Merge branch 'rcu/next' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-2.6-rcu into core/rcu

This commit is contained in:
Ingo Molnar 2010-08-23 11:32:34 +02:00
commit a6b9b4d50f
54 changed files with 1371 additions and 465 deletions

View File

@ -1645,7 +1645,9 @@ the amount of locking which needs to be done.
all the readers who were traversing the list when we deleted the
element are finished. We use <function>call_rcu()</function> to
register a callback which will actually destroy the object once
the readers are finished.
all pre-existing readers are finished. Alternatively,
<function>synchronize_rcu()</function> may be used to block until
all pre-existing are finished.
</para>
<para>
But how does Read Copy Update know when the readers are
@ -1714,7 +1716,7 @@ the amount of locking which needs to be done.
- object_put(obj);
+ list_del_rcu(&amp;obj-&gt;list);
cache_num--;
+ call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj);
+ call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu);
}
/* Must be holding cache_lock */
@ -1725,14 +1727,6 @@ the amount of locking which needs to be done.
if (++cache_num > MAX_CACHE_SIZE) {
struct object *i, *outcast = NULL;
list_for_each_entry(i, &amp;cache, list) {
@@ -85,6 +94,7 @@
obj-&gt;popularity = 0;
atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
spin_lock_init(&amp;obj-&gt;lock);
+ INIT_RCU_HEAD(&amp;obj-&gt;rcu);
spin_lock_irqsave(&amp;cache_lock, flags);
__cache_add(obj);
@@ -104,12 +114,11 @@
struct object *cache_find(int id)
{

View File

@ -218,13 +218,22 @@ over a rather long period of time, but improvements are always welcome!
include:
a. Keeping a count of the number of data-structure elements
used by the RCU-protected data structure, including those
waiting for a grace period to elapse. Enforce a limit
on this number, stalling updates as needed to allow
previously deferred frees to complete.
used by the RCU-protected data structure, including
those waiting for a grace period to elapse. Enforce a
limit on this number, stalling updates as needed to allow
previously deferred frees to complete. Alternatively,
limit only the number awaiting deferred free rather than
the total number of elements.
Alternatively, limit only the number awaiting deferred
free rather than the total number of elements.
One way to stall the updates is to acquire the update-side
mutex. (Don't try this with a spinlock -- other CPUs
spinning on the lock could prevent the grace period
from ever ending.) Another way to stall the updates
is for the updates to use a wrapper function around
the memory allocator, so that this wrapper function
simulates OOM when there is too much memory awaiting an
RCU grace period. There are of course many other
variations on this theme.
b. Limiting update rate. For example, if updates occur only
once per hour, then no explicit rate limiting is required,
@ -365,3 +374,26 @@ over a rather long period of time, but improvements are always welcome!
and the compiler to freely reorder code into and out of RCU
read-side critical sections. It is the responsibility of the
RCU update-side primitives to deal with this.
17. Use CONFIG_PROVE_RCU, CONFIG_DEBUG_OBJECTS_RCU_HEAD, and
the __rcu sparse checks to validate your RCU code. These
can help find problems as follows:
CONFIG_PROVE_RCU: check that accesses to RCU-protected data
structures are carried out under the proper RCU
read-side critical section, while holding the right
combination of locks, or whatever other conditions
are appropriate.
CONFIG_DEBUG_OBJECTS_RCU_HEAD: check that you don't pass the
same object to call_rcu() (or friends) before an RCU
grace period has elapsed since the last time that you
passed that same object to call_rcu() (or friends).
__rcu sparse checks: tag the pointer to the RCU-protected data
structure with __rcu, and sparse will warn you if you
access that pointer without the services of one of the
variants of rcu_dereference().
These debugging aids can help you find problems that are
otherwise extremely difficult to spot.

View File

@ -28,7 +28,7 @@ struct evdev {
int minor;
struct input_handle handle;
wait_queue_head_t wait;
struct evdev_client *grab;
struct evdev_client __rcu *grab;
struct list_head client_list;
spinlock_t client_lock; /* protects client_list */
struct mutex mutex;

View File

@ -127,7 +127,10 @@ static void handle_tx(struct vhost_net *net)
size_t len, total_len = 0;
int err, wmem;
size_t hdr_size;
struct socket *sock = rcu_dereference(vq->private_data);
struct socket *sock;
sock = rcu_dereference_check(vq->private_data,
lockdep_is_held(&vq->mutex));
if (!sock)
return;
@ -582,7 +585,10 @@ static void vhost_net_disable_vq(struct vhost_net *n,
static void vhost_net_enable_vq(struct vhost_net *n,
struct vhost_virtqueue *vq)
{
struct socket *sock = vq->private_data;
struct socket *sock;
sock = rcu_dereference_protected(vq->private_data,
lockdep_is_held(&vq->mutex));
if (!sock)
return;
if (vq == n->vqs + VHOST_NET_VQ_TX) {
@ -598,7 +604,8 @@ static struct socket *vhost_net_stop_vq(struct vhost_net *n,
struct socket *sock;
mutex_lock(&vq->mutex);
sock = vq->private_data;
sock = rcu_dereference_protected(vq->private_data,
lockdep_is_held(&vq->mutex));
vhost_net_disable_vq(n, vq);
rcu_assign_pointer(vq->private_data, NULL);
mutex_unlock(&vq->mutex);
@ -736,7 +743,8 @@ static long vhost_net_set_backend(struct vhost_net *n, unsigned index, int fd)
}
/* start polling new socket */
oldsock = vq->private_data;
oldsock = rcu_dereference_protected(vq->private_data,
lockdep_is_held(&vq->mutex));
if (sock != oldsock) {
vhost_net_disable_vq(n, vq);
rcu_assign_pointer(vq->private_data, sock);

View File

@ -284,7 +284,7 @@ long vhost_dev_reset_owner(struct vhost_dev *dev)
vhost_dev_cleanup(dev);
memory->nregions = 0;
dev->memory = memory;
RCU_INIT_POINTER(dev->memory, memory);
return 0;
}
@ -316,8 +316,9 @@ void vhost_dev_cleanup(struct vhost_dev *dev)
fput(dev->log_file);
dev->log_file = NULL;
/* No one will access memory at this point */
kfree(dev->memory);
dev->memory = NULL;
kfree(rcu_dereference_protected(dev->memory,
lockdep_is_held(&dev->mutex)));
RCU_INIT_POINTER(dev->memory, NULL);
if (dev->mm)
mmput(dev->mm);
dev->mm = NULL;
@ -401,14 +402,22 @@ static int vq_access_ok(unsigned int num,
/* Caller should have device mutex but not vq mutex */
int vhost_log_access_ok(struct vhost_dev *dev)
{
return memory_access_ok(dev, dev->memory, 1);
struct vhost_memory *mp;
mp = rcu_dereference_protected(dev->memory,
lockdep_is_held(&dev->mutex));
return memory_access_ok(dev, mp, 1);
}
/* Verify access for write logging. */
/* Caller should have vq mutex and device mutex */
static int vq_log_access_ok(struct vhost_virtqueue *vq, void __user *log_base)
{
return vq_memory_access_ok(log_base, vq->dev->memory,
struct vhost_memory *mp;
mp = rcu_dereference_protected(vq->dev->memory,
lockdep_is_held(&vq->mutex));
return vq_memory_access_ok(log_base, mp,
vhost_has_feature(vq->dev, VHOST_F_LOG_ALL)) &&
(!vq->log_used || log_access_ok(log_base, vq->log_addr,
sizeof *vq->used +
@ -448,7 +457,8 @@ static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
kfree(newmem);
return -EFAULT;
}
oldmem = d->memory;
oldmem = rcu_dereference_protected(d->memory,
lockdep_is_held(&d->mutex));
rcu_assign_pointer(d->memory, newmem);
synchronize_rcu();
kfree(oldmem);

View File

@ -106,7 +106,7 @@ struct vhost_virtqueue {
* vhost_work execution acts instead of rcu_read_lock() and the end of
* vhost_work execution acts instead of rcu_read_lock().
* Writers use virtqueue mutex. */
void *private_data;
void __rcu *private_data;
/* Log write descriptors */
void __user *log_base;
struct vhost_log log[VHOST_NET_MAX_SG];
@ -116,7 +116,7 @@ struct vhost_dev {
/* Readers use RCU to access memory table pointer
* log base pointer and features.
* Writers use mutex below.*/
struct vhost_memory *memory;
struct vhost_memory __rcu *memory;
struct mm_struct *mm;
struct mutex mutex;
unsigned acked_features;
@ -173,7 +173,11 @@ enum {
static inline int vhost_has_feature(struct vhost_dev *dev, int bit)
{
unsigned acked_features = rcu_dereference(dev->acked_features);
unsigned acked_features;
acked_features =
rcu_dereference_index_check(dev->acked_features,
lockdep_is_held(&dev->mutex));
return acked_features & (1 << bit);
}

View File

@ -75,7 +75,7 @@ struct cgroup_subsys_state {
unsigned long flags;
/* ID for this css, if possible */
struct css_id *id;
struct css_id __rcu *id;
};
/* bits in struct cgroup_subsys_state flags field */
@ -205,7 +205,7 @@ struct cgroup {
struct list_head children; /* my children */
struct cgroup *parent; /* my parent */
struct dentry *dentry; /* cgroup fs entry, RCU protected */
struct dentry __rcu *dentry; /* cgroup fs entry, RCU protected */
/* Private pointers for each registered subsystem */
struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];

View File

@ -16,7 +16,11 @@
# define __release(x) __context__(x,-1)
# define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0)
# define __percpu __attribute__((noderef, address_space(3)))
#ifdef CONFIG_SPARSE_RCU_POINTER
# define __rcu __attribute__((noderef, address_space(4)))
#else
# define __rcu
#endif
extern void __chk_user_ptr(const volatile void __user *);
extern void __chk_io_ptr(const volatile void __iomem *);
#else

View File

@ -84,7 +84,7 @@ struct thread_group_cred {
atomic_t usage;
pid_t tgid; /* thread group process ID */
spinlock_t lock;
struct key *session_keyring; /* keyring inherited over fork */
struct key __rcu *session_keyring; /* keyring inherited over fork */
struct key *process_keyring; /* keyring private to this process */
struct rcu_head rcu; /* RCU deletion hook */
};

View File

@ -31,7 +31,7 @@ struct embedded_fd_set {
struct fdtable {
unsigned int max_fds;
struct file ** fd; /* current fd array */
struct file __rcu **fd; /* current fd array */
fd_set *close_on_exec;
fd_set *open_fds;
struct rcu_head rcu;
@ -46,7 +46,7 @@ struct files_struct {
* read mostly part
*/
atomic_t count;
struct fdtable *fdt;
struct fdtable __rcu *fdt;
struct fdtable fdtab;
/*
* written part on a separate cache line in SMP
@ -55,7 +55,7 @@ struct files_struct {
int next_fd;
struct embedded_fd_set close_on_exec_init;
struct embedded_fd_set open_fds_init;
struct file * fd_array[NR_OPEN_DEFAULT];
struct file __rcu * fd_array[NR_OPEN_DEFAULT];
};
#define rcu_dereference_check_fdtable(files, fdtfd) \

View File

@ -1380,7 +1380,7 @@ struct super_block {
* Saved mount options for lazy filesystems using
* generic_show_options()
*/
char *s_options;
char __rcu *s_options;
};
extern struct timespec current_fs_time(struct super_block *sb);

View File

@ -129,8 +129,8 @@ struct blk_scsi_cmd_filter {
struct disk_part_tbl {
struct rcu_head rcu_head;
int len;
struct hd_struct *last_lookup;
struct hd_struct *part[];
struct hd_struct __rcu *last_lookup;
struct hd_struct __rcu *part[];
};
struct gendisk {
@ -149,7 +149,7 @@ struct gendisk {
* non-critical accesses use RCU. Always access through
* helpers.
*/
struct disk_part_tbl *part_tbl;
struct disk_part_tbl __rcu *part_tbl;
struct hd_struct part0;
const struct block_device_operations *fops;

