perf: Fix perf ring buffer memory ordering
The PPC64 people noticed a missing memory barrier and crufty old comments in the perf ring buffer code. So update all the comments and add the missing barrier. When the architecture implements local_t using atomic_long_t there will be double barriers issued; but short of introducing more conditional barrier primitives this is the best we can do. Reported-by: Victor Kaplansky <victork@il.ibm.com> Tested-by: Victor Kaplansky <victork@il.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: michael@ellerman.id.au Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: anton@samba.org Cc: benh@kernel.crashing.org Link: http://lkml.kernel.org/r/20131025173749.GG19466@laptop.lan Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
cd65718712
commit
bf378d341e
@ -456,13 +456,15 @@ struct perf_event_mmap_page {
|
||||
/*
|
||||
* Control data for the mmap() data buffer.
|
||||
*
|
||||
* User-space reading the @data_head value should issue an rmb(), on
|
||||
* SMP capable platforms, after reading this value -- see
|
||||
* perf_event_wakeup().
|
||||
* User-space reading the @data_head value should issue an smp_rmb(),
|
||||
* after reading this value.
|
||||
*
|
||||
* When the mapping is PROT_WRITE the @data_tail value should be
|
||||
* written by userspace to reflect the last read data. In this case
|
||||
* the kernel will not over-write unread data.
|
||||
* written by userspace to reflect the last read data, after issueing
|
||||
* an smp_mb() to separate the data read from the ->data_tail store.
|
||||
* In this case the kernel will not over-write unread data.
|
||||
*
|
||||
* See perf_output_put_handle() for the data ordering.
|
||||
*/
|
||||
__u64 data_head; /* head in the data section */
|
||||
__u64 data_tail; /* user-space written tail */
|
||||
|
@ -87,10 +87,31 @@ again:
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Publish the known good head. Rely on the full barrier implied
|
||||
* by atomic_dec_and_test() order the rb->head read and this
|
||||
* write.
|
||||
* Since the mmap() consumer (userspace) can run on a different CPU:
|
||||
*
|
||||
* kernel user
|
||||
*
|
||||
* READ ->data_tail READ ->data_head
|
||||
* smp_mb() (A) smp_rmb() (C)
|
||||
* WRITE $data READ $data
|
||||
* smp_wmb() (B) smp_mb() (D)
|
||||
* STORE ->data_head WRITE ->data_tail
|
||||
*
|
||||
* Where A pairs with D, and B pairs with C.
|
||||
*
|
||||
* I don't think A needs to be a full barrier because we won't in fact
|
||||
* write data until we see the store from userspace. So we simply don't
|
||||
* issue the data WRITE until we observe it. Be conservative for now.
|
||||
*
|
||||
* OTOH, D needs to be a full barrier since it separates the data READ
|
||||
* from the tail WRITE.
|
||||
*
|
||||
* For B a WMB is sufficient since it separates two WRITEs, and for C
|
||||
* an RMB is sufficient since it separates two READs.
|
||||
*
|
||||
* See perf_output_begin().
|
||||
*/
|
||||
smp_wmb();
|
||||
rb->user_page->data_head = head;
|
||||
|
||||
/*
|
||||
@ -154,9 +175,11 @@ int perf_output_begin(struct perf_output_handle *handle,
|
||||
* Userspace could choose to issue a mb() before updating the
|
||||
* tail pointer. So that all reads will be completed before the
|
||||
* write is issued.
|
||||
*
|
||||
* See perf_output_put_handle().
|
||||
*/
|
||||
tail = ACCESS_ONCE(rb->user_page->data_tail);
|
||||
smp_rmb();
|
||||
smp_mb();
|
||||
offset = head = local_read(&rb->head);
|
||||
head += size;
|
||||
if (unlikely(!perf_output_space(rb, tail, offset, head)))
|
||||
|
Loading…
Reference in New Issue
Block a user