serial: sirf: add DMA support using dmaengine APIs

if we get the valid dma channels from dts, move to use dmaengine to do
rx/tx. because the dma hardware requires dma address and length to be
4bytes aligned, in this driver, we will still use PIO for non-aligned
bytes, and use dma for aligned bytes.

for rx, to keep the dmaengine always active, we use double-buffer, so
we issue two dma_desc at first, and maintain the status of both
1. dma transfer done: update in rx dma finish callback
2. dma buffer is inserted into tty: update in rx dma finish tasklet and
   rx timeout tasklet
so we re-issue the dma_desc only if both 1&2 are finished.

for tx, as we know the actual length for every transfer, we don't need
the above double buffering.

Signed-off-by: Qipan Li <Qipan.Li@csr.com>
Signed-off-by: Barry Song <Baohua.Song@csr.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Qipan Li 2013-08-19 11:47:53 +08:00 committed by Greg Kroah-Hartman
parent 15cdcb12cb
commit 8316d04c42
2 changed files with 614 additions and 55 deletions

View File

@ -21,6 +21,10 @@
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/of_gpio.h> #include <linux/of_gpio.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/sirfsoc_dma.h>
#include <asm/irq.h> #include <asm/irq.h>
#include <asm/mach/irq.h> #include <asm/mach/irq.h>
@ -32,6 +36,9 @@ static unsigned int
sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count); sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count);
static struct uart_driver sirfsoc_uart_drv; static struct uart_driver sirfsoc_uart_drv;
static void sirfsoc_uart_tx_dma_complete_callback(void *param);
static void sirfsoc_uart_start_next_rx_dma(struct uart_port *port);
static void sirfsoc_uart_rx_dma_complete_callback(void *param);
static const struct sirfsoc_baudrate_to_regv baudrate_to_regv[] = { static const struct sirfsoc_baudrate_to_regv baudrate_to_regv[] = {
{4000000, 2359296}, {4000000, 2359296},
{3500000, 1310721}, {3500000, 1310721},
@ -158,16 +165,115 @@ static void sirfsoc_uart_stop_tx(struct uart_port *port)
struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
unsigned int regv;
if (!sirfport->is_marco) { if (IS_DMA_CHAN_VALID(sirfport->tx_dma_no)) {
regv = rd_regl(port, ureg->sirfsoc_int_en_reg); if (sirfport->tx_dma_state == TX_DMA_RUNNING) {
dmaengine_pause(sirfport->tx_dma_chan);
sirfport->tx_dma_state = TX_DMA_PAUSE;
} else {
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) &
~uint_en->sirfsoc_txfifo_empty_en);
else
wr_regl(port, SIRFUART_INT_EN_CLR,
uint_en->sirfsoc_txfifo_empty_en);
}
} else {
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) &
~uint_en->sirfsoc_txfifo_empty_en);
else
wr_regl(port, SIRFUART_INT_EN_CLR,
uint_en->sirfsoc_txfifo_empty_en);
}
}
static void sirfsoc_uart_tx_with_dma(struct sirfsoc_uart_port *sirfport)
{
struct uart_port *port = &sirfport->port;
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
struct circ_buf *xmit = &port->state->xmit;
unsigned long tran_size;
unsigned long tran_start;
unsigned long pio_tx_size;
tran_size = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
tran_start = (unsigned long)(xmit->buf + xmit->tail);
if (uart_circ_empty(xmit) || uart_tx_stopped(port) ||
!tran_size)
return;
if (sirfport->tx_dma_state == TX_DMA_PAUSE) {
dmaengine_resume(sirfport->tx_dma_chan);
return;
}
if (sirfport->tx_dma_state == TX_DMA_RUNNING)
return;
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg, wr_regl(port, ureg->sirfsoc_int_en_reg,
regv & ~uint_en->sirfsoc_txfifo_empty_en); rd_regl(port, ureg->sirfsoc_int_en_reg)&
} else ~(uint_en->sirfsoc_txfifo_empty_en));
else
wr_regl(port, SIRFUART_INT_EN_CLR, wr_regl(port, SIRFUART_INT_EN_CLR,
uint_en->sirfsoc_txfifo_empty_en); uint_en->sirfsoc_txfifo_empty_en);
/*
* DMA requires buffer address and buffer length are both aligned with
* 4 bytes, so we use PIO for
* 1. if address is not aligned with 4bytes, use PIO for the first 1~3
