printk: remove safe buffers

With @logbuf_lock removed, the high level printk functions for
storing messages are lockless. Messages can be stored from any
context, so there is no need for the NMI and safe buffers anymore.
Remove the NMI and safe buffers.

Although the safe buffers are removed, the NMI and safe context
tracking is still in place. In these contexts, store the message
immediately but still use irq_work to defer the console printing.

Since printk recursion tracking is in place, safe context tracking
for most of printk is not needed. Remove it. Only safe context
tracking relating to the console and console_owner locks is left
in place. This is because the console and console_owner locks are
needed for the actual printing.

Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20210715193359.25946-4-john.ogness@linutronix.de
This commit is contained in:
John Ogness 2021-07-15 21:39:56 +02:06 committed by Petr Mladek
parent 002eb6ad07
commit 93d102f094
9 changed files with 48 additions and 450 deletions

View File

@ -170,7 +170,6 @@ extern void panic_flush_kmsg_start(void)
extern void panic_flush_kmsg_end(void)
{
printk_safe_flush_on_panic();
kmsg_dump(KMSG_DUMP_PANIC);
bust_spinlocks(0);
debug_locks_off();

View File

@ -183,11 +183,6 @@ static void watchdog_smp_panic(int cpu, u64 tb)
wd_smp_unlock(&flags);
printk_safe_flush();
/*
* printk_safe_flush() seems to require another print
* before anything actually goes out to console.
*/
if (sysctl_hardlockup_all_cpu_backtrace)
trigger_allbutself_cpu_backtrace();

View File

@ -208,8 +208,6 @@ void dump_stack_print_info(const char *log_lvl);
void show_regs_print_info(const char *log_lvl);
extern asmlinkage void dump_stack_lvl(const char *log_lvl) __cold;
extern asmlinkage void dump_stack(void) __cold;
extern void printk_safe_flush(void);
extern void printk_safe_flush_on_panic(void);
#else
static inline __printf(1, 0)
int vprintk(const char *s, va_list args)
@ -277,14 +275,6 @@ static inline void dump_stack_lvl(const char *log_lvl)
static inline void dump_stack(void)
{
}
static inline void printk_safe_flush(void)
{
}
static inline void printk_safe_flush_on_panic(void)
{
}
#endif
#ifdef CONFIG_SMP

View File

@ -978,7 +978,6 @@ void crash_kexec(struct pt_regs *regs)
old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
if (old_cpu == PANIC_CPU_INVALID) {
/* This is the 1st CPU which comes here, so go ahead. */
printk_safe_flush_on_panic();
__crash_kexec(regs);
/*

View File

@ -247,7 +247,6 @@ void panic(const char *fmt, ...)
* Bypass the panic_cpu check and call __crash_kexec directly.
*/
if (!_crash_kexec_post_notifiers) {
printk_safe_flush_on_panic();
__crash_kexec(NULL);
/*
@ -271,8 +270,6 @@ void panic(const char *fmt, ...)
*/
atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
/* Call flush even twice. It tries harder with a single online CPU */
printk_safe_flush_on_panic();
kmsg_dump(KMSG_DUMP_PANIC);
/*

View File

@ -22,7 +22,6 @@ __printf(1, 0) int vprintk_deferred(const char *fmt, va_list args);
void __printk_safe_enter(void);
void __printk_safe_exit(void);
void printk_safe_init(void);
bool printk_percpu_data_ready(void);
#define printk_safe_enter_irqsave(flags) \
@ -37,18 +36,6 @@ bool printk_percpu_data_ready(void);
local_irq_restore(flags); \
} while (0)
#define printk_safe_enter_irq() \
do { \
local_irq_disable(); \
__printk_safe_enter(); \
} while (0)
#define printk_safe_exit_irq() \
do { \
__printk_safe_exit(); \
local_irq_enable(); \
} while (0)
void defer_console_output(void);
#else
@ -61,9 +48,5 @@ void defer_console_output(void);
#define printk_safe_enter_irqsave(flags) local_irq_save(flags)
#define printk_safe_exit_irqrestore(flags) local_irq_restore(flags)
#define printk_safe_enter_irq() local_irq_disable()
#define printk_safe_exit_irq() local_irq_enable()
static inline void printk_safe_init(void) { }
static inline bool printk_percpu_data_ready(void) { return false; }
#endif /* CONFIG_PRINTK */