View File

@ -139,7 +139,7 @@ static inline void account_system_vtime(struct task_struct *tsk)
#endif
#if defined(CONFIG_NO_HZ)
#if defined(CONFIG_TINY_RCU)
#if defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
extern void rcu_enter_nohz(void);
extern void rcu_exit_nohz(void);

View File

@ -50,14 +50,14 @@
struct idr_layer {
unsigned long bitmap; /* A zero bit means "space here" */
struct idr_layer *ary[1<<IDR_BITS];
struct idr_layer __rcu *ary[1<<IDR_BITS];
int count; /* When zero, we can release it */
int layer; /* distance from leaf */
struct rcu_head rcu_head;
};
struct idr {
struct idr_layer *top;
struct idr_layer __rcu *top;
struct idr_layer *id_free;
int layers; /* only valid without concurrent changes */
int id_free_cnt;

View File

@ -82,11 +82,17 @@ extern struct group_info init_groups;
# define CAP_INIT_BSET CAP_FULL_SET
#ifdef CONFIG_TREE_PREEMPT_RCU
#define INIT_TASK_RCU_TREE_PREEMPT() \
.rcu_blocked_node = NULL,
#else
#define INIT_TASK_RCU_TREE_PREEMPT(tsk)
#endif
#ifdef CONFIG_PREEMPT_RCU
#define INIT_TASK_RCU_PREEMPT(tsk) \
.rcu_read_lock_nesting = 0, \
.rcu_read_unlock_special = 0, \
.rcu_blocked_node = NULL, \
.rcu_node_entry = LIST_HEAD_INIT(tsk.rcu_node_entry),
.rcu_node_entry = LIST_HEAD_INIT(tsk.rcu_node_entry), \
INIT_TASK_RCU_TREE_PREEMPT()
#else
#define INIT_TASK_RCU_PREEMPT(tsk)
#endif
@ -137,8 +143,8 @@ extern struct cred init_cred;
.children = LIST_HEAD_INIT(tsk.children), \
.sibling = LIST_HEAD_INIT(tsk.sibling), \
.group_leader = &tsk, \
.real_cred = &init_cred, \
.cred = &init_cred, \
RCU_INIT_POINTER(.real_cred, &init_cred), \
RCU_INIT_POINTER(.cred, &init_cred), \
.cred_guard_mutex = \
__MUTEX_INITIALIZER(tsk.cred_guard_mutex), \
.comm = "swapper", \

View File

@ -1196,7 +1196,7 @@ struct input_dev {
int (*flush)(struct input_dev *dev, struct file *file);
int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value);
struct input_handle *grab;
struct input_handle __rcu *grab;
spinlock_t event_lock;
struct mutex mutex;

View File

@ -53,7 +53,7 @@ struct io_context {
struct radix_tree_root radix_root;
struct hlist_head cic_list;
void *ioc_data;
void __rcu *ioc_data;
};
static inline struct io_context *ioc_task_link(struct io_context *ioc)

View File

@ -178,8 +178,9 @@ struct key {
*/
union {
unsigned long value;
void __rcu *rcudata;
void *data;
struct keyring_list *subscriptions;
struct keyring_list __rcu *subscriptions;
} payload;
};

View File

@ -205,7 +205,7 @@ struct kvm {
struct mutex irq_lock;
#ifdef CONFIG_HAVE_KVM_IRQCHIP
struct kvm_irq_routing_table *irq_routing;
struct kvm_irq_routing_table __rcu *irq_routing;
struct hlist_head mask_notifier_list;
struct hlist_head irq_ack_notifier_list;
#endif

View File

@ -299,7 +299,7 @@ struct mm_struct {
* new_owner->mm == mm
* new_owner->alloc_lock is held
*/
struct task_struct *owner;
struct task_struct __rcu *owner;
#endif
#ifdef CONFIG_PROC_FS

View File

@ -185,7 +185,7 @@ struct nfs_inode {
struct nfs4_cached_acl *nfs4_acl;
/* NFSv4 state */
struct list_head open_states;
struct nfs_delegation *delegation;
struct nfs_delegation __rcu *delegation;
fmode_t delegation_state;
struct rw_semaphore rwsem;
#endif /* CONFIG_NFS_V4*/

View File

@ -49,28 +49,28 @@
struct notifier_block {
int (*notifier_call)(struct notifier_block *, unsigned long, void *);
struct notifier_block *next;
struct notifier_block __rcu *next;
int priority;
};
struct atomic_notifier_head {
spinlock_t lock;
struct notifier_block *head;
struct notifier_block __rcu *head;
};
struct blocking_notifier_head {
struct rw_semaphore rwsem;
struct notifier_block *head;
struct notifier_block __rcu *head;
};
struct raw_notifier_head {
struct notifier_block *head;
struct notifier_block __rcu *head;
};
struct srcu_notifier_head {
struct mutex mutex;
struct srcu_struct srcu;
struct notifier_block *head;
struct notifier_block __rcu *head;
};
#define ATOMIC_INIT_NOTIFIER_HEAD(name) do { \

View File

@ -47,6 +47,8 @@ static inline void *radix_tree_indirect_to_ptr(void *ptr)
{
return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
}
#define radix_tree_indirect_to_ptr(ptr) \
radix_tree_indirect_to_ptr((void __force *)(ptr))
static inline int radix_tree_is_indirect_ptr(void *ptr)
{
@ -61,7 +63,7 @@ static inline int radix_tree_is_indirect_ptr(void *ptr)
struct radix_tree_root {
unsigned int height;
gfp_t gfp_mask;
struct radix_tree_node *rnode;
struct radix_tree_node __rcu *rnode;
};
#define RADIX_TREE_INIT(mask) { \

View File

@ -9,6 +9,21 @@
#include <linux/list.h>
#include <linux/rcupdate.h>
/*
* Why is there no list_empty_rcu()? Because list_empty() serves this
* purpose. The list_empty() function fetches the RCU-protected pointer
* and compares it to the address of the list head, but neither dereferences
* this pointer itself nor provides this pointer to the caller. Therefore,
* it is not necessary to use rcu_dereference(), so that list_empty() can
* be used anywhere you would want to use a list_empty_rcu().
*/
/*
* return the ->next pointer of a list_head in an rcu safe
* way, we must not access it directly
*/
#define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
/*
* Insert a new entry between two known consecutive entries.
*
@ -20,7 +35,7 @@ static inline void __list_add_rcu(struct list_head *new,
{
new->next = next;
new->prev = prev;
rcu_assign_pointer(prev->next, new);
rcu_assign_pointer(list_next_rcu(prev), new);
next->prev = new;
}
@ -138,7 +153,7 @@ static inline void list_replace_rcu(struct list_head *old,
{
new->next = old->next;
new->prev = old->prev;
rcu_assign_pointer(new->prev->next, new);
rcu_assign_pointer(list_next_rcu(new->prev), new);
new->next->prev = new;
old->prev = LIST_POISON2;
}
@ -193,7 +208,7 @@ static inline void list_splice_init_rcu(struct list_head *list,
*/
last->next = at;
rcu_assign_pointer(head->next, first);
rcu_assign_pointer(list_next_rcu(head), first);
first->prev = head;
at->prev = last;
}
@ -208,7 +223,9 @@ static inline void list_splice_init_rcu(struct list_head *list,
* primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
*/
#define list_entry_rcu(ptr, type, member) \
container_of(rcu_dereference_raw(ptr), type, member)
({typeof (*ptr) __rcu *__ptr = (typeof (*ptr) __rcu __force *)ptr; \
container_of((typeof(ptr))rcu_dereference_raw(__ptr), type, member); \
})
/**
* list_first_entry_rcu - get the first element from a list
@ -225,9 +242,9 @@ static inline void list_splice_init_rcu(struct list_head *list,
list_entry_rcu((ptr)->next, type, member)
#define __list_for_each_rcu(pos, head) \
for (pos = rcu_dereference_raw((head)->next); \
for (pos = rcu_dereference_raw(list_next_rcu(head)); \
pos != (head); \
pos = rcu_dereference_raw(pos->next))
pos = rcu_dereference_raw(list_next_rcu((pos)))
/**
* list_for_each_entry_rcu - iterate over rcu list of given type
@ -257,9 +274,9 @@ static inline void list_splice_init_rcu(struct list_head *list,
* as long as the traversal is guarded by rcu_read_lock().
*/
#define list_for_each_continue_rcu(pos, head) \
for ((pos) = rcu_dereference_raw((pos)->next); \
for ((pos) = rcu_dereference_raw(list_next_rcu(pos)); \
prefetch((pos)->next), (pos) != (head); \
(pos) = rcu_dereference_raw((pos)->next))
(pos) = rcu_dereference_raw(list_next_rcu(pos)))
/**
* list_for_each_entry_continue_rcu - continue iteration over list of given type
@ -314,12 +331,19 @@ static inline void hlist_replace_rcu(struct hlist_node *old,
new->next = next;
new->pprev = old->pprev;
rcu_assign_pointer(*new->pprev, new);
rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
if (next)
new->next->pprev = &new->next;
old->pprev = LIST_POISON2;
}
/*
* return the first or the next element in an RCU protected hlist
*/
#define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
#define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
#define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
/**
* hlist_add_head_rcu
* @n: the element to add to the hash list.
@ -346,7 +370,7 @@ static inline void hlist_add_head_rcu(struct hlist_node *n,
n->next = first;
n->pprev = &h->first;
rcu_assign_pointer(h->first, n);
rcu_assign_pointer(hlist_first_rcu(h), n);
if (first)
first->pprev = &n->next;
}
@ -374,7 +398,7 @@ static inline void hlist_add_before_rcu(struct hlist_node *n,
{
n->pprev = next->pprev;
n->next = next;
rcu_assign_pointer(*(n->pprev), n);
rcu_assign_pointer(hlist_pprev_rcu(n), n);
next->pprev = &n->next;
}
@ -401,15 +425,15 @@ static inline void hlist_add_after_rcu(struct hlist_node *prev,
{
n->next = prev->next;
n->pprev = &prev->next;
rcu_assign_pointer(prev->next, n);
rcu_assign_pointer(hlist_next_rcu(prev), n);
if (n->next)
n->next->pprev = &n->next;
}
#define __hlist_for_each_rcu(pos, head) \
for (pos = rcu_dereference((head)->first); \
for (pos = rcu_dereference(hlist_first_rcu(head)); \
pos && ({ prefetch(pos->next); 1; }); \
pos = rcu_dereference(pos->next))
pos = rcu_dereference(hlist_next_rcu(pos)))
/**
* hlist_for_each_entry_rcu - iterate over rcu list of given type
@ -423,10 +447,10 @@ static inline void hlist_add_after_rcu(struct hlist_node *prev,
* as long as the traversal is guarded by rcu_read_lock().
*/
#define hlist_for_each_entry_rcu(tpos, pos, head, member) \
for (pos = rcu_dereference_raw((head)->first); \
for (pos = rcu_dereference_raw(hlist_first_rcu(head)); \
pos && ({ prefetch(pos->next); 1; }) && \
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; }); \
pos = rcu_dereference_raw(pos->next))
pos = rcu_dereference_raw(hlist_next_rcu(pos)))
/**
* hlist_for_each_entry_rcu_bh - iterate over rcu list of given type

View File

@ -37,6 +37,12 @@ static inline void hlist_nulls_del_init_rcu(struct hlist_nulls_node *n)
}
}
#define hlist_nulls_first_rcu(head) \
(*((struct hlist_nulls_node __rcu __force **)&(head)->first))
#define hlist_nulls_next_rcu(node) \
(*((struct hlist_nulls_node __rcu __force **)&(node)->next))
/**
* hlist_nulls_del_rcu - deletes entry from hash list without re-initialization
* @n: the element to delete from the hash list.
@ -88,7 +94,7 @@ static inline void hlist_nulls_add_head_rcu(struct hlist_nulls_node *n,
n->next = first;
n->pprev = &h->first;
rcu_assign_pointer(h->first, n);
rcu_assign_pointer(hlist_nulls_first_rcu(h), n);
if (!is_a_nulls(first))
first->pprev = &n->next;
}
@ -101,10 +107,10 @@ static inline void hlist_nulls_add_head_rcu(struct hlist_nulls_node *n,
*
*/
#define hlist_nulls_for_each_entry_rcu(tpos, pos, head, member) \
for (pos = rcu_dereference_raw((head)->first); \
for (pos = rcu_dereference_raw(hlist_nulls_first_rcu(head)); \
(!is_a_nulls(pos)) && \
({ tpos = hlist_nulls_entry(pos, typeof(*tpos), member); 1; }); \
pos = rcu_dereference_raw(pos->next))
pos = rcu_dereference_raw(hlist_nulls_next_rcu(pos)))
#endif
#endif