* bytes, and move to DMA for the left part aligned with 4bytes
* 2. if buffer length is not aligned with 4bytes, use DMA for aligned
* part first, move to PIO for the left 1~3 bytes
*/
if (tran_size < 4 || BYTES_TO_ALIGN(tran_start)) {
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_STOP);
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_tx_dma_io_ctrl)|
SIRFUART_IO_MODE);
if (BYTES_TO_ALIGN(tran_start)) {
pio_tx_size = sirfsoc_uart_pio_tx_chars(sirfport,
BYTES_TO_ALIGN(tran_start));
tran_size -= pio_tx_size;
}
if (tran_size < 4)
sirfsoc_uart_pio_tx_chars(sirfport, tran_size);
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)|
uint_en->sirfsoc_txfifo_empty_en);
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_txfifo_empty_en);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START);
} else {
/* tx transfer mode switch into dma mode */
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_STOP);
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_tx_dma_io_ctrl)&
~SIRFUART_IO_MODE);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START);
tran_size &= ~(0x3);
sirfport->tx_dma_addr = dma_map_single(port->dev,
xmit->buf + xmit->tail,
tran_size, DMA_TO_DEVICE);
sirfport->tx_dma_desc = dmaengine_prep_slave_single(
sirfport->tx_dma_chan, sirfport->tx_dma_addr,
tran_size, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!sirfport->tx_dma_desc) {
dev_err(port->dev, "DMA prep slave single fail\n");
return;
}
sirfport->tx_dma_desc->callback =
sirfsoc_uart_tx_dma_complete_callback;
sirfport->tx_dma_desc->callback_param = (void *)sirfport;
sirfport->transfer_size = tran_size;
dmaengine_submit(sirfport->tx_dma_desc);
dma_async_issue_pending(sirfport->tx_dma_chan);
sirfport->tx_dma_state = TX_DMA_RUNNING;
}
} }
static void sirfsoc_uart_start_tx(struct uart_port *port) static void sirfsoc_uart_start_tx(struct uart_port *port)
@ -175,17 +281,19 @@ static void sirfsoc_uart_start_tx(struct uart_port *port)
struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
unsigned long regv; if (IS_DMA_CHAN_VALID(sirfport->tx_dma_no))
sirfsoc_uart_tx_with_dma(sirfport);
sirfsoc_uart_pio_tx_chars(sirfport, 1); else {
wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START); sirfsoc_uart_pio_tx_chars(sirfport, 1);
if (!sirfport->is_marco) { wr_regl(port, ureg->sirfsoc_tx_fifo_op, SIRFUART_FIFO_START);
regv = rd_regl(port, ureg->sirfsoc_int_en_reg); if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg, regv | wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_txfifo_empty_en); rd_regl(port, ureg->sirfsoc_int_en_reg)|
} else uint_en->sirfsoc_txfifo_empty_en);
wr_regl(port, ureg->sirfsoc_int_en_reg, else
uint_en->sirfsoc_txfifo_empty_en); wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_txfifo_empty_en);
}
} }
static void sirfsoc_uart_stop_rx(struct uart_port *port) static void sirfsoc_uart_stop_rx(struct uart_port *port)
@ -193,15 +301,28 @@ static void sirfsoc_uart_stop_rx(struct uart_port *port)
struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
unsigned long reg;
wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0); wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0);
if (!sirfport->is_marco) { if (IS_DMA_CHAN_VALID(sirfport->rx_dma_no)) {
reg = rd_regl(port, ureg->sirfsoc_int_en_reg); if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg, wr_regl(port, ureg->sirfsoc_int_en_reg,
reg & ~(SIRFUART_RX_IO_INT_EN(port, uint_en))); rd_regl(port, ureg->sirfsoc_int_en_reg) &
} else ~(SIRFUART_RX_DMA_INT_EN(port, uint_en) |
wr_regl(port, SIRFUART_INT_EN_CLR, uint_en->sirfsoc_rx_done_en));
SIRFUART_RX_IO_INT_EN(port, uint_en)); else
wr_regl(port, SIRFUART_INT_EN_CLR,
SIRFUART_RX_DMA_INT_EN(port, uint_en)|
uint_en->sirfsoc_rx_done_en);
dmaengine_terminate_all(sirfport->rx_dma_chan);
} else {
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg)&
~(SIRFUART_RX_IO_INT_EN(port, uint_en)));
else
wr_regl(port, SIRFUART_INT_EN_CLR,
