[media] vsp1: fix CodingStyle violations on multi-line comments
Several multi-line comments added at the vsp1 patch series violate the Kernel CodingStyle. Fix them. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
This commit is contained in:
parent
c9f49607f1
commit
b61873922d
@ -242,7 +242,8 @@ static int bru_set_selection(struct v4l2_subdev *subdev,
|
||||
goto done;
|
||||
}
|
||||
|
||||
/* The compose rectangle top left corner must be inside the output
|
||||
/*
|
||||
* The compose rectangle top left corner must be inside the output
|
||||
* frame.
|
||||
*/
|
||||
format = vsp1_entity_get_pad_format(&bru->entity, config,
|
||||
|
@ -224,7 +224,8 @@ static void clu_configure(struct vsp1_entity *entity,
|
||||
|
||||
switch (params) {
|
||||
case VSP1_ENTITY_PARAMS_INIT: {
|
||||
/* The format can't be changed during streaming, only verify it
|
||||
/*
|
||||
* The format can't be changed during streaming, only verify it
|
||||
* at setup time and store the information internally for future
|
||||
* runtime configuration calls.
|
||||
*/
|
||||
|
@ -296,7 +296,8 @@ struct vsp1_dl_list *vsp1_dl_list_get(struct vsp1_dl_manager *dlm)
|
||||
dl = list_first_entry(&dlm->free, struct vsp1_dl_list, list);
|
||||
list_del(&dl->list);
|
||||
|
||||
/* The display list chain must be initialised to ensure every
|
||||
/*
|
||||
* The display list chain must be initialised to ensure every
|
||||
* display list can assert list_empty() if it is not in a chain.
|
||||
*/
|
||||
INIT_LIST_HEAD(&dl->chain);
|
||||
@ -315,7 +316,8 @@ static void __vsp1_dl_list_put(struct vsp1_dl_list *dl)
|
||||
if (!dl)
|
||||
return;
|
||||
|
||||
/* Release any linked display-lists which were chained for a single
|
||||
/*
|
||||
* Release any linked display-lists which were chained for a single
|
||||
* hardware operation.
|
||||
*/
|
||||
if (dl->has_chain) {
|
||||
@ -325,7 +327,8 @@ static void __vsp1_dl_list_put(struct vsp1_dl_list *dl)
|
||||
|
||||
dl->has_chain = false;
|
||||
|
||||
/* We can't free fragments here as DMA memory can only be freed in
|
||||
/*
|
||||
* We can't free fragments here as DMA memory can only be freed in
|
||||
* interruptible context. Move all fragments to the display list
|
||||
* manager's list of fragments to be freed, they will be
|
||||
* garbage-collected by the work queue.
|
||||
@ -437,7 +440,8 @@ static void vsp1_dl_list_fill_header(struct vsp1_dl_list *dl, bool is_last)
|
||||
struct vsp1_dl_body *dlb;
|
||||
unsigned int num_lists = 0;
|
||||
|
||||
/* Fill the header with the display list bodies addresses and sizes. The
|
||||
/*
|
||||
* Fill the header with the display list bodies addresses and sizes. The
|
||||
* address of the first body has already been filled when the display
|
||||
* list was allocated.
|
||||
*/
|
||||
@ -456,7 +460,8 @@ static void vsp1_dl_list_fill_header(struct vsp1_dl_list *dl, bool is_last)
|
||||
|
||||
dl->header->num_lists = num_lists;
|
||||
|
||||
/* If this display list's chain is not empty, we are on a list, where
|
||||
/*
|
||||
* If this display list's chain is not empty, we are on a list, where
|
||||
* the next item in the list is the display list entity which should be
|
||||
* automatically queued by the hardware.
|
||||
*/
|
||||
@ -482,7 +487,8 @@ void vsp1_dl_list_commit(struct vsp1_dl_list *dl)
|
||||
if (dl->dlm->mode == VSP1_DL_MODE_HEADER) {
|
||||
struct vsp1_dl_list *dl_child;
|
||||
|
||||
/* In header mode the caller guarantees that the hardware is
|
||||
/*
|
||||
* In header mode the caller guarantees that the hardware is
|
||||
* idle at this point.
|
||||
*/
|
||||
|
||||
@ -495,7 +501,8 @@ void vsp1_dl_list_commit(struct vsp1_dl_list *dl)
|
||||
vsp1_dl_list_fill_header(dl_child, last);
|
||||
}
|
||||
|
||||
/* Commit the head display list to hardware. Chained headers
|
||||
/*
|
||||
* Commit the head display list to hardware. Chained headers
|
||||
* will auto-start.