View File

@ -41,11 +41,15 @@
#include <linux/lockdep.h>
#include <linux/completion.h>
#include <linux/debugobjects.h>
#include <linux/compiler.h>
#ifdef CONFIG_RCU_TORTURE_TEST
extern int rcutorture_runnable; /* for sysctl */
#endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
/**
* struct rcu_head - callback structure for use with RCU
* @next: next update requests in a list
@ -57,29 +61,94 @@ struct rcu_head {
};
/* Exported common interfaces */
extern void rcu_barrier(void);
extern void call_rcu_sched(struct rcu_head *head,
void (*func)(struct rcu_head *rcu));
extern void synchronize_sched(void);
extern void rcu_barrier_bh(void);
extern void rcu_barrier_sched(void);
extern void synchronize_sched_expedited(void);
extern int sched_expedited_torture_stats(char *page);
static inline void __rcu_read_lock_bh(void)
{
local_bh_disable();
}
static inline void __rcu_read_unlock_bh(void)
{
local_bh_enable();
}
#ifdef CONFIG_PREEMPT_RCU
extern void __rcu_read_lock(void);
extern void __rcu_read_unlock(void);
void synchronize_rcu(void);
/*
* Defined as a macro as it is a very low level header included from
* areas that don't even know about current. This gives the rcu_read_lock()
* nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
* types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
*/
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
#else /* #ifdef CONFIG_PREEMPT_RCU */
static inline void __rcu_read_lock(void)
{
preempt_disable();
}
static inline void __rcu_read_unlock(void)
{
preempt_enable();
}
static inline void synchronize_rcu(void)
{
synchronize_sched();
}
static inline int rcu_preempt_depth(void)
{
return 0;
}
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
/* Internal to kernel */
extern void rcu_init(void);
extern void rcu_sched_qs(int cpu);
extern void rcu_bh_qs(int cpu);
extern void rcu_check_callbacks(int cpu, int user);
struct notifier_block;
#ifdef CONFIG_NO_HZ
extern void rcu_enter_nohz(void);
extern void rcu_exit_nohz(void);
#else /* #ifdef CONFIG_NO_HZ */
static inline void rcu_enter_nohz(void)
{
}
static inline void rcu_exit_nohz(void)
{
}
#endif /* #else #ifdef CONFIG_NO_HZ */
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
#include <linux/rcutree.h>
#elif defined(CONFIG_TINY_RCU)
#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
#include <linux/rcutiny.h>
#else
#error "Unknown RCU implementation specified to kernel configuration"
#endif
#define RCU_HEAD_INIT { .next = NULL, .func = NULL }
#define RCU_HEAD(head) struct rcu_head head = RCU_HEAD_INIT
#define INIT_RCU_HEAD(ptr) do { \
(ptr)->next = NULL; (ptr)->func = NULL; \
} while (0)
/*
* init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
* initialization and destruction of rcu_head on the stack. rcu_head structures
@ -120,14 +189,15 @@ extern struct lockdep_map rcu_sched_lock_map;
extern int debug_lockdep_rcu_enabled(void);
/**
* rcu_read_lock_held - might we be in RCU read-side critical section?
* rcu_read_lock_held() - might we be in RCU read-side critical section?
*
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
* read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
* this assumes we are in an RCU read-side critical section unless it can
* prove otherwise.
* prove otherwise. This is useful for debug checks in functions that
* require that they be called within an RCU read-side critical section.
*
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot
* Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
* and while lockdep is disabled.
*/
static inline int rcu_read_lock_held(void)
@ -144,14 +214,16 @@ static inline int rcu_read_lock_held(void)
extern int rcu_read_lock_bh_held(void);
/**
* rcu_read_lock_sched_held - might we be in RCU-sched read-side critical section?
* rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
*
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
* RCU-sched read-side critical section. In absence of
* CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
* critical section unless it can prove otherwise. Note that disabling
* of preemption (including disabling irqs) counts as an RCU-sched
* read-side critical section.
* read-side critical section. This is useful for debug checks in functions
* that required that they be called within an RCU-sched read-side
* critical section.
*
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot
* and while lockdep is disabled.
@ -211,7 +283,11 @@ static inline int rcu_read_lock_sched_held(void)
extern int rcu_my_thread_group_empty(void);
#define __do_rcu_dereference_check(c) \
/**
* rcu_lockdep_assert - emit lockdep splat if specified condition not met
* @c: condition to check
*/
#define rcu_lockdep_assert(c) \
do { \
static bool __warned; \
if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
@ -220,41 +296,155 @@ extern int rcu_my_thread_group_empty(void);
} \
} while (0)
#else /* #ifdef CONFIG_PROVE_RCU */
#define rcu_lockdep_assert(c) do { } while (0)
#endif /* #else #ifdef CONFIG_PROVE_RCU */
/*
* Helper functions for rcu_dereference_check(), rcu_dereference_protected()
* and rcu_assign_pointer(). Some of these could be folded into their
* callers, but they are left separate in order to ease introduction of
* multiple flavors of pointers to match the multiple flavors of RCU
* (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
* the future.
*/
#define __rcu_access_pointer(p, space) \
({ \
typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
(void) (((typeof (*p) space *)p) == p); \
((typeof(*p) __force __kernel *)(_________p1)); \
})
#define __rcu_dereference_check(p, c, space) \
({ \
typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
rcu_lockdep_assert(c); \
(void) (((typeof (*p) space *)p) == p); \
smp_read_barrier_depends(); \
((typeof(*p) __force __kernel *)(_________p1)); \
})
#define __rcu_dereference_protected(p, c, space) \
({ \
rcu_lockdep_assert(c); \
(void) (((typeof (*p) space *)p) == p); \
((typeof(*p) __force __kernel *)(p)); \
})
#define __rcu_dereference_index_check(p, c) \
({ \
typeof(p) _________p1 = ACCESS_ONCE(p); \
rcu_lockdep_assert(c); \
smp_read_barrier_depends(); \
(_________p1); \
})
#define __rcu_assign_pointer(p, v, space) \
({ \
if (!__builtin_constant_p(v) || \
((v) != NULL)) \
smp_wmb(); \
(p) = (typeof(*v) __force space *)(v); \
})
/**
* rcu_dereference_check - rcu_dereference with debug checking
* rcu_access_pointer() - fetch RCU pointer with no dereferencing
* @p: The pointer to read
*
* Return the value of the specified RCU-protected pointer, but omit the
* smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
* when the value of this pointer is accessed, but the pointer is not
* dereferenced, for example, when testing an RCU-protected pointer against
* NULL. Although rcu_access_pointer() may also be used in cases where
* update-side locks prevent the value of the pointer from changing, you
* should instead use rcu_dereference_protected() for this use case.
*/
#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
/**
* rcu_dereference_check() - rcu_dereference with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Do an rcu_dereference(), but check that the conditions under which the
* dereference will take place are correct. Typically the conditions indicate
* the various locking conditions that should be held at that point. The check
* should return true if the conditions are satisfied.
* dereference will take place are correct. Typically the conditions
* indicate the various locking conditions that should be held at that
* point. The check should return true if the conditions are satisfied.
* An implicit check for being in an RCU read-side critical section
* (rcu_read_lock()) is included.
*
* For example:
*
* bar = rcu_dereference_check(foo->bar, rcu_read_lock_held() ||
* lockdep_is_held(&foo->lock));
* bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
*
* could be used to indicate to lockdep that foo->bar may only be dereferenced
* if either the RCU read lock is held, or that the lock required to replace
* if either rcu_read_lock() is held, or that the lock required to replace
* the bar struct at foo->bar is held.
*
* Note that the list of conditions may also include indications of when a lock
* need not be held, for example during initialisation or destruction of the
* target struct:
*
* bar = rcu_dereference_check(foo->bar, rcu_read_lock_held() ||
* lockdep_is_held(&foo->lock) ||
* bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
* atomic_read(&foo->usage) == 0);
*
* Inserts memory barriers on architectures that require them
* (currently only the Alpha), prevents the compiler from refetching
* (and from merging fetches), and, more importantly, documents exactly
* which pointers are protected by RCU and checks that the pointer is
* annotated as __rcu.
*/
#define rcu_dereference_check(p, c) \
({ \
__do_rcu_dereference_check(c); \
rcu_dereference_raw(p); \
})
__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
/**
* rcu_dereference_protected - fetch RCU pointer when updates prevented
* rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* This is the RCU-bh counterpart to rcu_dereference_check().
*/
#define rcu_dereference_bh_check(p, c) \
__rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
/**
* rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* This is the RCU-sched counterpart to rcu_dereference_check().
*/
#define rcu_dereference_sched_check(p, c) \
__rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
__rcu)
#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
/**
* rcu_dereference_index_check() - rcu_dereference for indices with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Similar to rcu_dereference_check(), but omits the sparse checking.
* This allows rcu_dereference_index_check() to be used on integers,
* which can then be used as array indices. Attempting to use
* rcu_dereference_check() on an integer will give compiler warnings
* because the sparse address-space mechanism relies on dereferencing
* the RCU-protected pointer. Dereferencing integers is not something
* that even gcc will put up with.
*
* Note that this function does not implicitly check for RCU read-side
* critical sections. If this function gains lots of uses, it might
* make sense to provide versions for each flavor of RCU, but it does
* not make sense as of early 2010.
*/
#define rcu_dereference_index_check(p, c) \
__rcu_dereference_index_check((p), (c))
/**
* rcu_dereference_protected() - fetch RCU pointer when updates prevented
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Return the value of the specified RCU-protected pointer, but omit
* both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
@ -263,35 +453,61 @@ extern int rcu_my_thread_group_empty(void);
* prevent the compiler from repeating this reference or combining it
* with other references, so it should not be used without protection
* of appropriate locks.
*
* This function is only for update-side use. Using this function
* when protected only by rcu_read_lock() will result in infrequent
* but very ugly failures.
*/
#define rcu_dereference_protected(p, c) \
({ \
__do_rcu_dereference_check(c); \
(p); \
})
#else /* #ifdef CONFIG_PROVE_RCU */
#define rcu_dereference_check(p, c) rcu_dereference_raw(p)
#define rcu_dereference_protected(p, c) (p)
#endif /* #else #ifdef CONFIG_PROVE_RCU */
__rcu_dereference_protected((p), (c), __rcu)
/**
* rcu_access_pointer - fetch RCU pointer with no dereferencing
* rcu_dereference_bh_protected() - fetch RCU-bh pointer when updates prevented
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Return the value of the specified RCU-protected pointer, but omit the
* smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
* when the value of this pointer is accessed, but the pointer is not
* dereferenced, for example, when testing an RCU-protected pointer against
* NULL. This may also be used in cases where update-side locks prevent
* the value of the pointer from changing, but rcu_dereference_protected()
* is a lighter-weight primitive for this use case.
* This is the RCU-bh counterpart to rcu_dereference_protected().
*/
#define rcu_access_pointer(p) ACCESS_ONCE(p)
#define rcu_dereference_bh_protected(p, c) \
__rcu_dereference_protected((p), (c), __rcu)
/**
* rcu_read_lock - mark the beginning of an RCU read-side critical section.
* rcu_dereference_sched_protected() - fetch RCU-sched pointer when updates prevented
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* This is the RCU-sched counterpart to rcu_dereference_protected().
*/
#define rcu_dereference_sched_protected(p, c) \
__rcu_dereference_protected((p), (c), __rcu)
/**
* rcu_dereference() - fetch RCU-protected pointer for dereferencing
* @p: The pointer to read, prior to dereferencing
*
* This is a simple wrapper around rcu_dereference_check().
*/
#define rcu_dereference(p) rcu_dereference_check(p, 0)
/**
* rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
* @p: The pointer to read, prior to dereferencing
*
* Makes rcu_dereference_check() do the dirty work.
*/
#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
/**
* rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
* @p: The pointer to read, prior to dereferencing
*
* Makes rcu_dereference_check() do the dirty work.
*/
#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
/**
* rcu_read_lock() - mark the beginning of an RCU read-side critical section
*
* When synchronize_rcu() is invoked on one CPU while other CPUs
* are within RCU read-side critical sections, then the
@ -302,7 +518,7 @@ extern int rcu_my_thread_group_empty(void);
* until after the all the other CPUs exit their critical sections.
*
* Note, however, that RCU callbacks are permitted to run concurrently
* with RCU read-side critical sections. One way that this can happen
* with new RCU read-side critical sections. One way that this can happen
* is via the following sequence of events: (1) CPU 0 enters an RCU
* read-side critical section, (2) CPU 1 invokes call_rcu() to register
* an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
@ -317,7 +533,20 @@ extern int rcu_my_thread_group_empty(void);
* will be deferred until the outermost RCU read-side critical section
* completes.
*
* It is illegal to block while in an RCU read-side critical section.
* You can avoid reading and understanding the next paragraph by
* following this rule: don't put anything in an rcu_read_lock() RCU
* read-side critical section that would block in a !PREEMPT kernel.
* But if you want the full story, read on!
*
* In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
* is illegal to block while in an RCU read-side critical section. In
* preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
* in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
* be preempted, but explicit blocking is illegal. Finally, in preemptible
* RCU implementations in real-time (CONFIG_PREEMPT_RT) kernel builds,
* RCU read-side critical sections may be preempted and they may also
* block, but only when acquiring spinlocks that are subject to priority
* inheritance.
*/
static inline void rcu_read_lock(void)
{
@ -337,7 +566,7 @@ static inline void rcu_read_lock(void)
*/
/**
* rcu_read_unlock - marks the end of an RCU read-side critical section.
* rcu_read_unlock() - marks the end of an RCU read-side critical section.
*
* See rcu_read_lock() for more information.
*/
@ -349,15 +578,16 @@ static inline void rcu_read_unlock(void)
}
/**
* rcu_read_lock_bh - mark the beginning of a softirq-only RCU critical section
* rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
*
* This is equivalent of rcu_read_lock(), but to be used when updates
* are being done using call_rcu_bh(). Since call_rcu_bh() callbacks
* consider completion of a softirq handler to be a quiescent state,
* a process in RCU read-side critical section must be protected by
* disabling softirqs. Read-side critical sections in interrupt context
* can use just rcu_read_lock().
*
* are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
* both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
* softirq handler to be a quiescent state, a process in RCU read-side
* critical section must be protected by disabling softirqs. Read-side
* critical sections in interrupt context can use just rcu_read_lock(),
* though this should at least be commented to avoid confusing people
* reading the code.
*/
static inline void rcu_read_lock_bh(void)
{
@ -379,13 +609,12 @@ static inline void rcu_read_unlock_bh(void)
}
/**
* rcu_read_lock_sched - mark the beginning of a RCU-classic critical section
* rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
*
* Should be used with either
* - synchronize_sched()
* or
* - call_rcu_sched() and rcu_barrier_sched()
* on the write-side to insure proper synchronization.
* This is equivalent of rcu_read_lock(), but to be used when updates
* are being done using call_rcu_sched() or synchronize_rcu_sched().
* Read-side critical sections can also be introduced by anything that
* disables preemption, including local_irq_disable() and friends.
*/
static inline void rcu_read_lock_sched(void)
{
@ -420,54 +649,14 @@ static inline notrace void rcu_read_unlock_sched_notrace(void)
preempt_enable_notrace();
}
/**
* rcu_dereference_raw - fetch an RCU-protected pointer
* rcu_assign_pointer() - assign to RCU-protected pointer
* @p: pointer to assign to
* @v: value to assign (publish)
*
* The caller must be within some flavor of RCU read-side critical
* section, or must be otherwise preventing the pointer from changing,
* for example, by holding an appropriate lock. This pointer may later
* be safely dereferenced. It is the caller's responsibility to have
* done the right thing, as this primitive does no checking of any kind.
*
* Inserts memory barriers on architectures that require them
* (currently only the Alpha), and, more importantly, documents
* exactly which pointers are protected by RCU.
*/
#define rcu_dereference_raw(p) ({ \
typeof(p) _________p1 = ACCESS_ONCE(p); \
smp_read_barrier_depends(); \
(_________p1); \
})
/**
* rcu_dereference - fetch an RCU-protected pointer, checking for RCU
*
* Makes rcu_dereference_check() do the dirty work.
*/
#define rcu_dereference(p) \
rcu_dereference_check(p, rcu_read_lock_held())
/**
* rcu_dereference_bh - fetch an RCU-protected pointer, checking for RCU-bh
*
* Makes rcu_dereference_check() do the dirty work.
*/
#define rcu_dereference_bh(p) \
rcu_dereference_check(p, rcu_read_lock_bh_held())
/**
* rcu_dereference_sched - fetch RCU-protected pointer, checking for RCU-sched
*
* Makes rcu_dereference_check() do the dirty work.
*/
#define rcu_dereference_sched(p) \
rcu_dereference_check(p, rcu_read_lock_sched_held())
/**
* rcu_assign_pointer - assign (publicize) a pointer to a newly
* initialized structure that will be dereferenced by RCU read-side
* critical sections. Returns the value assigned.
* Assigns the specified value to the specified RCU-protected
* pointer, ensuring that any concurrent RCU readers will see
* any prior initialization. Returns the value assigned.
*
* Inserts memory barriers on architectures that require them
* (pretty much all of them other than x86), and also prevents
@ -476,14 +665,17 @@ static inline notrace void rcu_read_unlock_sched_notrace(void)
* call documents which pointers will be dereferenced by RCU read-side
* code.
*/
#define rcu_assign_pointer(p, v) \
({ \
if (!__builtin_constant_p(v) || \
((v) != NULL)) \
smp_wmb(); \
(p) = (v); \
})
__rcu_assign_pointer((p), (v), __rcu)
/**
* RCU_INIT_POINTER() - initialize an RCU protected pointer
*
* Initialize an RCU-protected pointer in such a way to avoid RCU-lockdep
* splats.
*/
#define RCU_INIT_POINTER(p, v) \
p = (typeof(*v) __force __rcu *)(v)
/* Infrastructure to implement the synchronize_() primitives. */
@ -494,26 +686,37 @@ struct rcu_synchronize {
extern void wakeme_after_rcu(struct rcu_head *head);
#ifdef CONFIG_PREEMPT_RCU
/**
* call_rcu - Queue an RCU callback for invocation after a grace period.
* call_rcu() - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual update function to be invoked after the grace period
* @func: actual callback function to be invoked after the grace period
*
* The update function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. RCU read-side critical
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed. However, the callback function
* might well execute concurrently with RCU read-side critical sections
* that started after call_rcu() was invoked. RCU read-side critical
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested.
*/
extern void call_rcu(struct rcu_head *head,
void (*func)(struct rcu_head *head));
#else /* #ifdef CONFIG_PREEMPT_RCU */
/* In classic RCU, call_rcu() is just call_rcu_sched(). */
#define call_rcu call_rcu_sched
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
/**
* call_rcu_bh - Queue an RCU for invocation after a quicker grace period.
* call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual update function to be invoked after the grace period
* @func: actual callback function to be invoked after the grace period
*
* The update function will be invoked some time after a full grace
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all currently executing RCU
* read-side critical sections have completed. call_rcu_bh() assumes
* that the read-side critical sections end on completion of a softirq
@ -566,37 +769,4 @@ static inline void debug_rcu_head_unqueue(struct rcu_head *head)
}
#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
#ifndef CONFIG_PROVE_RCU
#define __do_rcu_dereference_check(c) do { } while (0)
#endif /* #ifdef CONFIG_PROVE_RCU */
#define __rcu_dereference_index_check(p, c) \
({ \
typeof(p) _________p1 = ACCESS_ONCE(p); \
__do_rcu_dereference_check(c); \
smp_read_barrier_depends(); \
(_________p1); \
})
/**
* rcu_dereference_index_check() - rcu_dereference for indices with debug checking
* @p: The pointer to read, prior to dereferencing
* @c: The conditions under which the dereference will take place
*
* Similar to rcu_dereference_check(), but omits the sparse checking.
* This allows rcu_dereference_index_check() to be used on integers,
* which can then be used as array indices. Attempting to use
* rcu_dereference_check() on an integer will give compiler warnings
* because the sparse address-space mechanism relies on dereferencing
* the RCU-protected pointer. Dereferencing integers is not something
* that even gcc will put up with.
*
* Note that this function does not implicitly check for RCU read-side
* critical sections. If this function gains lots of uses, it might
* make sense to provide versions for each flavor of RCU, but it does
* not make sense as of early 2010.
*/
#define rcu_dereference_index_check(p, c) \
__rcu_dereference_index_check((p), (c))
#endif /* __LINUX_RCUPDATE_H */

