xfs: refactor the xrep_extent_list into xfs_bitmap
As mentioned previously, the xrep_extent_list basically implements a bitmap with two functions: set and disjoint union. Rename all these functions to xfs_bitmap to shorten the name and make it more obvious what we're doing. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
This commit is contained in:
parent
51d6269030
commit
86d969b425
@ -16,183 +16,186 @@
|
||||
#include "scrub/repair.h"
|
||||
#include "scrub/bitmap.h"
|
||||
|
||||
/* Collect a dead btree extent for later disposal. */
|
||||
/*
|
||||
* Set a range of this bitmap. Caller must ensure the range is not set.
|
||||
*
|
||||
* This is the logical equivalent of bitmap |= mask(start, len).
|
||||
*/
|
||||
int
|
||||
xrep_collect_btree_extent(
|
||||
struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist,
|
||||
xfs_fsblock_t fsbno,
|
||||
xfs_extlen_t len)
|
||||
xfs_bitmap_set(
|
||||
struct xfs_bitmap *bitmap,
|
||||
uint64_t start,
|
||||
uint64_t len)
|
||||
{
|
||||
struct xrep_extent *rex;
|
||||
struct xfs_bitmap_range *bmr;
|
||||
|
||||
trace_xrep_collect_btree_extent(sc->mp,
|
||||
XFS_FSB_TO_AGNO(sc->mp, fsbno),
|
||||
XFS_FSB_TO_AGBNO(sc->mp, fsbno), len);
|
||||
|
||||
rex = kmem_alloc(sizeof(struct xrep_extent), KM_MAYFAIL);
|
||||
if (!rex)
|
||||
bmr = kmem_alloc(sizeof(struct xfs_bitmap_range), KM_MAYFAIL);
|
||||
if (!bmr)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&rex->list);
|
||||
rex->fsbno = fsbno;
|
||||
rex->len = len;
|
||||
list_add_tail(&rex->list, &exlist->list);
|
||||
INIT_LIST_HEAD(&bmr->list);
|
||||
bmr->start = start;
|
||||
bmr->len = len;
|
||||
list_add_tail(&bmr->list, &bitmap->list);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* An error happened during the rebuild so the transaction will be cancelled.
|
||||
* The fs will shut down, and the administrator has to unmount and run repair.
|
||||
* Therefore, free all the memory associated with the list so we can die.
|
||||
*/
|
||||
/* Free everything related to this bitmap. */
|
||||
void
|
||||
xrep_cancel_btree_extents(
|
||||
struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist)
|
||||
xfs_bitmap_destroy(
|
||||
struct xfs_bitmap *bitmap)
|
||||
{
|
||||
struct xrep_extent *rex;
|
||||
struct xrep_extent *n;
|
||||
struct xfs_bitmap_range *bmr;
|
||||
struct xfs_bitmap_range *n;
|
||||
|
||||
for_each_xrep_extent_safe(rex, n, exlist) {
|
||||
list_del(&rex->list);
|
||||
kmem_free(rex);
|
||||
for_each_xfs_bitmap_extent(bmr, n, bitmap) {
|
||||
list_del(&bmr->list);
|
||||
kmem_free(bmr);
|
||||
}
|
||||
}
|
||||
|
||||
/* Set up a per-AG block bitmap. */
|
||||
void
|
||||
xfs_bitmap_init(
|
||||
struct xfs_bitmap *bitmap)
|
||||
{
|
||||
INIT_LIST_HEAD(&bitmap->list);
|
||||
}
|
||||
|
||||
/* Compare two btree extents. */
|
||||
static int
|
||||
xrep_btree_extent_cmp(
|
||||
xfs_bitmap_range_cmp(
|
||||
void *priv,
|
||||
struct list_head *a,
|
||||
struct list_head *b)
|
||||
{
|
||||
struct xrep_extent *ap;
|
||||
struct xrep_extent *bp;
|
||||
struct xfs_bitmap_range *ap;
|
||||
struct xfs_bitmap_range *bp;
|
||||
|
||||
ap = container_of(a, struct xrep_extent, list);
|
||||
bp = container_of(b, struct xrep_extent, list);
|
||||
ap = container_of(a, struct xfs_bitmap_range, list);
|
||||
bp = container_of(b, struct xfs_bitmap_range, list);
|
||||
|
||||
if (ap->fsbno > bp->fsbno)
|
||||
if (ap->start > bp->start)
|
||||
return 1;
|
||||
if (ap->fsbno < bp->fsbno)
|
||||
if (ap->start < bp->start)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove all the blocks mentioned in @sublist from the extents in @exlist.