SIRFUART_RX_IO_INT_EN(port, uint_en));
}
} }
static void sirfsoc_uart_disable_ms(struct uart_port *port) static void sirfsoc_uart_disable_ms(struct uart_port *port)
@ -298,6 +419,7 @@ sirfsoc_uart_pio_rx_chars(struct uart_port *port, unsigned int max_rx_count)
break; break;
} }
sirfport->rx_io_count += rx_count;
port->icount.rx += rx_count; port->icount.rx += rx_count;
tty_flip_buffer_push(&port->state->port); tty_flip_buffer_push(&port->state->port);
@ -327,6 +449,166 @@ sirfsoc_uart_pio_tx_chars(struct sirfsoc_uart_port *sirfport, int count)
return num_tx; return num_tx;
} }
static void sirfsoc_uart_tx_dma_complete_callback(void *param)
{
struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)param;
struct uart_port *port = &sirfport->port;
struct circ_buf *xmit = &port->state->xmit;
unsigned long flags;
xmit->tail = (xmit->tail + sirfport->transfer_size) &
(UART_XMIT_SIZE - 1);
port->icount.tx += sirfport->transfer_size;
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (sirfport->tx_dma_addr)
dma_unmap_single(port->dev, sirfport->tx_dma_addr,
sirfport->transfer_size, DMA_TO_DEVICE);
spin_lock_irqsave(&sirfport->tx_lock, flags);
sirfport->tx_dma_state = TX_DMA_IDLE;
sirfsoc_uart_tx_with_dma(sirfport);
spin_unlock_irqrestore(&sirfport->tx_lock, flags);
}
static void sirfsoc_uart_insert_rx_buf_to_tty(
struct sirfsoc_uart_port *sirfport, int count)
{
struct uart_port *port = &sirfport->port;
struct tty_port *tport = &port->state->port;
int inserted;
inserted = tty_insert_flip_string(tport,
sirfport->rx_dma_items[sirfport->rx_completed].xmit.buf, count);
port->icount.rx += inserted;
tty_flip_buffer_push(tport);
}
static void sirfsoc_rx_submit_one_dma_desc(struct uart_port *port, int index)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
sirfport->rx_dma_items[index].xmit.tail =
sirfport->rx_dma_items[index].xmit.head = 0;
sirfport->rx_dma_items[index].desc =
dmaengine_prep_slave_single(sirfport->rx_dma_chan,
sirfport->rx_dma_items[index].dma_addr, SIRFSOC_RX_DMA_BUF_SIZE,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
if (!sirfport->rx_dma_items[index].desc) {
dev_err(port->dev, "DMA slave single fail\n");
return;
}
sirfport->rx_dma_items[index].desc->callback =
sirfsoc_uart_rx_dma_complete_callback;
sirfport->rx_dma_items[index].desc->callback_param = sirfport;
sirfport->rx_dma_items[index].cookie =
dmaengine_submit(sirfport->rx_dma_items[index].desc);
dma_async_issue_pending(sirfport->rx_dma_chan);
}
static void sirfsoc_rx_tmo_process_tl(unsigned long param)
{
struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)param;
struct uart_port *port = &sirfport->port;
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
struct sirfsoc_int_status *uint_st = &sirfport->uart_reg->uart_int_st;
unsigned int count;
unsigned long flags;
spin_lock_irqsave(&sirfport->rx_lock, flags);
while (sirfport->rx_completed != sirfport->rx_issued) {
sirfsoc_uart_insert_rx_buf_to_tty(sirfport,
SIRFSOC_RX_DMA_BUF_SIZE);
sirfsoc_rx_submit_one_dma_desc(port, sirfport->rx_completed++);
sirfport->rx_completed %= SIRFSOC_RX_LOOP_BUF_CNT;
}
count = CIRC_CNT(sirfport->rx_dma_items[sirfport->rx_issued].xmit.head,
sirfport->rx_dma_items[sirfport->rx_issued].xmit.tail,
SIRFSOC_RX_DMA_BUF_SIZE);
if (count > 0)
sirfsoc_uart_insert_rx_buf_to_tty(sirfport, count);
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) |
SIRFUART_IO_MODE);
sirfsoc_uart_pio_rx_chars(port, 4 - sirfport->rx_io_count);
spin_unlock_irqrestore(&sirfport->rx_lock, flags);
if (sirfport->rx_io_count == 4) {
spin_lock_irqsave(&sirfport->rx_lock, flags);
sirfport->rx_io_count = 0;
wr_regl(port, ureg->sirfsoc_int_st_reg,
uint_st->sirfsoc_rx_done);
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) &
~(uint_en->sirfsoc_rx_done_en));
else
wr_regl(port, SIRFUART_INT_EN_CLR,
uint_en->sirfsoc_rx_done_en);
spin_unlock_irqrestore(&sirfport->rx_lock, flags);
sirfsoc_uart_start_next_rx_dma(port);
} else {
