ARM: 5914/1: Modify PL031 for Nomadik and U8500 v2
This extends the existing PrimeCell PL031 driver with support for the ST Microelectronics and ST-Ericsson derivatives, in a first and second version as used on the Nomadik and U8500 platforms. It also rids the old ioctl() alarm on/off functions in favor of the new .alarm_irq_enable field of the RTC class ops. Signed-off-by: Linus Walleij <linus.walleij@stericsson.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This commit is contained in:
parent
d48a41c181
commit
c72881e837
@ -7,6 +7,9 @@
|
||||
*
|
||||
* Copyright 2006 (c) MontaVista Software, Inc.
|
||||
*
|
||||
* Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
|
||||
* Copyright 2010 (c) ST-Ericsson AB
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; either version
|
||||
@ -18,6 +21,9 @@
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/amba/bus.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/bcd.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/version.h>
|
||||
|
||||
/*
|
||||
* Register definitions
|
||||
@ -30,35 +36,207 @@
|
||||
#define RTC_RIS 0x14 /* Raw interrupt status register */
|
||||
#define RTC_MIS 0x18 /* Masked interrupt status register */
|
||||
#define RTC_ICR 0x1c /* Interrupt clear register */
|
||||
/* ST variants have additional timer functionality */
|
||||
#define RTC_TDR 0x20 /* Timer data read register */
|
||||
#define RTC_TLR 0x24 /* Timer data load register */
|
||||
#define RTC_TCR 0x28 /* Timer control register */
|
||||
#define RTC_YDR 0x30 /* Year data read register */
|
||||
#define RTC_YMR 0x34 /* Year match register */
|
||||
#define RTC_YLR 0x38 /* Year data load register */
|
||||
|
||||
#define RTC_CR_CWEN (1 << 26) /* Clockwatch enable bit */
|
||||
|
||||
#define RTC_TCR_EN (1 << 1) /* Periodic timer enable bit */
|
||||
|
||||
/* Common bit definitions for Interrupt status and control registers */
|
||||
#define RTC_BIT_AI (1 << 0) /* Alarm interrupt bit */
|
||||
#define RTC_BIT_PI (1 << 1) /* Periodic interrupt bit. ST variants only. */
|
||||
|
||||
/* Common bit definations for ST v2 for reading/writing time */
|
||||
#define RTC_SEC_SHIFT 0
|
||||
#define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
|
||||
#define RTC_MIN_SHIFT 6
|
||||
#define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
|
||||
#define RTC_HOUR_SHIFT 12
|
||||
#define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
|
||||
#define RTC_WDAY_SHIFT 17
|
||||
#define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
|
||||
#define RTC_MDAY_SHIFT 20
|
||||
#define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
|
||||
#define RTC_MON_SHIFT 25
|
||||
#define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
|
||||
|
||||
#define RTC_TIMER_FREQ 32768
|
||||
|
||||
struct pl031_local {
|
||||
struct rtc_device *rtc;
|
||||
void __iomem *base;
|
||||
u8 hw_designer;
|
||||
u8 hw_revision:4;
|
||||
};
|
||||
|
||||
static int pl031_alarm_irq_enable(struct device *dev,
|
||||
unsigned int enabled)
|
||||
{
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
unsigned long imsc;
|
||||
|
||||
/* Clear any pending alarm interrupts. */
|
||||
writel(RTC_BIT_AI, ldata->base + RTC_ICR);
|
||||
|
||||
imsc = readl(ldata->base + RTC_IMSC);
|
||||
|
||||
if (enabled == 1)
|
||||
writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
|
||||
else
|
||||
writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert Gregorian date to ST v2 RTC format.
|
||||
*/
|
||||
static int pl031_stv2_tm_to_time(struct device *dev,
|
||||
struct rtc_time *tm, unsigned long *st_time,
|
||||
unsigned long *bcd_year)
|
||||
{
|
||||
int year = tm->tm_year + 1900;
|
||||
int wday = tm->tm_wday;
|
||||
|
||||
/* wday masking is not working in hardware so wday must be valid */
|
||||
if (wday < -1 || wday > 6) {
|
||||
dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
|
||||
return -EINVAL;
|
||||
} else if (wday == -1) {
|
||||
/* wday is not provided, calculate it here */
|
||||
unsigned long time;
|
||||
struct rtc_time calc_tm;
|
||||
|
||||
rtc_tm_to_time(tm, &time);
|
||||
rtc_time_to_tm(time, &calc_tm);
|
||||
wday = calc_tm.tm_wday;
|
||||
}
|
||||
|
||||
*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
|
||||
|
||||
*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
|
||||
| (tm->tm_mday << RTC_MDAY_SHIFT)
|
||||
| ((wday + 1) << RTC_WDAY_SHIFT)
|
||||
| (tm->tm_hour << RTC_HOUR_SHIFT)
|
||||
| (tm->tm_min << RTC_MIN_SHIFT)
|
||||
| (tm->tm_sec << RTC_SEC_SHIFT);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert ST v2 RTC format to Gregorian date.
