crypto: twofish - add AVX2/x86_64 assembler implementation of twofish cipher

Patch adds AVX2/x86-64 implementation of Twofish cipher, requiring 16 parallel
blocks for input (256 bytes). Table look-ups are performed using vpgatherdd
instruction directly from vector registers and thus should be faster than
earlier implementations. Implementation also uses 256-bit wide YMM registers,
which should give additional speed up compared to the AVX implementation.

Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Jussi Kivilinna 2013-04-13 13:46:50 +03:00 committed by Herbert Xu
parent 6048801070
commit cf1521a1a5
8 changed files with 1432 additions and 2 deletions

View File

@ -43,6 +43,7 @@ endif
# These modules require assembler to support AVX2.
ifeq ($(avx2_supported),yes)
obj-$(CONFIG_CRYPTO_BLOWFISH_AVX2_X86_64) += blowfish-avx2.o
obj-$(CONFIG_CRYPTO_TWOFISH_AVX2_X86_64) += twofish-avx2.o
endif
aes-i586-y := aes-i586-asm_32.o aes_glue.o
@ -71,6 +72,7 @@ endif
ifeq ($(avx2_supported),yes)
blowfish-avx2-y := blowfish-avx2-asm_64.o blowfish_avx2_glue.o
twofish-avx2-y := twofish-avx2-asm_64.o twofish_avx2_glue.o
endif
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o fpu.o

View File

@ -0,0 +1,180 @@
/*
* Shared glue code for 128bit block ciphers, AVX2 assembler macros
*
* Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#define load_16way(src, x0, x1, x2, x3, x4, x5, x6, x7) \
vmovdqu (0*32)(src), x0; \
vmovdqu (1*32)(src), x1; \
vmovdqu (2*32)(src), x2; \
vmovdqu (3*32)(src), x3; \
vmovdqu (4*32)(src), x4; \
vmovdqu (5*32)(src), x5; \
vmovdqu (6*32)(src), x6; \
vmovdqu (7*32)(src), x7;
#define store_16way(dst, x0, x1, x2, x3, x4, x5, x6, x7) \
vmovdqu x0, (0*32)(dst); \
vmovdqu x1, (1*32)(dst); \
vmovdqu x2, (2*32)(dst); \
vmovdqu x3, (3*32)(dst); \
vmovdqu x4, (4*32)(dst); \
vmovdqu x5, (5*32)(dst); \
vmovdqu x6, (6*32)(dst); \
vmovdqu x7, (7*32)(dst);
#define store_cbc_16way(src, dst, x0, x1, x2, x3, x4, x5, x6, x7, t0) \
vpxor t0, t0, t0; \
vinserti128 $1, (src), t0, t0; \
vpxor t0, x0, x0; \
vpxor (0*32+16)(src), x1, x1; \
vpxor (1*32+16)(src), x2, x2; \
vpxor (2*32+16)(src), x3, x3; \
vpxor (3*32+16)(src), x4, x4; \
vpxor (4*32+16)(src), x5, x5; \
vpxor (5*32+16)(src), x6, x6; \
vpxor (6*32+16)(src), x7, x7; \
store_16way(dst, x0, x1, x2, x3, x4, x5, x6, x7);
#define inc_le128(x, minus_one, tmp) \
vpcmpeqq minus_one, x, tmp; \
vpsubq minus_one, x, x; \
vpslldq $8, tmp, tmp; \
vpsubq tmp, x, x;
#define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
vpcmpeqq minus_one, x, tmp1; \
vpcmpeqq minus_two, x, tmp2; \
vpsubq minus_two, x, x; \
vpor tmp2, tmp1, tmp1; \
vpslldq $8, tmp1, tmp1; \
vpsubq tmp1, x, x;
#define load_ctr_16way(iv, bswap, x0, x1, x2, x3, x4, x5, x6, x7, t0, t0x, t1, \
t1x, t2, t2x, t3, t3x, t4, t5) \
vpcmpeqd t0, t0, t0; \
vpsrldq $8, t0, t0; /* ab: -1:0 ; cd: -1:0 */ \
vpaddq t0, t0, t4; /* ab: -2:0 ; cd: -2:0 */\
\
/* load IV and byteswap */ \
vmovdqu (iv), t2x; \
vmovdqa t2x, t3x; \
inc_le128(t2x, t0x, t1x); \
vbroadcasti128 bswap, t1; \