|
||||
* Remove all the blocks mentioned in @sub from the extents in @bitmap.
|
||||
*
|
||||
* The intent is that callers will iterate the rmapbt for all of its records
|
||||
* for a given owner to generate @exlist; and iterate all the blocks of the
|
||||
* for a given owner to generate @bitmap; and iterate all the blocks of the
|
||||
* metadata structures that are not being rebuilt and have the same rmapbt
|
||||
* owner to generate @sublist. This routine subtracts all the extents
|
||||
* mentioned in sublist from all the extents linked in @exlist, which leaves
|
||||
* @exlist as the list of blocks that are not accounted for, which we assume
|
||||
* owner to generate @sub. This routine subtracts all the extents
|
||||
* mentioned in sub from all the extents linked in @bitmap, which leaves
|
||||
* @bitmap as the list of blocks that are not accounted for, which we assume
|
||||
* are the dead blocks of the old metadata structure. The blocks mentioned in
|
||||
* @exlist can be reaped.
|
||||
* @bitmap can be reaped.
|
||||
*
|
||||
* This is the logical equivalent of bitmap &= ~sub.
|
||||
*/
|
||||
#define LEFT_ALIGNED (1 << 0)
|
||||
#define RIGHT_ALIGNED (1 << 1)
|
||||
int
|
||||
xrep_subtract_extents(
|
||||
struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist,
|
||||
struct xrep_extent_list *sublist)
|
||||
xfs_bitmap_disunion(
|
||||
struct xfs_bitmap *bitmap,
|
||||
struct xfs_bitmap *sub)
|
||||
{
|
||||
struct list_head *lp;
|
||||
struct xrep_extent *ex;
|
||||
struct xrep_extent *newex;
|
||||
struct xrep_extent *subex;
|
||||
xfs_fsblock_t sub_fsb;
|
||||
xfs_extlen_t sub_len;
|
||||
struct xfs_bitmap_range *br;
|
||||
struct xfs_bitmap_range *new_br;
|
||||
struct xfs_bitmap_range *sub_br;
|
||||
uint64_t sub_start;
|
||||
uint64_t sub_len;
|
||||
int state;
|
||||
int error = 0;
|
||||
|
||||
if (list_empty(&exlist->list) || list_empty(&sublist->list))
|
||||
if (list_empty(&bitmap->list) || list_empty(&sub->list))
|
||||
return 0;
|
||||
ASSERT(!list_empty(&sublist->list));
|
||||
ASSERT(!list_empty(&sub->list));
|
||||
|
||||
list_sort(NULL, &exlist->list, xrep_btree_extent_cmp);
|
||||
list_sort(NULL, &sublist->list, xrep_btree_extent_cmp);
|
||||
list_sort(NULL, &bitmap->list, xfs_bitmap_range_cmp);
|
||||
list_sort(NULL, &sub->list, xfs_bitmap_range_cmp);
|
||||
|
||||
/*
|
||||
* Now that we've sorted both lists, we iterate exlist once, rolling
|
||||
* forward through sublist and/or exlist as necessary until we find an
|
||||
* Now that we've sorted both lists, we iterate bitmap once, rolling
|
||||
* forward through sub and/or bitmap as necessary until we find an
|
||||
* overlap or reach the end of either list. We do not reset lp to the
|
||||
* head of exlist nor do we reset subex to the head of sublist. The
|
||||
* head of bitmap nor do we reset sub_br to the head of sub. The
|
||||
* list traversal is similar to merge sort, but we're deleting
|
||||
* instead. In this manner we avoid O(n^2) operations.