|
||||
*/
|
||||
vsp1_write(vsp1, VI6_DL_HDR_ADDR(dlm->index), dl->dma);
|
||||
|
@ -283,7 +283,8 @@ int vsp1_du_atomic_update(struct device *dev, unsigned int rpf_index,
|
||||
cfg->pixelformat, cfg->pitch, &cfg->mem[0], &cfg->mem[1],
|
||||
&cfg->mem[2], cfg->zpos);
|
||||
|
||||
/* Store the format, stride, memory buffer address, crop and compose
|
||||
/*
|
||||
* Store the format, stride, memory buffer address, crop and compose
|
||||
* rectangles and Z-order position and for the input.
|
||||
*/
|
||||
fmtinfo = vsp1_get_format_info(vsp1, cfg->pixelformat);
|
||||
|
@ -35,7 +35,7 @@ enum vsp1_entity_type {
|
||||
VSP1_ENTITY_WPF,
|
||||
};
|
||||
|
||||
/*
|
||||
/**
|
||||
* enum vsp1_entity_params - Entity configuration parameters class
|
||||
* @VSP1_ENTITY_PARAMS_INIT - Initial parameters
|
||||
* @VSP1_ENTITY_PARAMS_PARTITION - Per-image partition parameters
|
||||
|
@ -136,7 +136,7 @@ static const struct vsp1_format_info vsp1_video_formats[] = {
|
||||
3, { 8, 8, 8 }, false, true, 1, 1, false },
|
||||
};
|
||||
|
||||
/*
|
||||
/**
|
||||
* vsp1_get_format_info - Retrieve format information for a 4CC
|
||||
* @vsp1: the VSP1 device
|
||||
* @fourcc: the format 4CC
|
||||
|
@ -75,7 +75,8 @@ static void rpf_configure(struct vsp1_entity *entity,
|
||||
unsigned int offsets[2];
|
||||
struct v4l2_rect crop;
|
||||
|
||||
/* Source size and crop offsets.
|
||||
/*
|
||||
* Source size and crop offsets.
|
||||
*
|
||||
* The crop offsets correspond to the location of the crop
|
||||
* rectangle top left corner in the plane buffer. Only two
|
||||
@ -84,7 +85,8 @@ static void rpf_configure(struct vsp1_entity *entity,
|
||||
*/
|
||||
crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
|
||||
|
||||
/* Partition Algorithm Control
|
||||
/*
|
||||
* Partition Algorithm Control
|
||||
*
|
||||
* The partition algorithm can split this frame into multiple
|
||||
* slices. We must scale our partition window based on the pipe
|
||||
@ -98,7 +100,8 @@ static void rpf_configure(struct vsp1_entity *entity,
|
||||
struct vsp1_entity *wpf = &pipe->output->entity;
|
||||
unsigned int input_width = crop.width;
|
||||
|
||||
/* Scale the partition window based on the configuration
|
||||
/*
|
||||
* Scale the partition window based on the configuration
|
||||
* of the pipeline.
|
||||
*/
|
||||
output = vsp1_entity_get_pad_format(wpf, wpf->config,
|
||||
|
@ -132,7 +132,8 @@ static int vsp1_rwpf_get_selection(struct v4l2_subdev *subdev,
|
||||
struct v4l2_mbus_framefmt *format;
|
||||
int ret = 0;
|
||||
|
||||
/* Cropping is only supported on the RPF and is implemented on the sink
|
||||
/*
|
||||
* Cropping is only supported on the RPF and is implemented on the sink
|
||||
* pad.
|
||||
*/
|
||||
if (rwpf->entity.type == VSP1_ENTITY_WPF || sel->pad != RWPF_PAD_SINK)
|
||||
@ -180,7 +181,8 @@ static int vsp1_rwpf_set_selection(struct v4l2_subdev *subdev,
|
||||
struct v4l2_rect *crop;
|
||||
int ret = 0;
|
||||
|
||||
/* Cropping is only supported on the RPF and is implemented on the sink
|
||||
/*
|
||||
* Cropping is only supported on the RPF and is implemented on the sink
|
||||
* pad.