vinserti128 $1, t2x, t3, t2; /* ab: le0 ; cd: le1 */ \
vpshufb t1, t2, x0; \
\
/* construct IVs */ \
add2_le128(t2, t0, t4, t3, t5); /* ab: le2 ; cd: le3 */ \
vpshufb t1, t2, x1; \
add2_le128(t2, t0, t4, t3, t5); \
vpshufb t1, t2, x2; \
add2_le128(t2, t0, t4, t3, t5); \
vpshufb t1, t2, x3; \
add2_le128(t2, t0, t4, t3, t5); \
vpshufb t1, t2, x4; \
add2_le128(t2, t0, t4, t3, t5); \
vpshufb t1, t2, x5; \
add2_le128(t2, t0, t4, t3, t5); \
vpshufb t1, t2, x6; \
add2_le128(t2, t0, t4, t3, t5); \
vpshufb t1, t2, x7; \
vextracti128 $1, t2, t2x; \
inc_le128(t2x, t0x, t3x); \
vmovdqu t2x, (iv);
#define store_ctr_16way(src, dst, x0, x1, x2, x3, x4, x5, x6, x7) \
vpxor (0*32)(src), x0, x0; \
vpxor (1*32)(src), x1, x1; \
vpxor (2*32)(src), x2, x2; \
vpxor (3*32)(src), x3, x3; \
vpxor (4*32)(src), x4, x4; \
vpxor (5*32)(src), x5, x5; \
vpxor (6*32)(src), x6, x6; \
vpxor (7*32)(src), x7, x7; \
store_16way(dst, x0, x1, x2, x3, x4, x5, x6, x7);
#define gf128mul_x_ble(iv, mask, tmp) \
vpsrad $31, iv, tmp; \
vpaddq iv, iv, iv; \
vpshufd $0x13, tmp, tmp; \
vpand mask, tmp, tmp; \
vpxor tmp, iv, iv;
#define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
vpsrad $31, iv, tmp0; \
vpaddq iv, iv, tmp1; \
vpsllq $2, iv, iv; \
vpshufd $0x13, tmp0, tmp0; \
vpsrad $31, tmp1, tmp1; \
vpand mask2, tmp0, tmp0; \
vpshufd $0x13, tmp1, tmp1; \
vpxor tmp0, iv, iv; \
vpand mask1, tmp1, tmp1; \
vpxor tmp1, iv, iv;
#define load_xts_16way(iv, src, dst, x0, x1, x2, x3, x4, x5, x6, x7, tiv, \
tivx, t0, t0x, t1, t1x, t2, t2x, t3, \
xts_gf128mul_and_shl1_mask_0, \
xts_gf128mul_and_shl1_mask_1) \
vbroadcasti128 xts_gf128mul_and_shl1_mask_0, t1; \
\
/* load IV and construct second IV */ \
vmovdqu (iv), tivx; \
vmovdqa tivx, t0x; \
gf128mul_x_ble(tivx, t1x, t2x); \
vbroadcasti128 xts_gf128mul_and_shl1_mask_1, t2; \
vinserti128 $1, tivx, t0, tiv; \
vpxor (0*32)(src), tiv, x0; \
vmovdqu tiv, (0*32)(dst); \
\
/* construct and store IVs, also xor with source */ \
gf128mul_x2_ble(tiv, t1, t2, t0, t3); \
vpxor (1*32)(src), tiv, x1; \
vmovdqu tiv, (1*32)(dst); \
\
gf128mul_x2_ble(tiv, t1, t2, t0, t3); \
vpxor (2*32)(src), tiv, x2; \
vmovdqu tiv, (2*32)(dst); \
\
gf128mul_x2_ble(tiv, t1, t2, t0, t3); \
vpxor (3*32)(src), tiv, x3; \
vmovdqu tiv, (3*32)(dst); \
\
gf128mul_x2_ble(tiv, t1, t2, t0, t3); \
vpxor (4*32)(src), tiv, x4; \
vmovdqu tiv, (4*32)(dst); \
\
gf128mul_x2_ble(tiv, t1, t2, t0, t3); \
vpxor (5*32)(src), tiv, x5; \
vmovdqu tiv, (5*32)(dst); \
\
gf128mul_x2_ble(tiv, t1, t2, t0, t3); \
vpxor (6*32)(src), tiv, x6; \
vmovdqu tiv, (6*32)(dst); \
\
gf128mul_x2_ble(tiv, t1, t2, t0, t3); \
vpxor (7*32)(src), tiv, x7; \
vmovdqu tiv, (7*32)(dst); \
\
vextracti128 $1, tiv, tivx; \
gf128mul_x_ble(tivx, t1x, t2x); \
vmovdqu tivx, (iv);
#define store_xts_16way(dst, x0, x1, x2, x3, x4, x5, x6, x7) \
vpxor (0*32)(dst), x0, x0; \
vpxor (1*32)(dst), x1, x1; \
vpxor (2*32)(dst), x2, x2; \
vpxor (3*32)(dst), x3, x3; \
vpxor (4*32)(dst), x4, x4; \
vpxor (5*32)(dst), x5, x5; \
vpxor (6*32)(dst), x6, x6; \
vpxor (7*32)(dst), x7, x7; \
store_16way(dst, x0, x1, x2, x3, x4, x5, x6, x7);

