spi: Updates for v5.12

The main focus of this release from a framework point of view has been
 spi-mem where we've acquired support for a few new hardware features
 which enable better performance on suitable hardware.  Otherwise mostly
 thanks to Arnd's cleanup efforts on old platforms we've removed several
 obsolete drivers which just about balance out the newer drivers we've
 added this cycle.
 
  - Allow drivers to flag if they are unidirectional.
  - Support for DTR mode and hardware acceleration of dummy cycles in spi-mem.
  - Support for Allwinder H616, Intel Lightning Mountain, nVidia Tegra
    QuadSPI, Realtek RTL838x and RTL839x.
  - Removal of obsolute EFM32, Txx9 and SIRF Prima and Atlas drivers.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAmAq3M0ACgkQJNaLcl1U
 h9Aq3gf6AuboDwFguKZAmXp27zjYsv5o5KtPyycTltIIfjGuA58+fN2zQT+puoGI
 wzafjk9R73Foa67YKUwClaBGZNZbYOkB2iOk9a+/sku6k3jO14moybpMuL32dCVe
 lutKd9D4n8/J5UHX3SHKHAZ9r2vp28rlaZa4wd79Ww5r+BLajUcrkjtr4GVT5k1k
 WzzC0nUjE/zg1oV+PlakMolwK+iBCQYTT7S4r/OQAABQIkXXdtwmGvFUUXpGVF19
 GUs52XI8QzK5504Xl+F7NF1+2zHovO11PTHnd+rAe6AfA/NGggtk6O1Y9R4tQHF9
 TN6PHukNxUdTFfe6RTbSzPagpFydvQ==
 =/4Ve
 -----END PGP SIGNATURE-----

Merge tag 'spi-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi

Pull spi updates from Mark Brown:
 "The main focus of this release from a framework point of view has been
  spi-mem where we've acquired support for a few new hardware features
  which enable better performance on suitable hardware.

  Otherwise mostly thanks to Arnd's cleanup efforts on old platforms
  we've removed several obsolete drivers which just about balance out
  the newer drivers we've added this cycle.

  Summary:

   - Allow drivers to flag if they are unidirectional.

   - Support for DTR mode and hardware acceleration of dummy cycles in
     spi-mem.

   - Support for Allwinder H616, Intel Lightning Mountain, nVidia Tegra
     QuadSPI, Realtek RTL838x and RTL839x.

   - Removal of obsolete EFM32, Txx9 and SIRF Prima and Atlas drivers"

* tag 'spi-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (76 commits)
  spi: Skip zero-length transfers in spi_transfer_one_message()
  spi: dw: Avoid stack content exposure
  spi: cadence-quadspi: Use spi_mem_dtr_supports_op()
  spi: spi-mem: add spi_mem_dtr_supports_op()
  spi: atmel-quadspi: Disable the QSPI IP at suspend()
  spi: pxa2xx: Add IDs for the controllers found on Intel Lynxpoint
  spi: pxa2xx: Fix the controller numbering for Wildcat Point
  spi: Change provied to provided in the file spi.h
  spi: mediatek: add set_cs_timing support
  spi: support CS timing for HW & SW mode
  spi: add power control when set_cs_timing
  spi: stm32: make spurious and overrun interrupts visible
  spi: stm32h7: replace private SPI_1HZ_NS with NSEC_PER_SEC
  spi: stm32: defer probe for reset
  spi: stm32: driver uses reset controller only at init
  spi: stm32h7: ensure message are smaller than max size
  spi: stm32: use bitfield macros
  spi: stm32: do not mandate cs_gpio
  spi: stm32: properly handle 0 byte transfer
  spi: clps711xx: remove redundant white-space
  ...
This commit is contained in:
Linus Torvalds 2021-02-22 09:19:08 -08:00
commit a2590d6989
45 changed files with 2518 additions and 2544 deletions

View File

@ -25,6 +25,7 @@ properties:
- enum: - enum:
- allwinner,sun8i-r40-spi - allwinner,sun8i-r40-spi
- allwinner,sun50i-h6-spi - allwinner,sun50i-h6-spi
- allwinner,sun50i-h616-spi
- const: allwinner,sun8i-h3-spi - const: allwinner,sun8i-h3-spi
reg: reg:

View File

@ -5,6 +5,7 @@ Required properties:
Generic default - "cdns,qspi-nor". Generic default - "cdns,qspi-nor".
For TI 66AK2G SoC - "ti,k2g-qspi", "cdns,qspi-nor". For TI 66AK2G SoC - "ti,k2g-qspi", "cdns,qspi-nor".
For TI AM654 SoC - "ti,am654-ospi", "cdns,qspi-nor". For TI AM654 SoC - "ti,am654-ospi", "cdns,qspi-nor".
For Intel LGM SoC - "intel,lgm-qspi", "cdns,qspi-nor".
- reg : Contains two entries, each of which is a tuple consisting of a - reg : Contains two entries, each of which is a tuple consisting of a
physical address and length. The first entry is the address and physical address and length. The first entry is the address and
length of the controller register set. The second entry is the length of the controller register set. The second entry is the

View File

@ -0,0 +1,117 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/nvidia,tegra210-quad.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Tegra Quad SPI Controller
maintainers:
- Thierry Reding <thierry.reding@gmail.com>
- Jonathan Hunter <jonathanh@nvidia.com>
allOf:
- $ref: "spi-controller.yaml#"
properties:
compatible:
enum:
- nvidia,tegra210-qspi
- nvidia,tegra186-qspi
- nvidia,tegra194-qspi
reg:
maxItems: 1
interrupts:
maxItems: 1
clock-names:
items:
- const: qspi
- const: qspi_out
clocks:
maxItems: 2
resets:
maxItems: 1
dmas:
maxItems: 2
dma-names:
items:
- const: rx
- const: tx
patternProperties:
"@[0-9a-f]+":
type: object
properties:
spi-rx-bus-width:
enum: [1, 2, 4]
spi-tx-bus-width:
enum: [1, 2, 4]
nvidia,tx-clk-tap-delay:
description:
Delays the clock going out to device with this tap value.
Tap value varies based on platform design trace lengths from Tegra
QSPI to corresponding slave device.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 31
nvidia,rx-clk-tap-delay:
description:
Delays the clock coming in from the device with this tap value.
Tap value varies based on platform design trace lengths from Tegra
QSPI to corresponding slave device.
$ref: /schemas/types.yaml#/definitions/uint32
minimum: 0
maximum: 255
required:
- reg
required:
- compatible
- reg
- interrupts
- clock-names
- clocks
- resets
unevaluatedProperties: false
examples:
- |
#include <dt-bindings/clock/tegra210-car.h>
#include <dt-bindings/reset/tegra210-car.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
spi@70410000 {
compatible = "nvidia,tegra210-qspi";
reg = <0x70410000 0x1000>;
interrupts = <GIC_SPI 10 IRQ_TYPE_LEVEL_HIGH>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&tegra_car TEGRA210_CLK_QSPI>,
<&tegra_car TEGRA210_CLK_QSPI_PM>;
clock-names = "qspi", "qspi_out";
resets = <&tegra_car 211>;
dmas = <&apbdma 5>, <&apbdma 5>;
dma-names = "rx", "tx";
flash@0 {
compatible = "spi-nor";
reg = <0>;
spi-max-frequency = <104000000>;
spi-tx-bus-width = <2>;
spi-rx-bus-width = <2>;
nvidia,tx-clk-tap-delay = <0>;
nvidia,rx-clk-tap-delay = <0>;
};
};

View File

@ -0,0 +1,41 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/realtek,rtl-spi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Realtek RTL838x/RTL839x SPI controller
maintainers:
- Bert Vermeulen <bert@biot.com>
- Birger Koblitz <mail@birger-koblitz.de>
allOf:
- $ref: "spi-controller.yaml#"
properties:
compatible:
oneOf:
- const: realtek,rtl8380-spi
- const: realtek,rtl8382-spi
- const: realtek,rtl8391-spi
- const: realtek,rtl8392-spi
- const: realtek,rtl8393-spi
reg:
maxItems: 1
required:
- compatible
- reg
unevaluatedProperties: false
examples:
- |
spi: spi@1200 {
compatible = "realtek,rtl8382-spi";
reg = <0x1200 0x100>;
#address-cells = <1>;
#size-cells = <0>;
};

View File

@ -47,6 +47,7 @@ properties:
- renesas,msiof-r8a77980 # R-Car V3H - renesas,msiof-r8a77980 # R-Car V3H
- renesas,msiof-r8a77990 # R-Car E3 - renesas,msiof-r8a77990 # R-Car E3
- renesas,msiof-r8a77995 # R-Car D3 - renesas,msiof-r8a77995 # R-Car D3
- renesas,msiof-r8a779a0 # R-Car V3U
- const: renesas,rcar-gen3-msiof # generic R-Car Gen3 and RZ/G2 - const: renesas,rcar-gen3-msiof # generic R-Car Gen3 and RZ/G2
# compatible device # compatible device
- items: - items:

View File

@ -152,8 +152,9 @@ patternProperties:
spi-rx-bus-width: spi-rx-bus-width:
description: description:
Bus width to the SPI bus used for read transfers. Bus width to the SPI bus used for read transfers.
If 0 is provided, then no RX will be possible on this device.
$ref: /schemas/types.yaml#/definitions/uint32 $ref: /schemas/types.yaml#/definitions/uint32
enum: [1, 2, 4, 8] enum: [0, 1, 2, 4, 8]
default: 1 default: 1
spi-rx-delay-us: spi-rx-delay-us:
@ -163,8 +164,9 @@ patternProperties:
spi-tx-bus-width: spi-tx-bus-width:
description: description:
Bus width to the SPI bus used for write transfers. Bus width to the SPI bus used for write transfers.
If 0 is provided, then no TX will be possible on this device.
$ref: /schemas/types.yaml#/definitions/uint32 $ref: /schemas/types.yaml#/definitions/uint32
enum: [1, 2, 4, 8] enum: [0, 1, 2, 4, 8]
default: 1 default: 1
spi-tx-delay-us: spi-tx-delay-us:

View File

@ -1,42 +0,0 @@
* CSR SiRFprimaII Serial Peripheral Interface
Required properties:
- compatible : Should be "sirf,prima2-spi", "sirf,prima2-usp"
or "sirf,atlas7-usp"
- reg : Offset and length of the register set for the device
- interrupts : Should contain SPI interrupt
- resets: phandle to the reset controller asserting this device in
reset
See ../reset/reset.txt for details.
- dmas : Must contain an entry for each entry in clock-names.
See ../dma/dma.txt for details.
- dma-names : Must include the following entries:
- rx
- tx
- clocks : Must contain an entry for each entry in clock-names.
See ../clocks/clock-bindings.txt for details.
- #address-cells: Number of cells required to define a chip select
address on the SPI bus. Should be set to 1.
- #size-cells: Should be zero.
Optional properties:
- spi-max-frequency: Specifies maximum SPI clock frequency,
Units - Hz. Definition as per
Documentation/devicetree/bindings/spi/spi-bus.txt
- cs-gpios: should specify GPIOs used for chipselects.
Example:
spi0: spi@b00d0000 {
compatible = "sirf,prima2-spi";
reg = <0xb00d0000 0x10000>;
interrupts = <15>;
dmas = <&dmac1 9>,
<&dmac1 4>;
dma-names = "rx", "tx";
#address-cells = <1>;
#size-cells = <0>;
clocks = <&clks 19>;
resets = <&rstc 26>;
};

View File

@ -17537,6 +17537,14 @@ M: Laxman Dewangan <ldewangan@nvidia.com>
S: Supported S: Supported
F: drivers/spi/spi-tegra* F: drivers/spi/spi-tegra*
TEGRA QUAD SPI DRIVER
M: Thierry Reding <thierry.reding@gmail.com>
M: Jonathan Hunter <jonathanh@nvidia.com>
M: Sowjanya Komatineni <skomatineni@nvidia.com>
L: linux-tegra@vger.kernel.org
S: Maintained
F: drivers/spi/spi-tegra210-quad.c
TEGRA VIDEO DRIVER TEGRA VIDEO DRIVER
M: Thierry Reding <thierry.reding@gmail.com> M: Thierry Reding <thierry.reding@gmail.com>
M: Jonathan Hunter <jonathanh@nvidia.com> M: Jonathan Hunter <jonathanh@nvidia.com>

View File

@ -203,7 +203,7 @@ config SPI_CADENCE
config SPI_CADENCE_QUADSPI config SPI_CADENCE_QUADSPI
tristate "Cadence Quad SPI controller" tristate "Cadence Quad SPI controller"
depends on OF && (ARM || ARM64 || COMPILE_TEST) depends on OF && (ARM || ARM64 || X86 || COMPILE_TEST)
help help
Enable support for the Cadence Quad SPI Flash controller. Enable support for the Cadence Quad SPI Flash controller.
@ -292,13 +292,6 @@ config SPI_DLN2
This driver can also be built as a module. If so, the module This driver can also be built as a module. If so, the module
will be called spi-dln2. will be called spi-dln2.
config SPI_EFM32
tristate "EFM32 SPI controller"
depends on OF && ARM && (ARCH_EFM32 || COMPILE_TEST)
select SPI_BITBANG
help
Driver for the spi controller found on Energy Micro's EFM32 SoCs.
config SPI_EP93XX config SPI_EP93XX
tristate "Cirrus Logic EP93xx SPI controller" tristate "Cirrus Logic EP93xx SPI controller"
depends on ARCH_EP93XX || COMPILE_TEST depends on ARCH_EP93XX || COMPILE_TEST
@ -649,7 +642,7 @@ config SPI_RPCIF
tristate "Renesas RPC-IF SPI driver" tristate "Renesas RPC-IF SPI driver"
depends on RENESAS_RPCIF depends on RENESAS_RPCIF
help help
SPI driver for Renesas R-Car Gen3 RPC-IF. SPI driver for Renesas R-Car Gen3 or RZ/G2 RPC-IF.
config SPI_RSPI config SPI_RSPI
tristate "Renesas RSPI/QSPI controller" tristate "Renesas RSPI/QSPI controller"
@ -750,13 +743,6 @@ config SPI_SIFIVE
help help
This exposes the SPI controller IP from SiFive. This exposes the SPI controller IP from SiFive.
config SPI_SIRF
tristate "CSR SiRFprimaII SPI controller"
depends on SIRF_DMA
select SPI_BITBANG
help
SPI driver for CSR SiRFprimaII SoCs
config SPI_SLAVE_MT27XX config SPI_SLAVE_MT27XX
tristate "MediaTek SPI slave device" tristate "MediaTek SPI slave device"
depends on ARCH_MEDIATEK || COMPILE_TEST depends on ARCH_MEDIATEK || COMPILE_TEST
@ -842,6 +828,15 @@ config SPI_MXS
help help
SPI driver for Freescale MXS devices. SPI driver for Freescale MXS devices.
config SPI_TEGRA210_QUAD
tristate "NVIDIA Tegra QSPI Controller"
depends on ARCH_TEGRA || COMPILE_TEST
depends on RESET_CONTROLLER
help
QSPI driver for NVIDIA Tegra QSPI Controller interface. This
controller is different from the SPI controller and is available
on Tegra SoCs starting from Tegra210.
config SPI_TEGRA114 config SPI_TEGRA114
tristate "NVIDIA Tegra114 SPI Controller" tristate "NVIDIA Tegra114 SPI Controller"
depends on (ARCH_TEGRA && TEGRA20_APB_DMA) || COMPILE_TEST depends on (ARCH_TEGRA && TEGRA20_APB_DMA) || COMPILE_TEST
@ -884,12 +879,6 @@ config SPI_TOPCLIFF_PCH
This driver also supports the ML7213/ML7223/ML7831, a companion chip This driver also supports the ML7213/ML7223/ML7831, a companion chip
for the Atom E6xx series and compatible with the Intel EG20T PCH. for the Atom E6xx series and compatible with the Intel EG20T PCH.
config SPI_TXX9
tristate "Toshiba TXx9 SPI controller"
depends on GPIOLIB && (CPU_TX49XX || COMPILE_TEST)
help
SPI driver for Toshiba TXx9 MIPS SoCs
config SPI_UNIPHIER config SPI_UNIPHIER
tristate "Socionext UniPhier SPI Controller" tristate "Socionext UniPhier SPI Controller"
depends on (ARCH_UNIPHIER || COMPILE_TEST) && OF depends on (ARCH_UNIPHIER || COMPILE_TEST) && OF