View File

@ -27,27 +27,71 @@
#include <linux/cache.h>
void rcu_sched_qs(int cpu);
void rcu_bh_qs(int cpu);
static inline void rcu_note_context_switch(int cpu)
#define rcu_init_sched() do { } while (0)
#ifdef CONFIG_TINY_RCU
static inline void synchronize_rcu_expedited(void)
{
rcu_sched_qs(cpu);
synchronize_sched(); /* Only one CPU, so pretty fast anyway!!! */
}
#define __rcu_read_lock() preempt_disable()
#define __rcu_read_unlock() preempt_enable()
#define __rcu_read_lock_bh() local_bh_disable()
#define __rcu_read_unlock_bh() local_bh_enable()
#define call_rcu_sched call_rcu
static inline void rcu_barrier(void)
{
rcu_barrier_sched(); /* Only one CPU, so only one list of callbacks! */
}
#define rcu_init_sched() do { } while (0)
extern void rcu_check_callbacks(int cpu, int user);
#else /* #ifdef CONFIG_TINY_RCU */
void rcu_barrier(void);
void synchronize_rcu_expedited(void);
#endif /* #else #ifdef CONFIG_TINY_RCU */
static inline void synchronize_rcu_bh(void)
{
synchronize_sched();
}
static inline void synchronize_rcu_bh_expedited(void)
{
synchronize_sched();
}
#ifdef CONFIG_TINY_RCU
static inline void rcu_preempt_note_context_switch(void)
{
}
static inline void exit_rcu(void)
{
}
static inline int rcu_needs_cpu(int cpu)
{
return 0;
}
#else /* #ifdef CONFIG_TINY_RCU */
void rcu_preempt_note_context_switch(void);
extern void exit_rcu(void);
int rcu_preempt_needs_cpu(void);
static inline int rcu_needs_cpu(int cpu)
{
return rcu_preempt_needs_cpu();
}
#endif /* #else #ifdef CONFIG_TINY_RCU */
static inline void rcu_note_context_switch(int cpu)
{
rcu_sched_qs(cpu);
rcu_preempt_note_context_switch();
}
/*
* Return the number of grace periods.
*/
@ -76,54 +120,8 @@ static inline void rcu_sched_force_quiescent_state(void)
{
}
extern void synchronize_sched(void);
static inline void synchronize_rcu(void)
static inline void rcu_cpu_stall_reset(void)
{
synchronize_sched();
}
static inline void synchronize_rcu_bh(void)
{
synchronize_sched();
}
static inline void synchronize_rcu_expedited(void)
{
synchronize_sched();
}
static inline void synchronize_rcu_bh_expedited(void)
{
synchronize_sched();
}
struct notifier_block;
#ifdef CONFIG_NO_HZ
extern void rcu_enter_nohz(void);
extern void rcu_exit_nohz(void);
#else /* #ifdef CONFIG_NO_HZ */
static inline void rcu_enter_nohz(void)
{
}
static inline void rcu_exit_nohz(void)
{
}
#endif /* #else #ifdef CONFIG_NO_HZ */
static inline void exit_rcu(void)
{
}
static inline int rcu_preempt_depth(void)
{
return 0;
}
#ifdef CONFIG_DEBUG_LOCK_ALLOC