View File

@ -0,0 +1,600 @@
/*
* x86_64/AVX2 assembler optimized version of Twofish
*
* Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/linkage.h>
#include "glue_helper-asm-avx2.S"
.file "twofish-avx2-asm_64.S"
.data
.align 16
.Lvpshufb_mask0:
.long 0x80808000
.long 0x80808004
.long 0x80808008
.long 0x8080800c
.Lbswap128_mask:
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
.Lxts_gf128mul_and_shl1_mask_0:
.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
.Lxts_gf128mul_and_shl1_mask_1:
.byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
.text
/* structure of crypto context */
#define s0 0
#define s1 1024
#define s2 2048
#define s3 3072
#define w 4096
#define k 4128
/* register macros */
#define CTX %rdi
#define RS0 CTX
#define RS1 %r8
#define RS2 %r9
#define RS3 %r10
#define RK %r11
#define RW %rax
#define RROUND %r12
#define RROUNDd %r12d
#define RA0 %ymm8
#define RB0 %ymm9
#define RC0 %ymm10
#define RD0 %ymm11
#define RA1 %ymm12
#define RB1 %ymm13
#define RC1 %ymm14
#define RD1 %ymm15
/* temp regs */
#define RX0 %ymm0
#define RY0 %ymm1
#define RX1 %ymm2
#define RY1 %ymm3
#define RT0 %ymm4
#define RIDX %ymm5
#define RX0x %xmm0
#define RY0x %xmm1
#define RX1x %xmm2
#define RY1x %xmm3
#define RT0x %xmm4
/* vpgatherdd mask and '-1' */
#define RNOT %ymm6
/* byte mask, (-1 >> 24) */
#define RBYTE %ymm7
/**********************************************************************
16-way AVX2 twofish
**********************************************************************/
#define init_round_constants() \
vpcmpeqd RNOT, RNOT, RNOT; \
vpsrld $24, RNOT, RBYTE; \
leaq k(CTX), RK; \
leaq w(CTX), RW; \
leaq s1(CTX), RS1; \
leaq s2(CTX), RS2; \
leaq s3(CTX), RS3; \
#define g16(ab, rs0, rs1, rs2, rs3, xy) \
vpand RBYTE, ab ## 0, RIDX; \
vpgatherdd RNOT, (rs0, RIDX, 4), xy ## 0; \
vpcmpeqd RNOT, RNOT, RNOT; \
\
vpand RBYTE, ab ## 1, RIDX; \
vpgatherdd RNOT, (rs0, RIDX, 4), xy ## 1; \
vpcmpeqd RNOT, RNOT, RNOT; \
\
vpsrld $8, ab ## 0, RIDX; \
vpand RBYTE, RIDX, RIDX; \
vpgatherdd RNOT, (rs1, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 0, xy ## 0; \
\
vpsrld $8, ab ## 1, RIDX; \
vpand RBYTE, RIDX, RIDX; \
vpgatherdd RNOT, (rs1, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 1, xy ## 1; \
\
vpsrld $16, ab ## 0, RIDX; \
vpand RBYTE, RIDX, RIDX; \
vpgatherdd RNOT, (rs2, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 0, xy ## 0; \
\
vpsrld $16, ab ## 1, RIDX; \
vpand RBYTE, RIDX, RIDX; \
vpgatherdd RNOT, (rs2, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 1, xy ## 1; \
\
vpsrld $24, ab ## 0, RIDX; \
vpgatherdd RNOT, (rs3, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 0, xy ## 0; \
\
vpsrld $24, ab ## 1, RIDX; \
vpgatherdd RNOT, (rs3, RIDX, 4), RT0; \
vpcmpeqd RNOT, RNOT, RNOT; \
vpxor RT0, xy ## 1, xy ## 1;
#define g1_16(a, x) \
g16(a, RS0, RS1, RS2, RS3, x);
#define g2_16(b, y) \
g16(b, RS1, RS2, RS3, RS0, y);
#define encrypt_round_end16(a, b, c, d, nk) \
vpaddd RY0, RX0, RX0; \
vpaddd RX0, RY0, RY0; \
vpbroadcastd nk(RK,RROUND,8), RT0; \
vpaddd RT0, RX0, RX0; \
vpbroadcastd 4+nk(RK,RROUND,8), RT0; \
vpaddd RT0, RY0, RY0; \
\
vpxor RY0, d ## 0, d ## 0; \
\
vpxor RX0, c ## 0, c ## 0; \
vpsrld $1, c ## 0, RT0; \
vpslld $31, c ## 0, c ## 0; \
vpor RT0, c ## 0, c ## 0; \
\
vpaddd RY1, RX1, RX1; \
vpaddd RX1, RY1, RY1; \
vpbroadcastd nk(RK,RROUND,8), RT0; \
vpaddd RT0, RX1, RX1; \
vpbroadcastd 4+nk(RK,RROUND,8), RT0; \
vpaddd RT0, RY1, RY1; \
\
vpxor RY1, d ## 1, d ## 1; \
\
vpxor RX1, c ## 1, c ## 1; \
vpsrld $1, c ## 1, RT0; \
vpslld $31, c ## 1, c ## 1; \
vpor RT0, c ## 1, c ## 1; \
#define encrypt_round16(a, b, c, d, nk) \
g2_16(b, RY); \
\
vpslld $1, b ## 0, RT0; \
vpsrld $31, b ## 0, b ## 0; \
vpor RT0, b ## 0, b ## 0; \
\
vpslld $1, b ## 1, RT0; \
vpsrld $31, b ## 1, b ## 1; \
vpor RT0, b ## 1, b ## 1; \
\
g1_16(a, RX); \
\
encrypt_round_end16(a, b, c, d, nk);
#define encrypt_round_first16(a, b, c, d, nk) \
vpslld $1, d ## 0, RT0; \
vpsrld $31, d ## 0, d ## 0; \
vpor RT0, d ## 0, d ## 0; \
\
vpslld $1, d ## 1, RT0; \