View File

@ -732,27 +732,22 @@ static ssize_t devkmsg_read(struct file *file, char __user *buf,
if (ret)
return ret;
printk_safe_enter_irq();
if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
printk_safe_exit_irq();
goto out;
}
printk_safe_exit_irq();
ret = wait_event_interruptible(log_wait,
prb_read_valid(prb, atomic64_read(&user->seq), r));
if (ret)
goto out;
printk_safe_enter_irq();
}
if (r->info->seq != atomic64_read(&user->seq)) {
/* our last seen message is gone, return error and reset */
atomic64_set(&user->seq, r->info->seq);
ret = -EPIPE;
printk_safe_exit_irq();
goto out;
}
@ -762,7 +757,6 @@ static ssize_t devkmsg_read(struct file *file, char __user *buf,
&r->info->dev_info);
atomic64_set(&user->seq, r->info->seq + 1);
printk_safe_exit_irq();
if (len > count) {
ret = -EINVAL;
@ -797,7 +791,6 @@ static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
if (offset)
return -ESPIPE;
printk_safe_enter_irq();
switch (whence) {
case SEEK_SET:
/* the first record */
@ -818,7 +811,6 @@ static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
default:
ret = -EINVAL;
}
printk_safe_exit_irq();
return ret;
}
@ -833,7 +825,6 @@ static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
poll_wait(file, &log_wait, wait);
printk_safe_enter_irq();
if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
/* return error when data has vanished underneath us */
if (info.seq != atomic64_read(&user->seq))
@ -841,7 +832,6 @@ static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
else
ret = EPOLLIN|EPOLLRDNORM;
}
printk_safe_exit_irq();
return ret;
}
@ -874,9 +864,7 @@ static int devkmsg_open(struct inode *inode, struct file *file)
prb_rec_init_rd(&user->record, &user->info,
&user->text_buf[0], sizeof(user->text_buf));
printk_safe_enter_irq();
atomic64_set(&user->seq, prb_first_valid_seq(prb));
printk_safe_exit_irq();
file->private_data = user;
return 0;
@ -1042,9 +1030,6 @@ static inline void log_buf_add_cpu(void) {}
static void __init set_percpu_data_ready(void)
{
printk_safe_init();
/* Make sure we set this flag only after printk_safe() init is done */
barrier();
__printk_percpu_data_ready = true;
}
@ -1082,6 +1067,7 @@ void __init setup_log_buf(int early)
struct prb_desc *new_descs;
struct printk_info info;
struct printk_record r;
unsigned int text_size;
size_t new_descs_size;
size_t new_infos_size;
unsigned long flags;
@ -1142,24 +1128,37 @@ void __init setup_log_buf(int early)
new_descs, ilog2(new_descs_count),
new_infos);
printk_safe_enter_irqsave(flags);
local_irq_save(flags);
log_buf_len = new_log_buf_len;
log_buf = new_log_buf;
new_log_buf_len = 0;
free = __LOG_BUF_LEN;
prb_for_each_record(0, &printk_rb_static, seq, &r)
free -= add_to_rb(&printk_rb_dynamic, &r);
prb_for_each_record(0, &printk_rb_static, seq, &r) {
text_size = add_to_rb(&printk_rb_dynamic, &r);
if (text_size > free)
free = 0;
else
free -= text_size;
}
/*
* This is early enough that everything is still running on the
* boot CPU and interrupts are disabled. So no new messages will
* appear during the transition to the dynamic buffer.
*/
prb = &printk_rb_dynamic;
printk_safe_exit_irqrestore(flags);
local_irq_restore(flags);
/*
* Copy any remaining messages that might have appeared from
* NMI context after copying but before switching to the
* dynamic buffer.
*/