View File

@ -30,64 +30,23 @@
#ifndef __LINUX_RCUTREE_H
#define __LINUX_RCUTREE_H
struct notifier_block;
extern void rcu_sched_qs(int cpu);
extern void rcu_bh_qs(int cpu);
extern void rcu_note_context_switch(int cpu);
extern int rcu_needs_cpu(int cpu);
extern void rcu_cpu_stall_reset(void);
#ifdef CONFIG_TREE_PREEMPT_RCU
extern void __rcu_read_lock(void);
extern void __rcu_read_unlock(void);
extern void synchronize_rcu(void);
extern void exit_rcu(void);
/*
* Defined as macro as it is a very low level header
* included from areas that don't even know about current
*/
#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
static inline void __rcu_read_lock(void)
{
preempt_disable();
}
static inline void __rcu_read_unlock(void)
{
preempt_enable();
}
#define synchronize_rcu synchronize_sched
static inline void exit_rcu(void)
{
}
static inline int rcu_preempt_depth(void)
{
return 0;
}
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
static inline void __rcu_read_lock_bh(void)
{
local_bh_disable();
}
static inline void __rcu_read_unlock_bh(void)
{
local_bh_enable();
}
extern void call_rcu_sched(struct rcu_head *head,
void (*func)(struct rcu_head *rcu));
extern void synchronize_rcu_bh(void);
extern void synchronize_sched(void);
extern void synchronize_rcu_expedited(void);
static inline void synchronize_rcu_bh_expedited(void)
@ -95,7 +54,7 @@ static inline void synchronize_rcu_bh_expedited(void)
synchronize_sched_expedited();
}
extern void rcu_check_callbacks(int cpu, int user);
extern void rcu_barrier(void);
extern long rcu_batches_completed(void);
extern long rcu_batches_completed_bh(void);
@ -104,18 +63,6 @@ extern void rcu_force_quiescent_state(void);
extern void rcu_bh_force_quiescent_state(void);
extern void rcu_sched_force_quiescent_state(void);
#ifdef CONFIG_NO_HZ
void rcu_enter_nohz(void);
void rcu_exit_nohz(void);
#else /* CONFIG_NO_HZ */
static inline void rcu_enter_nohz(void)
{
}
static inline void rcu_exit_nohz(void)
{
}
#endif /* CONFIG_NO_HZ */
/* A context switch is a grace period for RCU-sched and RCU-bh. */
static inline int rcu_blocking_is_gp(void)
{

View File

@ -1202,11 +1202,13 @@ struct task_struct {
unsigned int policy;
cpumask_t cpus_allowed;
#ifdef CONFIG_TREE_PREEMPT_RCU
#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
char rcu_read_unlock_special;
struct rcu_node *rcu_blocked_node;
struct list_head rcu_node_entry;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TREE_PREEMPT_RCU
struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
@ -1288,9 +1290,9 @@ struct task_struct {
struct list_head cpu_timers[3];
/* process credentials */
const struct cred *real_cred; /* objective and real subjective task
const struct cred __rcu *real_cred; /* objective and real subjective task
* credentials (COW) */
const struct cred *cred; /* effective (overridable) subjective task
const struct cred __rcu *cred; /* effective (overridable) subjective task
* credentials (COW) */
struct mutex cred_guard_mutex; /* guard against foreign influences on
* credential calculations
@ -1418,7 +1420,7 @@ struct task_struct {
#endif
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock */
struct css_set *cgroups;
struct css_set __rcu *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock */
struct list_head cg_list;
#endif
@ -1740,7 +1742,7 @@ extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)
#ifdef CONFIG_TREE_PREEMPT_RCU
#ifdef CONFIG_PREEMPT_RCU
#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
@ -1749,7 +1751,9 @@ static inline void rcu_copy_process(struct task_struct *p)
{
p->rcu_read_lock_nesting = 0;
p->rcu_read_unlock_special = 0;
#ifdef CONFIG_TREE_PREEMPT_RCU
p->rcu_blocked_node = NULL;
#endif
INIT_LIST_HEAD(&p->rcu_node_entry);
}

View File

@ -108,19 +108,43 @@ static inline int srcu_read_lock_held(struct srcu_struct *sp)
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
/**
* srcu_dereference - fetch SRCU-protected pointer with checking
* srcu_dereference_check - fetch SRCU-protected pointer for later dereferencing
* @p: the pointer to fetch and protect for later dereferencing
* @sp: pointer to the srcu_struct, which is used to check that we
* really are in an SRCU read-side critical section.
* @c: condition to check for update-side use
*
* Makes rcu_dereference_check() do the dirty work.
* If PROVE_RCU is enabled, invoking this outside of an RCU read-side
* critical section will result in an RCU-lockdep splat, unless @c evaluates
* to 1. The @c argument will normally be a logical expression containing
* lockdep_is_held() calls.
*/
#define srcu_dereference(p, sp) \
rcu_dereference_check(p, srcu_read_lock_held(sp))
#define srcu_dereference_check(p, sp, c) \
__rcu_dereference_check((p), srcu_read_lock_held(sp) || (c), __rcu)
/**
* srcu_dereference - fetch SRCU-protected pointer for later dereferencing
* @p: the pointer to fetch and protect for later dereferencing
* @sp: pointer to the srcu_struct, which is used to check that we
* really are in an SRCU read-side critical section.
*
* Makes rcu_dereference_check() do the dirty work. If PROVE_RCU
* is enabled, invoking this outside of an RCU read-side critical
* section will result in an RCU-lockdep splat.
*/
#define srcu_dereference(p, sp) srcu_dereference_check((p), (sp), 0)
/**
* srcu_read_lock - register a new reader for an SRCU-protected structure.
* @sp: srcu_struct in which to register the new reader.
*
* Enter an SRCU read-side critical section. Note that SRCU read-side
* critical sections may be nested.
* critical sections may be nested. However, it is illegal to
* call anything that waits on an SRCU grace period for the same
* srcu_struct, whether directly or indirectly. Please note that
* one way to indirectly wait on an SRCU grace period is to acquire
* a mutex that is held elsewhere while calling synchronize_srcu() or
* synchronize_srcu_expedited().
*/
static inline int srcu_read_lock(struct srcu_struct *sp) __acquires(sp)
{

View File

@ -69,7 +69,7 @@ struct gss_cl_ctx {
enum rpc_gss_proc gc_proc;
u32 gc_seq;
spinlock_t gc_seq_lock;
struct gss_ctx *gc_gss_ctx;
struct gss_ctx __rcu *gc_gss_ctx;
struct xdr_netobj gc_wire_ctx;
u32 gc_win;
unsigned long gc_expiry;
@ -80,7 +80,7 @@ struct gss_upcall_msg;
struct gss_cred {
struct rpc_cred gc_base;
enum rpc_gss_svc gc_service;
struct gss_cl_ctx *gc_ctx;
struct gss_cl_ctx __rcu *gc_ctx;
struct gss_upcall_msg *gc_upcall;
unsigned long gc_upcall_timestamp;
unsigned char gc_machine_cred : 1;

View File

@ -45,7 +45,8 @@ static inline u32 task_cls_classid(struct task_struct *p)
return 0;
rcu_read_lock();
id = rcu_dereference(net_cls_subsys_id);
id = rcu_dereference_index_check(net_cls_subsys_id,
rcu_read_lock_held());
if (id >= 0)
classid = container_of(task_subsys_state(p, id),
struct cgroup_cls_state, css)->classid;

View File

@ -75,7 +75,7 @@ struct nf_conntrack_helper;
/* nf_conn feature for connections that have a helper */
struct nf_conn_help {
/* Helper. if any */
struct nf_conntrack_helper *helper;
struct nf_conntrack_helper __rcu *helper;
union nf_conntrack_help help;

View File

@ -340,6 +340,7 @@ choice
config TREE_RCU
bool "Tree-based hierarchical RCU"
depends on !PREEMPT && SMP
help
This option selects the RCU implementation that is
designed for very large SMP system with hundreds or
@ -347,7 +348,7 @@ config TREE_RCU
smaller systems.
config TREE_PREEMPT_RCU
bool "Preemptable tree-based hierarchical RCU"
bool "Preemptible tree-based hierarchical RCU"
depends on PREEMPT
help
This option selects the RCU implementation that is
@ -365,8 +366,22 @@ config TINY_RCU
is not required. This option greatly reduces the
memory footprint of RCU.
config TINY_PREEMPT_RCU
bool "Preemptible UP-only small-memory-footprint RCU"
depends on !SMP && PREEMPT
help
This option selects the RCU implementation that is designed
for real-time UP systems. This option greatly reduces the
memory footprint of RCU.
endchoice
config PREEMPT_RCU
def_bool ( TREE_PREEMPT_RCU || TINY_PREEMPT_RCU )
help
This option enables preemptible-RCU code that is common between
the TREE_PREEMPT_RCU and TINY_PREEMPT_RCU implementations.
config RCU_TRACE
bool "Enable tracing for RCU"
depends on TREE_RCU || TREE_PREEMPT_RCU
@ -387,9 +402,12 @@ config RCU_FANOUT
help
This option controls the fanout of hierarchical implementations
of RCU, allowing RCU to work efficiently on machines with
large numbers of CPUs. This value must be at least the cube
root of NR_CPUS, which allows NR_CPUS up to 32,768 for 32-bit
systems and up to 262,144 for 64-bit systems.
large numbers of CPUs. This value must be at least the fourth
root of NR_CPUS, which allows NR_CPUS to be insanely large.
The default value of RCU_FANOUT should be used for production
systems, but if you are stress-testing the RCU implementation
itself, small RCU_FANOUT values allow you to test large-system
code paths on small(er) systems.
Select a specific number if testing RCU itself.
Take the default if unsure.

View File

@ -86,6 +86,7 @@ obj-$(CONFIG_TREE_RCU) += rcutree.o
obj-$(CONFIG_TREE_PREEMPT_RCU) += rcutree.o
obj-$(CONFIG_TREE_RCU_TRACE) += rcutree_trace.o
obj-$(CONFIG_TINY_RCU) += rcutiny.o
obj-$(CONFIG_TINY_PREEMPT_RCU) += rcutiny.o
obj-$(CONFIG_RELAY) += relay.o
obj-$(CONFIG_SYSCTL) += utsname_sysctl.o
obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o

View File

@ -138,7 +138,7 @@ struct css_id {
* is called after synchronize_rcu(). But for safe use, css_is_removed()
* css_tryget() should be used for avoiding race.
*/
struct cgroup_subsys_state *css;
struct cgroup_subsys_state __rcu *css;
/*
* ID of this css.
*/

View File

@ -401,7 +401,7 @@ struct task_struct *pid_task(struct pid *pid, enum pid_type type)
struct task_struct *result = NULL;
if (pid) {
struct hlist_node *first;
first = rcu_dereference_check(pid->tasks[type].first,
first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
rcu_read_lock_held() ||
lockdep_tasklist_lock_is_held());
if (first)
@ -416,6 +416,7 @@ EXPORT_SYMBOL(pid_task);
*/
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
{
rcu_lockdep_assert(rcu_read_lock_held());
return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
}

View File

@ -73,12 +73,14 @@ int debug_lockdep_rcu_enabled(void)
EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
/**
* rcu_read_lock_bh_held - might we be in RCU-bh read-side critical section?
* rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
*
* Check for bottom half being disabled, which covers both the
* CONFIG_PROVE_RCU and not cases. Note that if someone uses
* rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
* will show the situation.
* will show the situation. This is useful for debug checks in functions
* that require that they be called within an RCU read-side critical
* section.
*
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
*/