vpsrld $31, d ## 1, d ## 1; \
vpor RT0, d ## 1, d ## 1; \
\
encrypt_round16(a, b, c, d, nk);
#define encrypt_round_last16(a, b, c, d, nk) \
g2_16(b, RY); \
\
g1_16(a, RX); \
\
encrypt_round_end16(a, b, c, d, nk);
#define decrypt_round_end16(a, b, c, d, nk) \
vpaddd RY0, RX0, RX0; \
vpaddd RX0, RY0, RY0; \
vpbroadcastd nk(RK,RROUND,8), RT0; \
vpaddd RT0, RX0, RX0; \
vpbroadcastd 4+nk(RK,RROUND,8), RT0; \
vpaddd RT0, RY0, RY0; \
\
vpxor RX0, c ## 0, c ## 0; \
\
vpxor RY0, d ## 0, d ## 0; \
vpsrld $1, d ## 0, RT0; \
vpslld $31, d ## 0, d ## 0; \
vpor RT0, d ## 0, d ## 0; \
\
vpaddd RY1, RX1, RX1; \
vpaddd RX1, RY1, RY1; \
vpbroadcastd nk(RK,RROUND,8), RT0; \
vpaddd RT0, RX1, RX1; \
vpbroadcastd 4+nk(RK,RROUND,8), RT0; \
vpaddd RT0, RY1, RY1; \
\
vpxor RX1, c ## 1, c ## 1; \
\
vpxor RY1, d ## 1, d ## 1; \
vpsrld $1, d ## 1, RT0; \
vpslld $31, d ## 1, d ## 1; \
vpor RT0, d ## 1, d ## 1;
#define decrypt_round16(a, b, c, d, nk) \
g1_16(a, RX); \
\
vpslld $1, a ## 0, RT0; \
vpsrld $31, a ## 0, a ## 0; \
vpor RT0, a ## 0, a ## 0; \
\
vpslld $1, a ## 1, RT0; \
vpsrld $31, a ## 1, a ## 1; \
vpor RT0, a ## 1, a ## 1; \
\
g2_16(b, RY); \
\
decrypt_round_end16(a, b, c, d, nk);
#define decrypt_round_first16(a, b, c, d, nk) \
vpslld $1, c ## 0, RT0; \
vpsrld $31, c ## 0, c ## 0; \
vpor RT0, c ## 0, c ## 0; \
\
vpslld $1, c ## 1, RT0; \
vpsrld $31, c ## 1, c ## 1; \
vpor RT0, c ## 1, c ## 1; \
\
decrypt_round16(a, b, c, d, nk)
#define decrypt_round_last16(a, b, c, d, nk) \
g1_16(a, RX); \
\
g2_16(b, RY); \
\
decrypt_round_end16(a, b, c, d, nk);
#define encrypt_cycle16() \
encrypt_round16(RA, RB, RC, RD, 0); \
encrypt_round16(RC, RD, RA, RB, 8);
#define encrypt_cycle_first16() \
encrypt_round_first16(RA, RB, RC, RD, 0); \
encrypt_round16(RC, RD, RA, RB, 8);
#define encrypt_cycle_last16() \
encrypt_round16(RA, RB, RC, RD, 0); \
encrypt_round_last16(RC, RD, RA, RB, 8);
#define decrypt_cycle16(n) \
decrypt_round16(RC, RD, RA, RB, 8); \
decrypt_round16(RA, RB, RC, RD, 0);
#define decrypt_cycle_first16(n) \
decrypt_round_first16(RC, RD, RA, RB, 8); \
decrypt_round16(RA, RB, RC, RD, 0);
#define decrypt_cycle_last16(n) \
decrypt_round16(RC, RD, RA, RB, 8); \
decrypt_round_last16(RA, RB, RC, RD, 0);
#define transpose_4x4(x0,x1,x2,x3,t1,t2) \
vpunpckhdq x1, x0, t2; \
vpunpckldq x1, x0, x0; \
\
vpunpckldq x3, x2, t1; \
vpunpckhdq x3, x2, x2; \
\
vpunpckhqdq t1, x0, x1; \
vpunpcklqdq t1, x0, x0; \
\
vpunpckhqdq x2, t2, x3; \
vpunpcklqdq x2, t2, x2;
#define read_blocks8(offs,a,b,c,d) \
transpose_4x4(a, b, c, d, RX0, RY0);
#define write_blocks8(offs,a,b,c,d) \
transpose_4x4(a, b, c, d, RX0, RY0);
#define inpack_enc8(a,b,c,d) \
vpbroadcastd 4*0(RW), RT0; \
vpxor RT0, a, a; \
\
vpbroadcastd 4*1(RW), RT0; \
vpxor RT0, b, b; \
\
vpbroadcastd 4*2(RW), RT0; \
vpxor RT0, c, c; \
\
vpbroadcastd 4*3(RW), RT0; \
vpxor RT0, d, d;
#define outunpack_enc8(a,b,c,d) \
vpbroadcastd 4*4(RW), RX0; \
vpbroadcastd 4*5(RW), RY0; \
vpxor RX0, c, RX0; \
vpxor RY0, d, RY0; \
\
vpbroadcastd 4*6(RW), RT0; \
vpxor RT0, a, c; \
vpbroadcastd 4*7(RW), RT0; \
vpxor RT0, b, d; \
\
vmovdqa RX0, a; \
vmovdqa RY0, b;
#define inpack_dec8(a,b,c,d) \
vpbroadcastd 4*4(RW), RX0; \
vpbroadcastd 4*5(RW), RY0; \
vpxor RX0, a, RX0; \
vpxor RY0, b, RY0; \
\
vpbroadcastd 4*6(RW), RT0; \
vpxor RT0, c, a; \
vpbroadcastd 4*7(RW), RT0; \
vpxor RT0, d, b; \
\
vmovdqa RX0, c; \
vmovdqa RY0, d;
#define outunpack_dec8(a,b,c,d) \
vpbroadcastd 4*0(RW), RT0; \
vpxor RT0, a, a; \
\
vpbroadcastd 4*1(RW), RT0; \
vpxor RT0, b, b; \
\
vpbroadcastd 4*2(RW), RT0; \
vpxor RT0, c, c; \
\
vpbroadcastd 4*3(RW), RT0; \
vpxor RT0, d, d;
#define read_blocks16(a,b,c,d) \
read_blocks8(0, a ## 0, b ## 0, c ## 0, d ## 0); \
read_blocks8(8, a ## 1, b ## 1, c ## 1, d ## 1);
#define write_blocks16(a,b,c,d) \
write_blocks8(0, a ## 0, b ## 0, c ## 0, d ## 0); \
write_blocks8(8, a ## 1, b ## 1, c ## 1, d ## 1);
#define xor_blocks16(a,b,c,d) \
xor_blocks8(0, a ## 0, b ## 0, c ## 0, d ## 0); \
xor_blocks8(8, a ## 1, b ## 1, c ## 1, d ## 1);
#define inpack_enc16(a,b,c,d) \