spin_lock_irqsave(&sirfport->rx_lock, flags);
wr_regl(port, ureg->sirfsoc_int_st_reg,
uint_st->sirfsoc_rx_done);
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) |
(uint_en->sirfsoc_rx_done_en));
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
uint_en->sirfsoc_rx_done_en);
spin_unlock_irqrestore(&sirfport->rx_lock, flags);
}
}
static void sirfsoc_uart_handle_rx_tmo(struct sirfsoc_uart_port *sirfport)
{
struct uart_port *port = &sirfport->port;
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
struct dma_tx_state tx_state;
spin_lock(&sirfport->rx_lock);
dmaengine_tx_status(sirfport->rx_dma_chan,
sirfport->rx_dma_items[sirfport->rx_issued].cookie, &tx_state);
dmaengine_terminate_all(sirfport->rx_dma_chan);
sirfport->rx_dma_items[sirfport->rx_issued].xmit.head =
SIRFSOC_RX_DMA_BUF_SIZE - tx_state.residue;
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) &
~(uint_en->sirfsoc_rx_timeout_en));
else
wr_regl(port, SIRFUART_INT_EN_CLR,
uint_en->sirfsoc_rx_timeout_en);
spin_unlock(&sirfport->rx_lock);
tasklet_schedule(&sirfport->rx_tmo_process_tasklet);
}
static void sirfsoc_uart_handle_rx_done(struct sirfsoc_uart_port *sirfport)
{
struct uart_port *port = &sirfport->port;
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
struct sirfsoc_int_status *uint_st = &sirfport->uart_reg->uart_int_st;
sirfsoc_uart_pio_rx_chars(port, 4 - sirfport->rx_io_count);
if (sirfport->rx_io_count == 4) {
sirfport->rx_io_count = 0;
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) &
~(uint_en->sirfsoc_rx_done_en));
else
wr_regl(port, SIRFUART_INT_EN_CLR,
uint_en->sirfsoc_rx_done_en);
wr_regl(port, ureg->sirfsoc_int_st_reg,
uint_st->sirfsoc_rx_timeout);
sirfsoc_uart_start_next_rx_dma(port);
}
}
static irqreturn_t sirfsoc_uart_isr(int irq, void *dev_id) static irqreturn_t sirfsoc_uart_isr(int irq, void *dev_id)
{ {
unsigned long intr_status; unsigned long intr_status;
@ -343,6 +625,7 @@ static irqreturn_t sirfsoc_uart_isr(int irq, void *dev_id)
spin_lock(&port->lock); spin_lock(&port->lock);
intr_status = rd_regl(port, ureg->sirfsoc_int_st_reg); intr_status = rd_regl(port, ureg->sirfsoc_int_st_reg);
wr_regl(port, ureg->sirfsoc_int_st_reg, intr_status); wr_regl(port, ureg->sirfsoc_int_st_reg, intr_status);
intr_status &= rd_regl(port, ureg->sirfsoc_int_en_reg);
if (unlikely(intr_status & (SIRFUART_ERR_INT_STAT(port, uint_st)))) { if (unlikely(intr_status & (SIRFUART_ERR_INT_STAT(port, uint_st)))) {
if (intr_status & uint_st->sirfsoc_rxd_brk) { if (intr_status & uint_st->sirfsoc_rxd_brk) {
port->icount.brk++; port->icount.brk++;
@ -367,7 +650,8 @@ static irqreturn_t sirfsoc_uart_isr(int irq, void *dev_id)
} }
recv_char: recv_char:
if ((sirfport->uart_reg->uart_type == SIRF_REAL_UART) && if ((sirfport->uart_reg->uart_type == SIRF_REAL_UART) &&
(intr_status & SIRFUART_CTS_INT_ST(uint_st))) { (intr_status & SIRFUART_CTS_INT_ST(uint_st)) &&
!sirfport->tx_dma_state) {
cts_status = rd_regl(port, ureg->sirfsoc_afc_ctrl) & cts_status = rd_regl(port, ureg->sirfsoc_afc_ctrl) &
SIRFUART_AFC_CTS_STATUS; SIRFUART_AFC_CTS_STATUS;
if (cts_status != 0) if (cts_status != 0)
@ -377,41 +661,111 @@ recv_char:
uart_handle_cts_change(port, cts_status); uart_handle_cts_change(port, cts_status);
wake_up_interruptible(&state->port.delta_msr_wait); wake_up_interruptible(&state->port.delta_msr_wait);
} }
if (intr_status & SIRFUART_RX_IO_INT_ST(uint_st)) if (IS_DMA_CHAN_VALID(sirfport->rx_dma_no)) {
sirfsoc_uart_pio_rx_chars(port, SIRFSOC_UART_IO_RX_MAX_CNT); if (intr_status & uint_st->sirfsoc_rx_timeout)
sirfsoc_uart_handle_rx_tmo(sirfport);
if (intr_status & uint_st->sirfsoc_rx_done)
sirfsoc_uart_handle_rx_done(sirfport);
} else {
if (intr_status & SIRFUART_RX_IO_INT_ST(uint_st))
sirfsoc_uart_pio_rx_chars(port,
SIRFSOC_UART_IO_RX_MAX_CNT);
}
if (intr_status & uint_st->sirfsoc_txfifo_empty) { if (intr_status & uint_st->sirfsoc_txfifo_empty) {
if (uart_circ_empty(xmit) || uart_tx_stopped(port)) { if (IS_DMA_CHAN_VALID(sirfport->tx_dma_no))