View File

@ -59,6 +59,14 @@ int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
/* Forward declarations for rcutiny_plugin.h. */
static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp);
static void __call_rcu(struct rcu_head *head,
void (*func)(struct rcu_head *rcu),
struct rcu_ctrlblk *rcp);
#include "rcutiny_plugin.h"
#ifdef CONFIG_NO_HZ
static long rcu_dynticks_nesting = 1;
@ -140,6 +148,7 @@ void rcu_check_callbacks(int cpu, int user)
rcu_sched_qs(cpu);
else if (!in_softirq())
rcu_bh_qs(cpu);
rcu_preempt_check_callbacks();
}
/*
@ -162,6 +171,7 @@ static void __rcu_process_callbacks(struct rcu_ctrlblk *rcp)
*rcp->donetail = NULL;
if (rcp->curtail == rcp->donetail)
rcp->curtail = &rcp->rcucblist;
rcu_preempt_remove_callbacks(rcp);
rcp->donetail = &rcp->rcucblist;
local_irq_restore(flags);
@ -182,6 +192,7 @@ static void rcu_process_callbacks(struct softirq_action *unused)
{
__rcu_process_callbacks(&rcu_sched_ctrlblk);
__rcu_process_callbacks(&rcu_bh_ctrlblk);
rcu_preempt_process_callbacks();
}
/*
@ -223,15 +234,15 @@ static void __call_rcu(struct rcu_head *head,
}
/*
* Post an RCU callback to be invoked after the end of an RCU grace
* Post an RCU callback to be invoked after the end of an RCU-sched grace
* period. But since we have but one CPU, that would be after any
* quiescent state.
*/
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
__call_rcu(head, func, &rcu_sched_ctrlblk);
}
EXPORT_SYMBOL_GPL(call_rcu);
EXPORT_SYMBOL_GPL(call_rcu_sched);
/*
* Post an RCU bottom-half callback to be invoked after any subsequent
@ -243,20 +254,6 @@ void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
}
EXPORT_SYMBOL_GPL(call_rcu_bh);
void rcu_barrier(void)
{
struct rcu_synchronize rcu;
init_rcu_head_on_stack(&rcu.head);
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(rcu_barrier);
void rcu_barrier_bh(void)
{
struct rcu_synchronize rcu;
@ -289,5 +286,3 @@ void __init rcu_init(void)
{
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
}
#include "rcutiny_plugin.h"

View File

@ -1,7 +1,7 @@
/*
* Read-Copy Update mechanism for mutual exclusion (tree-based version)
* Read-Copy Update mechanism for mutual exclusion, the Bloatwatch edition
* Internal non-public definitions that provide either classic
* or preemptable semantics.
* or preemptible semantics.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -17,11 +17,583 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright IBM Corporation, 2009
* Copyright (c) 2010 Linaro
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
#ifdef CONFIG_TINY_PREEMPT_RCU
#include <linux/delay.h>
/* Global control variables for preemptible RCU. */
struct rcu_preempt_ctrlblk {
struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
struct rcu_head **nexttail;
/* Tasks blocked in a preemptible RCU */
/* read-side critical section while an */
/* preemptible-RCU grace period is in */
/* progress must wait for a later grace */
/* period. This pointer points to the */
/* ->next pointer of the last task that */
/* must wait for a later grace period, or */
/* to &->rcb.rcucblist if there is no */
/* such task. */
struct list_head blkd_tasks;
/* Tasks blocked in RCU read-side critical */
/* section. Tasks are placed at the head */
/* of this list and age towards the tail. */
struct list_head *gp_tasks;
/* Pointer to the first task blocking the */
/* current grace period, or NULL if there */
/* is not such task. */
struct list_head *exp_tasks;
/* Pointer to first task blocking the */
/* current expedited grace period, or NULL */
/* if there is no such task. If there */
/* is no current expedited grace period, */
/* then there cannot be any such task. */
u8 gpnum; /* Current grace period. */
u8 gpcpu; /* Last grace period blocked by the CPU. */
u8 completed; /* Last grace period completed. */
/* If all three are equal, RCU is idle. */
};
static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
.rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
.rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
.nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
.blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
};
static int rcu_preempted_readers_exp(void);
static void rcu_report_exp_done(void);
/*
* Return true if the CPU has not yet responded to the current grace period.
*/
static int rcu_cpu_cur_gp(void)
{
return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
}
/*
* Check for a running RCU reader. Because there is only one CPU,
* there can be but one running RCU reader at a time. ;-)
*/
static int rcu_preempt_running_reader(void)
{
return current->rcu_read_lock_nesting;
}
/*
* Check for preempted RCU readers blocking any grace period.
* If the caller needs a reliable answer, it must disable hard irqs.
*/
static int rcu_preempt_blocked_readers_any(void)
{
return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
}
/*
* Check for preempted RCU readers blocking the current grace period.
* If the caller needs a reliable answer, it must disable hard irqs.
*/
static int rcu_preempt_blocked_readers_cgp(void)
{
return rcu_preempt_ctrlblk.gp_tasks != NULL;
}
/*
* Return true if another preemptible-RCU grace period is needed.
*/
static int rcu_preempt_needs_another_gp(void)
{
return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
}
/*
* Return true if a preemptible-RCU grace period is in progress.
* The caller must disable hardirqs.
*/
static int rcu_preempt_gp_in_progress(void)
{
return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
}
/*
* Record a preemptible-RCU quiescent state for the specified CPU. Note
* that this just means that the task currently running on the CPU is
* in a quiescent state. There might be any number of tasks blocked
* while in an RCU read-side critical section.
*
* Unlike the other rcu_*_qs() functions, callers to this function
* must disable irqs in order to protect the assignment to
* ->rcu_read_unlock_special.
*
* Because this is a single-CPU implementation, the only way a grace
* period can end is if the CPU is in a quiescent state. The reason is
* that a blocked preemptible-RCU reader can exit its critical section
* only if the CPU is running it at the time. Therefore, when the
* last task blocking the current grace period exits its RCU read-side
* critical section, neither the CPU nor blocked tasks will be stopping
* the current grace period. (In contrast, SMP implementations
* might have CPUs running in RCU read-side critical sections that
* block later grace periods -- but this is not possible given only
* one CPU.)
*/
static void rcu_preempt_cpu_qs(void)
{
/* Record both CPU and task as having responded to current GP. */
rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
/*
* If there is no GP, or if blocked readers are still blocking GP,
* then there is nothing more to do.
*/
if (!rcu_preempt_gp_in_progress() || rcu_preempt_blocked_readers_cgp())
return;
/* Advance callbacks. */
rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
/* If there are no blocked readers, next GP is done instantly. */
if (!rcu_preempt_blocked_readers_any())
rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
/* If there are done callbacks, make RCU_SOFTIRQ process them. */
if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
raise_softirq(RCU_SOFTIRQ);
}
/*
* Start a new RCU grace period if warranted. Hard irqs must be disabled.
*/
static void rcu_preempt_start_gp(void)
{
if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
/* Official start of GP. */
rcu_preempt_ctrlblk.gpnum++;
/* Any blocked RCU readers block new GP. */
if (rcu_preempt_blocked_readers_any())
rcu_preempt_ctrlblk.gp_tasks =
rcu_preempt_ctrlblk.blkd_tasks.next;
/* If there is no running reader, CPU is done with GP. */
if (!rcu_preempt_running_reader())
rcu_preempt_cpu_qs();
}
}
/*
* We have entered the scheduler, and the current task might soon be
* context-switched away from. If this task is in an RCU read-side
* critical section, we will no longer be able to rely on the CPU to
* record that fact, so we enqueue the task on the blkd_tasks list.
* If the task started after the current grace period began, as recorded
* by ->gpcpu, we enqueue at the beginning of the list. Otherwise
* before the element referenced by ->gp_tasks (or at the tail if
* ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
* The task will dequeue itself when it exits the outermost enclosing
* RCU read-side critical section. Therefore, the current grace period
* cannot be permitted to complete until the ->gp_tasks pointer becomes
* NULL.
*
* Caller must disable preemption.
*/
void rcu_preempt_note_context_switch(void)
{
struct task_struct *t = current;
unsigned long flags;
local_irq_save(flags); /* must exclude scheduler_tick(). */
if (rcu_preempt_running_reader() &&
(t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
/* Possibly blocking in an RCU read-side critical section. */
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
/*
* If this CPU has already checked in, then this task
* will hold up the next grace period rather than the
* current grace period. Queue the task accordingly.
* If the task is queued for the current grace period
* (i.e., this CPU has not yet passed through a quiescent
* state for the current grace period), then as long
* as that task remains queued, the current grace period
* cannot end.
*/
list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
if (rcu_cpu_cur_gp())
rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
}
/*
* Either we were not in an RCU read-side critical section to
* begin with, or we have now recorded that critical section
* globally. Either way, we can now note a quiescent state
* for this CPU. Again, if we were in an RCU read-side critical
* section, and if that critical section was blocking the current
* grace period, then the fact that the task has been enqueued
* means that current grace period continues to be blocked.
*/
rcu_preempt_cpu_qs();
local_irq_restore(flags);
}
/*
* Tiny-preemptible RCU implementation for rcu_read_lock().
* Just increment ->rcu_read_lock_nesting, shared state will be updated
* if we block.
*/
void __rcu_read_lock(void)
{
current->rcu_read_lock_nesting++;
barrier(); /* needed if we ever invoke rcu_read_lock in rcutiny.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
/*
* Handle special cases during rcu_read_unlock(), such as needing to
* notify RCU core processing or task having blocked during the RCU
* read-side critical section.
*/
static void rcu_read_unlock_special(struct task_struct *t)
{
int empty;
int empty_exp;
unsigned long flags;
struct list_head *np;
int special;
/*
* NMI handlers cannot block and cannot safely manipulate state.
* They therefore cannot possibly be special, so just leave.
*/
if (in_nmi())
return;
local_irq_save(flags);
/*
* If RCU core is waiting for this CPU to exit critical section,
* let it know that we have done so.
*/
special = t->rcu_read_unlock_special;
if (special & RCU_READ_UNLOCK_NEED_QS)
rcu_preempt_cpu_qs();
/* Hardware IRQ handlers cannot block. */
if (in_irq()) {
local_irq_restore(flags);
return;
}
/* Clean up if blocked during RCU read-side critical section. */
if (special & RCU_READ_UNLOCK_BLOCKED) {
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
/*
* Remove this task from the ->blkd_tasks list and adjust
* any pointers that might have been referencing it.
*/
empty = !rcu_preempt_blocked_readers_cgp();
empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
np = t->rcu_node_entry.next;
if (np == &rcu_preempt_ctrlblk.blkd_tasks)
np = NULL;
list_del(&t->rcu_node_entry);
if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
rcu_preempt_ctrlblk.gp_tasks = np;
if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
rcu_preempt_ctrlblk.exp_tasks = np;
INIT_LIST_HEAD(&t->rcu_node_entry);
/*
* If this was the last task on the current list, and if
* we aren't waiting on the CPU, report the quiescent state
* and start a new grace period if needed.
*/
if (!empty && !rcu_preempt_blocked_readers_cgp()) {
rcu_preempt_cpu_qs();
rcu_preempt_start_gp();
}
/*
* If this was the last task on the expedited lists,
* then we need wake up the waiting task.
*/
if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
rcu_report_exp_done();
}
local_irq_restore(flags);
}
/*
* Tiny-preemptible RCU implementation for rcu_read_unlock().
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
* invoke rcu_read_unlock_special() to clean up after a context switch
* in an RCU read-side critical section and other special cases.
*/
void __rcu_read_unlock(void)
{
struct task_struct *t = current;
barrier(); /* needed if we ever invoke rcu_read_unlock in rcutiny.c */
--t->rcu_read_lock_nesting;
barrier(); /* decrement before load of ->rcu_read_unlock_special */
if (t->rcu_read_lock_nesting == 0 &&
unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
rcu_read_unlock_special(t);
#ifdef CONFIG_PROVE_LOCKING
WARN_ON_ONCE(t->rcu_read_lock_nesting < 0);
#endif /* #ifdef CONFIG_PROVE_LOCKING */
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
/*
* Check for a quiescent state from the current CPU. When a task blocks,
* the task is recorded in the rcu_preempt_ctrlblk structure, which is
* checked elsewhere. This is called from the scheduling-clock interrupt.
*
* Caller must disable hard irqs.
*/
static void rcu_preempt_check_callbacks(void)
{
struct task_struct *t = current;
if (!rcu_preempt_running_reader() && rcu_preempt_gp_in_progress())
rcu_preempt_cpu_qs();
if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
rcu_preempt_ctrlblk.rcb.donetail)
raise_softirq(RCU_SOFTIRQ);
if (rcu_preempt_gp_in_progress() && rcu_preempt_running_reader())
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
}
/*
* TINY_PREEMPT_RCU has an extra callback-list tail pointer to
* update, so this is invoked from __rcu_process_callbacks() to
* handle that case. Of course, it is invoked for all flavors of
* RCU, but RCU callbacks can appear only on one of the lists, and
* neither ->nexttail nor ->donetail can possibly be NULL, so there
* is no need for an explicit check.
*/
static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
{
if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
}
/*
* Process callbacks for preemptible RCU.
*/
static void rcu_preempt_process_callbacks(void)
{
__rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
}
/*
* Queue a preemptible -RCU callback for invocation after a grace period.
*/
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
unsigned long flags;
debug_rcu_head_queue(head);
head->func = func;
head->next = NULL;
local_irq_save(flags);
*rcu_preempt_ctrlblk.nexttail = head;
rcu_preempt_ctrlblk.nexttail = &head->next;
rcu_preempt_start_gp(); /* checks to see if GP needed. */
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(call_rcu);
void rcu_barrier(void)
{
struct rcu_synchronize rcu;
init_rcu_head_on_stack(&rcu.head);
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu(&rcu.head, wakeme_after_rcu);
/* Wait for it. */
wait_for_completion(&rcu.completion);
destroy_rcu_head_on_stack(&rcu.head);
}
EXPORT_SYMBOL_GPL(rcu_barrier);
/*
* synchronize_rcu - wait until a grace period has elapsed.
*
* Control will return to the caller some time after a full grace
* period has elapsed, in other words after all currently executing RCU
* read-side critical sections have completed. RCU read-side critical
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested.
*/
void synchronize_rcu(void)
{
#ifdef CONFIG_DEBUG_LOCK_ALLOC
if (!rcu_scheduler_active)
return;
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
WARN_ON_ONCE(rcu_preempt_running_reader());
if (!rcu_preempt_blocked_readers_any())
return;
/* Once we get past the fastpath checks, same code as rcu_barrier(). */
rcu_barrier();
}
EXPORT_SYMBOL_GPL(synchronize_rcu);
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
static unsigned long sync_rcu_preempt_exp_count;
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
/*
* Return non-zero if there are any tasks in RCU read-side critical
* sections blocking the current preemptible-RCU expedited grace period.
* If there is no preemptible-RCU expedited grace period currently in
* progress, returns zero unconditionally.
*/
static int rcu_preempted_readers_exp(void)
{
return rcu_preempt_ctrlblk.exp_tasks != NULL;
}
/*
* Report the exit from RCU read-side critical section for the last task
* that queued itself during or before the current expedited preemptible-RCU
* grace period.
*/
static void rcu_report_exp_done(void)
{
wake_up(&sync_rcu_preempt_exp_wq);
}
/*
* Wait for an rcu-preempt grace period, but expedite it. The basic idea
* is to rely in the fact that there is but one CPU, and that it is
* illegal for a task to invoke synchronize_rcu_expedited() while in a
* preemptible-RCU read-side critical section. Therefore, any such
* critical sections must correspond to blocked tasks, which must therefore
* be on the ->blkd_tasks list. So just record the current head of the
* list in the ->exp_tasks pointer, and wait for all tasks including and
* after the task pointed to by ->exp_tasks to drain.
*/
void synchronize_rcu_expedited(void)
{
unsigned long flags;
struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
unsigned long snap;
barrier(); /* ensure prior action seen before grace period. */
WARN_ON_ONCE(rcu_preempt_running_reader());
/*
* Acquire lock so that there is only one preemptible RCU grace
* period in flight. Of course, if someone does the expedited
* grace period for us while we are acquiring the lock, just leave.
*/
snap = sync_rcu_preempt_exp_count + 1;
mutex_lock(&sync_rcu_preempt_exp_mutex);
if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
goto unlock_mb_ret; /* Others did our work for us. */
local_irq_save(flags);
/*
* All RCU readers have to already be on blkd_tasks because
* we cannot legally be executing in an RCU read-side critical
* section.
*/
/* Snapshot current head of ->blkd_tasks list. */
rpcp->exp_tasks = rpcp->blkd_tasks.next;
if (rpcp->exp_tasks == &rpcp->blkd_tasks)
rpcp->exp_tasks = NULL;
local_irq_restore(flags);
/* Wait for tail of ->blkd_tasks list to drain. */
if (rcu_preempted_readers_exp())
wait_event(sync_rcu_preempt_exp_wq,
!rcu_preempted_readers_exp());
/* Clean up and exit. */
barrier(); /* ensure expedited GP seen before counter increment. */
sync_rcu_preempt_exp_count++;
unlock_mb_ret:
mutex_unlock(&sync_rcu_preempt_exp_mutex);
barrier(); /* ensure subsequent action seen after grace period. */
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
/*
* Does preemptible RCU need the CPU to stay out of dynticks mode?
*/
int rcu_preempt_needs_cpu(void)
{
if (!rcu_preempt_running_reader())
rcu_preempt_cpu_qs();
return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
}
/*
* Check for a task exiting while in a preemptible -RCU read-side
* critical section, clean up if so. No need to issue warnings,
* as debug_check_no_locks_held() already does this if lockdep
* is enabled.
*/
void exit_rcu(void)
{
struct task_struct *t = current;
if (t->rcu_read_lock_nesting == 0)
return;
t->rcu_read_lock_nesting = 1;
rcu_read_unlock();
}
#else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
/*
* Because preemptible RCU does not exist, it never has any callbacks
* to check.
*/
static void rcu_preempt_check_callbacks(void)
{
}
/*
* Because preemptible RCU does not exist, it never has any callbacks
* to remove.
*/
static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
{
}
/*
* Because preemptible RCU does not exist, it never has any callbacks
* to process.
*/
static void rcu_preempt_process_callbacks(void)
{
}
#endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
#include <linux/kernel_stat.h>