inpack_enc8(a ## 0, b ## 0, c ## 0, d ## 0); \
inpack_enc8(a ## 1, b ## 1, c ## 1, d ## 1);
#define outunpack_enc16(a,b,c,d) \
outunpack_enc8(a ## 0, b ## 0, c ## 0, d ## 0); \
outunpack_enc8(a ## 1, b ## 1, c ## 1, d ## 1);
#define inpack_dec16(a,b,c,d) \
inpack_dec8(a ## 0, b ## 0, c ## 0, d ## 0); \
inpack_dec8(a ## 1, b ## 1, c ## 1, d ## 1);
#define outunpack_dec16(a,b,c,d) \
outunpack_dec8(a ## 0, b ## 0, c ## 0, d ## 0); \
outunpack_dec8(a ## 1, b ## 1, c ## 1, d ## 1);
.align 8
__twofish_enc_blk16:
/* input:
* %rdi: ctx, CTX
* RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: plaintext
* output:
* RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: ciphertext
*/
init_round_constants();
read_blocks16(RA, RB, RC, RD);
inpack_enc16(RA, RB, RC, RD);
xorl RROUNDd, RROUNDd;
encrypt_cycle_first16();
movl $2, RROUNDd;
.align 4
.L__enc_loop:
encrypt_cycle16();
addl $2, RROUNDd;
cmpl $14, RROUNDd;
jne .L__enc_loop;
encrypt_cycle_last16();
outunpack_enc16(RA, RB, RC, RD);
write_blocks16(RA, RB, RC, RD);
ret;
ENDPROC(__twofish_enc_blk16)
.align 8
__twofish_dec_blk16:
/* input:
* %rdi: ctx, CTX
* RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: ciphertext
* output:
* RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1: plaintext
*/
init_round_constants();
read_blocks16(RA, RB, RC, RD);
inpack_dec16(RA, RB, RC, RD);
movl $14, RROUNDd;
decrypt_cycle_first16();
movl $12, RROUNDd;
.align 4
.L__dec_loop:
decrypt_cycle16();
addl $-2, RROUNDd;
jnz .L__dec_loop;
decrypt_cycle_last16();
outunpack_dec16(RA, RB, RC, RD);
write_blocks16(RA, RB, RC, RD);
ret;
ENDPROC(__twofish_dec_blk16)
ENTRY(twofish_ecb_enc_16way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
vzeroupper;
pushq %r12;
load_16way(%rdx, RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1);
call __twofish_enc_blk16;
store_16way(%rsi, RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1);
popq %r12;
vzeroupper;
ret;
ENDPROC(twofish_ecb_enc_16way)
ENTRY(twofish_ecb_dec_16way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
vzeroupper;
pushq %r12;
load_16way(%rdx, RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1);
call __twofish_dec_blk16;
store_16way(%rsi, RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1);
popq %r12;
vzeroupper;
ret;
ENDPROC(twofish_ecb_dec_16way)
ENTRY(twofish_cbc_dec_16way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst
* %rdx: src
*/
vzeroupper;
pushq %r12;
load_16way(%rdx, RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1);
call __twofish_dec_blk16;
store_cbc_16way(%rdx, %rsi, RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1,
RX0);
popq %r12;
vzeroupper;
ret;
ENDPROC(twofish_cbc_dec_16way)
ENTRY(twofish_ctr_16way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: iv (little endian, 128bit)
*/
vzeroupper;
pushq %r12;
load_ctr_16way(%rcx, .Lbswap128_mask, RA0, RB0, RC0, RD0, RA1, RB1, RC1,
RD1, RX0, RX0x, RX1, RX1x, RY0, RY0x, RY1, RY1x, RNOT,
RBYTE);
call __twofish_enc_blk16;
store_ctr_16way(%rdx, %rsi, RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1);
popq %r12;
vzeroupper;
ret;
ENDPROC(twofish_ctr_16way)
.align 8
twofish_xts_crypt_16way:
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: iv (t α GF(2¹²))
* %r8: pointer to __twofish_enc_blk16 or __twofish_dec_blk16
*/
vzeroupper;
pushq %r12;
load_xts_16way(%rcx, %rdx, %rsi, RA0, RB0, RC0, RD0, RA1, RB1, RC1,
RD1, RX0, RX0x, RX1, RX1x, RY0, RY0x, RY1, RY1x, RNOT,
.Lxts_gf128mul_and_shl1_mask_0,
.Lxts_gf128mul_and_shl1_mask_1);
call *%r8;
store_xts_16way(%rsi, RA0, RB0, RC0, RD0, RA1, RB1, RC1, RD1);
popq %r12;
vzeroupper;
ret;
ENDPROC(twofish_xts_crypt_16way)
ENTRY(twofish_xts_enc_16way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: iv (t α GF(2¹²))
*/
leaq __twofish_enc_blk16, %r8;
jmp twofish_xts_crypt_16way;
ENDPROC(twofish_xts_enc_16way)
ENTRY(twofish_xts_dec_16way)
/* input:
* %rdi: ctx, CTX
* %rsi: dst (16 blocks)
* %rdx: src (16 blocks)
* %rcx: iv (t α GF(2¹²))
*/
leaq __twofish_dec_blk16, %r8;
jmp twofish_xts_crypt_16way;
ENDPROC(twofish_xts_dec_16way)