|
||||
*/
|
||||
subex = list_first_entry(&sublist->list, struct xrep_extent,
|
||||
sub_br = list_first_entry(&sub->list, struct xfs_bitmap_range,
|
||||
list);
|
||||
lp = exlist->list.next;
|
||||
while (lp != &exlist->list) {
|
||||
ex = list_entry(lp, struct xrep_extent, list);
|
||||
lp = bitmap->list.next;
|
||||
while (lp != &bitmap->list) {
|
||||
br = list_entry(lp, struct xfs_bitmap_range, list);
|
||||
|
||||
/*
|
||||
* Advance subex and/or ex until we find a pair that
|
||||
* Advance sub_br and/or br until we find a pair that
|
||||
* intersect or we run out of extents.
|
||||
*/
|
||||
while (subex->fsbno + subex->len <= ex->fsbno) {
|
||||
if (list_is_last(&subex->list, &sublist->list))
|
||||
while (sub_br->start + sub_br->len <= br->start) {
|
||||
if (list_is_last(&sub_br->list, &sub->list))
|
||||
goto out;
|
||||
subex = list_next_entry(subex, list);
|
||||
sub_br = list_next_entry(sub_br, list);
|
||||
}
|
||||
if (subex->fsbno >= ex->fsbno + ex->len) {
|
||||
if (sub_br->start >= br->start + br->len) {
|
||||
lp = lp->next;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* trim subex to fit the extent we have */
|
||||
sub_fsb = subex->fsbno;
|
||||
sub_len = subex->len;
|
||||
if (subex->fsbno < ex->fsbno) {
|
||||
sub_len -= ex->fsbno - subex->fsbno;
|
||||
sub_fsb = ex->fsbno;
|
||||
/* trim sub_br to fit the extent we have */
|
||||
sub_start = sub_br->start;
|
||||
sub_len = sub_br->len;
|
||||
if (sub_br->start < br->start) {
|
||||
sub_len -= br->start - sub_br->start;
|
||||
sub_start = br->start;
|
||||
}
|
||||
if (sub_len > ex->len)
|
||||
sub_len = ex->len;
|
||||
if (sub_len > br->len)
|
||||
sub_len = br->len;
|
||||
|
||||
state = 0;
|
||||
if (sub_fsb == ex->fsbno)
|
||||
if (sub_start == br->start)
|
||||
state |= LEFT_ALIGNED;
|
||||
if (sub_fsb + sub_len == ex->fsbno + ex->len)
|
||||
if (sub_start + sub_len == br->start + br->len)
|
||||
state |= RIGHT_ALIGNED;
|
||||
switch (state) {
|
||||
case LEFT_ALIGNED:
|
||||
/* Coincides with only the left. */
|
||||
ex->fsbno += sub_len;
|
||||
ex->len -= sub_len;
|
||||
br->start += sub_len;
|
||||
br->len -= sub_len;
|
||||
break;
|
||||
case RIGHT_ALIGNED:
|
||||
/* Coincides with only the right. */
|
||||
ex->len -= sub_len;
|
||||
br->len -= sub_len;
|
||||
lp = lp->next;
|
||||
break;
|
||||
case LEFT_ALIGNED | RIGHT_ALIGNED:
|
||||
/* Total overlap, just delete ex. */
|
||||
lp = lp->next;
|
||||
list_del(&ex->list);
|
||||
kmem_free(ex);
|
||||
list_del(&br->list);
|
||||
kmem_free(br);
|
||||
break;
|
||||
case 0:
|
||||
/*
|
||||
* Deleting from the middle: add the new right extent
|
||||
* and then shrink the left extent.