View File

@ -303,6 +303,10 @@ static void rcu_read_delay(struct rcu_random_state *rrsp)
mdelay(longdelay_ms);
if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us)))
udelay(shortdelay_us);
#ifdef CONFIG_PREEMPT
if (!preempt_count() && !(rcu_random(rrsp) % (nrealreaders * 20000)))
preempt_schedule(); /* No QS if preempt_disable() in effect */
#endif
}
static void rcu_torture_read_unlock(int idx) __releases(RCU)
@ -536,6 +540,8 @@ static void srcu_read_delay(struct rcu_random_state *rrsp)
delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay * uspertick);
if (!delay)
schedule_timeout_interruptible(longdelay);
else
rcu_read_delay(rrsp);
}
static void srcu_torture_read_unlock(int idx) __releases(&srcu_ctl)

View File

@ -143,6 +143,11 @@ module_param(blimit, int, 0);
module_param(qhimark, int, 0);
module_param(qlowmark, int, 0);
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
int rcu_cpu_stall_suppress __read_mostly = RCU_CPU_STALL_SUPPRESS_INIT;
module_param(rcu_cpu_stall_suppress, int, 0644);
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
static int rcu_pending(int cpu);
@ -450,7 +455,7 @@ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
int rcu_cpu_stall_panicking __read_mostly;
int rcu_cpu_stall_suppress __read_mostly;
static void record_gp_stall_check_time(struct rcu_state *rsp)
{
@ -482,8 +487,11 @@ static void print_other_cpu_stall(struct rcu_state *rsp)
rcu_print_task_stall(rnp);
raw_spin_unlock_irqrestore(&rnp->lock, flags);
/* OK, time to rat on our buddy... */
/*
* OK, time to rat on our buddy...
* See Documentation/RCU/stallwarn.txt for info on how to debug
* RCU CPU stall warnings.
*/
printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
rsp->name);
rcu_for_each_leaf_node(rsp, rnp) {
@ -512,6 +520,11 @@ static void print_cpu_stall(struct rcu_state *rsp)
unsigned long flags;
struct rcu_node *rnp = rcu_get_root(rsp);
/*
* OK, time to rat on ourselves...
* See Documentation/RCU/stallwarn.txt for info on how to debug
* RCU CPU stall warnings.
*/
printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
trigger_all_cpu_backtrace();
@ -530,7 +543,7 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
long delta;
struct rcu_node *rnp;
if (rcu_cpu_stall_panicking)
if (rcu_cpu_stall_suppress)
return;
delta = jiffies - rsp->jiffies_stall;
rnp = rdp->mynode;
@ -548,10 +561,26 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
{
rcu_cpu_stall_panicking = 1;
rcu_cpu_stall_suppress = 1;
return NOTIFY_DONE;
}
/**
* rcu_cpu_stall_reset - prevent further stall warnings in current grace period
*
* Set the stall-warning timeout way off into the future, thus preventing
* any RCU CPU stall-warning messages from appearing in the current set of
* RCU grace periods.
*
* The caller must disable hard irqs.
*/
void rcu_cpu_stall_reset(void)
{
rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
rcu_preempt_stall_reset();
}
static struct notifier_block rcu_panic_block = {
.notifier_call = rcu_panic,
};
@ -571,6 +600,10 @@ static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
}
void rcu_cpu_stall_reset(void)
{
}
static void __init check_cpu_stall_init(void)
{
}
@ -712,7 +745,7 @@ static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
__releases(rcu_get_root(rsp)->lock)
{
struct rcu_data *rdp = rsp->rda[smp_processor_id()];
struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
struct rcu_node *rnp = rcu_get_root(rsp);
if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
@ -960,7 +993,7 @@ rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
static void rcu_send_cbs_to_orphanage(struct rcu_state *rsp)
{
int i;
struct rcu_data *rdp = rsp->rda[smp_processor_id()];
struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
if (rdp->nxtlist == NULL)
return; /* irqs disabled, so comparison is stable. */
@ -984,7 +1017,7 @@ static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
struct rcu_data *rdp;
raw_spin_lock_irqsave(&rsp->onofflock, flags);
rdp = rsp->rda[smp_processor_id()];
rdp = this_cpu_ptr(rsp->rda);
if (rsp->orphan_cbs_list == NULL) {
raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
return;
@ -1007,7 +1040,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
unsigned long flags;
unsigned long mask;
int need_report = 0;
struct rcu_data *rdp = rsp->rda[cpu];
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp;
/* Exclude any attempts to start a new grace period. */
@ -1226,7 +1259,8 @@ static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
cpu = rnp->grplo;
bit = 1;
for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
if ((rnp->qsmask & bit) != 0 && f(rsp->rda[cpu]))
if ((rnp->qsmask & bit) != 0 &&
f(per_cpu_ptr(rsp->rda, cpu)))
mask |= bit;
}
if (mask != 0) {
@ -1402,7 +1436,7 @@ __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
* a quiescent state betweentimes.
*/
local_irq_save(flags);
rdp = rsp->rda[smp_processor_id()];
rdp = this_cpu_ptr(rsp->rda);
rcu_process_gp_end(rsp, rdp);
check_for_new_grace_period(rsp, rdp);
@ -1701,7 +1735,7 @@ rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
{
unsigned long flags;
int i;
struct rcu_data *rdp = rsp->rda[cpu];
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp = rcu_get_root(rsp);
/* Set up local state, ensuring consistent view of global state. */
@ -1729,7 +1763,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
{
unsigned long flags;
unsigned long mask;
struct rcu_data *rdp = rsp->rda[cpu];
struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
struct rcu_node *rnp = rcu_get_root(rsp);
/* Set up local state, ensuring consistent view of global state. */
@ -1865,7 +1899,8 @@ static void __init rcu_init_levelspread(struct rcu_state *rsp)
/*
* Helper function for rcu_init() that initializes one rcu_state structure.
*/
static void __init rcu_init_one(struct rcu_state *rsp)
static void __init rcu_init_one(struct rcu_state *rsp,
struct rcu_data __percpu *rda)
{
static char *buf[] = { "rcu_node_level_0",
"rcu_node_level_1",
@ -1918,37 +1953,23 @@ static void __init rcu_init_one(struct rcu_state *rsp)
}
}
rsp->rda = rda;
rnp = rsp->level[NUM_RCU_LVLS - 1];
for_each_possible_cpu(i) {
while (i > rnp->grphi)
rnp++;
rsp->rda[i]->mynode = rnp;
per_cpu_ptr(rsp->rda, i)->mynode = rnp;
rcu_boot_init_percpu_data(i, rsp);
}
}
/*
* Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
* nowhere else! Assigns leaf node pointers into each CPU's rcu_data
* structure.
*/
#define RCU_INIT_FLAVOR(rsp, rcu_data) \
do { \
int i; \
\
for_each_possible_cpu(i) { \
(rsp)->rda[i] = &per_cpu(rcu_data, i); \
} \
rcu_init_one(rsp); \
} while (0)
void __init rcu_init(void)
{
int cpu;
rcu_bootup_announce();
RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
rcu_init_one(&rcu_sched_state, &rcu_sched_data);
rcu_init_one(&rcu_bh_state, &rcu_bh_data);
__rcu_init_preempt();
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);