prb_for_each_record(seq, &printk_rb_static, seq, &r) {
text_size = add_to_rb(&printk_rb_dynamic, &r);
if (text_size > free)
free = 0;
else
free -= text_size;
}
if (seq != prb_next_seq(&printk_rb_static)) {
pr_err("dropped %llu messages\n",
@ -1498,11 +1497,9 @@ static int syslog_print(char __user *buf, int size)
size_t n;
size_t skip;
printk_safe_enter_irq();
raw_spin_lock(&syslog_lock);
raw_spin_lock_irq(&syslog_lock);
if (!prb_read_valid(prb, syslog_seq, &r)) {
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
raw_spin_unlock_irq(&syslog_lock);
break;
}
if (r.info->seq != syslog_seq) {
@ -1531,8 +1528,7 @@ static int syslog_print(char __user *buf, int size)
syslog_partial += n;
} else
n = 0;
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
raw_spin_unlock_irq(&syslog_lock);
if (!n)
break;
@ -1566,7 +1562,6 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
return -ENOMEM;
time = printk_time;
printk_safe_enter_irq();
/*
* Find first record that fits, including all following records,
* into the user-provided buffer for this dump.
@ -1587,23 +1582,20 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
break;
}
printk_safe_exit_irq();
if (copy_to_user(buf + len, text, textlen))
len = -EFAULT;
else
len += textlen;
printk_safe_enter_irq();
if (len < 0)
break;
}
if (clear) {
raw_spin_lock(&syslog_lock);
raw_spin_lock_irq(&syslog_lock);
latched_seq_write(&clear_seq, seq);
raw_spin_unlock(&syslog_lock);
raw_spin_unlock_irq(&syslog_lock);
}
printk_safe_exit_irq();
kfree(text);
return len;
@ -1611,11 +1603,9 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
static void syslog_clear(void)
{
printk_safe_enter_irq();
raw_spin_lock(&syslog_lock);
raw_spin_lock_irq(&syslog_lock);
latched_seq_write(&clear_seq, prb_next_seq(prb));
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
raw_spin_unlock_irq(&syslog_lock);
}
/* Return a consistent copy of @syslog_seq. */
@ -1703,12 +1693,10 @@ int do_syslog(int type, char __user *buf, int len, int source)
break;
/* Number of chars in the log buffer */
case SYSLOG_ACTION_SIZE_UNREAD:
printk_safe_enter_irq();
raw_spin_lock(&syslog_lock);
raw_spin_lock_irq(&syslog_lock);
if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
/* No unread messages. */
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
raw_spin_unlock_irq(&syslog_lock);
return 0;
}
if (info.seq != syslog_seq) {
@ -1736,8 +1724,7 @@ int do_syslog(int type, char __user *buf, int len, int source)
}
error -= syslog_partial;
}
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
raw_spin_unlock_irq(&syslog_lock);
break;
/* Size of the log buffer */
case SYSLOG_ACTION_SIZE_BUFFER:
@ -2219,7 +2206,6 @@ asmlinkage int vprintk_emit(int facility, int level,
{
int printed_len;
bool in_sched = false;
unsigned long flags;
/* Suppress unimportant messages after panic happens */
if (unlikely(suppress_printk))
@ -2233,9 +2219,7 @@ asmlinkage int vprintk_emit(int facility, int level,
boot_delay_msec(level);
printk_delay();
printk_safe_enter_irqsave(flags);
printed_len = vprintk_store(facility, level, dev_info, fmt, args);
printk_safe_exit_irqrestore(flags);
/* If called from the scheduler, we can not call up(). */
if (!in_sched) {
@ -2664,9 +2648,9 @@ again:
for (;;) {
size_t ext_len = 0;
int handover;
size_t len;
printk_safe_enter_irqsave(flags);