|
||||
*/
|
||||
newex = kmem_alloc(sizeof(struct xrep_extent),
|
||||
new_br = kmem_alloc(sizeof(struct xfs_bitmap_range),
|
||||
KM_MAYFAIL);
|
||||
if (!newex) {
|
||||
if (!new_br) {
|
||||
error = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
INIT_LIST_HEAD(&newex->list);
|
||||
newex->fsbno = sub_fsb + sub_len;
|
||||
newex->len = ex->fsbno + ex->len - newex->fsbno;
|
||||
list_add(&newex->list, &ex->list);
|
||||
ex->len = sub_fsb - ex->fsbno;
|
||||
INIT_LIST_HEAD(&new_br->list);
|
||||
new_br->start = sub_start + sub_len;
|
||||
new_br->len = br->start + br->len - new_br->start;
|
||||
list_add(&new_br->list, &br->list);
|
||||
br->len = sub_start - br->start;
|
||||
lp = lp->next;
|
||||
break;
|
||||
default:
|
||||
|
@ -6,32 +6,27 @@
|
||||
#ifndef __XFS_SCRUB_BITMAP_H__
|
||||
#define __XFS_SCRUB_BITMAP_H__
|
||||
|
||||
struct xrep_extent {
|
||||
struct xfs_bitmap_range {
|
||||
struct list_head list;
|
||||
xfs_fsblock_t fsbno;
|
||||
xfs_extlen_t len;
|
||||
uint64_t start;
|
||||
uint64_t len;
|
||||
};
|
||||
|
||||
struct xrep_extent_list {
|
||||
struct xfs_bitmap {
|
||||
struct list_head list;
|
||||
};
|
||||
|
||||
static inline void
|
||||
xrep_init_extent_list(
|
||||
struct xrep_extent_list *exlist)
|
||||
{
|
||||
INIT_LIST_HEAD(&exlist->list);
|
||||
}
|
||||
void xfs_bitmap_init(struct xfs_bitmap *bitmap);
|
||||
void xfs_bitmap_destroy(struct xfs_bitmap *bitmap);
|
||||
|
||||
#define for_each_xrep_extent_safe(rbe, n, exlist) \
|
||||
list_for_each_entry_safe((rbe), (n), &(exlist)->list, list)
|
||||
int xrep_collect_btree_extent(struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *btlist, xfs_fsblock_t fsbno,
|
||||
xfs_extlen_t len);
|
||||
void xrep_cancel_btree_extents(struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *btlist);
|
||||
int xrep_subtract_extents(struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist,
|
||||
struct xrep_extent_list *sublist);
|
||||
#define for_each_xfs_bitmap_extent(bex, n, bitmap) \
|
||||
list_for_each_entry_safe((bex), (n), &(bitmap)->list, list)
|
||||
|
||||
#define for_each_xfs_bitmap_block(b, bex, n, bitmap) \
|
||||
list_for_each_entry_safe((bex), (n), &(bitmap)->list, list) \
|
||||
for ((b) = bex->start; (b) < bex->start + bex->len; (b)++)
|
||||
|
||||
int xfs_bitmap_set(struct xfs_bitmap *bitmap, uint64_t start, uint64_t len);
|
||||
int xfs_bitmap_disunion(struct xfs_bitmap *bitmap, struct xfs_bitmap *sub);
|
||||
|
||||
#endif /* __XFS_SCRUB_BITMAP_H__ */
|
||||
|
@ -368,17 +368,17 @@ xrep_init_btblock(
|
||||
*
|
||||
* However, that leaves the matter of removing all the metadata describing the
|
||||
* old broken structure. For primary metadata we use the rmap data to collect
|
||||
* every extent with a matching rmap owner (exlist); we then iterate all other
|
||||
* every extent with a matching rmap owner (bitmap); we then iterate all other
|
||||
* metadata structures with the same rmap owner to collect the extents that
|
||||
* cannot be removed (sublist). We then subtract sublist from exlist to
|
||||
* cannot be removed (sublist). We then subtract sublist from bitmap to
|
||||
* derive the blocks that were used by the old btree. These blocks can be
|
||||
* reaped.
|
||||
*
|
||||
* For rmapbt reconstructions we must use different tactics for extent
|
||||
* collection. First we iterate all primary metadata (this excludes the old
|
||||
* rmapbt, obviously) to generate new rmap records. The gaps in the rmap
|
||||
* records are collected as exlist. The bnobt records are collected as
|
||||
* sublist. As with the other btrees we subtract sublist from exlist, and the
|
||||
* records are collected as bitmap. The bnobt records are collected as
|
||||
* sublist. As with the other btrees we subtract sublist from bitmap, and the
|
||||
* result (since the rmapbt lives in the free space) are the blocks from the
|
||||
* old rmapbt.
|
||||
*
|
||||
@ -386,11 +386,11 @@ xrep_init_btblock(
|
||||
*
|
||||
* Now that we've constructed a new btree to replace the damaged one, we want
|
||||
* to dispose of the blocks that (we think) the old btree was using.
