cris: Convert cris to use read/update_persistent_clock

This patch converts the cris architecture to use the generic
read_persistent_clock and update_persistent_clock interfaces, reducing
the amount of arch specific code we have to maintain, and allowing for
further cleanups in the future.

I have not built or tested this patch, so help from arch maintainers
would be appreciated.

Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <1267675049-12337-14-git-send-email-johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
John Stultz 2010-03-03 19:57:28 -08:00 committed by Thomas Gleixner
parent ffbcad49e7
commit 8eff8a5c1d
4 changed files with 18 additions and 82 deletions

View File

@ -23,6 +23,9 @@ config RWSEM_XCHGADD_ALGORITHM
config GENERIC_TIME
def_bool y
config GENERIC_CMOS_UPDATE
def_bool y
config ARCH_USES_GETTIMEOFFSET
def_bool y

View File

@ -26,7 +26,6 @@
/* it will make jiffies at 96 hz instead of 100 hz though */
#undef USE_CASCADE_TIMERS
extern void update_xtime_from_cmos(void);
extern int set_rtc_mmss(unsigned long nowtime);
extern int have_rtc;
@ -188,8 +187,6 @@ stop_watchdog(void)
#endif
}
/* last time the cmos clock got updated */
static long last_rtc_update = 0;
/*
* timer_interrupt() needs to keep up the real-time clock,
@ -232,24 +229,6 @@ timer_interrupt(int irq, void *dev_id)
do_timer(1);
cris_do_profile(regs); /* Save profiling information */
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*
* The division here is not time critical since it will run once in
* 11 minutes
*/
if (ntp_synced() &&
xtime.tv_sec > last_rtc_update + 660 &&
(xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
(xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
}
return IRQ_HANDLED;
}
@ -274,22 +253,10 @@ time_init(void)
*/
loops_per_usec = 50;
if(RTC_INIT() < 0) {
/* no RTC, start at 1980 */
xtime.tv_sec = 0;
xtime.tv_nsec = 0;
if(RTC_INIT() < 0)
have_rtc = 0;
} else {
/* get the current time */
else
have_rtc = 1;
update_xtime_from_cmos();
}
/*
* Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
* tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
*/
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
/* Setup the etrax timers
* Base frequency is 25000 hz, divider 250 -> 100 HZ

View File

@ -44,7 +44,6 @@ unsigned long timer_regs[NR_CPUS] =
#endif
};
extern void update_xtime_from_cmos(void);
extern int set_rtc_mmss(unsigned long nowtime);
extern int have_rtc;
@ -198,9 +197,6 @@ handle_watchdog_bite(struct pt_regs* regs)
#endif
}
/* Last time the cmos clock got updated. */
static long last_rtc_update = 0;
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick.
@ -238,25 +234,6 @@ timer_interrupt(int irq, void *dev_id)
/* Call the real timer interrupt handler */
do_timer(1);
/*
* If we have an externally synchronized Linux clock, then update
* CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
* called as close as possible to 500 ms before the new second starts.
*
* The division here is not time critical since it will run once in
* 11 minutes
*/
if ((time_status & STA_UNSYNC) == 0 &&
xtime.tv_sec > last_rtc_update + 660 &&
(xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
(xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
if (set_rtc_mmss(xtime.tv_sec) == 0)
last_rtc_update = xtime.tv_sec;
else
/* Do it again in 60 s */
last_rtc_update = xtime.tv_sec - 600;
}
return IRQ_HANDLED;
}
@ -309,23 +286,10 @@ time_init(void)
*/
loops_per_usec = 50;
if(RTC_INIT() < 0) {
/* No RTC, start at 1980 */
xtime.tv_sec = 0;
xtime.tv_nsec = 0;
if(RTC_INIT() < 0)
have_rtc = 0;
} else {
/* Get the current time */
else
have_rtc = 1;
update_xtime_from_cmos();
}
/*
* Initialize wall_to_monotonic such that adding it to
* xtime will yield zero, the tv_nsec field must be normalized
* (i.e., 0 <= nsec < NSEC_PER_SEC).
*/
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
/* Start CPU local timer. */
cris_timer_init();

View File

@ -98,6 +98,8 @@ unsigned long
get_cmos_time(void)
{
unsigned int year, mon, day, hour, min, sec;
if(!have_rtc)
return 0;
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
@ -119,19 +121,19 @@ get_cmos_time(void)
return mktime(year, mon, day, hour, min, sec);
}
/* update xtime from the CMOS settings. used when /dev/rtc gets a SET_TIME.
* TODO: this doesn't reset the fancy NTP phase stuff as do_settimeofday does.
*/
void
update_xtime_from_cmos(void)
int update_persistent_clock(struct timespec now)
{
if(have_rtc) {
xtime.tv_sec = get_cmos_time();
xtime.tv_nsec = 0;
}
return set_rtc_mmss(now.tv_sec);
}
void read_persistent_clock(struct timespec *ts)
{
ts->tv_sec = get_cmos_time();
ts->tv_nsec = 0;
}
extern void cris_profile_sample(struct pt_regs* regs);
void