rpcc_clocksource(long cycle_freq)
{
}
#endif /* !CONFIG_SMP */
void __init
time_init(void)
{
@ -362,20 +366,23 @@ time_init(void)
"and unable to estimate a proper value!\n");
}
/* See above for restrictions on using clocksource_rpcc. */
#ifndef CONFIG_ALPHA_WTINT
if (hwrpb->nr_processors == 1)
clocksource_register_hz(&clocksource_rpcc, cycle_freq);
#endif
/* From John Bowman <bowman@math.ualberta.ca>: allow the values
to settle, as the Update-In-Progress bit going low isn't good
enough on some hardware. 2ms is our guess; we haven't found
bogomips yet, but this is close on a 500Mhz box. */
__delay(1000000);
if (HZ > (1<<16)) {
extern void __you_loose (void);
__you_loose();
}
register_rpcc_clocksource(cycle_freq);
state.last_time = cc1;
state.scaled_ticks_per_cycle
= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;