|
||||
* Previously, we used the rmapbt to collect the extents (exlist) with the
|
||||
* Previously, we used the rmapbt to collect the extents (bitmap) with the
|
||||
* rmap owner corresponding to the tree we rebuilt, collected extents for any
|
||||
* blocks with the same rmap owner that are owned by another data structure
|
||||
* (sublist), and subtracted sublist from exlist. In theory the extents
|
||||
* remaining in exlist are the old btree's blocks.
|
||||
* (sublist), and subtracted sublist from bitmap. In theory the extents
|
||||
* remaining in bitmap are the old btree's blocks.
|
||||
*
|
||||
* Unfortunately, it's possible that the btree was crosslinked with other
|
||||
* blocks on disk. The rmap data can tell us if there are multiple owners, so
|
||||
@ -406,7 +406,7 @@ xrep_init_btblock(
|
||||
* If there are no rmap records at all, we also free the block. If the btree
|
||||
* being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
|
||||
* supposed to be a rmap record and everything is ok. For other btrees there
|
||||
* had to have been an rmap entry for the block to have ended up on @exlist,
|
||||
* had to have been an rmap entry for the block to have ended up on @bitmap,
|
||||
* so if it's gone now there's something wrong and the fs will shut down.
|
||||
*
|
||||
* Note: If there are multiple rmap records with only the same rmap owner as
|
||||
@ -419,7 +419,7 @@ xrep_init_btblock(
|
||||
* The caller is responsible for locking the AG headers for the entire rebuild
|
||||
* operation so that nothing else can sneak in and change the AG state while
|
||||
* we're not looking. We also assume that the caller already invalidated any
|
||||
* buffers associated with @exlist.
|
||||
* buffers associated with @bitmap.
|
||||
*/
|
||||
|
||||
/*
|
||||
@ -429,13 +429,12 @@ xrep_init_btblock(
|
||||
int
|
||||
xrep_invalidate_blocks(
|
||||
struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist)
|
||||
struct xfs_bitmap *bitmap)
|
||||
{
|
||||
struct xrep_extent *rex;
|
||||
struct xrep_extent *n;
|
||||
struct xfs_bitmap_range *bmr;
|
||||
struct xfs_bitmap_range *n;
|
||||
struct xfs_buf *bp;
|
||||
xfs_fsblock_t fsbno;
|
||||
xfs_agblock_t i;
|
||||
|
||||
/*
|
||||
* For each block in each extent, see if there's an incore buffer for
|
||||
@ -445,18 +444,16 @@ xrep_invalidate_blocks(
|
||||
* because we never own those; and if we can't TRYLOCK the buffer we
|
||||
* assume it's owned by someone else.
|
||||
*/
|
||||
for_each_xrep_extent_safe(rex, n, exlist) {
|
||||
for (fsbno = rex->fsbno, i = rex->len; i > 0; fsbno++, i--) {
|
||||
/* Skip AG headers and post-EOFS blocks */
|
||||
if (!xfs_verify_fsbno(sc->mp, fsbno))
|
||||
continue;
|
||||
bp = xfs_buf_incore(sc->mp->m_ddev_targp,
|
||||
XFS_FSB_TO_DADDR(sc->mp, fsbno),
|
||||
XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
|
||||
if (bp) {
|
||||
xfs_trans_bjoin(sc->tp, bp);
|
||||
xfs_trans_binval(sc->tp, bp);
|
||||
}
|
||||
for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
|
||||
/* Skip AG headers and post-EOFS blocks */
|
||||
if (!xfs_verify_fsbno(sc->mp, fsbno))
|
||||
continue;
|
||||
bp = xfs_buf_incore(sc->mp->m_ddev_targp,
|
||||
XFS_FSB_TO_DADDR(sc->mp, fsbno),
|
||||
XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
|
||||
if (bp) {
|
||||
xfs_trans_bjoin(sc->tp, bp);
|
||||
xfs_trans_binval(sc->tp, bp);