spin_unlock(&port->lock); sirfsoc_uart_tx_with_dma(sirfport);
return IRQ_HANDLED; else {
} else { if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
sirfsoc_uart_pio_tx_chars(sirfport, spin_unlock(&port->lock);
return IRQ_HANDLED;
} else {
sirfsoc_uart_pio_tx_chars(sirfport,
SIRFSOC_UART_IO_TX_REASONABLE_CNT); SIRFSOC_UART_IO_TX_REASONABLE_CNT);
if ((uart_circ_empty(xmit)) && if ((uart_circ_empty(xmit)) &&
(rd_regl(port, ureg->sirfsoc_tx_fifo_status) & (rd_regl(port, ureg->sirfsoc_tx_fifo_status) &
ufifo_st->ff_empty(port->line))) ufifo_st->ff_empty(port->line)))
sirfsoc_uart_stop_tx(port); sirfsoc_uart_stop_tx(port);
}
} }
} }
spin_unlock(&port->lock); spin_unlock(&port->lock);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static void sirfsoc_uart_rx_dma_complete_tl(unsigned long param)
{
struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)param;
struct uart_port *port = &sirfport->port;
unsigned long flags;
spin_lock_irqsave(&sirfport->rx_lock, flags);
while (sirfport->rx_completed != sirfport->rx_issued) {
sirfsoc_uart_insert_rx_buf_to_tty(sirfport,
SIRFSOC_RX_DMA_BUF_SIZE);
sirfsoc_rx_submit_one_dma_desc(port, sirfport->rx_completed++);
sirfport->rx_completed %= SIRFSOC_RX_LOOP_BUF_CNT;
}
spin_unlock_irqrestore(&sirfport->rx_lock, flags);
}
static void sirfsoc_uart_rx_dma_complete_callback(void *param)
{
struct sirfsoc_uart_port *sirfport = (struct sirfsoc_uart_port *)param;
spin_lock(&sirfport->rx_lock);
sirfport->rx_issued++;
sirfport->rx_issued %= SIRFSOC_RX_LOOP_BUF_CNT;
spin_unlock(&sirfport->rx_lock);
tasklet_schedule(&sirfport->rx_dma_complete_tasklet);
}
/* submit rx dma task into dmaengine */
static void sirfsoc_uart_start_next_rx_dma(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
unsigned long flags;
int i;
spin_lock_irqsave(&sirfport->rx_lock, flags);
sirfport->rx_io_count = 0;
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl,
rd_regl(port, ureg->sirfsoc_rx_dma_io_ctrl) &
~SIRFUART_IO_MODE);
spin_unlock_irqrestore(&sirfport->rx_lock, flags);
for (i = 0; i < SIRFSOC_RX_LOOP_BUF_CNT; i++)
sirfsoc_rx_submit_one_dma_desc(port, i);
sirfport->rx_completed = sirfport->rx_issued = 0;
spin_lock_irqsave(&sirfport->rx_lock, flags);
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) |
SIRFUART_RX_DMA_INT_EN(port, uint_en));
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
SIRFUART_RX_DMA_INT_EN(port, uint_en));
spin_unlock_irqrestore(&sirfport->rx_lock, flags);
}
static void sirfsoc_uart_start_rx(struct uart_port *port) static void sirfsoc_uart_start_rx(struct uart_port *port)
{ {
struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_uart_port *sirfport = to_sirfport(port);
struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg; struct sirfsoc_register *ureg = &sirfport->uart_reg->uart_reg;
struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en; struct sirfsoc_int_en *uint_en = &sirfport->uart_reg->uart_int_en;
unsigned long regv;
if (!sirfport->is_marco) { sirfport->rx_io_count = 0;
regv = rd_regl(port, ureg->sirfsoc_int_en_reg);
wr_regl(port, ureg->sirfsoc_int_en_reg, regv |
SIRFUART_RX_IO_INT_EN(port, uint_en));
} else
wr_regl(port, ureg->sirfsoc_int_en_reg,
SIRFUART_RX_IO_INT_EN(port, uint_en));
wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_RESET); wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_RESET);
wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0); wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0);
wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_START); wr_regl(port, ureg->sirfsoc_rx_fifo_op, SIRFUART_FIFO_START);
if (IS_DMA_CHAN_VALID(sirfport->rx_dma_no))
sirfsoc_uart_start_next_rx_dma(port);
else {
if (!sirfport->is_marco)
wr_regl(port, ureg->sirfsoc_int_en_reg,
rd_regl(port, ureg->sirfsoc_int_en_reg) |
SIRFUART_RX_IO_INT_EN(port, uint_en));
else
wr_regl(port, ureg->sirfsoc_int_en_reg,
SIRFUART_RX_IO_INT_EN(port, uint_en));