skip:
if (!prb_read_valid(prb, console_seq, &r))
break;
@ -2716,19 +2700,22 @@ skip:
* were to occur on another CPU, it may wait for this one to
* finish. This task can not be preempted if there is a
* waiter waiting to take over.
*
* Interrupts are disabled because the hand over to a waiter
* must not be interrupted until the hand over is completed
* (@console_waiter is cleared).
*/
printk_safe_enter_irqsave(flags);
console_lock_spinning_enable();
stop_critical_timings(); /* don't trace print latency */
call_console_drivers(ext_text, ext_len, text, len);
start_critical_timings();
if (console_lock_spinning_disable_and_check()) {
printk_safe_exit_irqrestore(flags);
return;
}
handover = console_lock_spinning_disable_and_check();
printk_safe_exit_irqrestore(flags);
if (handover)
return;
if (do_cond_resched)
cond_resched();
@ -2745,8 +2732,6 @@ skip:
* flush, no worries.
*/
retry = prb_read_valid(prb, console_seq, NULL);
printk_safe_exit_irqrestore(flags);
if (retry && console_trylock())
goto again;
}
@ -2808,13 +2793,8 @@ void console_flush_on_panic(enum con_flush_mode mode)
console_trylock();
console_may_schedule = 0;
if (mode == CONSOLE_REPLAY_ALL) {
unsigned long flags;
printk_safe_enter_irqsave(flags);
if (mode == CONSOLE_REPLAY_ALL)
console_seq = prb_first_valid_seq(prb);
printk_safe_exit_irqrestore(flags);
}
console_unlock();
}
@ -3466,14 +3446,12 @@ bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
struct printk_info info;
unsigned int line_count;
struct printk_record r;
unsigned long flags;
size_t l = 0;
bool ret = false;
if (iter->cur_seq < min_seq)
iter->cur_seq = min_seq;
printk_safe_enter_irqsave(flags);
prb_rec_init_rd(&r, &info, line, size);
/* Read text or count text lines? */
@ -3494,7 +3472,6 @@ bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
iter->cur_seq = r.info->seq + 1;
ret = true;
out:
printk_safe_exit_irqrestore(flags);
if (len)
*len = l;
return ret;
@ -3526,7 +3503,6 @@ bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
u64 min_seq = latched_seq_read_nolock(&clear_seq);
struct printk_info info;
struct printk_record r;
unsigned long flags;
u64 seq;
u64 next_seq;
size_t len = 0;
@ -3539,7 +3515,6 @@ bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
if (iter->cur_seq < min_seq)
iter->cur_seq = min_seq;
printk_safe_enter_irqsave(flags);
if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
if (info.seq != iter->cur_seq) {
/* messages are gone, move to first available one */
@ -3548,10 +3523,8 @@ bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
}
/* last entry */
if (iter->cur_seq >= iter->next_seq) {
printk_safe_exit_irqrestore(flags);
if (iter->cur_seq >= iter->next_seq)
goto out;
}
/*
* Find first record that fits, including all following records,
@ -3583,7 +3556,6 @@ bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
iter->next_seq = next_seq;
ret = true;
printk_safe_exit_irqrestore(flags);
out:
if (len_out)
*len_out = len;
@ -3601,12 +3573,8 @@ EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
*/
void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
{
unsigned long flags;
printk_safe_enter_irqsave(flags);
iter->cur_seq = latched_seq_read_nolock(&clear_seq);
iter->next_seq = prb_next_seq(prb);
printk_safe_exit_irqrestore(flags);
}
EXPORT_SYMBOL_GPL(kmsg_dump_rewind);