View File

@ -42,7 +42,6 @@ spi-dw-$(CONFIG_SPI_DW_DMA) += spi-dw-dma.o
obj-$(CONFIG_SPI_DW_BT1) += spi-dw-bt1.o obj-$(CONFIG_SPI_DW_BT1) += spi-dw-bt1.o
obj-$(CONFIG_SPI_DW_MMIO) += spi-dw-mmio.o obj-$(CONFIG_SPI_DW_MMIO) += spi-dw-mmio.o
obj-$(CONFIG_SPI_DW_PCI) += spi-dw-pci.o obj-$(CONFIG_SPI_DW_PCI) += spi-dw-pci.o
obj-$(CONFIG_SPI_EFM32) += spi-efm32.o
obj-$(CONFIG_SPI_EP93XX) += spi-ep93xx.o obj-$(CONFIG_SPI_EP93XX) += spi-ep93xx.o
obj-$(CONFIG_SPI_FALCON) += spi-falcon.o obj-$(CONFIG_SPI_FALCON) += spi-falcon.o
obj-$(CONFIG_SPI_FSI) += spi-fsi.o obj-$(CONFIG_SPI_FSI) += spi-fsi.o
@ -94,6 +93,7 @@ obj-$(CONFIG_SPI_QCOM_QSPI) += spi-qcom-qspi.o
obj-$(CONFIG_SPI_QUP) += spi-qup.o obj-$(CONFIG_SPI_QUP) += spi-qup.o
obj-$(CONFIG_SPI_ROCKCHIP) += spi-rockchip.o obj-$(CONFIG_SPI_ROCKCHIP) += spi-rockchip.o
obj-$(CONFIG_SPI_RB4XX) += spi-rb4xx.o obj-$(CONFIG_SPI_RB4XX) += spi-rb4xx.o
obj-$(CONFIG_MACH_REALTEK_RTL) += spi-realtek-rtl.o
obj-$(CONFIG_SPI_RPCIF) += spi-rpc-if.o obj-$(CONFIG_SPI_RPCIF) += spi-rpc-if.o
obj-$(CONFIG_SPI_RSPI) += spi-rspi.o obj-$(CONFIG_SPI_RSPI) += spi-rspi.o
obj-$(CONFIG_SPI_S3C24XX) += spi-s3c24xx-hw.o obj-$(CONFIG_SPI_S3C24XX) += spi-s3c24xx-hw.o
@ -105,7 +105,6 @@ obj-$(CONFIG_SPI_SH_HSPI) += spi-sh-hspi.o
obj-$(CONFIG_SPI_SH_MSIOF) += spi-sh-msiof.o obj-$(CONFIG_SPI_SH_MSIOF) += spi-sh-msiof.o
obj-$(CONFIG_SPI_SH_SCI) += spi-sh-sci.o obj-$(CONFIG_SPI_SH_SCI) += spi-sh-sci.o
obj-$(CONFIG_SPI_SIFIVE) += spi-sifive.o obj-$(CONFIG_SPI_SIFIVE) += spi-sifive.o
obj-$(CONFIG_SPI_SIRF) += spi-sirf.o
obj-$(CONFIG_SPI_SLAVE_MT27XX) += spi-slave-mt27xx.o obj-$(CONFIG_SPI_SLAVE_MT27XX) += spi-slave-mt27xx.o
obj-$(CONFIG_SPI_SPRD) += spi-sprd.o obj-$(CONFIG_SPI_SPRD) += spi-sprd.o
obj-$(CONFIG_SPI_SPRD_ADI) += spi-sprd-adi.o obj-$(CONFIG_SPI_SPRD_ADI) += spi-sprd-adi.o
@ -115,6 +114,7 @@ obj-$(CONFIG_SPI_ST_SSC4) += spi-st-ssc4.o
obj-$(CONFIG_SPI_SUN4I) += spi-sun4i.o obj-$(CONFIG_SPI_SUN4I) += spi-sun4i.o
obj-$(CONFIG_SPI_SUN6I) += spi-sun6i.o obj-$(CONFIG_SPI_SUN6I) += spi-sun6i.o
obj-$(CONFIG_SPI_SYNQUACER) += spi-synquacer.o obj-$(CONFIG_SPI_SYNQUACER) += spi-synquacer.o
obj-$(CONFIG_SPI_TEGRA210_QUAD) += spi-tegra210-quad.o
obj-$(CONFIG_SPI_TEGRA114) += spi-tegra114.o obj-$(CONFIG_SPI_TEGRA114) += spi-tegra114.o
obj-$(CONFIG_SPI_TEGRA20_SFLASH) += spi-tegra20-sflash.o obj-$(CONFIG_SPI_TEGRA20_SFLASH) += spi-tegra20-sflash.o
obj-$(CONFIG_SPI_TEGRA20_SLINK) += spi-tegra20-slink.o obj-$(CONFIG_SPI_TEGRA20_SLINK) += spi-tegra20-slink.o
@ -122,7 +122,6 @@ obj-$(CONFIG_SPI_TLE62X0) += spi-tle62x0.o
spi-thunderx-objs := spi-cavium.o spi-cavium-thunderx.o spi-thunderx-objs := spi-cavium.o spi-cavium-thunderx.o
obj-$(CONFIG_SPI_THUNDERX) += spi-thunderx.o obj-$(CONFIG_SPI_THUNDERX) += spi-thunderx.o
obj-$(CONFIG_SPI_TOPCLIFF_PCH) += spi-topcliff-pch.o obj-$(CONFIG_SPI_TOPCLIFF_PCH) += spi-topcliff-pch.o
obj-$(CONFIG_SPI_TXX9) += spi-txx9.o
obj-$(CONFIG_SPI_UNIPHIER) += spi-uniphier.o obj-$(CONFIG_SPI_UNIPHIER) += spi-uniphier.o
obj-$(CONFIG_SPI_XCOMM) += spi-xcomm.o obj-$(CONFIG_SPI_XCOMM) += spi-xcomm.o
obj-$(CONFIG_SPI_XILINX) += spi-xilinx.o obj-$(CONFIG_SPI_XILINX) += spi-xilinx.o

View File

@ -657,6 +657,7 @@ static int __maybe_unused atmel_qspi_suspend(struct device *dev)
struct spi_controller *ctrl = dev_get_drvdata(dev); struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl); struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
clk_disable_unprepare(aq->qspick); clk_disable_unprepare(aq->qspick);
clk_disable_unprepare(aq->pclk); clk_disable_unprepare(aq->pclk);

View File

@ -1590,7 +1590,7 @@ static int atmel_spi_probe(struct platform_device *pdev)
if (ret == 0) { if (ret == 0) {
as->use_dma = true; as->use_dma = true;
} else if (ret == -EPROBE_DEFER) { } else if (ret == -EPROBE_DEFER) {
return ret; goto out_unmap_regs;
} }
} else if (as->caps.has_pdc_support) { } else if (as->caps.has_pdc_support) {
as->use_pdc = true; as->use_pdc = true;

View File

@ -26,7 +26,7 @@
#include <asm/mach-au1x00/au1550_spi.h> #include <asm/mach-au1x00/au1550_spi.h>
static unsigned usedma = 1; static unsigned int usedma = 1;
module_param(usedma, uint, 0644); module_param(usedma, uint, 0644);
/* /*
@ -43,9 +43,9 @@ struct au1550_spi {
volatile psc_spi_t __iomem *regs; volatile psc_spi_t __iomem *regs;
int irq; int irq;
unsigned len; unsigned int len;
unsigned tx_count; unsigned int tx_count;
unsigned rx_count; unsigned int rx_count;
const u8 *tx; const u8 *tx;
u8 *rx; u8 *rx;
@ -56,14 +56,14 @@ struct au1550_spi {
struct completion master_done; struct completion master_done;
unsigned usedma; unsigned int usedma;
u32 dma_tx_id; u32 dma_tx_id;
u32 dma_rx_id; u32 dma_rx_id;
u32 dma_tx_ch; u32 dma_tx_ch;
u32 dma_rx_ch; u32 dma_rx_ch;
u8 *dma_rx_tmpbuf; u8 *dma_rx_tmpbuf;
unsigned dma_rx_tmpbuf_size; unsigned int dma_rx_tmpbuf_size;
u32 dma_rx_tmpbuf_addr; u32 dma_rx_tmpbuf_addr;
struct spi_master *master; struct spi_master *master;
@ -74,8 +74,7 @@ struct au1550_spi {
/* we use an 8-bit memory device for dma transfers to/from spi fifo */ /* we use an 8-bit memory device for dma transfers to/from spi fifo */
static dbdev_tab_t au1550_spi_mem_dbdev = static dbdev_tab_t au1550_spi_mem_dbdev = {
{
.dev_id = DBDMA_MEM_CHAN, .dev_id = DBDMA_MEM_CHAN,
.dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC, .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC,
.dev_tsize = 0, .dev_tsize = 0,
@ -99,7 +98,7 @@ static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw);
* BRG valid range is 4..63 * BRG valid range is 4..63
* DIV valid range is 0..3 * DIV valid range is 0..3
*/ */
static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz) static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned int speed_hz)
{ {
u32 mainclk_hz = hw->pdata->mainclk_hz; u32 mainclk_hz = hw->pdata->mainclk_hz;
u32 div, brg; u32 div, brg;
@ -161,7 +160,7 @@ static void au1550_spi_reset_fifos(struct au1550_spi *hw)
static void au1550_spi_chipsel(struct spi_device *spi, int value) static void au1550_spi_chipsel(struct spi_device *spi, int value)
{ {
struct au1550_spi *hw = spi_master_get_devdata(spi->master); struct au1550_spi *hw = spi_master_get_devdata(spi->master);
unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0; unsigned int cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
u32 cfg, stat; u32 cfg, stat;
switch (value) { switch (value) {
@ -221,7 +220,7 @@ static void au1550_spi_chipsel(struct spi_device *spi, int value)
static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t) static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
{ {
struct au1550_spi *hw = spi_master_get_devdata(spi->master); struct au1550_spi *hw = spi_master_get_devdata(spi->master);
unsigned bpw, hz; unsigned int bpw, hz;
u32 cfg, stat; u32 cfg, stat;
if (t) { if (t) {
@ -276,7 +275,7 @@ static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
* spi master done event irq is not generated unless rx fifo is empty (emptied) * spi master done event irq is not generated unless rx fifo is empty (emptied)
* so we need rx tmp buffer to use for rx dma if user does not provide one * so we need rx tmp buffer to use for rx dma if user does not provide one
*/ */
static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size) static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned int size)
{ {
hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL); hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL);
if (!hw->dma_rx_tmpbuf) if (!hw->dma_rx_tmpbuf)
@ -399,10 +398,10 @@ static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t)
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
} }
/* unmap buffers if mapped above */ /* unmap buffers if mapped above */
if (t->rx_buf && t->rx_dma == 0 ) if (t->rx_buf && t->rx_dma == 0)
dma_unmap_single(hw->dev, dma_rx_addr, t->len, dma_unmap_single(hw->dev, dma_rx_addr, t->len,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
if (t->tx_buf && t->tx_dma == 0 ) if (t->tx_buf && t->tx_dma == 0)
dma_unmap_single(hw->dev, dma_tx_addr, t->len, dma_unmap_single(hw->dev, dma_tx_addr, t->len,
DMA_TO_DEVICE); DMA_TO_DEVICE);
@ -447,8 +446,8 @@ static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw)
"dma transfer: receive FIFO overflow!\n"); "dma transfer: receive FIFO overflow!\n");
else else
dev_err(hw->dev, dev_err(hw->dev,
"dma transfer: unexpected SPI error " "dma transfer: unexpected SPI error (event=0x%x stat=0x%x)!\n",
"(event=0x%x stat=0x%x)!\n", evnt, stat); evnt, stat);
complete(&hw->master_done); complete(&hw->master_done);
return IRQ_HANDLED; return IRQ_HANDLED;
@ -493,12 +492,12 @@ static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \
wmb(); /* drain writebuffer */ \ wmb(); /* drain writebuffer */ \
} }
AU1550_SPI_RX_WORD(8,0xff) AU1550_SPI_RX_WORD(8, 0xff)
AU1550_SPI_RX_WORD(16,0xffff) AU1550_SPI_RX_WORD(16, 0xffff)
AU1550_SPI_RX_WORD(32,0xffffff) AU1550_SPI_RX_WORD(32, 0xffffff)
AU1550_SPI_TX_WORD(8,0xff) AU1550_SPI_TX_WORD(8, 0xff)
AU1550_SPI_TX_WORD(16,0xffff) AU1550_SPI_TX_WORD(16, 0xffff)
AU1550_SPI_TX_WORD(32,0xffffff) AU1550_SPI_TX_WORD(32, 0xffffff)
static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t) static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t)
{ {
@ -567,8 +566,8 @@ static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
au1550_spi_mask_ack_all(hw); au1550_spi_mask_ack_all(hw);
au1550_spi_reset_fifos(hw); au1550_spi_reset_fifos(hw);
dev_err(hw->dev, dev_err(hw->dev,
"pio transfer: unexpected SPI error " "pio transfer: unexpected SPI error (event=0x%x stat=0x%x)!\n",
"(event=0x%x stat=0x%x)!\n", evnt, stat); evnt, stat);
complete(&hw->master_done); complete(&hw->master_done);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
@ -636,12 +635,14 @@ static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
{ {
struct au1550_spi *hw = spi_master_get_devdata(spi->master); struct au1550_spi *hw = spi_master_get_devdata(spi->master);
return hw->txrx_bufs(spi, t); return hw->txrx_bufs(spi, t);
} }
static irqreturn_t au1550_spi_irq(int irq, void *dev) static irqreturn_t au1550_spi_irq(int irq, void *dev)
{ {
struct au1550_spi *hw = dev; struct au1550_spi *hw = dev;
return hw->irq_callback(hw); return hw->irq_callback(hw);
} }
@ -872,6 +873,7 @@ static int au1550_spi_probe(struct platform_device *pdev)
{ {
int min_div = (2 << 0) * (2 * (4 + 1)); int min_div = (2 << 0) * (2 * (4 + 1));
int max_div = (2 << 3) * (2 * (63 + 1)); int max_div = (2 << 3) * (2 * (63 + 1));
master->max_speed_hz = hw->pdata->mainclk_hz / min_div; master->max_speed_hz = hw->pdata->mainclk_hz / min_div;
master->min_speed_hz = master->min_speed_hz =
hw->pdata->mainclk_hz / (max_div + 1) + 1; hw->pdata->mainclk_hz / (max_div + 1) + 1;
@ -972,8 +974,7 @@ static int __init au1550_spi_init(void)
if (usedma) { if (usedma) {
ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev); ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev);
if (!ddma_memid) if (!ddma_memid)
printk(KERN_ERR "au1550-spi: cannot add memory" printk(KERN_ERR "au1550-spi: cannot add memory dbdma device\n");
"dbdma device\n");
} }
return platform_driver_register(&au1550_spi_drv); return platform_driver_register(&au1550_spi_drv);
} }

View File

@ -881,7 +881,7 @@ static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
* when using flex mode we need to send * when using flex mode we need to send
* the upper address byte to bspi * the upper address byte to bspi
*/ */
if (bcm_qspi_bspi_ver_three(qspi) == false) { if (!bcm_qspi_bspi_ver_three(qspi)) {
addr = from & 0xff000000; addr = from & 0xff000000;
bcm_qspi_write(qspi, BSPI, bcm_qspi_write(qspi, BSPI,
BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr); BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);

View File

@ -386,7 +386,7 @@ static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
/* Transfer complete - reset SPI HW */ /* Transfer complete - reset SPI HW */
bcm2835_spi_reset_hw(bs); bcm2835_spi_reset_hw(bs);
/* wake up the framework */ /* wake up the framework */
complete(&bs->ctlr->xfer_completion); spi_finalize_current_transfer(bs->ctlr);
} }
return IRQ_HANDLED; return IRQ_HANDLED;
@ -608,7 +608,7 @@ static void bcm2835_spi_dma_rx_done(void *data)
bcm2835_spi_reset_hw(bs); bcm2835_spi_reset_hw(bs);
/* and mark as completed */; /* and mark as completed */;
complete(&ctlr->xfer_completion); spi_finalize_current_transfer(ctlr);
} }
/** /**
@ -640,7 +640,7 @@ static void bcm2835_spi_dma_tx_done(void *data)
bcm2835_spi_undo_prologue(bs); bcm2835_spi_undo_prologue(bs);
bcm2835_spi_reset_hw(bs); bcm2835_spi_reset_hw(bs);
complete(&ctlr->xfer_completion); spi_finalize_current_transfer(ctlr);
} }
/** /**
@ -1307,6 +1307,8 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk), return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
"could not get clk\n"); "could not get clk\n");
ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
bs->irq = platform_get_irq(pdev, 0); bs->irq = platform_get_irq(pdev, 0);
if (bs->irq <= 0) if (bs->irq <= 0)
return bs->irq ? bs->irq : -ENODEV; return bs->irq ? bs->irq : -ENODEV;

View File

@ -254,7 +254,7 @@ static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
/* and if rx_len is 0 then disable interrupts and wake up completion */ /* and if rx_len is 0 then disable interrupts and wake up completion */
if (!bs->rx_len) { if (!bs->rx_len) {
bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]); bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
complete(&master->xfer_completion); spi_finalize_current_transfer(master);
} }
return IRQ_HANDLED; return IRQ_HANDLED;