View File

@ -0,0 +1,584 @@
/*
* Glue Code for x86_64/AVX2 assembler optimized version of Twofish
*
* Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/ctr.h>
#include <crypto/twofish.h>
#include <crypto/lrw.h>
#include <crypto/xts.h>
#include <asm/xcr.h>
#include <asm/xsave.h>
#include <asm/crypto/twofish.h>
#include <asm/crypto/ablk_helper.h>
#include <asm/crypto/glue_helper.h>
#include <crypto/scatterwalk.h>
#define TF_AVX2_PARALLEL_BLOCKS 16
/* 16-way AVX2 parallel cipher functions */
asmlinkage void twofish_ecb_enc_16way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void twofish_ecb_dec_16way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void twofish_cbc_dec_16way(void *ctx, u128 *dst, const u128 *src);
asmlinkage void twofish_ctr_16way(void *ctx, u128 *dst, const u128 *src,
le128 *iv);
asmlinkage void twofish_xts_enc_16way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
asmlinkage void twofish_xts_dec_16way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
static inline void twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
{
__twofish_enc_blk_3way(ctx, dst, src, false);
}
static const struct common_glue_ctx twofish_enc = {
.num_funcs = 4,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .ecb = GLUE_FUNC_CAST(twofish_ecb_enc_16way) }
}, {
.num_blocks = 8,
.fn_u = { .ecb = GLUE_FUNC_CAST(twofish_ecb_enc_8way) }
}, {
.num_blocks = 3,
.fn_u = { .ecb = GLUE_FUNC_CAST(twofish_enc_blk_3way) }
}, {
.num_blocks = 1,
.fn_u = { .ecb = GLUE_FUNC_CAST(twofish_enc_blk) }
} }
};
static const struct common_glue_ctx twofish_ctr = {
.num_funcs = 4,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(twofish_ctr_16way) }
}, {
.num_blocks = 8,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(twofish_ctr_8way) }
}, {
.num_blocks = 3,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(twofish_enc_blk_ctr_3way) }
}, {
.num_blocks = 1,
.fn_u = { .ctr = GLUE_CTR_FUNC_CAST(twofish_enc_blk_ctr) }
} }
};
static const struct common_glue_ctx twofish_enc_xts = {
.num_funcs = 3,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_enc_16way) }
}, {
.num_blocks = 8,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_enc_8way) }
}, {
.num_blocks = 1,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_enc) }
} }
};
static const struct common_glue_ctx twofish_dec = {
.num_funcs = 4,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .ecb = GLUE_FUNC_CAST(twofish_ecb_dec_16way) }
}, {
.num_blocks = 8,
.fn_u = { .ecb = GLUE_FUNC_CAST(twofish_ecb_dec_8way) }
}, {
.num_blocks = 3,
.fn_u = { .ecb = GLUE_FUNC_CAST(twofish_dec_blk_3way) }
}, {
.num_blocks = 1,
.fn_u = { .ecb = GLUE_FUNC_CAST(twofish_dec_blk) }
} }
};
static const struct common_glue_ctx twofish_dec_cbc = {
.num_funcs = 4,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_cbc_dec_16way) }
}, {
.num_blocks = 8,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_cbc_dec_8way) }
}, {
.num_blocks = 3,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_dec_blk_cbc_3way) }
}, {
.num_blocks = 1,
.fn_u = { .cbc = GLUE_CBC_FUNC_CAST(twofish_dec_blk) }
} }
};
static const struct common_glue_ctx twofish_dec_xts = {
.num_funcs = 3,
.fpu_blocks_limit = 8,
.funcs = { {
.num_blocks = 16,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_dec_16way) }
}, {
.num_blocks = 8,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_dec_8way) }
}, {
.num_blocks = 1,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(twofish_xts_dec) }
} }
};
static int ecb_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ecb_crypt_128bit(&twofish_enc, desc, dst, src, nbytes);
}
static int ecb_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ecb_crypt_128bit(&twofish_dec, desc, dst, src, nbytes);
}
static int cbc_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_cbc_encrypt_128bit(GLUE_FUNC_CAST(twofish_enc_blk), desc,
dst, src, nbytes);
}
static int cbc_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_cbc_decrypt_128bit(&twofish_dec_cbc, desc, dst, src,
nbytes);
}
static int ctr_crypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
return glue_ctr_crypt_128bit(&twofish_ctr, desc, dst, src, nbytes);
}
static inline bool twofish_fpu_begin(bool fpu_enabled, unsigned int nbytes)
{
/* since reusing AVX functions, starts using FPU at 8 parallel blocks */
return glue_fpu_begin(TF_BLOCK_SIZE, 8, NULL, fpu_enabled, nbytes);
}
static inline void twofish_fpu_end(bool fpu_enabled)
{
glue_fpu_end(fpu_enabled);
}
struct crypt_priv {
struct twofish_ctx *ctx;
bool fpu_enabled;
};
static void encrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
{
const unsigned int bsize = TF_BLOCK_SIZE;
struct crypt_priv *ctx = priv;
int i;
ctx->fpu_enabled = twofish_fpu_begin(ctx->fpu_enabled, nbytes);
while (nbytes >= TF_AVX2_PARALLEL_BLOCKS * bsize) {
twofish_ecb_enc_16way(ctx->ctx, srcdst, srcdst);
srcdst += bsize * TF_AVX2_PARALLEL_BLOCKS;
nbytes -= bsize * TF_AVX2_PARALLEL_BLOCKS;
}
while (nbytes >= 8 * bsize) {
twofish_ecb_enc_8way(ctx->ctx, srcdst, srcdst);
srcdst += bsize * 8;
nbytes -= bsize * 8;
}
while (nbytes >= 3 * bsize) {
twofish_enc_blk_3way(ctx->ctx, srcdst, srcdst);
srcdst += bsize * 3;
nbytes -= bsize * 3;
}
for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
twofish_enc_blk(ctx->ctx, srcdst, srcdst);
}
static void decrypt_callback(void *priv, u8 *srcdst, unsigned int nbytes)
{
const unsigned int bsize = TF_BLOCK_SIZE;