}
} }
static unsigned int static unsigned int
@ -488,10 +842,9 @@ static void sirfsoc_uart_set_termios(struct uart_port *port,
unsigned long flags; unsigned long flags;
unsigned long ic; unsigned long ic;
unsigned int clk_div_reg = 0; unsigned int clk_div_reg = 0;
unsigned long temp_reg_val, ioclk_rate; unsigned long txfifo_op_reg, ioclk_rate;
unsigned long rx_time_out; unsigned long rx_time_out;
int threshold_div; int threshold_div;
int temp;
u32 data_bit_len, stop_bit_len, len_val; u32 data_bit_len, stop_bit_len, len_val;
unsigned long sample_div_reg = 0xf; unsigned long sample_div_reg = 0xf;
ioclk_rate = port->uartclk; ioclk_rate = port->uartclk;
@ -606,10 +959,10 @@ static void sirfsoc_uart_set_termios(struct uart_port *port,
/* set receive timeout && data bits len */ /* set receive timeout && data bits len */
rx_time_out = SIRFSOC_UART_RX_TIMEOUT(set_baud, 20000); rx_time_out = SIRFSOC_UART_RX_TIMEOUT(set_baud, 20000);
rx_time_out = SIRFUART_RECV_TIMEOUT_VALUE(rx_time_out); rx_time_out = SIRFUART_RECV_TIMEOUT_VALUE(rx_time_out);
temp_reg_val = rd_regl(port, ureg->sirfsoc_tx_fifo_op); txfifo_op_reg = rd_regl(port, ureg->sirfsoc_tx_fifo_op);
wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0); wr_regl(port, ureg->sirfsoc_rx_fifo_op, 0);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, wr_regl(port, ureg->sirfsoc_tx_fifo_op,
(temp_reg_val & ~SIRFUART_FIFO_START)); (txfifo_op_reg & ~SIRFUART_FIFO_START));
if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) { if (sirfport->uart_reg->uart_type == SIRF_REAL_UART) {
config_reg |= SIRFUART_RECV_TIMEOUT(port, rx_time_out); config_reg |= SIRFUART_RECV_TIMEOUT(port, rx_time_out);
wr_regl(port, ureg->sirfsoc_line_ctrl, config_reg); wr_regl(port, ureg->sirfsoc_line_ctrl, config_reg);
@ -631,24 +984,118 @@ static void sirfsoc_uart_set_termios(struct uart_port *port,
(SIRFUART_RECV_TIMEOUT(port, rx_time_out)) | (SIRFUART_RECV_TIMEOUT(port, rx_time_out)) |
(sample_div_reg & 0x3f) << 16); (sample_div_reg & 0x3f) << 16);
} }
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, SIRFUART_IO_MODE); if (IS_DMA_CHAN_VALID(sirfport->tx_dma_no))
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, SIRFUART_IO_MODE); wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, SIRFUART_DMA_MODE);
else
wr_regl(port, ureg->sirfsoc_tx_dma_io_ctrl, SIRFUART_IO_MODE);
if (IS_DMA_CHAN_VALID(sirfport->rx_dma_no))
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, SIRFUART_DMA_MODE);
else
wr_regl(port, ureg->sirfsoc_rx_dma_io_ctrl, SIRFUART_IO_MODE);
/* Reset Rx/Tx FIFO Threshold level for proper baudrate */ /* Reset Rx/Tx FIFO Threshold level for proper baudrate */
if (set_baud < 1000000) if (set_baud < 1000000)
threshold_div = 1; threshold_div = 1;
else else
threshold_div = 2; threshold_div = 2;
temp = SIRFUART_FIFO_THD(port); wr_regl(port, ureg->sirfsoc_tx_fifo_ctrl,
wr_regl(port, ureg->sirfsoc_tx_fifo_ctrl, temp / threshold_div); SIRFUART_FIFO_THD(port) / threshold_div);
wr_regl(port, ureg->sirfsoc_rx_fifo_ctrl, temp / threshold_div); wr_regl(port, ureg->sirfsoc_rx_fifo_ctrl,
temp_reg_val |= SIRFUART_FIFO_START; SIRFUART_FIFO_THD(port) / threshold_div);
wr_regl(port, ureg->sirfsoc_tx_fifo_op, temp_reg_val); txfifo_op_reg |= SIRFUART_FIFO_START;
wr_regl(port, ureg->sirfsoc_tx_fifo_op, txfifo_op_reg);
uart_update_timeout(port, termios->c_cflag, set_baud); uart_update_timeout(port, termios->c_cflag, set_baud);
sirfsoc_uart_start_rx(port); sirfsoc_uart_start_rx(port);
wr_regl(port, ureg->sirfsoc_tx_rx_en, SIRFUART_TX_EN | SIRFUART_RX_EN); wr_regl(port, ureg->sirfsoc_tx_rx_en, SIRFUART_TX_EN | SIRFUART_RX_EN);
spin_unlock_irqrestore(&port->lock, flags); spin_unlock_irqrestore(&port->lock, flags);
} }
static unsigned int sirfsoc_uart_init_tx_dma(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
dma_cap_mask_t dma_mask;
struct dma_slave_config tx_slv_cfg = {
.dst_maxburst = 2,
};
dma_cap_zero(dma_mask);