View File

@ -52,6 +52,7 @@ struct cqspi_flash_pdata {
u8 inst_width; u8 inst_width;
u8 addr_width; u8 addr_width;
u8 data_width; u8 data_width;
bool dtr;
u8 cs; u8 cs;
}; };
@ -75,6 +76,7 @@ struct cqspi_st {
bool is_decoded_cs; bool is_decoded_cs;
u32 fifo_depth; u32 fifo_depth;
u32 fifo_width; u32 fifo_width;
u32 num_chipselect;
bool rclk_en; bool rclk_en;
u32 trigger_address; u32 trigger_address;
u32 wr_delay; u32 wr_delay;
@ -111,6 +113,8 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10
#define CQSPI_REG_CONFIG_DMA_MASK BIT(15) #define CQSPI_REG_CONFIG_DMA_MASK BIT(15)
#define CQSPI_REG_CONFIG_BAUD_LSB 19 #define CQSPI_REG_CONFIG_BAUD_LSB 19
#define CQSPI_REG_CONFIG_DTR_PROTO BIT(24)
#define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30)
#define CQSPI_REG_CONFIG_IDLE_LSB 31 #define CQSPI_REG_CONFIG_IDLE_LSB 31
#define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF
#define CQSPI_REG_CONFIG_BAUD_MASK 0xF #define CQSPI_REG_CONFIG_BAUD_MASK 0xF
@ -173,6 +177,9 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF
#define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF
#define CQSPI_REG_WR_COMPLETION_CTRL 0x38
#define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14)
#define CQSPI_REG_IRQSTATUS 0x40 #define CQSPI_REG_IRQSTATUS 0x40
#define CQSPI_REG_IRQMASK 0x44 #define CQSPI_REG_IRQMASK 0x44
@ -188,6 +195,7 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_CMDCTRL 0x90 #define CQSPI_REG_CMDCTRL 0x90
#define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0) #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0)
#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1) #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1)
#define CQSPI_REG_CMDCTRL_DUMMY_LSB 7
#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12
#define CQSPI_REG_CMDCTRL_WR_EN_LSB 15 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15
#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16
@ -198,6 +206,7 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3
#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7
#define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F
#define CQSPI_REG_INDIRECTWR 0x70 #define CQSPI_REG_INDIRECTWR 0x70
#define CQSPI_REG_INDIRECTWR_START_MASK BIT(0) #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0)
@ -214,6 +223,14 @@ struct cqspi_driver_platdata {
#define CQSPI_REG_CMDWRITEDATALOWER 0xA8 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8
#define CQSPI_REG_CMDWRITEDATAUPPER 0xAC #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC
#define CQSPI_REG_POLLING_STATUS 0xB0
#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16
#define CQSPI_REG_OP_EXT_LOWER 0xE0
#define CQSPI_REG_OP_EXT_READ_LSB 24
#define CQSPI_REG_OP_EXT_WRITE_LSB 16
#define CQSPI_REG_OP_EXT_STIG_LSB 0
/* Interrupt status bits */ /* Interrupt status bits */
#define CQSPI_REG_IRQ_MODE_ERR BIT(0) #define CQSPI_REG_IRQ_MODE_ERR BIT(0)
#define CQSPI_REG_IRQ_UNDERFLOW BIT(1) #define CQSPI_REG_IRQ_UNDERFLOW BIT(1)
@ -288,6 +305,80 @@ static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
return rdreg; return rdreg;
} }
static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
{
unsigned int dummy_clk;
dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
if (dtr)
dummy_clk /= 2;
return dummy_clk;
}
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;
switch (op->data.buswidth) {
case 0:
break;
case 1:
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
break;
case 2:
f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
break;
case 4:
f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
/* Right now we only support 8-8-8 DTR mode. */
if (f_pdata->dtr) {
switch (op->cmd.buswidth) {
case 0:
break;
case 8:
f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
switch (op->addr.buswidth) {
case 0:
break;
case 8:
f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
switch (op->data.buswidth) {
case 0:
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
}
return 0;
}
static int cqspi_wait_idle(struct cqspi_st *cqspi) static int cqspi_wait_idle(struct cqspi_st *cqspi)
{ {
const unsigned int poll_idle_retry = 3; const unsigned int poll_idle_retry = 3;
@ -345,19 +436,85 @@ static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
return cqspi_wait_idle(cqspi); return cqspi_wait_idle(cqspi);
} }
static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op,
unsigned int shift)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
u8 ext;
if (op->cmd.nbytes != 2)
return -EINVAL;
/* Opcode extension is the LSB. */
ext = op->cmd.opcode & 0xff;
reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
reg &= ~(0xff << shift);
reg |= ext << shift;
writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
return 0;
}
static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op, unsigned int shift,
bool enable)
{
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
int ret;
reg = readl(reg_base + CQSPI_REG_CONFIG);
/*
* We enable dual byte opcode here. The callers have to set up the
* extension opcode based on which type of operation it is.
*/
if (enable) {
reg |= CQSPI_REG_CONFIG_DTR_PROTO;
reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
/* Set up command opcode extension. */
ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
if (ret)
return ret;
} else {
reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
}
writel(reg, reg_base + CQSPI_REG_CONFIG);
return cqspi_wait_idle(cqspi);
}
static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata, static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
struct cqspi_st *cqspi = f_pdata->cqspi; struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase; void __iomem *reg_base = cqspi->iobase;
u8 *rxbuf = op->data.buf.in; u8 *rxbuf = op->data.buf.in;
u8 opcode = op->cmd.opcode; u8 opcode;
size_t n_rx = op->data.nbytes; size_t n_rx = op->data.nbytes;
unsigned int rdreg; unsigned int rdreg;
unsigned int reg; unsigned int reg;
unsigned int dummy_clk;
size_t read_len; size_t read_len;
int status; int status;
status = cqspi_set_protocol(f_pdata, op);
if (status)
return status;
status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
f_pdata->dtr);
if (status)
return status;
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) { if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
dev_err(&cqspi->pdev->dev, dev_err(&cqspi->pdev->dev,
"Invalid input argument, len %zu rxbuf 0x%p\n", "Invalid input argument, len %zu rxbuf 0x%p\n",
@ -365,11 +522,24 @@ static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
return -EINVAL; return -EINVAL;
} }
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
rdreg = cqspi_calc_rdreg(f_pdata); rdreg = cqspi_calc_rdreg(f_pdata);
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR); writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
return -EOPNOTSUPP;
if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
<< CQSPI_REG_CMDCTRL_DUMMY_LSB;
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
/* 0 means 1 byte. */ /* 0 means 1 byte. */
@ -401,12 +571,22 @@ static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
{ {
struct cqspi_st *cqspi = f_pdata->cqspi; struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase; void __iomem *reg_base = cqspi->iobase;
const u8 opcode = op->cmd.opcode; u8 opcode;
const u8 *txbuf = op->data.buf.out; const u8 *txbuf = op->data.buf.out;
size_t n_tx = op->data.nbytes; size_t n_tx = op->data.nbytes;
unsigned int reg; unsigned int reg;
unsigned int data; unsigned int data;
size_t write_len; size_t write_len;
int ret;
ret = cqspi_set_protocol(f_pdata, op);
if (ret)
return ret;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) { if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
dev_err(&cqspi->pdev->dev, dev_err(&cqspi->pdev->dev,
@ -415,6 +595,14 @@ static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
return -EINVAL; return -EINVAL;
} }
reg = cqspi_calc_rdreg(f_pdata);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
if (op->addr.nbytes) { if (op->addr.nbytes) {
@ -454,14 +642,27 @@ static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
void __iomem *reg_base = cqspi->iobase; void __iomem *reg_base = cqspi->iobase;
unsigned int dummy_clk = 0; unsigned int dummy_clk = 0;
unsigned int reg; unsigned int reg;
int ret;
u8 opcode;
reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB; ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
reg |= cqspi_calc_rdreg(f_pdata); reg |= cqspi_calc_rdreg(f_pdata);
/* Setup dummy clock cycles */ /* Setup dummy clock cycles */
dummy_clk = op->dummy.nbytes * 8; dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
dummy_clk = CQSPI_DUMMY_CLKS_MAX; return -EOPNOTSUPP;
if (dummy_clk) if (dummy_clk)
reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
@ -573,15 +774,43 @@ static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
unsigned int reg; unsigned int reg;
int ret;
struct cqspi_st *cqspi = f_pdata->cqspi; struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase; void __iomem *reg_base = cqspi->iobase;
u8 opcode;
ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
f_pdata->dtr);
if (ret)
return ret;
if (f_pdata->dtr)
opcode = op->cmd.opcode >> 8;
else
opcode = op->cmd.opcode;
/* Set opcode. */ /* Set opcode. */
reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB; reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
writel(reg, reg_base + CQSPI_REG_WR_INSTR); writel(reg, reg_base + CQSPI_REG_WR_INSTR);
reg = cqspi_calc_rdreg(f_pdata); reg = cqspi_calc_rdreg(f_pdata);
writel(reg, reg_base + CQSPI_REG_RD_INSTR); writel(reg, reg_base + CQSPI_REG_RD_INSTR);
if (f_pdata->dtr) {
/*
* Some flashes like the cypress Semper flash expect a 4-byte
* dummy address with the Read SR command in DTR mode, but this
* controller does not support sending address with the Read SR
* command. So, disable write completion polling on the
* controller's side. spi-nor will take care of polling the
* status register.
*/
reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
}
reg = readl(reg_base + CQSPI_REG_SIZE); reg = readl(reg_base + CQSPI_REG_SIZE);
reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
reg |= (op->addr.nbytes - 1); reg |= (op->addr.nbytes - 1);
@ -835,35 +1064,6 @@ static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
cqspi_controller_enable(cqspi, 1); cqspi_controller_enable(cqspi, 1);
} }
static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op)
{
f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
if (op->data.dir == SPI_MEM_DATA_IN) {
switch (op->data.buswidth) {
case 1:
f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
break;
case 2:
f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
break;
case 4:
f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
break;
case 8:
f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
break;
default:
return -EINVAL;
}
}
return 0;
}
static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata, static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
@ -881,7 +1081,16 @@ static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
if (ret) if (ret)
return ret; return ret;
if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) { /*
* Some flashes like the Cypress Semper flash expect a dummy 4-byte
* address (all 0s) with the read status register command in DTR mode.
* But this controller does not support sending dummy address bytes to
* the flash when it is polling the write completion register in DTR
* mode. So, we can not use direct mode when in DTR mode for writing
* data.
*/
if (!f_pdata->dtr && cqspi->use_direct_mode &&
((to + len) <= cqspi->ahb_size)) {
memcpy_toio(cqspi->ahb_base + to, buf, len); memcpy_toio(cqspi->ahb_base + to, buf, len);
return cqspi_wait_idle(cqspi); return cqspi_wait_idle(cqspi);
} }
@ -942,7 +1151,7 @@ static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
dma_async_issue_pending(cqspi->rx_chan); dma_async_issue_pending(cqspi->rx_chan);
if (!wait_for_completion_timeout(&cqspi->rx_dma_complete, if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
msecs_to_jiffies(len))) { msecs_to_jiffies(max_t(size_t, len, 500)))) {
dmaengine_terminate_sync(cqspi->rx_chan); dmaengine_terminate_sync(cqspi->rx_chan);
dev_err(dev, "DMA wait_for_completion_timeout\n"); dev_err(dev, "DMA wait_for_completion_timeout\n");
ret = -ETIMEDOUT; ret = -ETIMEDOUT;
@ -1010,6 +1219,26 @@ static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
return ret; return ret;
} }
static bool cqspi_supports_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
bool all_true, all_false;
all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
op->data.dtr;
all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
!op->data.dtr;
/* Mixed DTR modes not supported. */
if (!(all_true || all_false))
return false;
if (all_true)
return spi_mem_dtr_supports_op(mem, op);
else
return spi_mem_default_supports_op(mem, op);
}
static int cqspi_of_get_flash_pdata(struct platform_device *pdev, static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
struct cqspi_flash_pdata *f_pdata, struct cqspi_flash_pdata *f_pdata,
struct device_node *np) struct device_node *np)
@ -1070,6 +1299,9 @@ static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
return -ENXIO; return -ENXIO;
} }
if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en"); cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
return 0; return 0;
@ -1101,10 +1333,12 @@ static void cqspi_controller_init(struct cqspi_st *cqspi)
writel(cqspi->fifo_depth * cqspi->fifo_width / 8, writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK); cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
/* Enable Direct Access Controller */ /* Disable direct access controller */
reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); if (!cqspi->use_direct_mode) {
reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL; reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
}
cqspi_controller_enable(cqspi, 1); cqspi_controller_enable(cqspi, 1);
} }
@ -1138,6 +1372,7 @@ static const char *cqspi_get_name(struct spi_mem *mem)
static const struct spi_controller_mem_ops cqspi_mem_ops = { static const struct spi_controller_mem_ops cqspi_mem_ops = {
.exec_op = cqspi_exec_mem_op, .exec_op = cqspi_exec_mem_op,
.get_name = cqspi_get_name, .get_name = cqspi_get_name,
.supports_op = cqspi_supports_mem_op,
}; };
static int cqspi_setup_flash(struct cqspi_st *cqspi) static int cqspi_setup_flash(struct cqspi_st *cqspi)
@ -1279,13 +1514,14 @@ static int cqspi_probe(struct platform_device *pdev)
reset_control_deassert(rstc_ocp); reset_control_deassert(rstc_ocp);
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk); cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
master->max_speed_hz = cqspi->master_ref_clk_hz;
ddata = of_device_get_match_data(dev); ddata = of_device_get_match_data(dev);
if (ddata) { if (ddata) {
if (ddata->quirks & CQSPI_NEEDS_WR_DELAY) if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC, cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
cqspi->master_ref_clk_hz); cqspi->master_ref_clk_hz);
if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL) if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
master->mode_bits |= SPI_RX_OCTAL; master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
cqspi->use_direct_mode = true; cqspi->use_direct_mode = true;
} }
@ -1302,6 +1538,8 @@ static int cqspi_probe(struct platform_device *pdev)
cqspi->current_cs = -1; cqspi->current_cs = -1;
cqspi->sclk = 0; cqspi->sclk = 0;
master->num_chipselect = cqspi->num_chipselect;
ret = cqspi_setup_flash(cqspi); ret = cqspi_setup_flash(cqspi);
if (ret) { if (ret) {
dev_err(dev, "failed to setup flash parameters %d\n", ret); dev_err(dev, "failed to setup flash parameters %d\n", ret);
@ -1390,6 +1628,10 @@ static const struct cqspi_driver_platdata am654_ospi = {
.quirks = CQSPI_NEEDS_WR_DELAY, .quirks = CQSPI_NEEDS_WR_DELAY,
}; };
static const struct cqspi_driver_platdata intel_lgm_qspi = {
.quirks = CQSPI_DISABLE_DAC_MODE,
};
static const struct of_device_id cqspi_dt_ids[] = { static const struct of_device_id cqspi_dt_ids[] = {
{ {
.compatible = "cdns,qspi-nor", .compatible = "cdns,qspi-nor",
@ -1403,6 +1645,10 @@ static const struct of_device_id cqspi_dt_ids[] = {
.compatible = "ti,am654-ospi", .compatible = "ti,am654-ospi",
.data = &am654_ospi, .data = &am654_ospi,
}, },
{
.compatible = "intel,lgm-qspi",
.data = &intel_lgm_qspi,
},
{ /* end of table */ } { /* end of table */ }
}; };
@ -1427,3 +1673,4 @@ MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>"); MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>"); MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");

View File

@ -104,7 +104,7 @@ static int spi_clps711x_probe(struct platform_device *pdev)
master->use_gpio_descriptors = true; master->use_gpio_descriptors = true;
master->bus_num = -1; master->bus_num = -1;
master->mode_bits = SPI_CPHA | SPI_CS_HIGH; master->mode_bits = SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 8); master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 8);
master->dev.of_node = pdev->dev.of_node; master->dev.of_node = pdev->dev.of_node;
master->prepare_message = spi_clps711x_prepare_message; master->prepare_message = spi_clps711x_prepare_message;
master->transfer_one = spi_clps711x_transfer_one; master->transfer_one = spi_clps711x_transfer_one;

View File

@ -84,7 +84,7 @@ static void dw_spi_bt1_dirmap_copy_from_map(void *to, void __iomem *from, size_t
if (shift) { if (shift) {
chunk = min_t(size_t, 4 - shift, len); chunk = min_t(size_t, 4 - shift, len);
data = readl_relaxed(from - shift); data = readl_relaxed(from - shift);
memcpy(to, &data + shift, chunk); memcpy(to, (char *)&data + shift, chunk);
from += chunk; from += chunk;
to += chunk; to += chunk;
len -= chunk; len -= chunk;