|
||||
*/
|
||||
static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
|
||||
struct rtc_time *tm)
|
||||
{
|
||||
tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
|
||||
tm->tm_mon = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
|
||||
tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
|
||||
tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
|
||||
tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
|
||||
tm->tm_min = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
|
||||
tm->tm_sec = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
|
||||
|
||||
tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
|
||||
tm->tm_year -= 1900;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
|
||||
{
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
|
||||
pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
|
||||
readl(ldata->base + RTC_YDR), tm);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
|
||||
{
|
||||
unsigned long time;
|
||||
unsigned long bcd_year;
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
int ret;
|
||||
|
||||
ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
|
||||
if (ret == 0) {
|
||||
writel(bcd_year, ldata->base + RTC_YLR);
|
||||
writel(time, ldata->base + RTC_LR);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
||||
{
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
int ret;
|
||||
|
||||
ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
|
||||
readl(ldata->base + RTC_YMR), &alarm->time);
|
||||
|
||||
alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
|
||||
alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
||||
{
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
unsigned long time;
|
||||
unsigned long bcd_year;
|
||||
int ret;
|
||||
|
||||
/* At the moment, we can only deal with non-wildcarded alarm times. */
|
||||
ret = rtc_valid_tm(&alarm->time);
|
||||
if (ret == 0) {
|
||||
ret = pl031_stv2_tm_to_time(dev, &alarm->time,
|
||||
&time, &bcd_year);
|
||||
if (ret == 0) {
|
||||
writel(bcd_year, ldata->base + RTC_YMR);
|
||||
writel(time, ldata->base + RTC_MR);
|
||||
|
||||
pl031_alarm_irq_enable(dev, alarm->enabled);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static irqreturn_t pl031_interrupt(int irq, void *dev_id)
|
||||
{
|
||||
struct rtc_device *rtc = dev_id;
|
||||
struct pl031_local *ldata = dev_id;
|
||||
unsigned long rtcmis;
|
||||
unsigned long events = 0;
|
||||
|
||||
rtc_update_irq(rtc, 1, RTC_AF);
|
||||
rtcmis = readl(ldata->base + RTC_MIS);
|
||||
if (rtcmis) {
|
||||
writel(rtcmis, ldata->base + RTC_ICR);
|
||||
|
||||
if (rtcmis & RTC_BIT_AI)
|
||||
events |= (RTC_AF | RTC_IRQF);
|
||||
|
||||
/* Timer interrupt is only available in ST variants */
|
||||
if ((rtcmis & RTC_BIT_PI) &&
|
||||
(ldata->hw_designer == AMBA_VENDOR_ST))
|
||||
events |= (RTC_PF | RTC_IRQF);
|
||||
|
||||
rtc_update_irq(ldata->rtc, 1, events);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static int pl031_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
|
||||
switch (cmd) {
|
||||
case RTC_AIE_OFF:
|
||||
writel(1, ldata->base + RTC_MIS);
|
||||
return 0;
|
||||
case RTC_AIE_ON:
|
||||
writel(0, ldata->base + RTC_MIS);
|
||||
return 0;
|
||||
}
|
||||
|
||||
return -ENOIOCTLCMD;
|
||||
return IRQ_NONE;
|