View File

@ -254,19 +254,23 @@ struct rcu_data {
#define RCU_STALL_DELAY_DELTA 0
#endif
#define RCU_SECONDS_TILL_STALL_CHECK (10 * HZ + RCU_STALL_DELAY_DELTA)
#define RCU_SECONDS_TILL_STALL_CHECK (CONFIG_RCU_CPU_STALL_TIMEOUT * HZ + \
RCU_STALL_DELAY_DELTA)
/* for rsp->jiffies_stall */
#define RCU_SECONDS_TILL_STALL_RECHECK (30 * HZ + RCU_STALL_DELAY_DELTA)
#define RCU_SECONDS_TILL_STALL_RECHECK (3 * RCU_SECONDS_TILL_STALL_CHECK + 30)
/* for rsp->jiffies_stall */
#define RCU_STALL_RAT_DELAY 2 /* Allow other CPUs time */
/* to take at least one */
/* scheduling clock irq */
/* before ratting on them. */
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR_RUNNABLE
#define RCU_CPU_STALL_SUPPRESS_INIT 0
#else
#define RCU_CPU_STALL_SUPPRESS_INIT 1
#endif
#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
/*
* RCU global state, including node hierarchy. This hierarchy is
@ -283,7 +287,7 @@ struct rcu_state {
struct rcu_node *level[NUM_RCU_LVLS]; /* Hierarchy levels. */
u32 levelcnt[MAX_RCU_LVLS + 1]; /* # nodes in each level. */
u8 levelspread[NUM_RCU_LVLS]; /* kids/node in each level. */
struct rcu_data *rda[NR_CPUS]; /* array of rdp pointers. */
struct rcu_data __percpu *rda; /* pointer of percu rcu_data. */
/* The following fields are guarded by the root rcu_node's lock. */
@ -365,6 +369,7 @@ static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp,
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
static void rcu_print_detail_task_stall(struct rcu_state *rsp);
static void rcu_print_task_stall(struct rcu_node *rnp);
static void rcu_preempt_stall_reset(void);
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp);
#ifdef CONFIG_HOTPLUG_CPU

View File

@ -154,7 +154,7 @@ static void rcu_preempt_note_context_switch(int cpu)
(t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
/* Possibly blocking in an RCU read-side critical section. */
rdp = rcu_preempt_state.rda[cpu];
rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
rnp = rdp->mynode;
raw_spin_lock_irqsave(&rnp->lock, flags);
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
@ -201,7 +201,7 @@ static void rcu_preempt_note_context_switch(int cpu)
*/
void __rcu_read_lock(void)
{
ACCESS_ONCE(current->rcu_read_lock_nesting)++;
current->rcu_read_lock_nesting++;
barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);
@ -344,7 +344,9 @@ void __rcu_read_unlock(void)
struct task_struct *t = current;
barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
--t->rcu_read_lock_nesting;
barrier(); /* decrement before load of ->rcu_read_unlock_special */
if (t->rcu_read_lock_nesting == 0 &&
unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
rcu_read_unlock_special(t);
#ifdef CONFIG_PROVE_LOCKING
@ -417,6 +419,16 @@ static void rcu_print_task_stall(struct rcu_node *rnp)
}
}
/*
* Suppress preemptible RCU's CPU stall warnings by pushing the
* time of the next stall-warning message comfortably far into the
* future.
*/
static void rcu_preempt_stall_reset(void)
{
rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
}
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
/*
@ -546,9 +558,11 @@ EXPORT_SYMBOL_GPL(call_rcu);
*
* Control will return to the caller some time after a full grace
* period has elapsed, in other words after all currently executing RCU
* read-side critical sections have completed. RCU read-side critical
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
* and may be nested.
* read-side critical sections have completed. Note, however, that
* upon return from synchronize_rcu(), the caller might well be executing
* concurrently with new RCU read-side critical sections that began while
* synchronize_rcu() was waiting. RCU read-side critical sections are
* delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
*/
void synchronize_rcu(void)
{
@ -771,7 +785,7 @@ static void rcu_preempt_send_cbs_to_orphanage(void)
*/
static void __init __rcu_init_preempt(void)
{
RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
}
/*
@ -865,6 +879,14 @@ static void rcu_print_task_stall(struct rcu_node *rnp)
{
}
/*
* Because preemptible RCU does not exist, there is no need to suppress
* its CPU stall warnings.
*/
static void rcu_preempt_stall_reset(void)
{
}
#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
/*
@ -918,15 +940,6 @@ static void rcu_preempt_process_callbacks(void)
{
}
/*
* In classic RCU, call_rcu() is just call_rcu_sched().
*/
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
call_rcu_sched(head, func);
}
EXPORT_SYMBOL_GPL(call_rcu);
/*
* Wait for an rcu-preempt grace period, but make it happen quickly.
* But because preemptable RCU does not exist, map to rcu-sched.

View File

@ -262,7 +262,7 @@ static void print_rcu_pendings(struct seq_file *m, struct rcu_state *rsp)
struct rcu_data *rdp;
for_each_possible_cpu(cpu) {
rdp = rsp->rda[cpu];
rdp = per_cpu_ptr(rsp->rda, cpu);
if (rdp->beenonline)
print_one_rcu_pending(m, rdp);
}

View File

@ -539,6 +539,19 @@ config PROVE_RCU_REPEATEDLY
disabling, allowing multiple RCU-lockdep warnings to be printed
on a single reboot.
config SPARSE_RCU_POINTER
bool "RCU debugging: sparse-based checks for pointer usage"
default n
help
This feature enables the __rcu sparse annotation for
RCU-protected pointers. This annotation will cause sparse
to flag any non-RCU used of annotated pointers. This can be
helpful when debugging RCU usage. Please note that this feature
is not intended to enforce code cleanliness; it is instead merely
a debugging aid.
Say Y to make sparse flag questionable use of RCU-protected pointers
Say N if you are unsure.
config LOCKDEP
@ -832,6 +845,30 @@ config RCU_CPU_STALL_DETECTOR
Say Y if you are unsure.
config RCU_CPU_STALL_TIMEOUT
int "RCU CPU stall timeout in seconds"
depends on RCU_CPU_STALL_DETECTOR
range 3 300
default 60
help
If a given RCU grace period extends more than the specified
number of seconds, a CPU stall warning is printed. If the
RCU grace period persists, additional CPU stall warnings are
printed at more widely spaced intervals.
config RCU_CPU_STALL_DETECTOR_RUNNABLE
bool "RCU CPU stall checking starts automatically at boot"
depends on RCU_CPU_STALL_DETECTOR
default y
help
If set, start checking for RCU CPU stalls immediately on
boot. Otherwise, RCU CPU stall checking must be manually
enabled.
Say Y if you are unsure.
Say N if you wish to suppress RCU CPU stall checking during boot.
config RCU_CPU_STALL_VERBOSE
bool "Print additional per-task information for RCU_CPU_STALL_DETECTOR"
depends on RCU_CPU_STALL_DETECTOR && TREE_PREEMPT_RCU

View File

@ -49,7 +49,7 @@ struct radix_tree_node {
unsigned int height; /* Height from the bottom */
unsigned int count;
struct rcu_head rcu_head;
void *slots[RADIX_TREE_MAP_SIZE];
void __rcu *slots[RADIX_TREE_MAP_SIZE];
unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
};

View File

@ -38,7 +38,7 @@ static DEFINE_SPINLOCK(nf_nat_lock);
static struct nf_conntrack_l3proto *l3proto __read_mostly;
#define MAX_IP_NAT_PROTO 256
static const struct nf_nat_protocol *nf_nat_protos[MAX_IP_NAT_PROTO]
static const struct nf_nat_protocol __rcu *nf_nat_protos[MAX_IP_NAT_PROTO]
__read_mostly;
static inline const struct nf_nat_protocol *

View File

@ -27,7 +27,7 @@
static DEFINE_MUTEX(afinfo_mutex);
const struct nf_afinfo *nf_afinfo[NFPROTO_NUMPROTO] __read_mostly;
const struct nf_afinfo __rcu *nf_afinfo[NFPROTO_NUMPROTO] __read_mostly;
EXPORT_SYMBOL(nf_afinfo);
int nf_register_afinfo(const struct nf_afinfo *afinfo)

View File

@ -26,10 +26,10 @@
static DEFINE_MUTEX(nf_ct_ecache_mutex);
struct nf_ct_event_notifier *nf_conntrack_event_cb __read_mostly;
struct nf_ct_event_notifier __rcu *nf_conntrack_event_cb __read_mostly;
EXPORT_SYMBOL_GPL(nf_conntrack_event_cb);
struct nf_exp_event_notifier *nf_expect_event_cb __read_mostly;
struct nf_exp_event_notifier __rcu *nf_expect_event_cb __read_mostly;
EXPORT_SYMBOL_GPL(nf_expect_event_cb);
/* deliver cached events and clear cache entry - must be called with locally

View File

@ -16,7 +16,7 @@
#include <linux/skbuff.h>
#include <net/netfilter/nf_conntrack_extend.h>
static struct nf_ct_ext_type *nf_ct_ext_types[NF_CT_EXT_NUM];
static struct nf_ct_ext_type __rcu *nf_ct_ext_types[NF_CT_EXT_NUM];
static DEFINE_MUTEX(nf_ct_ext_type_mutex);
void __nf_ct_ext_destroy(struct nf_conn *ct)

View File

@ -28,8 +28,8 @@
#include <net/netfilter/nf_conntrack_l4proto.h>
#include <net/netfilter/nf_conntrack_core.h>
static struct nf_conntrack_l4proto **nf_ct_protos[PF_MAX] __read_mostly;
struct nf_conntrack_l3proto *nf_ct_l3protos[AF_MAX] __read_mostly;
static struct nf_conntrack_l4proto __rcu **nf_ct_protos[PF_MAX] __read_mostly;
struct nf_conntrack_l3proto __rcu *nf_ct_l3protos[AF_MAX] __read_mostly;
EXPORT_SYMBOL_GPL(nf_ct_l3protos);
static DEFINE_MUTEX(nf_ct_proto_mutex);

View File

@ -16,7 +16,7 @@
#define NF_LOG_PREFIXLEN 128
#define NFLOGGER_NAME_LEN 64
static const struct nf_logger *nf_loggers[NFPROTO_NUMPROTO] __read_mostly;
static const struct nf_logger __rcu *nf_loggers[NFPROTO_NUMPROTO] __read_mostly;
static struct list_head nf_loggers_l[NFPROTO_NUMPROTO] __read_mostly;
static DEFINE_MUTEX(nf_log_mutex);

View File

@ -18,7 +18,7 @@
* long term mutex. The handler must provide an an outfn() to accept packets
* for queueing and must reinject all packets it receives, no matter what.
*/
static const struct nf_queue_handler *queue_handler[NFPROTO_NUMPROTO] __read_mostly;
static const struct nf_queue_handler __rcu *queue_handler[NFPROTO_NUMPROTO] __read_mostly;
static DEFINE_MUTEX(queue_handler_mutex);