View File

@ -1,462 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2013 Uwe Kleine-Koenig for Pengutronix
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/platform_data/efm32-spi.h>
#include <linux/of.h>
#define DRIVER_NAME "efm32-spi"
#define MASK_VAL(mask, val) ((val << __ffs(mask)) & mask)
#define REG_CTRL 0x00
#define REG_CTRL_SYNC 0x0001
#define REG_CTRL_CLKPOL 0x0100
#define REG_CTRL_CLKPHA 0x0200
#define REG_CTRL_MSBF 0x0400
#define REG_CTRL_TXBIL 0x1000
#define REG_FRAME 0x04
#define REG_FRAME_DATABITS__MASK 0x000f
#define REG_FRAME_DATABITS(n) ((n) - 3)
#define REG_CMD 0x0c
#define REG_CMD_RXEN 0x0001
#define REG_CMD_RXDIS 0x0002
#define REG_CMD_TXEN 0x0004
#define REG_CMD_TXDIS 0x0008
#define REG_CMD_MASTEREN 0x0010
#define REG_STATUS 0x10
#define REG_STATUS_TXENS 0x0002
#define REG_STATUS_TXC 0x0020
#define REG_STATUS_TXBL 0x0040
#define REG_STATUS_RXDATAV 0x0080
#define REG_CLKDIV 0x14
#define REG_RXDATAX 0x18
#define REG_RXDATAX_RXDATA__MASK 0x01ff
#define REG_RXDATAX_PERR 0x4000
#define REG_RXDATAX_FERR 0x8000
#define REG_TXDATA 0x34
#define REG_IF 0x40
#define REG_IF_TXBL 0x0002
#define REG_IF_RXDATAV 0x0004
#define REG_IFS 0x44
#define REG_IFC 0x48
#define REG_IEN 0x4c
#define REG_ROUTE 0x54
#define REG_ROUTE_RXPEN 0x0001
#define REG_ROUTE_TXPEN 0x0002
#define REG_ROUTE_CLKPEN 0x0008
#define REG_ROUTE_LOCATION__MASK 0x0700
#define REG_ROUTE_LOCATION(n) MASK_VAL(REG_ROUTE_LOCATION__MASK, (n))
struct efm32_spi_ddata {
struct spi_bitbang bitbang;
spinlock_t lock;
struct clk *clk;
void __iomem *base;
unsigned int rxirq, txirq;
struct efm32_spi_pdata pdata;
/* irq data */
struct completion done;
const u8 *tx_buf;
u8 *rx_buf;
unsigned tx_len, rx_len;
};
#define ddata_to_dev(ddata) (&(ddata->bitbang.master->dev))
#define efm32_spi_vdbg(ddata, format, arg...) \
dev_vdbg(ddata_to_dev(ddata), format, ##arg)
static void efm32_spi_write32(struct efm32_spi_ddata *ddata,
u32 value, unsigned offset)
{
writel_relaxed(value, ddata->base + offset);
}
static u32 efm32_spi_read32(struct efm32_spi_ddata *ddata, unsigned offset)
{
return readl_relaxed(ddata->base + offset);
}
static int efm32_spi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct efm32_spi_ddata *ddata = spi_master_get_devdata(spi->master);
unsigned bpw = t->bits_per_word ?: spi->bits_per_word;
unsigned speed = t->speed_hz ?: spi->max_speed_hz;
unsigned long clkfreq = clk_get_rate(ddata->clk);
u32 clkdiv;
efm32_spi_write32(ddata, REG_CTRL_SYNC | REG_CTRL_MSBF |
(spi->mode & SPI_CPHA ? REG_CTRL_CLKPHA : 0) |
(spi->mode & SPI_CPOL ? REG_CTRL_CLKPOL : 0), REG_CTRL);
efm32_spi_write32(ddata,
REG_FRAME_DATABITS(bpw), REG_FRAME);
if (2 * speed >= clkfreq)
clkdiv = 0;
else
clkdiv = 64 * (DIV_ROUND_UP(2 * clkfreq, speed) - 4);
if (clkdiv > (1U << 21))
return -EINVAL;
efm32_spi_write32(ddata, clkdiv, REG_CLKDIV);
efm32_spi_write32(ddata, REG_CMD_MASTEREN, REG_CMD);
efm32_spi_write32(ddata, REG_CMD_RXEN | REG_CMD_TXEN, REG_CMD);
return 0;
}
static void efm32_spi_tx_u8(struct efm32_spi_ddata *ddata)
{
u8 val = 0;
if (ddata->tx_buf) {
val = *ddata->tx_buf;
ddata->tx_buf++;
}
ddata->tx_len--;
efm32_spi_write32(ddata, val, REG_TXDATA);
efm32_spi_vdbg(ddata, "%s: tx 0x%x\n", __func__, val);
}
static void efm32_spi_rx_u8(struct efm32_spi_ddata *ddata)
{
u32 rxdata = efm32_spi_read32(ddata, REG_RXDATAX);
efm32_spi_vdbg(ddata, "%s: rx 0x%x\n", __func__, rxdata);
if (ddata->rx_buf) {
*ddata->rx_buf = rxdata;
ddata->rx_buf++;
}
ddata->rx_len--;
}
static void efm32_spi_filltx(struct efm32_spi_ddata *ddata)
{
while (ddata->tx_len &&
ddata->tx_len + 2 > ddata->rx_len &&
efm32_spi_read32(ddata, REG_STATUS) & REG_STATUS_TXBL) {
efm32_spi_tx_u8(ddata);
}
}
static int efm32_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
{
struct efm32_spi_ddata *ddata = spi_master_get_devdata(spi->master);
int ret = -EBUSY;
spin_lock_irq(&ddata->lock);
if (ddata->tx_buf || ddata->rx_buf)
goto out_unlock;
ddata->tx_buf = t->tx_buf;
ddata->rx_buf = t->rx_buf;
ddata->tx_len = ddata->rx_len =
t->len * DIV_ROUND_UP(t->bits_per_word, 8);
efm32_spi_filltx(ddata);
reinit_completion(&ddata->done);
efm32_spi_write32(ddata, REG_IF_TXBL | REG_IF_RXDATAV, REG_IEN);
spin_unlock_irq(&ddata->lock);
wait_for_completion(&ddata->done);
spin_lock_irq(&ddata->lock);
ret = t->len - max(ddata->tx_len, ddata->rx_len);
efm32_spi_write32(ddata, 0, REG_IEN);
ddata->tx_buf = ddata->rx_buf = NULL;
out_unlock:
spin_unlock_irq(&ddata->lock);
return ret;
}
static irqreturn_t efm32_spi_rxirq(int irq, void *data)
{
struct efm32_spi_ddata *ddata = data;
irqreturn_t ret = IRQ_NONE;
spin_lock(&ddata->lock);
while (ddata->rx_len > 0 &&
efm32_spi_read32(ddata, REG_STATUS) &
REG_STATUS_RXDATAV) {
efm32_spi_rx_u8(ddata);
ret = IRQ_HANDLED;
}
if (!ddata->rx_len) {
u32 ien = efm32_spi_read32(ddata, REG_IEN);
ien &= ~REG_IF_RXDATAV;
efm32_spi_write32(ddata, ien, REG_IEN);
complete(&ddata->done);
}
spin_unlock(&ddata->lock);
return ret;
}
static irqreturn_t efm32_spi_txirq(int irq, void *data)
{
struct efm32_spi_ddata *ddata = data;
efm32_spi_vdbg(ddata,
"%s: txlen = %u, rxlen = %u, if=0x%08x, stat=0x%08x\n",
__func__, ddata->tx_len, ddata->rx_len,
efm32_spi_read32(ddata, REG_IF),
efm32_spi_read32(ddata, REG_STATUS));
spin_lock(&ddata->lock);
efm32_spi_filltx(ddata);
efm32_spi_vdbg(ddata, "%s: txlen = %u, rxlen = %u\n",
__func__, ddata->tx_len, ddata->rx_len);
if (!ddata->tx_len) {
u32 ien = efm32_spi_read32(ddata, REG_IEN);
ien &= ~REG_IF_TXBL;
efm32_spi_write32(ddata, ien, REG_IEN);
efm32_spi_vdbg(ddata, "disable TXBL\n");
}
spin_unlock(&ddata->lock);
return IRQ_HANDLED;
}
static u32 efm32_spi_get_configured_location(struct efm32_spi_ddata *ddata)
{
u32 reg = efm32_spi_read32(ddata, REG_ROUTE);
return (reg & REG_ROUTE_LOCATION__MASK) >> __ffs(REG_ROUTE_LOCATION__MASK);
}
static void efm32_spi_probe_dt(struct platform_device *pdev,
struct spi_master *master, struct efm32_spi_ddata *ddata)
{
struct device_node *np = pdev->dev.of_node;
u32 location;
int ret;
ret = of_property_read_u32(np, "energymicro,location", &location);
if (ret)
/* fall back to wrongly namespaced property */
ret = of_property_read_u32(np, "efm32,location", &location);
if (ret)
/* fall back to old and (wrongly) generic property "location" */
ret = of_property_read_u32(np, "location", &location);
if (!ret) {
dev_dbg(&pdev->dev, "using location %u\n", location);
} else {
/* default to location configured in hardware */
location = efm32_spi_get_configured_location(ddata);
dev_info(&pdev->dev, "fall back to location %u\n", location);
}
ddata->pdata.location = location;
}
static int efm32_spi_probe(struct platform_device *pdev)
{
struct efm32_spi_ddata *ddata;
struct resource *res;
int ret;
struct spi_master *master;
struct device_node *np = pdev->dev.of_node;
if (!np)
return -EINVAL;
master = spi_alloc_master(&pdev->dev, sizeof(*ddata));
if (!master) {
dev_dbg(&pdev->dev,
"failed to allocate spi master controller\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
master->dev.of_node = pdev->dev.of_node;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
master->use_gpio_descriptors = true;
ddata = spi_master_get_devdata(master);
ddata->bitbang.master = master;
ddata->bitbang.setup_transfer = efm32_spi_setup_transfer;
ddata->bitbang.txrx_bufs = efm32_spi_txrx_bufs;
spin_lock_init(&ddata->lock);
init_completion(&ddata->done);
ddata->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(ddata->clk)) {
ret = PTR_ERR(ddata->clk);
dev_err(&pdev->dev, "failed to get clock: %d\n", ret);
goto err;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENODEV;
dev_err(&pdev->dev, "failed to determine base address\n");
goto err;
}
if (resource_size(res) < 0x60) {
ret = -EINVAL;
dev_err(&pdev->dev, "memory resource too small\n");
goto err;
}
ddata->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ddata->base)) {
ret = PTR_ERR(ddata->base);
goto err;
}
ret = platform_get_irq(pdev, 0);
if (ret <= 0)
goto err;
ddata->rxirq = ret;
ret = platform_get_irq(pdev, 1);
if (ret <= 0)
ret = ddata->rxirq + 1;
ddata->txirq = ret;
ret = clk_prepare_enable(ddata->clk);
if (ret < 0) {
dev_err(&pdev->dev, "failed to enable clock (%d)\n", ret);
goto err;
}
efm32_spi_probe_dt(pdev, master, ddata);
efm32_spi_write32(ddata, 0, REG_IEN);
efm32_spi_write32(ddata, REG_ROUTE_TXPEN | REG_ROUTE_RXPEN |
REG_ROUTE_CLKPEN |
REG_ROUTE_LOCATION(ddata->pdata.location), REG_ROUTE);
ret = request_irq(ddata->rxirq, efm32_spi_rxirq,
0, DRIVER_NAME " rx", ddata);
if (ret) {
dev_err(&pdev->dev, "failed to register rxirq (%d)\n", ret);
goto err_disable_clk;
}
ret = request_irq(ddata->txirq, efm32_spi_txirq,
0, DRIVER_NAME " tx", ddata);
if (ret) {
dev_err(&pdev->dev, "failed to register txirq (%d)\n", ret);
goto err_free_rx_irq;
}
ret = spi_bitbang_start(&ddata->bitbang);
if (ret) {
dev_err(&pdev->dev, "spi_bitbang_start failed (%d)\n", ret);
free_irq(ddata->txirq, ddata);
err_free_rx_irq:
free_irq(ddata->rxirq, ddata);
err_disable_clk:
clk_disable_unprepare(ddata->clk);
err:
spi_master_put(master);
}
return ret;
}
static int efm32_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct efm32_spi_ddata *ddata = spi_master_get_devdata(master);
spi_bitbang_stop(&ddata->bitbang);
efm32_spi_write32(ddata, 0, REG_IEN);
free_irq(ddata->txirq, ddata);
free_irq(ddata->rxirq, ddata);
clk_disable_unprepare(ddata->clk);
spi_master_put(master);
return 0;
}
static const struct of_device_id efm32_spi_dt_ids[] = {
{
.compatible = "energymicro,efm32-spi",
}, {
/* doesn't follow the "vendor,device" scheme, don't use */
.compatible = "efm32,spi",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, efm32_spi_dt_ids);
static struct platform_driver efm32_spi_driver = {
.probe = efm32_spi_probe,
.remove = efm32_spi_remove,
.driver = {
.name = DRIVER_NAME,
.of_match_table = efm32_spi_dt_ids,
},
};
module_platform_driver(efm32_spi_driver);
MODULE_AUTHOR("Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>");
MODULE_DESCRIPTION("EFM32 SPI driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);

View File

@ -695,7 +695,7 @@ static void fsl_spi_cs_control(struct spi_device *spi, bool on)
if (WARN_ON_ONCE(!pinfo->immr_spi_cs)) if (WARN_ON_ONCE(!pinfo->immr_spi_cs))
return; return;
iowrite32be(on ? SPI_BOOT_SEL_BIT : 0, pinfo->immr_spi_cs); iowrite32be(on ? 0 : SPI_BOOT_SEL_BIT, pinfo->immr_spi_cs);
} }
} }

View File

@ -19,6 +19,8 @@
#define HISI_SFC_V3XX_VERSION (0x1f8) #define HISI_SFC_V3XX_VERSION (0x1f8)
#define HISI_SFC_V3XX_GLB_CFG (0x100)
#define HISI_SFC_V3XX_GLB_CFG_CS0_ADDR_MODE BIT(2)
#define HISI_SFC_V3XX_RAW_INT_STAT (0x120) #define HISI_SFC_V3XX_RAW_INT_STAT (0x120)
#define HISI_SFC_V3XX_INT_STAT (0x124) #define HISI_SFC_V3XX_INT_STAT (0x124)
#define HISI_SFC_V3XX_INT_MASK (0x128) #define HISI_SFC_V3XX_INT_MASK (0x128)
@ -75,6 +77,7 @@ struct hisi_sfc_v3xx_host {
void __iomem *regbase; void __iomem *regbase;
int max_cmd_dword; int max_cmd_dword;
struct completion *completion; struct completion *completion;
u8 address_mode;
int irq; int irq;
}; };
@ -168,10 +171,18 @@ static int hisi_sfc_v3xx_adjust_op_size(struct spi_mem *mem,
static bool hisi_sfc_v3xx_supports_op(struct spi_mem *mem, static bool hisi_sfc_v3xx_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
struct spi_device *spi = mem->spi;
struct hisi_sfc_v3xx_host *host;
host = spi_controller_get_devdata(spi->master);
if (op->data.buswidth > 4 || op->dummy.buswidth > 4 || if (op->data.buswidth > 4 || op->dummy.buswidth > 4 ||
op->addr.buswidth > 4 || op->cmd.buswidth > 4) op->addr.buswidth > 4 || op->cmd.buswidth > 4)
return false; return false;
if (op->addr.nbytes != host->address_mode && op->addr.nbytes)
return false;
return spi_mem_default_supports_op(mem, op); return spi_mem_default_supports_op(mem, op);
} }
@ -416,7 +427,7 @@ static int hisi_sfc_v3xx_probe(struct platform_device *pdev)
struct device *dev = &pdev->dev; struct device *dev = &pdev->dev;
struct hisi_sfc_v3xx_host *host; struct hisi_sfc_v3xx_host *host;
struct spi_controller *ctlr; struct spi_controller *ctlr;
u32 version; u32 version, glb_config;
int ret; int ret;
ctlr = spi_alloc_master(&pdev->dev, sizeof(*host)); ctlr = spi_alloc_master(&pdev->dev, sizeof(*host));
@ -463,16 +474,24 @@ static int hisi_sfc_v3xx_probe(struct platform_device *pdev)
ctlr->num_chipselect = 1; ctlr->num_chipselect = 1;
ctlr->mem_ops = &hisi_sfc_v3xx_mem_ops; ctlr->mem_ops = &hisi_sfc_v3xx_mem_ops;
/*
* The address mode of the controller is either 3 or 4,
* which is indicated by the address mode bit in
* the global config register. The register is read only
* for the OS driver.
*/
glb_config = readl(host->regbase + HISI_SFC_V3XX_GLB_CFG);
if (glb_config & HISI_SFC_V3XX_GLB_CFG_CS0_ADDR_MODE)
host->address_mode = 4;
else
host->address_mode = 3;
version = readl(host->regbase + HISI_SFC_V3XX_VERSION); version = readl(host->regbase + HISI_SFC_V3XX_VERSION);
switch (version) { if (version >= 0x351)
case 0x351:
host->max_cmd_dword = 64; host->max_cmd_dword = 64;
break; else
default:
host->max_cmd_dword = 16; host->max_cmd_dword = 16;
break;
}
ret = devm_spi_register_controller(dev, ctlr); ret = devm_spi_register_controller(dev, ctlr);
if (ret) if (ret)

View File

@ -1685,7 +1685,7 @@ static int spi_imx_probe(struct platform_device *pdev)
master->dev.of_node = pdev->dev.of_node; master->dev.of_node = pdev->dev.of_node;
ret = spi_bitbang_start(&spi_imx->bitbang); ret = spi_bitbang_start(&spi_imx->bitbang);
if (ret) { if (ret) {
dev_err(&pdev->dev, "bitbang start failed with %d\n", ret); dev_err_probe(&pdev->dev, ret, "bitbang start failed\n");
goto out_bitbang_start; goto out_bitbang_start;
} }

View File

@ -137,8 +137,8 @@ static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
return -ENOTSUPP; return -ENOTSUPP;
} }
bool spi_mem_default_supports_op(struct spi_mem *mem, static bool spi_mem_check_buswidth(struct spi_mem *mem,
const struct spi_mem_op *op) const struct spi_mem_op *op)
{ {
if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
return false; return false;
@ -156,13 +156,29 @@ bool spi_mem_default_supports_op(struct spi_mem *mem,
op->data.dir == SPI_MEM_DATA_OUT)) op->data.dir == SPI_MEM_DATA_OUT))
return false; return false;
return true;
}
bool spi_mem_dtr_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (op->cmd.nbytes != 2)
return false;
return spi_mem_check_buswidth(mem, op);
}
EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
bool spi_mem_default_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr) if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
return false; return false;
if (op->cmd.nbytes != 1) if (op->cmd.nbytes != 1)
return false; return false;
return true; return spi_mem_check_buswidth(mem, op);
} }
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
@ -354,6 +370,7 @@ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
xfers[xferpos].len = op->dummy.nbytes; xfers[xferpos].len = op->dummy.nbytes;
xfers[xferpos].tx_nbits = op->dummy.buswidth; xfers[xferpos].tx_nbits = op->dummy.buswidth;
xfers[xferpos].dummy_data = 1;
spi_message_add_tail(&xfers[xferpos], &msg); spi_message_add_tail(&xfers[xferpos], &msg);
xferpos++; xferpos++;
totalxferlen += op->dummy.nbytes; totalxferlen += op->dummy.nbytes;

View File

@ -248,7 +248,9 @@ static int mpc52xx_spi_fsmstate_transfer(int irq, struct mpc52xx_spi *ms,
ms->len--; ms->len--;
if (ms->len == 0) { if (ms->len == 0) {
ms->timestamp = get_tbl(); ms->timestamp = get_tbl();
ms->timestamp += ms->transfer->delay_usecs * tb_ticks_per_usec; if (ms->transfer->delay.unit == SPI_DELAY_UNIT_USECS)
ms->timestamp += ms->transfer->delay.value *
tb_ticks_per_usec;
ms->state = mpc52xx_spi_fsmstate_wait; ms->state = mpc52xx_spi_fsmstate_wait;
return FSM_CONTINUE; return FSM_CONTINUE;
} }