dma_cap_set(DMA_SLAVE, dma_mask);
sirfport->tx_dma_chan = dma_request_channel(dma_mask,
(dma_filter_fn)sirfsoc_dma_filter_id,
(void *)sirfport->tx_dma_no);
if (!sirfport->tx_dma_chan) {
dev_err(port->dev, "Uart Request Dma Channel Fail %d\n",
sirfport->tx_dma_no);
return -EPROBE_DEFER;
}
dmaengine_slave_config(sirfport->tx_dma_chan, &tx_slv_cfg);
return 0;
}
static unsigned int sirfsoc_uart_init_rx_dma(struct uart_port *port)
{
struct sirfsoc_uart_port *sirfport = to_sirfport(port);
dma_cap_mask_t dma_mask;
int ret;
int i, j;
struct dma_slave_config slv_cfg = {
.src_maxburst = 2,
};
dma_cap_zero(dma_mask);
dma_cap_set(DMA_SLAVE, dma_mask);
sirfport->rx_dma_chan = dma_request_channel(dma_mask,
(dma_filter_fn)sirfsoc_dma_filter_id,
(void *)sirfport->rx_dma_no);
if (!sirfport->rx_dma_chan) {
dev_err(port->dev, "Uart Request Dma Channel Fail %d\n",
sirfport->rx_dma_no);
ret = -EPROBE_DEFER;
goto request_err;
}
for (i = 0; i < SIRFSOC_RX_LOOP_BUF_CNT; i++) {
sirfport->rx_dma_items[i].xmit.buf =
dma_alloc_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE,
&sirfport->rx_dma_items[i].dma_addr, GFP_KERNEL);
if (!sirfport->rx_dma_items[i].xmit.buf) {
dev_err(port->dev, "Uart alloc bufa failed\n");
ret = -ENOMEM;
goto alloc_coherent_err;
}
sirfport->rx_dma_items[i].xmit.head =
sirfport->rx_dma_items[i].xmit.tail = 0;
}
dmaengine_slave_config(sirfport->rx_dma_chan, &slv_cfg);
return 0;
alloc_coherent_err:
for (j = 0; j < i; j++)
dma_free_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE,
sirfport->rx_dma_items[j].xmit.buf,
sirfport->rx_dma_items[j].dma_addr);
dma_release_channel(sirfport->rx_dma_chan);
request_err:
return ret;
}
static void sirfsoc_uart_uninit_tx_dma(struct sirfsoc_uart_port *sirfport)
{
dmaengine_terminate_all(sirfport->tx_dma_chan);
dma_release_channel(sirfport->tx_dma_chan);
}
static void sirfsoc_uart_uninit_rx_dma(struct sirfsoc_uart_port *sirfport)
{
int i;
struct uart_port *port = &sirfport->port;
dmaengine_terminate_all(sirfport->rx_dma_chan);
dma_release_channel(sirfport->rx_dma_chan);
for (i = 0; i < SIRFSOC_RX_LOOP_BUF_CNT; i++)
dma_free_coherent(port->dev, SIRFSOC_RX_DMA_BUF_SIZE,
sirfport->rx_dma_items[i].xmit.buf,
sirfport->rx_dma_items[i].dma_addr);
}
static int sirfsoc_uart_startup(struct uart_port *port) static int sirfsoc_uart_startup(struct uart_port *port)
{ {
struct sirfsoc_uart_port *sirfport = to_sirfport(port); struct sirfsoc_uart_port *sirfport = to_sirfport(port);
@ -688,6 +1135,23 @@ static int sirfsoc_uart_startup(struct uart_port *port)
wr_regl(port, ureg->sirfsoc_tx_fifo_ctrl, SIRFUART_FIFO_THD(port)); wr_regl(port, ureg->sirfsoc_tx_fifo_ctrl, SIRFUART_FIFO_THD(port));
wr_regl(port, ureg->sirfsoc_rx_fifo_ctrl, SIRFUART_FIFO_THD(port)); wr_regl(port, ureg->sirfsoc_rx_fifo_ctrl, SIRFUART_FIFO_THD(port));
if (IS_DMA_CHAN_VALID(sirfport->rx_dma_no)) {
ret = sirfsoc_uart_init_rx_dma(port);
if (ret)
goto init_rx_err;
wr_regl(port, ureg->sirfsoc_rx_fifo_level_chk,
SIRFUART_RX_FIFO_CHK_SC(port->line, 0x4) |
SIRFUART_RX_FIFO_CHK_LC(port->line, 0xe) |
SIRFUART_RX_FIFO_CHK_HC(port->line, 0x1b));
}
if (IS_DMA_CHAN_VALID(sirfport->tx_dma_no)) {
sirfsoc_uart_init_tx_dma(port);
sirfport->tx_dma_state = TX_DMA_IDLE;
wr_regl(port, ureg->sirfsoc_tx_fifo_level_chk,
SIRFUART_TX_FIFO_CHK_SC(port->line, 0x1b) |
SIRFUART_TX_FIFO_CHK_LC(port->line, 0xe) |
SIRFUART_TX_FIFO_CHK_HC(port->line, 0x4));
}
sirfport->ms_enabled = false; sirfport->ms_enabled = false;
if (sirfport->uart_reg->uart_type == SIRF_USP_UART && if (sirfport->uart_reg->uart_type == SIRF_USP_UART &&
sirfport->hw_flow_ctrl) { sirfport->hw_flow_ctrl) {
@ -728,6 +1192,12 @@ static void sirfsoc_uart_shutdown(struct uart_port *port)
gpio_set_value(sirfport->rts_gpio, 1); gpio_set_value(sirfport->rts_gpio, 1);
free_irq(gpio_to_irq(sirfport->cts_gpio), sirfport); free_irq(gpio_to_irq(sirfport->cts_gpio), sirfport);
} }
if (IS_DMA_CHAN_VALID(sirfport->rx_dma_no))
sirfsoc_uart_uninit_rx_dma(sirfport);