||||
}
|
||||
|
||||
static int pl031_read_time(struct device *dev, struct rtc_time *tm)
|
||||
@ -74,11 +252,14 @@ static int pl031_set_time(struct device *dev, struct rtc_time *tm)
|
||||
{
|
||||
unsigned long time;
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
int ret;
|
||||
|
||||
rtc_tm_to_time(tm, &time);
|
||||
ret = rtc_tm_to_time(tm, &time);
|
||||
|
||||
if (ret == 0)
|
||||
writel(time, ldata->base + RTC_LR);
|
||||
|
||||
return 0;
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
||||
@ -86,8 +267,9 @@ static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
|
||||
rtc_time_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
|
||||
alarm->pending = readl(ldata->base + RTC_RIS);
|
||||
alarm->enabled = readl(ldata->base + RTC_IMSC);
|
||||
|
||||
alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
|
||||
alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -96,22 +278,71 @@ static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
||||
{
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
unsigned long time;
|
||||
int ret;
|
||||
|
||||
rtc_tm_to_time(&alarm->time, &time);
|
||||
|
||||
/* At the moment, we can only deal with non-wildcarded alarm times. */
|
||||
ret = rtc_valid_tm(&alarm->time);
|
||||
if (ret == 0) {
|
||||
ret = rtc_tm_to_time(&alarm->time, &time);
|
||||
if (ret == 0) {
|
||||
writel(time, ldata->base + RTC_MR);
|
||||
writel(!alarm->enabled, ldata->base + RTC_MIS);
|
||||
pl031_alarm_irq_enable(dev, alarm->enabled);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Periodic interrupt is only available in ST variants. */
|
||||
static int pl031_irq_set_state(struct device *dev, int enabled)
|
||||
{
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
|
||||
if (enabled == 1) {
|
||||
/* Clear any pending timer interrupt. */
|
||||
writel(RTC_BIT_PI, ldata->base + RTC_ICR);
|
||||
|
||||
writel(readl(ldata->base + RTC_IMSC) | RTC_BIT_PI,
|
||||
ldata->base + RTC_IMSC);
|
||||
|
||||
/* Now start the timer */
|
||||
writel(readl(ldata->base + RTC_TCR) | RTC_TCR_EN,
|
||||
ldata->base + RTC_TCR);
|
||||
|
||||
} else {
|
||||
writel(readl(ldata->base + RTC_IMSC) & (~RTC_BIT_PI),
|
||||
ldata->base + RTC_IMSC);
|
||||
|
||||
/* Also stop the timer */
|
||||
writel(readl(ldata->base + RTC_TCR) & (~RTC_TCR_EN),
|
||||
ldata->base + RTC_TCR);
|
||||
}
|
||||
/* Wait at least 1 RTC32 clock cycle to ensure next access
|
||||
* to RTC_TCR will succeed.
|
||||
*/
|
||||
udelay(40);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct rtc_class_ops pl031_ops = {
|
||||
.ioctl = pl031_ioctl,
|
||||
.read_time = pl031_read_time,
|
||||
.set_time = pl031_set_time,
|
||||
.read_alarm = pl031_read_alarm,
|
||||
.set_alarm = pl031_set_alarm,
|
||||
};
|
||||
static int pl031_irq_set_freq(struct device *dev, int freq)
|
||||
{
|
||||
struct pl031_local *ldata = dev_get_drvdata(dev);
|
||||
|
||||
/* Cant set timer if it is already enabled */
|
||||
if (readl(ldata->base + RTC_TCR) & RTC_TCR_EN) {
|
||||
dev_err(dev, "can't change frequency while timer enabled\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* If self start bit in RTC_TCR is set timer will start here,
|
||||
* but we never set that bit. Instead we start the timer when
|
||||
* set_state is called with enabled == 1.