|
||||
*/
|
||||
if (rwpf->entity.type == VSP1_ENTITY_WPF || sel->pad != RWPF_PAD_SINK)
|
||||
|
@ -205,7 +205,7 @@ static void vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
|
||||
pipe->partitions = DIV_ROUND_UP(format->width, div_size);
|
||||
}
|
||||
|
||||
/*
|
||||
/**
|
||||
* vsp1_video_partition - Calculate the active partition output window
|
||||
*
|
||||
* @div_size: pre-determined maximum partition division size
|
||||
@ -242,7 +242,8 @@ static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe,
|
||||
|
||||
modulus = format->width % div_size;
|
||||
|
||||
/* We need to prevent the last partition from being smaller than the
|
||||
/*
|
||||
* We need to prevent the last partition from being smaller than the
|
||||
* *minimum* width of the hardware capabilities.
|
||||
*
|
||||
* If the modulus is less than half of the partition size,
|
||||
@ -251,7 +252,8 @@ static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe,
|
||||
* to prevents this: |1234|1234|1234|1234|1|.
|
||||
*/
|
||||
if (modulus) {
|
||||
/* pipe->partitions is 1 based, whilst index is a 0 based index.
|
||||
/*
|
||||
* pipe->partitions is 1 based, whilst index is a 0 based index.
|
||||
* Normalise this locally.
|
||||
*/
|
||||
unsigned int partitions = pipe->partitions - 1;
|
||||
@ -371,7 +373,8 @@ static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
|
||||
if (!pipe->dl)
|
||||
pipe->dl = vsp1_dl_list_get(pipe->output->dlm);
|
||||
|
||||
/* Start with the runtime parameters as the configure operation can
|
||||
/*
|
||||
* Start with the runtime parameters as the configure operation can
|
||||
* compute/cache information needed when configuring partitions. This
|
||||
* is the case with flipping in the WPF.
|
||||
*/
|
||||
@ -391,13 +394,15 @@ static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
|
||||
pipe->current_partition++) {
|
||||
struct vsp1_dl_list *dl;
|
||||
|
||||
/* Partition configuration operations will utilise
|
||||
/*
|
||||
* Partition configuration operations will utilise
|
||||
* the pipe->current_partition variable to determine
|
||||
* the work they should complete.
|
||||
*/
|
||||
dl = vsp1_dl_list_get(pipe->output->dlm);
|
||||
|
||||
/* An incomplete chain will still function, but output only
|
||||
/*
|
||||
* An incomplete chain will still function, but output only
|
||||
* the partitions that had a dl available. The frame end
|
||||
* interrupt will be marked on the last dl in the chain.
|
||||
*/
|
||||
@ -818,7 +823,8 @@ static void vsp1_video_stop_streaming(struct vb2_queue *vq)
|
||||
unsigned long flags;
|
||||
int ret;
|
||||
|
||||
/* Clear the buffers ready flag to make sure the device won't be started
|
||||
/*
|
||||
* Clear the buffers ready flag to make sure the device won't be started
|
||||
* by a QBUF on the video node on the other side of the pipeline.
|
||||
*/
|
||||
spin_lock_irqsave(&video->irqlock, flags);
|
||||
|
@ -222,7 +222,8 @@ static void wpf_configure(struct vsp1_entity *entity,
|
||||
unsigned int height = source_format->height;
|
||||
unsigned int offset;
|
||||
|
||||
/* Cropping. The partition algorithm can split the image into
|
||||
/*
|
||||
* Cropping. The partition algorithm can split the image into
|
||||
* multiple slices.
|
||||
*/
|
||||
if (pipe->partitions > 1)
|
||||
@ -238,7 +239,8 @@ static void wpf_configure(struct vsp1_entity *entity,
|
||||
if (pipe->lif)
|
||||
return;
|
||||
|
||||
/* Update the memory offsets based on flipping configuration.
|
||||
/*
|
||||
* Update the memory offsets based on flipping configuration.
|
||||
* The destination addresses point to the locations where the
|
||||
* VSP starts writing to memory, which can be different corners
|
||||
* of the image depending on vertical flipping.
|
||||
@ -246,7 +248,8 @@ static void wpf_configure(struct vsp1_entity *entity,
|
||||
if (pipe->partitions > 1) {
|
||||
const struct vsp1_format_info *fmtinfo = wpf->fmtinfo;
|
||||
|
||||
/* Horizontal flipping is handled through a line buffer
|
||||
/*
|
||||
* Horizontal flipping is handled through a line buffer
|
||||
* and doesn't modify the start address, but still needs
|
||||
* to be handled when image partitioning is in effect to
|
||||
* order the partitions correctly.
|
||||
|
Loading…
Reference in New Issue
Block a user