struct crypt_priv *ctx = priv;
int i;
ctx->fpu_enabled = twofish_fpu_begin(ctx->fpu_enabled, nbytes);
while (nbytes >= TF_AVX2_PARALLEL_BLOCKS * bsize) {
twofish_ecb_dec_16way(ctx->ctx, srcdst, srcdst);
srcdst += bsize * TF_AVX2_PARALLEL_BLOCKS;
nbytes -= bsize * TF_AVX2_PARALLEL_BLOCKS;
}
while (nbytes >= 8 * bsize) {
twofish_ecb_dec_8way(ctx->ctx, srcdst, srcdst);
srcdst += bsize * 8;
nbytes -= bsize * 8;
}
while (nbytes >= 3 * bsize) {
twofish_dec_blk_3way(ctx->ctx, srcdst, srcdst);
srcdst += bsize * 3;
nbytes -= bsize * 3;
}
for (i = 0; i < nbytes / bsize; i++, srcdst += bsize)
twofish_dec_blk(ctx->ctx, srcdst, srcdst);
}
static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[TF_AVX2_PARALLEL_BLOCKS];
struct crypt_priv crypt_ctx = {
.ctx = &ctx->twofish_ctx,
.fpu_enabled = false,
};
struct lrw_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.table_ctx = &ctx->lrw_table,
.crypt_ctx = &crypt_ctx,
.crypt_fn = encrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ret = lrw_crypt(desc, dst, src, nbytes, &req);
twofish_fpu_end(crypt_ctx.fpu_enabled);
return ret;
}
static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[TF_AVX2_PARALLEL_BLOCKS];
struct crypt_priv crypt_ctx = {
.ctx = &ctx->twofish_ctx,
.fpu_enabled = false,
};
struct lrw_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.table_ctx = &ctx->lrw_table,
.crypt_ctx = &crypt_ctx,
.crypt_fn = decrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
ret = lrw_crypt(desc, dst, src, nbytes, &req);
twofish_fpu_end(crypt_ctx.fpu_enabled);
return ret;
}
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
return glue_xts_crypt_128bit(&twofish_enc_xts, desc, dst, src, nbytes,
XTS_TWEAK_CAST(twofish_enc_blk),
&ctx->tweak_ctx, &ctx->crypt_ctx);
}
static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct twofish_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
return glue_xts_crypt_128bit(&twofish_dec_xts, desc, dst, src, nbytes,
XTS_TWEAK_CAST(twofish_enc_blk),
&ctx->tweak_ctx, &ctx->crypt_ctx);
}
static struct crypto_alg tf_algs[10] = { {
.cra_name = "__ecb-twofish-avx2",
.cra_driver_name = "__driver-ecb-twofish-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.setkey = twofish_setkey,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
}, {
.cra_name = "__cbc-twofish-avx2",
.cra_driver_name = "__driver-cbc-twofish-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.setkey = twofish_setkey,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
}, {
.cra_name = "__ctr-twofish-avx2",
.cra_driver_name = "__driver-ctr-twofish-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct twofish_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = twofish_setkey,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
},
},
}, {
.cra_name = "__lrw-twofish-avx2",
.cra_driver_name = "__driver-lrw-twofish-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_lrw_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_exit = lrw_twofish_exit_tfm,
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE +
TF_BLOCK_SIZE,
.max_keysize = TF_MAX_KEY_SIZE +
TF_BLOCK_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = lrw_twofish_setkey,
.encrypt = lrw_encrypt,
.decrypt = lrw_decrypt,
},
},
}, {
.cra_name = "__xts-twofish-avx2",
.cra_driver_name = "__driver-xts-twofish-avx2",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct twofish_xts_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = TF_MIN_KEY_SIZE * 2,
.max_keysize = TF_MAX_KEY_SIZE * 2,
.ivsize = TF_BLOCK_SIZE,
.setkey = xts_twofish_setkey,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
},
},
}, {
.cra_name = "ecb(twofish)",
.cra_driver_name = "ecb-twofish-avx2",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "cbc(twofish)",
.cra_driver_name = "cbc-twofish-avx2",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = __ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "ctr(twofish)",
.cra_driver_name = "ctr-twofish-avx2",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE,
.max_keysize = TF_MAX_KEY_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_encrypt,
.geniv = "chainiv",
},
},
}, {
.cra_name = "lrw(twofish)",
.cra_driver_name = "lrw-twofish-avx2",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE +
TF_BLOCK_SIZE,
.max_keysize = TF_MAX_KEY_SIZE +
TF_BLOCK_SIZE,
.ivsize = TF_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "xts(twofish)",
.cra_driver_name = "xts-twofish-avx2",
.cra_priority = 500,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = TF_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = TF_MIN_KEY_SIZE * 2,
.max_keysize = TF_MAX_KEY_SIZE * 2,
.ivsize = TF_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
} };
static int __init init(void)
{
u64 xcr0;
if (!cpu_has_avx2 || !cpu_has_osxsave) {
pr_info("AVX2 instructions are not detected.\n");
return -ENODEV;
}
xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
if ((xcr0 & (XSTATE_SSE | XSTATE_YMM)) != (XSTATE_SSE | XSTATE_YMM)) {
pr_info("AVX2 detected but unusable.\n");
return -ENODEV;
}
return crypto_register_algs(tf_algs, ARRAY_SIZE(tf_algs));
}
static void __exit fini(void)
{
crypto_unregister_algs(tf_algs, ARRAY_SIZE(tf_algs));
}
module_init(init);
module_exit(fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Twofish Cipher Algorithm, AVX2 optimized");
MODULE_ALIAS("twofish");
MODULE_ALIAS("twofish-asm");