View File

@ -287,7 +287,7 @@ static void mtk_spi_set_cs(struct spi_device *spi, bool enable)
static void mtk_spi_prepare_transfer(struct spi_master *master, static void mtk_spi_prepare_transfer(struct spi_master *master,
struct spi_transfer *xfer) struct spi_transfer *xfer)
{ {
u32 spi_clk_hz, div, sck_time, cs_time, reg_val; u32 spi_clk_hz, div, sck_time, reg_val;
struct mtk_spi *mdata = spi_master_get_devdata(master); struct mtk_spi *mdata = spi_master_get_devdata(master);
spi_clk_hz = clk_get_rate(mdata->spi_clk); spi_clk_hz = clk_get_rate(mdata->spi_clk);
@ -297,32 +297,25 @@ static void mtk_spi_prepare_transfer(struct spi_master *master,
div = 1; div = 1;
sck_time = (div + 1) / 2; sck_time = (div + 1) / 2;
cs_time = sck_time * 2;
if (mdata->dev_comp->enhance_timing) { if (mdata->dev_comp->enhance_timing) {
reg_val = (((sck_time - 1) & 0xffff) reg_val = readl(mdata->base + SPI_CFG2_REG);
reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET);
reg_val |= (((sck_time - 1) & 0xffff)
<< SPI_CFG2_SCK_HIGH_OFFSET); << SPI_CFG2_SCK_HIGH_OFFSET);
reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET);
reg_val |= (((sck_time - 1) & 0xffff) reg_val |= (((sck_time - 1) & 0xffff)
<< SPI_CFG2_SCK_LOW_OFFSET); << SPI_CFG2_SCK_LOW_OFFSET);
writel(reg_val, mdata->base + SPI_CFG2_REG); writel(reg_val, mdata->base + SPI_CFG2_REG);
reg_val = (((cs_time - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
reg_val |= (((cs_time - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
writel(reg_val, mdata->base + SPI_CFG0_REG);
} else { } else {
reg_val = (((sck_time - 1) & 0xff) reg_val = readl(mdata->base + SPI_CFG0_REG);
reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET);
reg_val |= (((sck_time - 1) & 0xff)
<< SPI_CFG0_SCK_HIGH_OFFSET); << SPI_CFG0_SCK_HIGH_OFFSET);
reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET);
reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET); reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET);
reg_val |= (((cs_time - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
reg_val |= (((cs_time - 1) & 0xff) << SPI_CFG0_CS_SETUP_OFFSET);
writel(reg_val, mdata->base + SPI_CFG0_REG); writel(reg_val, mdata->base + SPI_CFG0_REG);
} }
reg_val = readl(mdata->base + SPI_CFG1_REG);
reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
reg_val |= (((cs_time - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
writel(reg_val, mdata->base + SPI_CFG1_REG);
} }
static void mtk_spi_setup_packet(struct spi_master *master) static void mtk_spi_setup_packet(struct spi_master *master)
@ -513,6 +506,52 @@ static bool mtk_spi_can_dma(struct spi_master *master,
(unsigned long)xfer->rx_buf % 4 == 0); (unsigned long)xfer->rx_buf % 4 == 0);
} }
static int mtk_spi_set_hw_cs_timing(struct spi_device *spi,
struct spi_delay *setup,
struct spi_delay *hold,
struct spi_delay *inactive)
{
struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
u16 setup_dly, hold_dly, inactive_dly;
u32 reg_val;
if ((setup && setup->unit != SPI_DELAY_UNIT_SCK) ||
(hold && hold->unit != SPI_DELAY_UNIT_SCK) ||
(inactive && inactive->unit != SPI_DELAY_UNIT_SCK)) {
dev_err(&spi->dev,
"Invalid delay unit, should be SPI_DELAY_UNIT_SCK\n");
return -EINVAL;
}
setup_dly = setup ? setup->value : 1;
hold_dly = hold ? hold->value : 1;
inactive_dly = inactive ? inactive->value : 1;
reg_val = readl(mdata->base + SPI_CFG0_REG);
if (mdata->dev_comp->enhance_timing) {
reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
reg_val |= (((hold_dly - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
reg_val |= (((setup_dly - 1) & 0xffff)
<< SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
} else {
reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET);
reg_val |= (((hold_dly - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET);
reg_val |= (((setup_dly - 1) & 0xff)
<< SPI_CFG0_CS_SETUP_OFFSET);
}
writel(reg_val, mdata->base + SPI_CFG0_REG);
reg_val = readl(mdata->base + SPI_CFG1_REG);
reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
reg_val |= (((inactive_dly - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
writel(reg_val, mdata->base + SPI_CFG1_REG);
return 0;
}
static int mtk_spi_setup(struct spi_device *spi) static int mtk_spi_setup(struct spi_device *spi)
{ {
struct mtk_spi *mdata = spi_master_get_devdata(spi->master); struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
@ -644,6 +683,7 @@ static int mtk_spi_probe(struct platform_device *pdev)
master->transfer_one = mtk_spi_transfer_one; master->transfer_one = mtk_spi_transfer_one;
master->can_dma = mtk_spi_can_dma; master->can_dma = mtk_spi_can_dma;
master->setup = mtk_spi_setup; master->setup = mtk_spi_setup;
master->set_cs_timing = mtk_spi_set_hw_cs_timing;
of_id = of_match_node(mtk_spi_of_match, pdev->dev.of_node); of_id = of_match_node(mtk_spi_of_match, pdev->dev.of_node);
if (!of_id) { if (!of_id) {

View File

@ -96,10 +96,16 @@ struct orion_spi {
struct clk *clk; struct clk *clk;
struct clk *axi_clk; struct clk *axi_clk;
const struct orion_spi_dev *devdata; const struct orion_spi_dev *devdata;
struct device *dev;
struct orion_child_options child[ORION_NUM_CHIPSELECTS]; struct orion_child_options child[ORION_NUM_CHIPSELECTS];
}; };
#ifdef CONFIG_PM
static int orion_spi_runtime_suspend(struct device *dev);
static int orion_spi_runtime_resume(struct device *dev);
#endif
static inline void __iomem *spi_reg(struct orion_spi *orion_spi, u32 reg) static inline void __iomem *spi_reg(struct orion_spi *orion_spi, u32 reg)
{ {
return orion_spi->base + reg; return orion_spi->base + reg;
@ -369,8 +375,15 @@ orion_spi_write_read_8bit(struct spi_device *spi,
{ {
void __iomem *tx_reg, *rx_reg, *int_reg; void __iomem *tx_reg, *rx_reg, *int_reg;
struct orion_spi *orion_spi; struct orion_spi *orion_spi;
bool cs_single_byte;
cs_single_byte = spi->mode & SPI_CS_WORD;
orion_spi = spi_master_get_devdata(spi->master); orion_spi = spi_master_get_devdata(spi->master);
if (cs_single_byte)
orion_spi_set_cs(spi, 0);
tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG); tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG);
rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG); rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG);
int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG); int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG);
@ -384,6 +397,11 @@ orion_spi_write_read_8bit(struct spi_device *spi,
writel(0, tx_reg); writel(0, tx_reg);
if (orion_spi_wait_till_ready(orion_spi) < 0) { if (orion_spi_wait_till_ready(orion_spi) < 0) {
if (cs_single_byte) {
orion_spi_set_cs(spi, 1);
/* Satisfy some SLIC devices requirements */
udelay(4);
}
dev_err(&spi->dev, "TXS timed out\n"); dev_err(&spi->dev, "TXS timed out\n");
return -1; return -1;
} }
@ -391,6 +409,12 @@ orion_spi_write_read_8bit(struct spi_device *spi,
if (rx_buf && *rx_buf) if (rx_buf && *rx_buf)
*(*rx_buf)++ = readl(rx_reg); *(*rx_buf)++ = readl(rx_reg);
if (cs_single_byte) {
orion_spi_set_cs(spi, 1);
/* Satisfy some SLIC devices requirements */
udelay(4);
}
return 1; return 1;
} }
@ -401,6 +425,11 @@ orion_spi_write_read_16bit(struct spi_device *spi,
void __iomem *tx_reg, *rx_reg, *int_reg; void __iomem *tx_reg, *rx_reg, *int_reg;
struct orion_spi *orion_spi; struct orion_spi *orion_spi;
if (spi->mode & SPI_CS_WORD) {
dev_err(&spi->dev, "SPI_CS_WORD is only supported for 8 bit words\n");
return -1;
}
orion_spi = spi_master_get_devdata(spi->master); orion_spi = spi_master_get_devdata(spi->master);
tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG); tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG);
rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG); rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG);
@ -440,12 +469,13 @@ orion_spi_write_read(struct spi_device *spi, struct spi_transfer *xfer)
orion_spi = spi_master_get_devdata(spi->master); orion_spi = spi_master_get_devdata(spi->master);
/* /*
* Use SPI direct write mode if base address is available. Otherwise * Use SPI direct write mode if base address is available
* fall back to PIO mode for this transfer. * and SPI_CS_WORD flag is not set.
* Otherwise fall back to PIO mode for this transfer.
*/ */
vaddr = orion_spi->child[cs].direct_access.vaddr; vaddr = orion_spi->child[cs].direct_access.vaddr;
if (vaddr && xfer->tx_buf && word_len == 8) { if (vaddr && xfer->tx_buf && word_len == 8 && (spi->mode & SPI_CS_WORD) == 0) {
unsigned int cnt = count / 4; unsigned int cnt = count / 4;
unsigned int rem = count % 4; unsigned int rem = count % 4;
@ -507,7 +537,21 @@ static int orion_spi_transfer_one(struct spi_master *master,
static int orion_spi_setup(struct spi_device *spi) static int orion_spi_setup(struct spi_device *spi)
{ {
return orion_spi_setup_transfer(spi, NULL); int ret;
#ifdef CONFIG_PM
struct orion_spi *orion_spi = spi_master_get_devdata(spi->master);
struct device *dev = orion_spi->dev;
orion_spi_runtime_resume(dev);
#endif
ret = orion_spi_setup_transfer(spi, NULL);
#ifdef CONFIG_PM
orion_spi_runtime_suspend(dev);
#endif
return ret;
} }
static int orion_spi_reset(struct orion_spi *orion_spi) static int orion_spi_reset(struct orion_spi *orion_spi)
@ -616,7 +660,7 @@ static int orion_spi_probe(struct platform_device *pdev)
} }
/* we support all 4 SPI modes and LSB first option */ /* we support all 4 SPI modes and LSB first option */
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST; master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST | SPI_CS_WORD;
master->set_cs = orion_spi_set_cs; master->set_cs = orion_spi_set_cs;
master->transfer_one = orion_spi_transfer_one; master->transfer_one = orion_spi_transfer_one;
master->num_chipselect = ORION_NUM_CHIPSELECTS; master->num_chipselect = ORION_NUM_CHIPSELECTS;
@ -630,6 +674,7 @@ static int orion_spi_probe(struct platform_device *pdev)
spi = spi_master_get_devdata(master); spi = spi_master_get_devdata(master);
spi->master = master; spi->master = master;
spi->dev = &pdev->dev;
of_id = of_match_device(orion_spi_of_match_table, &pdev->dev); of_id = of_match_device(orion_spi_of_match_table, &pdev->dev);
devdata = (of_id) ? of_id->data : &orion_spi_dev_data; devdata = (of_id) ? of_id->data : &orion_spi_dev_data;

View File

@ -21,7 +21,8 @@ enum {
PORT_BSW1, PORT_BSW1,
PORT_BSW2, PORT_BSW2,
PORT_CE4100, PORT_CE4100,
PORT_LPT, PORT_LPT0,
PORT_LPT1,
}; };
struct pxa_spi_info { struct pxa_spi_info {
@ -57,8 +58,10 @@ static struct dw_dma_slave bsw1_rx_param = { .src_id = 7 };
static struct dw_dma_slave bsw2_tx_param = { .dst_id = 8 }; static struct dw_dma_slave bsw2_tx_param = { .dst_id = 8 };
static struct dw_dma_slave bsw2_rx_param = { .src_id = 9 }; static struct dw_dma_slave bsw2_rx_param = { .src_id = 9 };
static struct dw_dma_slave lpt_tx_param = { .dst_id = 0 }; static struct dw_dma_slave lpt1_tx_param = { .dst_id = 0 };
static struct dw_dma_slave lpt_rx_param = { .src_id = 1 }; static struct dw_dma_slave lpt1_rx_param = { .src_id = 1 };
static struct dw_dma_slave lpt0_tx_param = { .dst_id = 2 };
static struct dw_dma_slave lpt0_rx_param = { .src_id = 3 };
static bool lpss_dma_filter(struct dma_chan *chan, void *param) static bool lpss_dma_filter(struct dma_chan *chan, void *param)
{ {
@ -185,12 +188,19 @@ static struct pxa_spi_info spi_info_configs[] = {
.num_chipselect = 1, .num_chipselect = 1,
.max_clk_rate = 50000000, .max_clk_rate = 50000000,
}, },
[PORT_LPT] = { [PORT_LPT0] = {
.type = LPSS_LPT_SSP, .type = LPSS_LPT_SSP,
.port_id = 0, .port_id = 0,
.setup = lpss_spi_setup, .setup = lpss_spi_setup,
.tx_param = &lpt_tx_param, .tx_param = &lpt0_tx_param,
.rx_param = &lpt_rx_param, .rx_param = &lpt0_rx_param,
},
[PORT_LPT1] = {
.type = LPSS_LPT_SSP,
.port_id = 1,
.setup = lpss_spi_setup,
.tx_param = &lpt1_tx_param,
.rx_param = &lpt1_rx_param,
}, },
}; };
@ -285,8 +295,11 @@ static const struct pci_device_id pxa2xx_spi_pci_devices[] = {
{ PCI_VDEVICE(INTEL, 0x2290), PORT_BSW1 }, { PCI_VDEVICE(INTEL, 0x2290), PORT_BSW1 },
{ PCI_VDEVICE(INTEL, 0x22ac), PORT_BSW2 }, { PCI_VDEVICE(INTEL, 0x22ac), PORT_BSW2 },
{ PCI_VDEVICE(INTEL, 0x2e6a), PORT_CE4100 }, { PCI_VDEVICE(INTEL, 0x2e6a), PORT_CE4100 },
{ PCI_VDEVICE(INTEL, 0x9ce6), PORT_LPT }, { PCI_VDEVICE(INTEL, 0x9c65), PORT_LPT0 },
{ }, { PCI_VDEVICE(INTEL, 0x9c66), PORT_LPT1 },
{ PCI_VDEVICE(INTEL, 0x9ce5), PORT_LPT0 },
{ PCI_VDEVICE(INTEL, 0x9ce6), PORT_LPT1 },
{ }
}; };
MODULE_DEVICE_TABLE(pci, pxa2xx_spi_pci_devices); MODULE_DEVICE_TABLE(pci, pxa2xx_spi_pci_devices);

View File

@ -1492,6 +1492,10 @@ static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP }, { PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP }, { PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP }, { PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
/* ADL-P */
{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
/* APL */ /* APL */
{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },

View File

@ -511,8 +511,7 @@ static int qcom_qspi_probe(struct platform_device *pdev)
ret = platform_get_irq(pdev, 0); ret = platform_get_irq(pdev, 0);
if (ret < 0) if (ret < 0)
return ret; return ret;
ret = devm_request_irq(dev, ret, qcom_qspi_irq, ret = devm_request_irq(dev, ret, qcom_qspi_irq, 0, dev_name(dev), ctrl);
IRQF_TRIGGER_HIGH, dev_name(dev), ctrl);
if (ret) { if (ret) {
dev_err(dev, "Failed to request irq %d\n", ret); dev_err(dev, "Failed to request irq %d\n", ret);
return ret; return ret;