|
||||
*/
|
||||
writel(RTC_TIMER_FREQ / freq, ldata->base + RTC_TLR);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pl031_remove(struct amba_device *adev)
|
||||
{
|
||||
@ -131,18 +362,20 @@ static int pl031_probe(struct amba_device *adev, struct amba_id *id)
|
||||
{
|
||||
int ret;
|
||||
struct pl031_local *ldata;
|
||||
struct rtc_class_ops *ops = id->data;
|
||||
|
||||
ret = amba_request_regions(adev, NULL);
|
||||
if (ret)
|
||||
goto err_req;
|
||||
|
||||
ldata = kmalloc(sizeof(struct pl031_local), GFP_KERNEL);
|
||||
ldata = kzalloc(sizeof(struct pl031_local), GFP_KERNEL);
|
||||
if (!ldata) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ldata->base = ioremap(adev->res.start, resource_size(&adev->res));
|
||||
|
||||
if (!ldata->base) {
|
||||
ret = -ENOMEM;
|
||||
goto out_no_remap;
|
||||
@ -150,24 +383,36 @@ static int pl031_probe(struct amba_device *adev, struct amba_id *id)
|
||||
|
||||
amba_set_drvdata(adev, ldata);
|
||||
|
||||
if (request_irq(adev->irq[0], pl031_interrupt, IRQF_DISABLED,
|
||||
"rtc-pl031", ldata->rtc)) {
|
||||
ret = -EIO;
|
||||
goto out_no_irq;
|
||||
}
|
||||
ldata->hw_designer = amba_manf(adev);
|
||||
ldata->hw_revision = amba_rev(adev);
|
||||
|
||||
ldata->rtc = rtc_device_register("pl031", &adev->dev, &pl031_ops,
|
||||
dev_dbg(&adev->dev, "designer ID = 0x%02x\n", ldata->hw_designer);
|
||||
dev_dbg(&adev->dev, "revision = 0x%01x\n", ldata->hw_revision);
|
||||
|
||||
/* Enable the clockwatch on ST Variants */
|
||||
if ((ldata->hw_designer == AMBA_VENDOR_ST) &&
|
||||
(ldata->hw_revision > 1))
|
||||
writel(readl(ldata->base + RTC_CR) | RTC_CR_CWEN,
|
||||
ldata->base + RTC_CR);
|
||||
|
||||
ldata->rtc = rtc_device_register("pl031", &adev->dev, ops,
|
||||
THIS_MODULE);
|
||||
if (IS_ERR(ldata->rtc)) {
|
||||
ret = PTR_ERR(ldata->rtc);
|
||||
goto out_no_rtc;
|
||||
}
|
||||
|
||||
if (request_irq(adev->irq[0], pl031_interrupt,
|
||||
IRQF_DISABLED | IRQF_SHARED, "rtc-pl031", ldata)) {
|
||||
ret = -EIO;
|
||||
goto out_no_irq;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
out_no_rtc:
|
||||
free_irq(adev->irq[0], ldata->rtc);
|
||||
out_no_irq:
|
||||
rtc_device_unregister(ldata->rtc);
|
||||
out_no_rtc:
|
||||
iounmap(ldata->base);
|
||||
amba_set_drvdata(adev, NULL);
|
||||
out_no_remap:
|
||||
@ -175,13 +420,57 @@ out_no_remap:
|
||||
out:
|
||||
amba_release_regions(adev);
|
||||
err_req:
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Operations for the original ARM version */
|
||||
static struct rtc_class_ops arm_pl031_ops = {
|
||||
.read_time = pl031_read_time,
|
||||
.set_time = pl031_set_time,
|
||||
.read_alarm = pl031_read_alarm,
|
||||
.set_alarm = pl031_set_alarm,
|
||||
.alarm_irq_enable = pl031_alarm_irq_enable,
|
||||
};
|
||||
|
||||
/* The First ST derivative */
|
||||
static struct rtc_class_ops stv1_pl031_ops = {
|
||||
.read_time = pl031_read_time,
|
||||
.set_time = pl031_set_time,
|
||||
.read_alarm = pl031_read_alarm,
|
||||
.set_alarm = pl031_set_alarm,
|
||||
.alarm_irq_enable = pl031_alarm_irq_enable,
|
||||
.irq_set_state = pl031_irq_set_state,
|
||||
.irq_set_freq = pl031_irq_set_freq,
|
||||
};
|
||||
|
||||
/* And the second ST derivative */
|
||||
static struct rtc_class_ops stv2_pl031_ops = {
|
||||
.read_time = pl031_stv2_read_time,
|
||||
.set_time = pl031_stv2_set_time,
|
||||
.read_alarm = pl031_stv2_read_alarm,
|
||||
.set_alarm = pl031_stv2_set_alarm,
|
||||
.alarm_irq_enable = pl031_alarm_irq_enable,
|
||||
.irq_set_state = pl031_irq_set_state,
|
||||
.irq_set_freq = pl031_irq_set_freq,
|
||||
};
|
||||
|
||||
static struct amba_id pl031_ids[] __initdata = {
|
||||
{
|
||||
.id = 0x00041031,
|
||||
.mask = 0x000fffff,
|
||||
.data = &arm_pl031_ops,
|
||||
},
|
||||
/* ST Micro variants */
|
||||
{
|
||||
.id = 0x00180031,
|
||||
.mask = 0x00ffffff,
|
||||
.data = &stv1_pl031_ops,
|
||||
},
|
||||
{
|
||||
.id = 0x00280031,
|
||||
.mask = 0x00ffffff,
|
||||
.data = &stv2_pl031_ops,
|
||||
},
|
||||
{0, 0},
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user