View File

@ -15,286 +15,9 @@
#include "internal.h"
/*
* In NMI and safe mode, printk() avoids taking locks. Instead,
* it uses an alternative implementation that temporary stores
* the strings into a per-CPU buffer. The content of the buffer
* is later flushed into the main ring buffer via IRQ work.
*
* The alternative implementation is chosen transparently
* by examining current printk() context mask stored in @printk_context
* per-CPU variable.
*
* The implementation allows to flush the strings also from another CPU.
* There are situations when we want to make sure that all buffers
* were handled or when IRQs are blocked.
*/
#define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \
sizeof(atomic_t) - \
sizeof(atomic_t) - \
sizeof(struct irq_work))
struct printk_safe_seq_buf {
atomic_t len; /* length of written data */
atomic_t message_lost;
struct irq_work work; /* IRQ work that flushes the buffer */
unsigned char buffer[SAFE_LOG_BUF_LEN];
};
static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
static DEFINE_PER_CPU(int, printk_context);
static DEFINE_RAW_SPINLOCK(safe_read_lock);
#ifdef CONFIG_PRINTK_NMI
static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
#endif
/* Get flushed in a more safe context. */
static void queue_flush_work(struct printk_safe_seq_buf *s)
{
if (printk_percpu_data_ready())
irq_work_queue(&s->work);
}
/*
* Add a message to per-CPU context-dependent buffer. NMI and printk-safe
* have dedicated buffers, because otherwise printk-safe preempted by
* NMI-printk would have overwritten the NMI messages.
*
* The messages are flushed from irq work (or from panic()), possibly,
* from other CPU, concurrently with printk_safe_log_store(). Should this
* happen, printk_safe_log_store() will notice the buffer->len mismatch
* and repeat the write.
*/
static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
const char *fmt, va_list args)
{
int add;
size_t len;
va_list ap;
again:
len = atomic_read(&s->len);
/* The trailing '\0' is not counted into len. */
if (len >= sizeof(s->buffer) - 1) {
atomic_inc(&s->message_lost);
queue_flush_work(s);
return 0;
}
/*
* Make sure that all old data have been read before the buffer
* was reset. This is not needed when we just append data.
*/
if (!len)
smp_rmb();
va_copy(ap, args);
add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
va_end(ap);
if (!add)
return 0;
/*
* Do it once again if the buffer has been flushed in the meantime.
* Note that atomic_cmpxchg() is an implicit memory barrier that
* makes sure that the data were written before updating s->len.
*/
if (atomic_cmpxchg(&s->len, len, len + add) != len)
goto again;
queue_flush_work(s);
return add;
}
static inline void printk_safe_flush_line(const char *text, int len)
{
/*
* Avoid any console drivers calls from here, because we may be
* in NMI or printk_safe context (when in panic). The messages
* must go only into the ring buffer at this stage. Consoles will
* get explicitly called later when a crashdump is not generated.
*/
printk_deferred("%.*s", len, text);
}
/* printk part of the temporary buffer line by line */
static int printk_safe_flush_buffer(const char *start, size_t len)
{
const char *c, *end;
bool header;
c = start;
end = start + len;
header = true;
/* Print line by line. */
while (c < end) {
if (*c == '\n') {
printk_safe_flush_line(start, c - start + 1);
start = ++c;
header = true;
continue;
}
/* Handle continuous lines or missing new line. */
if ((c + 1 < end) && printk_get_level(c)) {
if (header) {
c = printk_skip_level(c);
continue;
}
printk_safe_flush_line(start, c - start);
start = c++;
header = true;
continue;
}
header = false;
c++;
}
/* Check if there was a partial line. Ignore pure header. */
if (start < end && !header) {
static const char newline[] = KERN_CONT "\n";
printk_safe_flush_line(start, end - start);
printk_safe_flush_line(newline, strlen(newline));
}
return len;
}
static void report_message_lost(struct printk_safe_seq_buf *s)
{
int lost = atomic_xchg(&s->message_lost, 0);
if (lost)
printk_deferred("Lost %d message(s)!\n", lost);
}
/*
* Flush data from the associated per-CPU buffer. The function
* can be called either via IRQ work or independently.
*/
static void __printk_safe_flush(struct irq_work *work)
{
struct printk_safe_seq_buf *s =
container_of(work, struct printk_safe_seq_buf, work);
unsigned long flags;
size_t len;
int i;
/*
* The lock has two functions. First, one reader has to flush all
* available message to make the lockless synchronization with
* writers easier. Second, we do not want to mix messages from
* different CPUs. This is especially important when printing
* a backtrace.
*/
raw_spin_lock_irqsave(&safe_read_lock, flags);
i = 0;
more:
len = atomic_read(&s->len);
/*
* This is just a paranoid check that nobody has manipulated
* the buffer an unexpected way. If we printed something then
* @len must only increase. Also it should never overflow the