View File

@ -0,0 +1,209 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/mod_devicetable.h>
#include <linux/spi/spi.h>
struct rtspi {
void __iomem *base;
};
/* SPI Flash Configuration Register */
#define RTL_SPI_SFCR 0x00
#define RTL_SPI_SFCR_RBO BIT(28)
#define RTL_SPI_SFCR_WBO BIT(27)
/* SPI Flash Control and Status Register */
#define RTL_SPI_SFCSR 0x08
#define RTL_SPI_SFCSR_CSB0 BIT(31)
#define RTL_SPI_SFCSR_CSB1 BIT(30)
#define RTL_SPI_SFCSR_RDY BIT(27)
#define RTL_SPI_SFCSR_CS BIT(24)
#define RTL_SPI_SFCSR_LEN_MASK ~(0x03 << 28)
#define RTL_SPI_SFCSR_LEN1 (0x00 << 28)
#define RTL_SPI_SFCSR_LEN4 (0x03 << 28)
/* SPI Flash Data Register */
#define RTL_SPI_SFDR 0x0c
#define REG(x) (rtspi->base + x)
static void rt_set_cs(struct spi_device *spi, bool active)
{
struct rtspi *rtspi = spi_controller_get_devdata(spi->controller);
u32 value;
/* CS0 bit is active low */
value = readl(REG(RTL_SPI_SFCSR));
if (active)
value |= RTL_SPI_SFCSR_CSB0;
else
value &= ~RTL_SPI_SFCSR_CSB0;
writel(value, REG(RTL_SPI_SFCSR));
}
static void set_size(struct rtspi *rtspi, int size)
{
u32 value;
value = readl(REG(RTL_SPI_SFCSR));
value &= RTL_SPI_SFCSR_LEN_MASK;
if (size == 4)
value |= RTL_SPI_SFCSR_LEN4;
else if (size == 1)
value |= RTL_SPI_SFCSR_LEN1;
writel(value, REG(RTL_SPI_SFCSR));
}
static inline void wait_ready(struct rtspi *rtspi)
{
while (!(readl(REG(RTL_SPI_SFCSR)) & RTL_SPI_SFCSR_RDY))
cpu_relax();
}
static void send4(struct rtspi *rtspi, const u32 *buf)
{
wait_ready(rtspi);
set_size(rtspi, 4);
writel(*buf, REG(RTL_SPI_SFDR));
}
static void send1(struct rtspi *rtspi, const u8 *buf)
{
wait_ready(rtspi);
set_size(rtspi, 1);
writel(buf[0] << 24, REG(RTL_SPI_SFDR));
}
static void rcv4(struct rtspi *rtspi, u32 *buf)
{
wait_ready(rtspi);
set_size(rtspi, 4);
*buf = readl(REG(RTL_SPI_SFDR));
}
static void rcv1(struct rtspi *rtspi, u8 *buf)
{
wait_ready(rtspi);
set_size(rtspi, 1);
*buf = readl(REG(RTL_SPI_SFDR)) >> 24;
}
static int transfer_one(struct spi_controller *ctrl, struct spi_device *spi,
struct spi_transfer *xfer)
{
struct rtspi *rtspi = spi_controller_get_devdata(ctrl);
void *rx_buf;
const void *tx_buf;
int cnt;
tx_buf = xfer->tx_buf;
rx_buf = xfer->rx_buf;
cnt = xfer->len;
if (tx_buf) {
while (cnt >= 4) {
send4(rtspi, tx_buf);
tx_buf += 4;
cnt -= 4;
}
while (cnt) {
send1(rtspi, tx_buf);
tx_buf++;
cnt--;
}
} else if (rx_buf) {
while (cnt >= 4) {
rcv4(rtspi, rx_buf);
rx_buf += 4;
cnt -= 4;
}
while (cnt) {
rcv1(rtspi, rx_buf);
rx_buf++;
cnt--;
}
}
spi_finalize_current_transfer(ctrl);
return 0;
}
static void init_hw(struct rtspi *rtspi)
{
u32 value;
/* Turn on big-endian byte ordering */
value = readl(REG(RTL_SPI_SFCR));
value |= RTL_SPI_SFCR_RBO | RTL_SPI_SFCR_WBO;
writel(value, REG(RTL_SPI_SFCR));
value = readl(REG(RTL_SPI_SFCSR));
/* Permanently disable CS1, since it's never used */
value |= RTL_SPI_SFCSR_CSB1;
/* Select CS0 for use */
value &= RTL_SPI_SFCSR_CS;
writel(value, REG(RTL_SPI_SFCSR));
}
static int realtek_rtl_spi_probe(struct platform_device *pdev)
{
struct spi_controller *ctrl;
struct rtspi *rtspi;
int err;
ctrl = devm_spi_alloc_master(&pdev->dev, sizeof(*rtspi));
if (!ctrl) {
dev_err(&pdev->dev, "Error allocating SPI controller\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, ctrl);
rtspi = spi_controller_get_devdata(ctrl);
rtspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
if (IS_ERR(rtspi->base)) {
dev_err(&pdev->dev, "Could not map SPI register address");
return -ENOMEM;
}
init_hw(rtspi);
ctrl->dev.of_node = pdev->dev.of_node;
ctrl->flags = SPI_CONTROLLER_HALF_DUPLEX;
ctrl->set_cs = rt_set_cs;
ctrl->transfer_one = transfer_one;
err = devm_spi_register_controller(&pdev->dev, ctrl);
if (err) {
dev_err(&pdev->dev, "Could not register SPI controller\n");
return -ENODEV;
}
return 0;
}
static const struct of_device_id realtek_rtl_spi_of_ids[] = {
{ .compatible = "realtek,rtl8380-spi" },
{ .compatible = "realtek,rtl8382-spi" },
{ .compatible = "realtek,rtl8391-spi" },
{ .compatible = "realtek,rtl8392-spi" },
{ .compatible = "realtek,rtl8393-spi" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, realtek_rtl_spi_of_ids);
static struct platform_driver realtek_rtl_spi_driver = {
.probe = realtek_rtl_spi_probe,
.driver = {
.name = "realtek-rtl-spi",
.of_match_table = realtek_rtl_spi_of_ids,
},
};
module_platform_driver(realtek_rtl_spi_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Bert Vermeulen <bert@biot.com>");
MODULE_DESCRIPTION("Realtek RTL SPI driver");

View File

@ -566,7 +566,7 @@ static int rockchip_spi_slave_abort(struct spi_controller *ctlr)
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
rs->slave_abort = true; rs->slave_abort = true;
complete(&ctlr->xfer_completion); spi_finalize_current_transfer(ctlr);
return 0; return 0;
} }

View File

@ -176,15 +176,14 @@ static int rpcif_spi_remove(struct platform_device *pdev)
return 0; return 0;
} }
#ifdef CONFIG_PM_SLEEP static int __maybe_unused rpcif_spi_suspend(struct device *dev)
static int rpcif_spi_suspend(struct device *dev)
{ {
struct spi_controller *ctlr = dev_get_drvdata(dev); struct spi_controller *ctlr = dev_get_drvdata(dev);
return spi_controller_suspend(ctlr); return spi_controller_suspend(ctlr);
} }
static int rpcif_spi_resume(struct device *dev) static int __maybe_unused rpcif_spi_resume(struct device *dev)
{ {
struct spi_controller *ctlr = dev_get_drvdata(dev); struct spi_controller *ctlr = dev_get_drvdata(dev);
@ -192,17 +191,15 @@ static int rpcif_spi_resume(struct device *dev)
} }
static SIMPLE_DEV_PM_OPS(rpcif_spi_pm_ops, rpcif_spi_suspend, rpcif_spi_resume); static SIMPLE_DEV_PM_OPS(rpcif_spi_pm_ops, rpcif_spi_suspend, rpcif_spi_resume);
#define DEV_PM_OPS (&rpcif_spi_pm_ops)
#else
#define DEV_PM_OPS NULL
#endif
static struct platform_driver rpcif_spi_driver = { static struct platform_driver rpcif_spi_driver = {
.probe = rpcif_spi_probe, .probe = rpcif_spi_probe,
.remove = rpcif_spi_remove, .remove = rpcif_spi_remove,
.driver = { .driver = {
.name = "rpc-if-spi", .name = "rpc-if-spi",
.pm = DEV_PM_OPS, #ifdef CONFIG_PM_SLEEP
.pm = &rpcif_spi_pm_ops,
#endif
}, },
}; };
module_platform_driver(rpcif_spi_driver); module_platform_driver(rpcif_spi_driver);

View File

@ -259,11 +259,13 @@ static const u32 sh_msiof_spi_div_array[] = {
}; };
static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p, static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
unsigned long parent_rate, u32 spi_hz) struct spi_transfer *t)
{ {
unsigned long parent_rate = clk_get_rate(p->clk);
unsigned int div_pow = p->min_div_pow;
u32 spi_hz = t->speed_hz;
unsigned long div; unsigned long div;
u32 brps, scr; u32 brps, scr;
unsigned int div_pow = p->min_div_pow;
if (!spi_hz || !parent_rate) { if (!spi_hz || !parent_rate) {
WARN(1, "Invalid clock rate parameters %lu and %u\n", WARN(1, "Invalid clock rate parameters %lu and %u\n",
@ -292,6 +294,8 @@ static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
brps = 32; brps = 32;
} }
t->effective_speed_hz = parent_rate / (brps << div_pow);
scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps); scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
sh_msiof_write(p, SITSCR, scr); sh_msiof_write(p, SITSCR, scr);
if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX)) if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
@ -923,7 +927,7 @@ static int sh_msiof_transfer_one(struct spi_controller *ctlr,
/* setup clocks (clock already enabled in chipselect()) */ /* setup clocks (clock already enabled in chipselect()) */
if (!spi_controller_is_slave(p->ctlr)) if (!spi_controller_is_slave(p->ctlr))
sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz); sh_msiof_spi_set_clk_regs(p, t);
while (ctlr->dma_tx && len > 15) { while (ctlr->dma_tx && len > 15) {
/* /*
@ -1258,6 +1262,7 @@ static int sh_msiof_spi_probe(struct platform_device *pdev)
const struct sh_msiof_chipdata *chipdata; const struct sh_msiof_chipdata *chipdata;
struct sh_msiof_spi_info *info; struct sh_msiof_spi_info *info;
struct sh_msiof_spi_priv *p; struct sh_msiof_spi_priv *p;
unsigned long clksrc;
int i; int i;
int ret; int ret;
@ -1333,6 +1338,9 @@ static int sh_msiof_spi_probe(struct platform_device *pdev)
/* init controller code */ /* init controller code */
ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE; ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
clksrc = clk_get_rate(p->clk);
ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
ctlr->flags = chipdata->ctlr_flags; ctlr->flags = chipdata->ctlr_flags;
ctlr->bus_num = pdev->id; ctlr->bus_num = pdev->id;
ctlr->num_chipselect = p->info->num_chipselect; ctlr->num_chipselect = p->info->num_chipselect;

File diff suppressed because it is too large Load Diff

View File

@ -5,6 +5,7 @@
// Copyright (C) 2017, STMicroelectronics - All Rights Reserved // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics. // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
#include <linux/bitfield.h>
#include <linux/debugfs.h> #include <linux/debugfs.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/delay.h> #include <linux/delay.h>
@ -94,27 +95,22 @@
#define STM32H7_SPI_CR1_SSI BIT(12) #define STM32H7_SPI_CR1_SSI BIT(12)
/* STM32H7_SPI_CR2 bit fields */ /* STM32H7_SPI_CR2 bit fields */
#define STM32H7_SPI_CR2_TSIZE_SHIFT 0
#define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0) #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
#define STM32H7_SPI_TSIZE_MAX GENMASK(15, 0)
/* STM32H7_SPI_CFG1 bit fields */ /* STM32H7_SPI_CFG1 bit fields */
#define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
#define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0) #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
#define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
#define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5) #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
#define STM32H7_SPI_CFG1_RXDMAEN BIT(14) #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
#define STM32H7_SPI_CFG1_TXDMAEN BIT(15) #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
#define STM32H7_SPI_CFG1_MBR_SHIFT 28
#define STM32H7_SPI_CFG1_MBR GENMASK(30, 28) #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
#define STM32H7_SPI_CFG1_MBR_SHIFT 28
#define STM32H7_SPI_CFG1_MBR_MIN 0 #define STM32H7_SPI_CFG1_MBR_MIN 0
#define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28) #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
/* STM32H7_SPI_CFG2 bit fields */ /* STM32H7_SPI_CFG2 bit fields */
#define STM32H7_SPI_CFG2_MIDI_SHIFT 4
#define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4) #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
#define STM32H7_SPI_CFG2_COMM_SHIFT 17
#define STM32H7_SPI_CFG2_COMM GENMASK(18, 17) #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
#define STM32H7_SPI_CFG2_SP_SHIFT 19
#define STM32H7_SPI_CFG2_SP GENMASK(21, 19) #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
#define STM32H7_SPI_CFG2_MASTER BIT(22) #define STM32H7_SPI_CFG2_MASTER BIT(22)
#define STM32H7_SPI_CFG2_LSBFRST BIT(23) #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
@ -140,7 +136,6 @@
#define STM32H7_SPI_SR_OVR BIT(6) #define STM32H7_SPI_SR_OVR BIT(6)
#define STM32H7_SPI_SR_MODF BIT(9) #define STM32H7_SPI_SR_MODF BIT(9)
#define STM32H7_SPI_SR_SUSP BIT(11) #define STM32H7_SPI_SR_SUSP BIT(11)
#define STM32H7_SPI_SR_RXPLVL_SHIFT 13
#define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13) #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
#define STM32H7_SPI_SR_RXWNE BIT(15) #define STM32H7_SPI_SR_RXWNE BIT(15)
@ -167,8 +162,6 @@
#define SPI_3WIRE_TX 3 #define SPI_3WIRE_TX 3
#define SPI_3WIRE_RX 4 #define SPI_3WIRE_RX 4
#define SPI_1HZ_NS 1000000000
/* /*
* use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
* without fifo buffers. * without fifo buffers.
@ -268,7 +261,6 @@ struct stm32_spi_cfg {
* @base: virtual memory area * @base: virtual memory area
* @clk: hw kernel clock feeding the SPI clock generator * @clk: hw kernel clock feeding the SPI clock generator
* @clk_rate: rate of the hw kernel clock feeding the SPI clock generator * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
* @rst: SPI controller reset line
* @lock: prevent I/O concurrent access * @lock: prevent I/O concurrent access
* @irq: SPI controller interrupt line * @irq: SPI controller interrupt line
* @fifo_size: size of the embedded fifo in bytes * @fifo_size: size of the embedded fifo in bytes
@ -294,7 +286,6 @@ struct stm32_spi {
void __iomem *base; void __iomem *base;
struct clk *clk; struct clk *clk;
u32 clk_rate; u32 clk_rate;
struct reset_control *rst;
spinlock_t lock; /* prevent I/O concurrent access */ spinlock_t lock; /* prevent I/O concurrent access */
int irq; int irq;
unsigned int fifo_size; unsigned int fifo_size;
@ -417,9 +408,7 @@ static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE); stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1); cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >> max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
STM32H7_SPI_CFG1_DSIZE_SHIFT;
max_bpw += 1;
spin_unlock_irqrestore(&spi->lock, flags); spin_unlock_irqrestore(&spi->lock, flags);
@ -473,34 +462,14 @@ static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
*/ */
static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len) static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
{ {
u32 fthlv, half_fifo, packet; u32 packet, bpw;
/* data packet should not exceed 1/2 of fifo space */ /* data packet should not exceed 1/2 of fifo space */
half_fifo = (spi->fifo_size / 2); packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
/* data_packet should not exceed transfer length */
if (half_fifo > xfer_len)
packet = xfer_len;
else
packet = half_fifo;
if (spi->cur_bpw <= 8)
fthlv = packet;
else if (spi->cur_bpw <= 16)
fthlv = packet / 2;
else
fthlv = packet / 4;
/* align packet size with data registers access */ /* align packet size with data registers access */
if (spi->cur_bpw > 8) bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
fthlv += (fthlv % 2) ? 1 : 0; return DIV_ROUND_UP(packet, bpw);
else
fthlv += (fthlv % 4) ? (4 - (fthlv % 4)) : 0;
if (!fthlv)
fthlv = 1;
return fthlv;
} }
/** /**
@ -607,8 +576,7 @@ static void stm32f4_spi_read_rx(struct stm32_spi *spi)
static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush) static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
{ {
u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR); u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
STM32H7_SPI_SR_RXPLVL_SHIFT;
while ((spi->rx_len > 0) && while ((spi->rx_len > 0) &&
((sr & STM32H7_SPI_SR_RXP) || ((sr & STM32H7_SPI_SR_RXP) ||
@ -635,8 +603,7 @@ static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
} }
sr = readl_relaxed(spi->base + STM32H7_SPI_SR); sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >> rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
STM32H7_SPI_SR_RXPLVL_SHIFT;
} }
dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__, dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
@ -928,8 +895,8 @@ static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
mask |= STM32H7_SPI_SR_RXP; mask |= STM32H7_SPI_SR_RXP;
if (!(sr & mask)) { if (!(sr & mask)) {
dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n", dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
sr, ier); sr, ier);
spin_unlock_irqrestore(&spi->lock, flags); spin_unlock_irqrestore(&spi->lock, flags);
return IRQ_NONE; return IRQ_NONE;
} }
@ -956,15 +923,8 @@ static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
} }
if (sr & STM32H7_SPI_SR_OVR) { if (sr & STM32H7_SPI_SR_OVR) {
dev_warn(spi->dev, "Overrun: received value discarded\n"); dev_err(spi->dev, "Overrun: RX data lost\n");
if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0))) end = true;
stm32h7_spi_read_rxfifo(spi, false);
/*
* If overrun is detected while using DMA, it means that
* something went wrong, so stop the current transfer
*/
if (spi->cur_usedma)
end = true;
} }
if (sr & STM32H7_SPI_SR_EOT) { if (sr & STM32H7_SPI_SR_EOT) {
@ -1028,10 +988,24 @@ static int stm32_spi_prepare_msg(struct spi_master *master,
clrb |= spi->cfg->regs->lsb_first.mask; clrb |= spi->cfg->regs->lsb_first.mask;
dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n", dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
spi_dev->mode & SPI_CPOL, !!(spi_dev->mode & SPI_CPOL),
spi_dev->mode & SPI_CPHA, !!(spi_dev->mode & SPI_CPHA),
spi_dev->mode & SPI_LSB_FIRST, !!(spi_dev->mode & SPI_LSB_FIRST),
spi_dev->mode & SPI_CS_HIGH); !!(spi_dev->mode & SPI_CS_HIGH));
/* On STM32H7, messages should not exceed a maximum size setted
* afterward via the set_number_of_data function. In order to
* ensure that, split large messages into several messages
*/
if (spi->cfg->set_number_of_data) {
int ret;
ret = spi_split_transfers_maxsize(master, msg,
STM32H7_SPI_TSIZE_MAX,
GFP_KERNEL | GFP_DMA);
if (ret)
return ret;
}
spin_lock_irqsave(&spi->lock, flags); spin_lock_irqsave(&spi->lock, flags);
@ -1405,15 +1379,13 @@ static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
bpw = spi->cur_bpw - 1; bpw = spi->cur_bpw - 1;
cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE; cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) & cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
STM32H7_SPI_CFG1_DSIZE;
spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen); spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
fthlv = spi->cur_fthlv - 1; fthlv = spi->cur_fthlv - 1;
cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV; cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) & cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
STM32H7_SPI_CFG1_FTHLV;
writel_relaxed( writel_relaxed(
(readl_relaxed(spi->base + STM32H7_SPI_CFG1) & (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
@ -1431,8 +1403,7 @@ static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
u32 clrb = 0, setb = 0; u32 clrb = 0, setb = 0;
clrb |= spi->cfg->regs->br.mask; clrb |= spi->cfg->regs->br.mask;
setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) & setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
spi->cfg->regs->br.mask;
writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) & writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
~clrb) | setb, ~clrb) | setb,
@ -1523,8 +1494,7 @@ static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
} }
cfg2_clrb |= STM32H7_SPI_CFG2_COMM; cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) & cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
STM32H7_SPI_CFG2_COMM;
writel_relaxed( writel_relaxed(
(readl_relaxed(spi->base + STM32H7_SPI_CFG2) & (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
@ -1546,15 +1516,16 @@ static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
cfg2_clrb |= STM32H7_SPI_CFG2_MIDI; cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
if ((len > 1) && (spi->cur_midi > 0)) { if ((len > 1) && (spi->cur_midi > 0)) {
u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed); u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns), u32 midi = min_t(u32,
(u32)STM32H7_SPI_CFG2_MIDI >> DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
STM32H7_SPI_CFG2_MIDI_SHIFT); FIELD_GET(STM32H7_SPI_CFG2_MIDI,
STM32H7_SPI_CFG2_MIDI));
dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n", dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
sck_period_ns, midi, midi * sck_period_ns); sck_period_ns, midi, midi * sck_period_ns);
cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) & cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
STM32H7_SPI_CFG2_MIDI;
} }
writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) & writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
@ -1569,14 +1540,8 @@ static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
*/ */
static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words) static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
{ {
u32 cr2_clrb = 0, cr2_setb = 0; if (nb_words <= STM32H7_SPI_TSIZE_MAX) {
writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
STM32H7_SPI_CR2_TSIZE_SHIFT)) {
cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
~cr2_clrb) | cr2_setb,
spi->base + STM32H7_SPI_CR2); spi->base + STM32H7_SPI_CR2);
} else { } else {
return -EMSGSIZE; return -EMSGSIZE;
@ -1677,6 +1642,10 @@ static int stm32_spi_transfer_one(struct spi_master *master,
struct stm32_spi *spi = spi_master_get_devdata(master); struct stm32_spi *spi = spi_master_get_devdata(master);
int ret; int ret;
/* Don't do anything on 0 bytes transfers */
if (transfer->len == 0)
return 0;
spi->tx_buf = transfer->tx_buf; spi->tx_buf = transfer->tx_buf;
spi->rx_buf = transfer->rx_buf; spi->rx_buf = transfer->rx_buf;
spi->tx_len = spi->tx_buf ? transfer->len : 0; spi->tx_len = spi->tx_buf ? transfer->len : 0;
@ -1831,6 +1800,7 @@ static int stm32_spi_probe(struct platform_device *pdev)
struct spi_master *master; struct spi_master *master;
struct stm32_spi *spi; struct stm32_spi *spi;
struct resource *res; struct resource *res;
struct reset_control *rst;
int ret; int ret;
master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi)); master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
@ -1892,11 +1862,17 @@ static int stm32_spi_probe(struct platform_device *pdev)
goto err_clk_disable; goto err_clk_disable;
} }
spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
if (!IS_ERR(spi->rst)) { if (rst) {
reset_control_assert(spi->rst); if (IS_ERR(rst)) {
ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
"failed to get reset\n");
goto err_clk_disable;
}
reset_control_assert(rst);
udelay(2); udelay(2);
reset_control_deassert(spi->rst); reset_control_deassert(rst);
} }
if (spi->cfg->has_fifo) if (spi->cfg->has_fifo)
@ -1960,12 +1936,6 @@ static int stm32_spi_probe(struct platform_device *pdev)
goto err_pm_disable; goto err_pm_disable;
} }
if (!master->cs_gpiods) {
dev_err(&pdev->dev, "no CS gpios available\n");
ret = -EINVAL;
goto err_pm_disable;
}
dev_info(&pdev->dev, "driver initialized\n"); dev_info(&pdev->dev, "driver initialized\n");
return 0; return 0;