View File

@ -50,18 +50,26 @@
/* 8-way parallel cipher functions */
asmlinkage void twofish_ecb_enc_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
EXPORT_SYMBOL_GPL(twofish_ecb_enc_8way);
asmlinkage void twofish_ecb_dec_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
EXPORT_SYMBOL_GPL(twofish_ecb_dec_8way);
asmlinkage void twofish_cbc_dec_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
EXPORT_SYMBOL_GPL(twofish_cbc_dec_8way);
asmlinkage void twofish_ctr_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
EXPORT_SYMBOL_GPL(twofish_ctr_8way);
asmlinkage void twofish_xts_enc_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
EXPORT_SYMBOL_GPL(twofish_xts_enc_8way);
asmlinkage void twofish_xts_dec_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
EXPORT_SYMBOL_GPL(twofish_xts_dec_8way);
static inline void twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src)
@ -69,17 +77,19 @@ static inline void twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
__twofish_enc_blk_3way(ctx, dst, src, false);
}
static void twofish_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
void twofish_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
glue_xts_crypt_128bit_one(ctx, dst, src, iv,
GLUE_FUNC_CAST(twofish_enc_blk));
}
EXPORT_SYMBOL_GPL(twofish_xts_enc);
static void twofish_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
void twofish_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
glue_xts_crypt_128bit_one(ctx, dst, src, iv,
GLUE_FUNC_CAST(twofish_dec_blk));
}
EXPORT_SYMBOL_GPL(twofish_xts_dec);
static const struct common_glue_ctx twofish_enc = {

View File

@ -28,6 +28,20 @@ asmlinkage void __twofish_enc_blk_3way(struct twofish_ctx *ctx, u8 *dst,
asmlinkage void twofish_dec_blk_3way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
/* 8-way parallel cipher functions */
asmlinkage void twofish_ecb_enc_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void twofish_ecb_dec_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void twofish_cbc_dec_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src);
asmlinkage void twofish_ctr_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
asmlinkage void twofish_xts_enc_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
asmlinkage void twofish_xts_dec_8way(struct twofish_ctx *ctx, u8 *dst,
const u8 *src, le128 *iv);
/* helpers from twofish_x86_64-3way module */
extern void twofish_dec_blk_cbc_3way(void *ctx, u128 *dst, const u128 *src);
extern void twofish_enc_blk_ctr(void *ctx, u128 *dst, const u128 *src,
@ -43,4 +57,8 @@ extern void lrw_twofish_exit_tfm(struct crypto_tfm *tfm);
extern int xts_twofish_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen);
/* helpers from twofish-avx module */
extern void twofish_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv);
extern void twofish_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv);
#endif /* ASM_X86_TWOFISH_H */

View File

@ -1250,6 +1250,30 @@ config CRYPTO_TWOFISH_AVX_X86_64
See also:
<http://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_AVX2_X86_64
tristate "Twofish cipher algorithm (x86_64/AVX2)"
depends on X86 && 64BIT
select CRYPTO_ALGAPI
select CRYPTO_CRYPTD
select CRYPTO_ABLK_HELPER_X86
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_TWOFISH_COMMON
select CRYPTO_TWOFISH_X86_64
select CRYPTO_TWOFISH_X86_64_3WAY
select CRYPTO_TWOFISH_AVX_X86_64
select CRYPTO_LRW
select CRYPTO_XTS
help
Twofish cipher algorithm (x86_64/AVX2).
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
See also:
<http://www.schneier.com/twofish.html>
comment "Compression"
config CRYPTO_DEFLATE

View File

@ -1650,6 +1650,9 @@ static const struct alg_test_desc alg_test_descs[] = {
}, {
.alg = "__cbc-twofish-avx",
.test = alg_test_null,
}, {
.alg = "__cbc-twofish-avx2",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-aes-aesni",
.test = alg_test_null,
@ -1675,6 +1678,9 @@ static const struct alg_test_desc alg_test_descs[] = {
}, {
.alg = "__driver-cbc-twofish-avx",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-twofish-avx2",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-aes-aesni",
.test = alg_test_null,
@ -1700,6 +1706,9 @@ static const struct alg_test_desc alg_test_descs[] = {
}, {
.alg = "__driver-ecb-twofish-avx",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-twofish-avx2",
.test = alg_test_null,
}, {
.alg = "__ghash-pclmulqdqni",
.test = alg_test_null,
@ -1984,6 +1993,9 @@ static const struct alg_test_desc alg_test_descs[] = {
}, {
.alg = "cryptd(__driver-ecb-twofish-avx)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-twofish-avx2)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-gcm-aes-aesni)",
.test = alg_test_null,