* buffer size.
*/
if ((i && i >= len) || len > sizeof(s->buffer)) {
const char *msg = "printk_safe_flush: internal error\n";
printk_safe_flush_line(msg, strlen(msg));
len = 0;
}
if (!len)
goto out; /* Someone else has already flushed the buffer. */
/* Make sure that data has been written up to the @len */
smp_rmb();
i += printk_safe_flush_buffer(s->buffer + i, len - i);
/*
* Check that nothing has got added in the meantime and truncate
* the buffer. Note that atomic_cmpxchg() is an implicit memory
* barrier that makes sure that the data were copied before
* updating s->len.
*/
if (atomic_cmpxchg(&s->len, len, 0) != len)
goto more;
out:
report_message_lost(s);
raw_spin_unlock_irqrestore(&safe_read_lock, flags);
}
/**
* printk_safe_flush - flush all per-cpu nmi buffers.
*
* The buffers are flushed automatically via IRQ work. This function
* is useful only when someone wants to be sure that all buffers have
* been flushed at some point.
*/
void printk_safe_flush(void)
{
int cpu;
for_each_possible_cpu(cpu) {
#ifdef CONFIG_PRINTK_NMI
__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
#endif
__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
}
}
/**
* printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
* goes down.
*
* Similar to printk_safe_flush() but it can be called even in NMI context when
* the system goes down. It does the best effort to get NMI messages into
* the main ring buffer.
*
* Note that it could try harder when there is only one CPU online.
*/
void printk_safe_flush_on_panic(void)
{
/*
* Make sure that we could access the safe buffers.
* Do not risk a double release when more CPUs are up.
*/
if (raw_spin_is_locked(&safe_read_lock)) {
if (num_online_cpus() > 1)
return;
debug_locks_off();
raw_spin_lock_init(&safe_read_lock);
}
printk_safe_flush();
}
#ifdef CONFIG_PRINTK_NMI
/*
* Safe printk() for NMI context. It uses a per-CPU buffer to
* store the message. NMIs are not nested, so there is always only
* one writer running. But the buffer might get flushed from another
* CPU, so we need to be careful.
*/
static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
{
struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
return printk_safe_log_store(s, fmt, args);
}
void noinstr printk_nmi_enter(void)
{
this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
@ -309,9 +32,6 @@ void noinstr printk_nmi_exit(void)
* Marks a code that might produce many messages in NMI context
* and the risk of losing them is more critical than eventual
* reordering.
*
* It has effect only when called in NMI context. Then printk()
* will store the messages into the main logbuf directly.
*/
void printk_nmi_direct_enter(void)
{
@ -324,27 +44,8 @@ void printk_nmi_direct_exit(void)
this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
}
#else
static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
{
return 0;
}
#endif /* CONFIG_PRINTK_NMI */
/*
* Lock-less printk(), to avoid deadlocks should the printk() recurse
* into itself. It uses a per-CPU buffer to store the message, just like
* NMI.
*/
static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
{
struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
return printk_safe_log_store(s, fmt, args);
}
/* Can be preempted by NMI. */
void __printk_safe_enter(void)
{
@ -369,46 +70,18 @@ asmlinkage int vprintk(const char *fmt, va_list args)
* Use the main logbuf even in NMI. But avoid calling console
* drivers that might have their own locks.
*/
if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK)) {
unsigned long flags;
if (this_cpu_read(printk_context) &
(PRINTK_NMI_DIRECT_CONTEXT_MASK |
PRINTK_NMI_CONTEXT_MASK |
PRINTK_SAFE_CONTEXT_MASK)) {
int len;
printk_safe_enter_irqsave(flags);
len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
printk_safe_exit_irqrestore(flags);
defer_console_output();
return len;
}
/* Use extra buffer in NMI. */
if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
return vprintk_nmi(fmt, args);
/* Use extra buffer to prevent a recursion deadlock in safe mode. */
if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
return vprintk_safe(fmt, args);
/* No obstacles. */
return vprintk_default(fmt, args);
}
EXPORT_SYMBOL(vprintk);
void __init printk_safe_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct printk_safe_seq_buf *s;
s = &per_cpu(safe_print_seq, cpu);
init_irq_work(&s->work, __printk_safe_flush);
#ifdef CONFIG_PRINTK_NMI
s = &per_cpu(nmi_print_seq, cpu);
init_irq_work(&s->work, __printk_safe_flush);
#endif
}
/* Flush pending messages that did not have scheduled IRQ works. */
printk_safe_flush();
}

View File

@ -75,12 +75,6 @@ void nmi_trigger_cpumask_backtrace(const cpumask_t *mask,
touch_softlockup_watchdog();
}
/*
* Force flush any remote buffers that might be stuck in IRQ context
* and therefore could not run their irq_work.
*/
printk_safe_flush();
clear_bit_unlock(0, &backtrace_flag);
put_cpu();
}