View File

@ -490,6 +490,10 @@ static void synquacer_spi_set_cs(struct spi_device *spi, bool enable)
val &= ~(SYNQUACER_HSSPI_DMPSEL_CS_MASK << val &= ~(SYNQUACER_HSSPI_DMPSEL_CS_MASK <<
SYNQUACER_HSSPI_DMPSEL_CS_SHIFT); SYNQUACER_HSSPI_DMPSEL_CS_SHIFT);
val |= spi->chip_select << SYNQUACER_HSSPI_DMPSEL_CS_SHIFT; val |= spi->chip_select << SYNQUACER_HSSPI_DMPSEL_CS_SHIFT;
if (!enable)
val |= SYNQUACER_HSSPI_DMSTOP_STOP;
writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART); writel(val, sspi->regs + SYNQUACER_HSSPI_REG_DMSTART);
} }

File diff suppressed because it is too large Load Diff

View File

@ -1,477 +0,0 @@
/*
* TXx9 SPI controller driver.
*
* Based on linux/arch/mips/tx4938/toshiba_rbtx4938/spi_txx9.c
* Copyright (C) 2000-2001 Toshiba Corporation
*
* 2003-2005 (c) MontaVista Software, Inc. This file is licensed under the
* terms of the GNU General Public License version 2. This program is
* licensed "as is" without any warranty of any kind, whether express
* or implied.
*
* Support for TX4938 in 2.6 - Manish Lachwani (mlachwani@mvista.com)
*
* Convert to generic SPI framework - Atsushi Nemoto (anemo@mba.ocn.ne.jp)
*/
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/spi/spi.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/gpio/machine.h>
#include <linux/gpio/consumer.h>
#define SPI_FIFO_SIZE 4
#define SPI_MAX_DIVIDER 0xff /* Max. value for SPCR1.SER */
#define SPI_MIN_DIVIDER 1 /* Min. value for SPCR1.SER */
#define TXx9_SPMCR 0x00
#define TXx9_SPCR0 0x04
#define TXx9_SPCR1 0x08
#define TXx9_SPFS 0x0c
#define TXx9_SPSR 0x14
#define TXx9_SPDR 0x18
/* SPMCR : SPI Master Control */
#define TXx9_SPMCR_OPMODE 0xc0
#define TXx9_SPMCR_CONFIG 0x40
#define TXx9_SPMCR_ACTIVE 0x80
#define TXx9_SPMCR_SPSTP 0x02
#define TXx9_SPMCR_BCLR 0x01
/* SPCR0 : SPI Control 0 */
#define TXx9_SPCR0_TXIFL_MASK 0xc000
#define TXx9_SPCR0_RXIFL_MASK 0x3000
#define TXx9_SPCR0_SIDIE 0x0800
#define TXx9_SPCR0_SOEIE 0x0400
#define TXx9_SPCR0_RBSIE 0x0200
#define TXx9_SPCR0_TBSIE 0x0100
#define TXx9_SPCR0_IFSPSE 0x0010
#define TXx9_SPCR0_SBOS 0x0004
#define TXx9_SPCR0_SPHA 0x0002
#define TXx9_SPCR0_SPOL 0x0001
/* SPSR : SPI Status */
#define TXx9_SPSR_TBSI 0x8000
#define TXx9_SPSR_RBSI 0x4000
#define TXx9_SPSR_TBS_MASK 0x3800
#define TXx9_SPSR_RBS_MASK 0x0700
#define TXx9_SPSR_SPOE 0x0080
#define TXx9_SPSR_IFSD 0x0008
#define TXx9_SPSR_SIDLE 0x0004
#define TXx9_SPSR_STRDY 0x0002
#define TXx9_SPSR_SRRDY 0x0001
struct txx9spi {
struct work_struct work;
spinlock_t lock; /* protect 'queue' */
struct list_head queue;
wait_queue_head_t waitq;
void __iomem *membase;
int baseclk;
struct clk *clk;
struct gpio_desc *last_chipselect;
int last_chipselect_val;
};
static u32 txx9spi_rd(struct txx9spi *c, int reg)
{
return __raw_readl(c->membase + reg);
}
static void txx9spi_wr(struct txx9spi *c, u32 val, int reg)
{
__raw_writel(val, c->membase + reg);
}
static void txx9spi_cs_func(struct spi_device *spi, struct txx9spi *c,
int on, unsigned int cs_delay)
{
/*
* The GPIO descriptor will track polarity inversion inside
* gpiolib.
*/
if (on) {
/* deselect the chip with cs_change hint in last transfer */
if (c->last_chipselect)
gpiod_set_value(c->last_chipselect,
!c->last_chipselect_val);
c->last_chipselect = spi->cs_gpiod;
c->last_chipselect_val = on;
} else {
c->last_chipselect = NULL;
ndelay(cs_delay); /* CS Hold Time */
}
gpiod_set_value(spi->cs_gpiod, on);
ndelay(cs_delay); /* CS Setup Time / CS Recovery Time */
}
static int txx9spi_setup(struct spi_device *spi)
{
struct txx9spi *c = spi_master_get_devdata(spi->master);
if (!spi->max_speed_hz)
return -EINVAL;
/* deselect chip */
spin_lock(&c->lock);
txx9spi_cs_func(spi, c, 0, (NSEC_PER_SEC / 2) / spi->max_speed_hz);
spin_unlock(&c->lock);
return 0;
}
static irqreturn_t txx9spi_interrupt(int irq, void *dev_id)
{
struct txx9spi *c = dev_id;
/* disable rx intr */
txx9spi_wr(c, txx9spi_rd(c, TXx9_SPCR0) & ~TXx9_SPCR0_RBSIE,
TXx9_SPCR0);
wake_up(&c->waitq);
return IRQ_HANDLED;
}
static void txx9spi_work_one(struct txx9spi *c, struct spi_message *m)
{
struct spi_device *spi = m->spi;
struct spi_transfer *t;
unsigned int cs_delay;
unsigned int cs_change = 1;
int status = 0;
u32 mcr;
u32 prev_speed_hz = 0;
u8 prev_bits_per_word = 0;
/* CS setup/hold/recovery time in nsec */
cs_delay = 100 + (NSEC_PER_SEC / 2) / spi->max_speed_hz;
mcr = txx9spi_rd(c, TXx9_SPMCR);
if (unlikely((mcr & TXx9_SPMCR_OPMODE) == TXx9_SPMCR_ACTIVE)) {
dev_err(&spi->dev, "Bad mode.\n");
status = -EIO;
goto exit;
}
mcr &= ~(TXx9_SPMCR_OPMODE | TXx9_SPMCR_SPSTP | TXx9_SPMCR_BCLR);
/* enter config mode */
txx9spi_wr(c, mcr | TXx9_SPMCR_CONFIG | TXx9_SPMCR_BCLR, TXx9_SPMCR);
txx9spi_wr(c, TXx9_SPCR0_SBOS
| ((spi->mode & SPI_CPOL) ? TXx9_SPCR0_SPOL : 0)
| ((spi->mode & SPI_CPHA) ? TXx9_SPCR0_SPHA : 0)
| 0x08,
TXx9_SPCR0);
list_for_each_entry(t, &m->transfers, transfer_list) {
const void *txbuf = t->tx_buf;
void *rxbuf = t->rx_buf;
u32 data;
unsigned int len = t->len;
unsigned int wsize;
u32 speed_hz = t->speed_hz;
u8 bits_per_word = t->bits_per_word;
wsize = bits_per_word >> 3; /* in bytes */
if (prev_speed_hz != speed_hz
|| prev_bits_per_word != bits_per_word) {
int n = DIV_ROUND_UP(c->baseclk, speed_hz) - 1;
n = clamp(n, SPI_MIN_DIVIDER, SPI_MAX_DIVIDER);
/* enter config mode */
txx9spi_wr(c, mcr | TXx9_SPMCR_CONFIG | TXx9_SPMCR_BCLR,
TXx9_SPMCR);
txx9spi_wr(c, (n << 8) | bits_per_word, TXx9_SPCR1);
/* enter active mode */
txx9spi_wr(c, mcr | TXx9_SPMCR_ACTIVE, TXx9_SPMCR);
prev_speed_hz = speed_hz;
prev_bits_per_word = bits_per_word;
}
if (cs_change)
txx9spi_cs_func(spi, c, 1, cs_delay);
cs_change = t->cs_change;
while (len) {
unsigned int count = SPI_FIFO_SIZE;
int i;
u32 cr0;
if (len < count * wsize)
count = len / wsize;
/* now tx must be idle... */
while (!(txx9spi_rd(c, TXx9_SPSR) & TXx9_SPSR_SIDLE))
cpu_relax();
cr0 = txx9spi_rd(c, TXx9_SPCR0);
cr0 &= ~TXx9_SPCR0_RXIFL_MASK;
cr0 |= (count - 1) << 12;
/* enable rx intr */
cr0 |= TXx9_SPCR0_RBSIE;
txx9spi_wr(c, cr0, TXx9_SPCR0);
/* send */
for (i = 0; i < count; i++) {
if (txbuf) {
data = (wsize == 1)
? *(const u8 *)txbuf
: *(const u16 *)txbuf;
txx9spi_wr(c, data, TXx9_SPDR);
txbuf += wsize;
} else
txx9spi_wr(c, 0, TXx9_SPDR);
}
/* wait all rx data */
wait_event(c->waitq,
txx9spi_rd(c, TXx9_SPSR) & TXx9_SPSR_RBSI);
/* receive */
for (i = 0; i < count; i++) {
data = txx9spi_rd(c, TXx9_SPDR);
if (rxbuf) {
if (wsize == 1)
*(u8 *)rxbuf = data;
else
*(u16 *)rxbuf = data;
rxbuf += wsize;
}
}
len -= count * wsize;
}
m->actual_length += t->len;
spi_transfer_delay_exec(t);
if (!cs_change)
continue;
if (t->transfer_list.next == &m->transfers)
break;
/* sometimes a short mid-message deselect of the chip
* may be needed to terminate a mode or command
*/
txx9spi_cs_func(spi, c, 0, cs_delay);
}
exit:
m->status = status;
if (m->complete)
m->complete(m->context);
/* normally deactivate chipselect ... unless no error and
* cs_change has hinted that the next message will probably
* be for this chip too.
*/
if (!(status == 0 && cs_change))
txx9spi_cs_func(spi, c, 0, cs_delay);
/* enter config mode */
txx9spi_wr(c, mcr | TXx9_SPMCR_CONFIG | TXx9_SPMCR_BCLR, TXx9_SPMCR);
}
static void txx9spi_work(struct work_struct *work)
{
struct txx9spi *c = container_of(work, struct txx9spi, work);
unsigned long flags;
spin_lock_irqsave(&c->lock, flags);
while (!list_empty(&c->queue)) {
struct spi_message *m;
m = container_of(c->queue.next, struct spi_message, queue);
list_del_init(&m->queue);
spin_unlock_irqrestore(&c->lock, flags);
txx9spi_work_one(c, m);
spin_lock_irqsave(&c->lock, flags);
}
spin_unlock_irqrestore(&c->lock, flags);
}
static int txx9spi_transfer(struct spi_device *spi, struct spi_message *m)
{
struct spi_master *master = spi->master;
struct txx9spi *c = spi_master_get_devdata(master);
struct spi_transfer *t;
unsigned long flags;
m->actual_length = 0;
/* check each transfer's parameters */
list_for_each_entry(t, &m->transfers, transfer_list) {
if (!t->tx_buf && !t->rx_buf && t->len)
return -EINVAL;
}
spin_lock_irqsave(&c->lock, flags);
list_add_tail(&m->queue, &c->queue);
schedule_work(&c->work);
spin_unlock_irqrestore(&c->lock, flags);
return 0;
}
/*
* Chip select uses GPIO only, further the driver is using the chip select
* numer (from the device tree "reg" property, and this can only come from
* device tree since this i MIPS and there is no way to pass platform data) as
* the GPIO number. As the platform has only one GPIO controller (the txx9 GPIO
* chip) it is thus using the chip select number as an offset into that chip.
* This chip has a maximum of 16 GPIOs 0..15 and this is what all platforms
* register.
*
* We modernized this behaviour by explicitly converting that offset to an
* offset on the GPIO chip using a GPIO descriptor machine table of the same
* size as the txx9 GPIO chip with a 1-to-1 mapping of chip select to GPIO
* offset.
*
* This is admittedly a hack, but it is countering the hack of using "reg" to
* contain a GPIO offset when it should be using "cs-gpios" as the SPI bindings
* state.
*/
static struct gpiod_lookup_table txx9spi_cs_gpio_table = {
.dev_id = "spi0",
.table = {
GPIO_LOOKUP_IDX("TXx9", 0, "cs", 0, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 1, "cs", 1, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 2, "cs", 2, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 3, "cs", 3, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 4, "cs", 4, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 5, "cs", 5, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 6, "cs", 6, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 7, "cs", 7, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 8, "cs", 8, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 9, "cs", 9, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 10, "cs", 10, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 11, "cs", 11, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 12, "cs", 12, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 13, "cs", 13, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 14, "cs", 14, GPIO_ACTIVE_LOW),
GPIO_LOOKUP_IDX("TXx9", 15, "cs", 15, GPIO_ACTIVE_LOW),
{ },
},
};
static int txx9spi_probe(struct platform_device *dev)
{
struct spi_master *master;
struct txx9spi *c;
struct resource *res;
int ret = -ENODEV;
u32 mcr;
int irq;
master = spi_alloc_master(&dev->dev, sizeof(*c));
if (!master)
return ret;
c = spi_master_get_devdata(master);
platform_set_drvdata(dev, master);
INIT_WORK(&c->work, txx9spi_work);
spin_lock_init(&c->lock);
INIT_LIST_HEAD(&c->queue);
init_waitqueue_head(&c->waitq);
c->clk = devm_clk_get(&dev->dev, "spi-baseclk");
if (IS_ERR(c->clk)) {
ret = PTR_ERR(c->clk);
c->clk = NULL;
goto exit;
}
ret = clk_prepare_enable(c->clk);
if (ret) {
c->clk = NULL;
goto exit;
}
c->baseclk = clk_get_rate(c->clk);
master->min_speed_hz = DIV_ROUND_UP(c->baseclk, SPI_MAX_DIVIDER + 1);
master->max_speed_hz = c->baseclk / (SPI_MIN_DIVIDER + 1);
res = platform_get_resource(dev, IORESOURCE_MEM, 0);
c->membase = devm_ioremap_resource(&dev->dev, res);
if (IS_ERR(c->membase))
goto exit_busy;
/* enter config mode */
mcr = txx9spi_rd(c, TXx9_SPMCR);
mcr &= ~(TXx9_SPMCR_OPMODE | TXx9_SPMCR_SPSTP | TXx9_SPMCR_BCLR);
txx9spi_wr(c, mcr | TXx9_SPMCR_CONFIG | TXx9_SPMCR_BCLR, TXx9_SPMCR);
irq = platform_get_irq(dev, 0);
if (irq < 0)
goto exit_busy;
ret = devm_request_irq(&dev->dev, irq, txx9spi_interrupt, 0,
"spi_txx9", c);
if (ret)
goto exit;
c->last_chipselect = NULL;
dev_info(&dev->dev, "at %#llx, irq %d, %dMHz\n",
(unsigned long long)res->start, irq,
(c->baseclk + 500000) / 1000000);
gpiod_add_lookup_table(&txx9spi_cs_gpio_table);
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CS_HIGH | SPI_CPOL | SPI_CPHA;
master->bus_num = dev->id;
master->setup = txx9spi_setup;
master->transfer = txx9spi_transfer;
master->num_chipselect = (u16)UINT_MAX; /* any GPIO numbers */
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
master->use_gpio_descriptors = true;
ret = devm_spi_register_master(&dev->dev, master);
if (ret)
goto exit;
return 0;
exit_busy:
ret = -EBUSY;
exit:
clk_disable_unprepare(c->clk);
spi_master_put(master);
return ret;
}
static int txx9spi_remove(struct platform_device *dev)
{
struct spi_master *master = platform_get_drvdata(dev);
struct txx9spi *c = spi_master_get_devdata(master);
flush_work(&c->work);
clk_disable_unprepare(c->clk);
return 0;
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:spi_txx9");
static struct platform_driver txx9spi_driver = {
.probe = txx9spi_probe,
.remove = txx9spi_remove,
.driver = {
.name = "spi_txx9",
},
};
static int __init txx9spi_init(void)
{
return platform_driver_register(&txx9spi_driver);
}
subsys_initcall(txx9spi_init);
static void __exit txx9spi_exit(void)
{
platform_driver_unregister(&txx9spi_driver);
}
module_exit(txx9spi_exit);
MODULE_DESCRIPTION("TXx9 SPI Driver");
MODULE_LICENSE("GPL");