|
||||
}
|
||||
}
|
||||
|
||||
@ -519,9 +516,9 @@ xrep_put_freelist(
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Dispose of a single metadata block. */
|
||||
/* Dispose of a single block. */
|
||||
STATIC int
|
||||
xrep_dispose_btree_block(
|
||||
xrep_reap_block(
|
||||
struct xfs_scrub *sc,
|
||||
xfs_fsblock_t fsbno,
|
||||
struct xfs_owner_info *oinfo,
|
||||
@ -593,41 +590,35 @@ out_free:
|
||||
return error;
|
||||
}
|
||||
|
||||
/* Dispose of btree blocks from an old per-AG btree. */
|
||||
/* Dispose of every block of every extent in the bitmap. */
|
||||
int
|
||||
xrep_reap_btree_extents(
|
||||
xrep_reap_extents(
|
||||
struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist,
|
||||
struct xfs_bitmap *bitmap,
|
||||
struct xfs_owner_info *oinfo,
|
||||
enum xfs_ag_resv_type type)
|
||||
{
|
||||
struct xrep_extent *rex;
|
||||
struct xrep_extent *n;
|
||||
struct xfs_bitmap_range *bmr;
|
||||
struct xfs_bitmap_range *n;
|
||||
xfs_fsblock_t fsbno;
|
||||
int error = 0;
|
||||
|
||||
ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
|
||||
|
||||
/* Dispose of every block from the old btree. */
|
||||
for_each_xrep_extent_safe(rex, n, exlist) {
|
||||
for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
|
||||
ASSERT(sc->ip != NULL ||
|
||||
XFS_FSB_TO_AGNO(sc->mp, rex->fsbno) == sc->sa.agno);
|
||||
|
||||
XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
|
||||
trace_xrep_dispose_btree_extent(sc->mp,
|
||||
XFS_FSB_TO_AGNO(sc->mp, rex->fsbno),
|
||||
XFS_FSB_TO_AGBNO(sc->mp, rex->fsbno), rex->len);
|
||||
XFS_FSB_TO_AGNO(sc->mp, fsbno),
|
||||
XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
|
||||
|
||||
for (; rex->len > 0; rex->len--, rex->fsbno++) {
|
||||
error = xrep_dispose_btree_block(sc, rex->fsbno,
|
||||
oinfo, type);
|
||||
if (error)
|
||||
goto out;
|
||||
}
|
||||
list_del(&rex->list);
|
||||
kmem_free(rex);
|
||||
error = xrep_reap_block(sc, fsbno, oinfo, type);
|
||||
if (error)
|
||||
goto out;
|
||||
}
|
||||
|
||||
out:
|
||||
xrep_cancel_btree_extents(sc, exlist);
|
||||
xfs_bitmap_destroy(bitmap);
|
||||
return error;
|
||||
}
|
||||
|
||||
|
@ -27,13 +27,11 @@ int xrep_init_btblock(struct xfs_scrub *sc, xfs_fsblock_t fsb,
|
||||
struct xfs_buf **bpp, xfs_btnum_t btnum,
|
||||
const struct xfs_buf_ops *ops);
|
||||
|
||||
struct xrep_extent_list;
|
||||
struct xfs_bitmap;
|
||||
|
||||
int xrep_fix_freelist(struct xfs_scrub *sc, bool can_shrink);
|
||||
int xrep_invalidate_blocks(struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *btlist);
|
||||
int xrep_reap_btree_extents(struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist,
|
||||
int xrep_invalidate_blocks(struct xfs_scrub *sc, struct xfs_bitmap *btlist);
|
||||
int xrep_reap_extents(struct xfs_scrub *sc, struct xfs_bitmap *exlist,
|
||||
struct xfs_owner_info *oinfo, enum xfs_ag_resv_type type);
|
||||
|
||||
struct xrep_find_ag_btree {
|
||||
|
@ -511,7 +511,6 @@ DEFINE_EVENT(xrep_extent_class, name, \
|
||||
xfs_agblock_t agbno, xfs_extlen_t len), \
|
||||
TP_ARGS(mp, agno, agbno, len))
|
||||
DEFINE_REPAIR_EXTENT_EVENT(xrep_dispose_btree_extent);
|
||||
DEFINE_REPAIR_EXTENT_EVENT(xrep_collect_btree_extent);
|
||||
DEFINE_REPAIR_EXTENT_EVENT(xrep_agfl_insert);
|
||||
|
||||
DECLARE_EVENT_CLASS(xrep_rmap_class,
|
||||
|
Loading…
Reference in New Issue
Block a user