View File

@ -810,7 +810,8 @@ static void spi_set_cs(struct spi_device *spi, bool enable)
spi->controller->last_cs_enable = enable; spi->controller->last_cs_enable = enable;
spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
if (!spi->controller->set_cs_timing) { if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
!spi->controller->set_cs_timing) {
if (enable1) if (enable1)
spi_delay_exec(&spi->controller->cs_setup, NULL); spi_delay_exec(&spi->controller->cs_setup, NULL);
else else
@ -841,7 +842,8 @@ static void spi_set_cs(struct spi_device *spi, bool enable)
spi->controller->set_cs(spi, !enable); spi->controller->set_cs(spi, !enable);
} }
if (!spi->controller->set_cs_timing) { if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
!spi->controller->set_cs_timing) {
if (!enable1) if (!enable1)
spi_delay_exec(&spi->controller->cs_inactive, NULL); spi_delay_exec(&spi->controller->cs_inactive, NULL);
} }
@ -1267,7 +1269,7 @@ static int spi_transfer_one_message(struct spi_controller *ctlr,
ptp_read_system_prets(xfer->ptp_sts); ptp_read_system_prets(xfer->ptp_sts);
} }
if (xfer->tx_buf || xfer->rx_buf) { if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
reinit_completion(&ctlr->xfer_completion); reinit_completion(&ctlr->xfer_completion);
fallback_pio: fallback_pio:
@ -1945,6 +1947,9 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
/* Device DUAL/QUAD mode */ /* Device DUAL/QUAD mode */
if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
switch (value) { switch (value) {
case 0:
spi->mode |= SPI_NO_TX;
break;
case 1: case 1:
break; break;
case 2: case 2:
@ -1966,6 +1971,9 @@ static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
switch (value) { switch (value) {
case 0:
spi->mode |= SPI_NO_RX;
break;
case 1: case 1:
break; break;
case 2: case 2:
@ -3333,12 +3341,16 @@ int spi_setup(struct spi_device *spi)
unsigned bad_bits, ugly_bits; unsigned bad_bits, ugly_bits;
int status; int status;
/* check mode to prevent that DUAL and QUAD set at the same time /*
* check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
* are set at the same time
*/ */
if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || if ((hweight_long(spi->mode &
((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
(hweight_long(spi->mode &
(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
dev_err(&spi->dev, dev_err(&spi->dev,
"setup: can not select dual and quad at the same time\n"); "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
return -EINVAL; return -EINVAL;
} }
/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
@ -3352,7 +3364,8 @@ int spi_setup(struct spi_device *spi)
* SPI_CS_WORD has a fallback software implementation, * SPI_CS_WORD has a fallback software implementation,
* so it is ignored here. * so it is ignored here.
*/ */
bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
SPI_NO_TX | SPI_NO_RX);
/* nothing prevents from working with active-high CS in case if it /* nothing prevents from working with active-high CS in case if it
* is driven by GPIO. * is driven by GPIO.
*/ */
@ -3449,11 +3462,31 @@ EXPORT_SYMBOL_GPL(spi_setup);
int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
struct spi_delay *hold, struct spi_delay *inactive) struct spi_delay *hold, struct spi_delay *inactive)
{ {
struct device *parent = spi->controller->dev.parent;
size_t len; size_t len;
int status;
if (spi->controller->set_cs_timing) if (spi->controller->set_cs_timing &&
return spi->controller->set_cs_timing(spi, setup, hold, !(spi->cs_gpiod || gpio_is_valid(spi->cs_gpio))) {
inactive); if (spi->controller->auto_runtime_pm) {
status = pm_runtime_get_sync(parent);
if (status < 0) {
pm_runtime_put_noidle(parent);
dev_err(&spi->controller->dev, "Failed to power device: %d\n",
status);
return status;
}
status = spi->controller->set_cs_timing(spi, setup,
hold, inactive);
pm_runtime_mark_last_busy(parent);
pm_runtime_put_autosuspend(parent);
return status;
} else {
return spi->controller->set_cs_timing(spi, setup, hold,
inactive);
}
}
if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
(hold && hold->unit == SPI_DELAY_UNIT_SCK) || (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
@ -3615,6 +3648,8 @@ static int __spi_validate(struct spi_device *spi, struct spi_message *message)
* 2. check tx/rx_nbits match the mode in spi_device * 2. check tx/rx_nbits match the mode in spi_device
*/ */
if (xfer->tx_buf) { if (xfer->tx_buf) {
if (spi->mode & SPI_NO_TX)
return -EINVAL;
if (xfer->tx_nbits != SPI_NBITS_SINGLE && if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
xfer->tx_nbits != SPI_NBITS_DUAL && xfer->tx_nbits != SPI_NBITS_DUAL &&
xfer->tx_nbits != SPI_NBITS_QUAD) xfer->tx_nbits != SPI_NBITS_QUAD)
@ -3628,6 +3663,8 @@ static int __spi_validate(struct spi_device *spi, struct spi_message *message)
} }
/* check transfer rx_nbits */ /* check transfer rx_nbits */
if (xfer->rx_buf) { if (xfer->rx_buf) {
if (spi->mode & SPI_NO_RX)
return -EINVAL;
if (xfer->rx_nbits != SPI_NBITS_SINGLE && if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
xfer->rx_nbits != SPI_NBITS_DUAL && xfer->rx_nbits != SPI_NBITS_DUAL &&
xfer->rx_nbits != SPI_NBITS_QUAD) xfer->rx_nbits != SPI_NBITS_QUAD)

View File

@ -1,15 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_PLATFORM_DATA_EFM32_SPI_H__
#define __LINUX_PLATFORM_DATA_EFM32_SPI_H__
#include <linux/types.h>
/**
* struct efm32_spi_pdata
* @location: pinmux location for the I/O pins (to be written to the ROUTE
* register)
*/
struct efm32_spi_pdata {
u8 location;
};
#endif /* ifndef __LINUX_PLATFORM_DATA_EFM32_SPI_H__ */

View File

@ -311,6 +311,9 @@ void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
bool spi_mem_default_supports_op(struct spi_mem *mem, bool spi_mem_default_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op); const struct spi_mem_op *op);
bool spi_mem_dtr_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op);
#else #else
static inline int static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
@ -334,6 +337,12 @@ bool spi_mem_default_supports_op(struct spi_mem *mem,
return false; return false;
} }
static inline
bool spi_mem_dtr_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
return false;
}
#endif /* CONFIG_SPI_MEM */ #endif /* CONFIG_SPI_MEM */
int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op); int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);

View File

@ -6,6 +6,7 @@
#ifndef __LINUX_SPI_H #ifndef __LINUX_SPI_H
#define __LINUX_SPI_H #define __LINUX_SPI_H
#include <linux/bits.h>
#include <linux/device.h> #include <linux/device.h>
#include <linux/mod_devicetable.h> #include <linux/mod_devicetable.h>
#include <linux/slab.h> #include <linux/slab.h>
@ -15,6 +16,8 @@
#include <linux/gpio/consumer.h> #include <linux/gpio/consumer.h>
#include <linux/ptp_clock_kernel.h> #include <linux/ptp_clock_kernel.h>
#include <uapi/linux/spi/spi.h>
struct dma_chan; struct dma_chan;
struct property_entry; struct property_entry;
struct spi_controller; struct spi_controller;
@ -164,28 +167,19 @@ struct spi_device {
u8 chip_select; u8 chip_select;
u8 bits_per_word; u8 bits_per_word;
bool rt; bool rt;
#define SPI_NO_TX BIT(31) /* no transmit wire */
#define SPI_NO_RX BIT(30) /* no receive wire */
/*
* All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
* The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
* which is defined in 'include/uapi/linux/spi/spi.h'.
* The bits defined here are from bit 31 downwards, while in
* SPI_MODE_USER_MASK are from 0 upwards.
* These bits must not overlap. A static assert check should make sure of that.
* If adding extra bits, make sure to decrease the bit index below as well.
*/
#define SPI_MODE_KERNEL_MASK (~(BIT(30) - 1))
u32 mode; u32 mode;
#define SPI_CPHA 0x01 /* clock phase */
#define SPI_CPOL 0x02 /* clock polarity */
#define SPI_MODE_0 (0|0) /* (original MicroWire) */
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_MODE_X_MASK (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04 /* chipselect active high? */
#define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
#define SPI_3WIRE 0x10 /* SI/SO signals shared */
#define SPI_LOOP 0x20 /* loopback mode */
#define SPI_NO_CS 0x40 /* 1 dev/bus, no chipselect */
#define SPI_READY 0x80 /* slave pulls low to pause */
#define SPI_TX_DUAL 0x100 /* transmit with 2 wires */
#define SPI_TX_QUAD 0x200 /* transmit with 4 wires */
#define SPI_RX_DUAL 0x400 /* receive with 2 wires */
#define SPI_RX_QUAD 0x800 /* receive with 4 wires */
#define SPI_CS_WORD 0x1000 /* toggle cs after each word */
#define SPI_TX_OCTAL 0x2000 /* transmit with 8 wires */
#define SPI_RX_OCTAL 0x4000 /* receive with 8 wires */
#define SPI_3WIRE_HIZ 0x8000 /* high impedance turnaround */
int irq; int irq;
void *controller_state; void *controller_state;
void *controller_data; void *controller_data;
@ -208,6 +202,10 @@ struct spi_device {
*/ */
}; };
/* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
"SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
static inline struct spi_device *to_spi_device(struct device *dev) static inline struct spi_device *to_spi_device(struct device *dev)
{ {
return dev ? container_of(dev, struct spi_device, dev) : NULL; return dev ? container_of(dev, struct spi_device, dev) : NULL;
@ -624,7 +622,7 @@ struct spi_controller {
/* /*
* These hooks are for drivers that use a generic implementation * These hooks are for drivers that use a generic implementation
* of transfer_one_message() provied by the core. * of transfer_one_message() provided by the core.
*/ */
void (*set_cs)(struct spi_device *spi, bool enable); void (*set_cs)(struct spi_device *spi, bool enable);
int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi, int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
@ -827,6 +825,7 @@ extern void spi_res_release(struct spi_controller *ctlr,
* transfer. If 0 the default (from @spi_device) is used. * transfer. If 0 the default (from @spi_device) is used.
* @bits_per_word: select a bits_per_word other than the device default * @bits_per_word: select a bits_per_word other than the device default
* for this transfer. If 0 the default (from @spi_device) is used. * for this transfer. If 0 the default (from @spi_device) is used.
* @dummy_data: indicates transfer is dummy bytes transfer.
* @cs_change: affects chipselect after this transfer completes * @cs_change: affects chipselect after this transfer completes
* @cs_change_delay: delay between cs deassert and assert when * @cs_change_delay: delay between cs deassert and assert when
* @cs_change is set and @spi_transfer is not the last in @spi_message * @cs_change is set and @spi_transfer is not the last in @spi_message
@ -939,6 +938,7 @@ struct spi_transfer {
struct sg_table tx_sg; struct sg_table tx_sg;
struct sg_table rx_sg; struct sg_table rx_sg;
unsigned dummy_data:1;
unsigned cs_change:1; unsigned cs_change:1;
unsigned tx_nbits:3; unsigned tx_nbits:3;
unsigned rx_nbits:3; unsigned rx_nbits:3;

View File

@ -0,0 +1,41 @@
/* SPDX-License-Identifier: GPL-2.0+ WITH Linux-syscall-note */
#ifndef _UAPI_SPI_H
#define _UAPI_SPI_H
#include <linux/const.h>
#define SPI_CPHA _BITUL(0) /* clock phase */
#define SPI_CPOL _BITUL(1) /* clock polarity */
#define SPI_MODE_0 (0|0) /* (original MicroWire) */
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_MODE_X_MASK (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH _BITUL(2) /* chipselect active high? */
#define SPI_LSB_FIRST _BITUL(3) /* per-word bits-on-wire */
#define SPI_3WIRE _BITUL(4) /* SI/SO signals shared */
#define SPI_LOOP _BITUL(5) /* loopback mode */
#define SPI_NO_CS _BITUL(6) /* 1 dev/bus, no chipselect */
#define SPI_READY _BITUL(7) /* slave pulls low to pause */
#define SPI_TX_DUAL _BITUL(8) /* transmit with 2 wires */
#define SPI_TX_QUAD _BITUL(9) /* transmit with 4 wires */
#define SPI_RX_DUAL _BITUL(10) /* receive with 2 wires */
#define SPI_RX_QUAD _BITUL(11) /* receive with 4 wires */
#define SPI_CS_WORD _BITUL(12) /* toggle cs after each word */
#define SPI_TX_OCTAL _BITUL(13) /* transmit with 8 wires */
#define SPI_RX_OCTAL _BITUL(14) /* receive with 8 wires */
#define SPI_3WIRE_HIZ _BITUL(15) /* high impedance turnaround */
/*
* All the bits defined above should be covered by SPI_MODE_USER_MASK.
* The SPI_MODE_USER_MASK has the SPI_MODE_KERNEL_MASK counterpart in
* 'include/linux/spi/spi.h'. The bits defined here are from bit 0 upwards
* while in SPI_MODE_KERNEL_MASK they are from the other end downwards.
* These bits must not overlap. A static assert check should make sure of that.
* If adding extra bits, make sure to increase the bit index below as well.
*/
#define SPI_MODE_USER_MASK (_BITUL(16) - 1)
#endif /* _UAPI_SPI_H */

View File

@ -25,35 +25,7 @@
#include <linux/types.h> #include <linux/types.h>
#include <linux/ioctl.h> #include <linux/ioctl.h>
#include <linux/spi/spi.h>
/* User space versions of kernel symbols for SPI clocking modes,
* matching <linux/spi/spi.h>
*/
#define SPI_CPHA 0x01
#define SPI_CPOL 0x02
#define SPI_MODE_0 (0|0)
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04
#define SPI_LSB_FIRST 0x08
#define SPI_3WIRE 0x10
#define SPI_LOOP 0x20
#define SPI_NO_CS 0x40
#define SPI_READY 0x80
#define SPI_TX_DUAL 0x100
#define SPI_TX_QUAD 0x200
#define SPI_RX_DUAL 0x400
#define SPI_RX_QUAD 0x800
#define SPI_CS_WORD 0x1000
#define SPI_TX_OCTAL 0x2000
#define SPI_RX_OCTAL 0x4000
#define SPI_3WIRE_HIZ 0x8000
/*---------------------------------------------------------------------------*/
/* IOCTL commands */ /* IOCTL commands */