if (IS_DMA_CHAN_VALID(sirfport->tx_dma_no)) {
sirfsoc_uart_uninit_tx_dma(sirfport);
sirfport->tx_dma_state = TX_DMA_IDLE;
}
} }
static const char *sirfsoc_uart_type(struct uart_port *port) static const char *sirfsoc_uart_type(struct uart_port *port)
@ -801,6 +1271,9 @@ sirfsoc_uart_console_setup(struct console *co, char *options)
uart_parse_options(options, &baud, &parity, &bits, &flow); uart_parse_options(options, &baud, &parity, &bits, &flow);
port->cons = co; port->cons = co;
/* default console tx/rx transfer using io mode */
sirfport->rx_dma_no = UNVALID_DMA_CHAN;
sirfport->tx_dma_no = UNVALID_DMA_CHAN;
return uart_set_options(port, co, baud, parity, bits, flow); return uart_set_options(port, co, baud, parity, bits, flow);
} }
@ -888,10 +1361,27 @@ static int sirfsoc_uart_probe(struct platform_device *pdev)
sirfport->hw_flow_ctrl = of_property_read_bool(pdev->dev.of_node, sirfport->hw_flow_ctrl = of_property_read_bool(pdev->dev.of_node,
"sirf,uart-has-rtscts"); "sirf,uart-has-rtscts");
if (of_device_is_compatible(pdev->dev.of_node, "sirf,prima2-uart")) if (of_device_is_compatible(pdev->dev.of_node, "sirf,prima2-uart")) {
sirfport->uart_reg->uart_type = SIRF_REAL_UART; sirfport->uart_reg->uart_type = SIRF_REAL_UART;
if (of_property_read_u32(pdev->dev.of_node,
"sirf,uart-dma-rx-channel",
&sirfport->rx_dma_no))
sirfport->rx_dma_no = UNVALID_DMA_CHAN;
if (of_property_read_u32(pdev->dev.of_node,
"sirf,uart-dma-tx-channel",
&sirfport->tx_dma_no))
sirfport->tx_dma_no = UNVALID_DMA_CHAN;
}
if (of_device_is_compatible(pdev->dev.of_node, "sirf,prima2-usp-uart")) { if (of_device_is_compatible(pdev->dev.of_node, "sirf,prima2-usp-uart")) {
sirfport->uart_reg->uart_type = SIRF_USP_UART; sirfport->uart_reg->uart_type = SIRF_USP_UART;
if (of_property_read_u32(pdev->dev.of_node,
"sirf,usp-dma-rx-channel",
&sirfport->rx_dma_no))
sirfport->rx_dma_no = UNVALID_DMA_CHAN;
if (of_property_read_u32(pdev->dev.of_node,
"sirf,usp-dma-tx-channel",
&sirfport->tx_dma_no))
sirfport->tx_dma_no = UNVALID_DMA_CHAN;
if (!sirfport->hw_flow_ctrl) if (!sirfport->hw_flow_ctrl)
goto usp_no_flow_control; goto usp_no_flow_control;
if (of_find_property(pdev->dev.of_node, "cts-gpios", NULL)) if (of_find_property(pdev->dev.of_node, "cts-gpios", NULL))
@ -946,6 +1436,12 @@ usp_no_flow_control:
ret = -EFAULT; ret = -EFAULT;
goto err; goto err;
} }
spin_lock_init(&sirfport->rx_lock);
spin_lock_init(&sirfport->tx_lock);
tasklet_init(&sirfport->rx_dma_complete_tasklet,
sirfsoc_uart_rx_dma_complete_tl, (unsigned long)sirfport);
tasklet_init(&sirfport->rx_tmo_process_tasklet,
sirfsoc_rx_tmo_process_tl, (unsigned long)sirfport);
port->mapbase = res->start; port->mapbase = res->start;
port->membase = devm_ioremap(&pdev->dev, res->start, resource_size(res)); port->membase = devm_ioremap(&pdev->dev, res->start, resource_size(res));
if (!port->membase) { if (!port->membase) {

View File

@ -338,6 +338,12 @@ struct sirfsoc_uart_register sirfsoc_uart = {
uint_st->sirfsoc_rxfifo_thd |\ uint_st->sirfsoc_rxfifo_thd |\
uint_st->sirfsoc_rxfifo_full) uint_st->sirfsoc_rxfifo_full)
#define SIRFUART_CTS_INT_ST(uint_st) (uint_st->sirfsoc_cts) #define SIRFUART_CTS_INT_ST(uint_st) (uint_st->sirfsoc_cts)
#define SIRFUART_RX_DMA_INT_EN(port, uint_en) \
(uint_en->sirfsoc_rx_timeout_en |\
uint_en->sirfsoc_frm_err_en |\
uint_en->sirfsoc_rx_oflow_en |\
uint_en->sirfsoc_rxd_brk_en |\
((port->line > 2) ? 0 : uint_en->sirfsoc_parity_err_en))
/* Generic Definitions */ /* Generic Definitions */
#define SIRFSOC_UART_NAME "ttySiRF" #define SIRFSOC_UART_NAME "ttySiRF"
#define SIRFSOC_UART_MAJOR 0 #define SIRFSOC_UART_MAJOR 0
@ -356,12 +362,52 @@ struct sirfsoc_uart_register sirfsoc_uart = {
#define SIRF_SAMPLE_DIV_MASK 0x3f0000 #define SIRF_SAMPLE_DIV_MASK 0x3f0000
#define SIRF_BAUD_RATE_SUPPORT_NR 18 #define SIRF_BAUD_RATE_SUPPORT_NR 18
/* Uart Common Use Macro*/
#define SIRFSOC_RX_DMA_BUF_SIZE 256
#define BYTES_TO_ALIGN(dma_addr) ((unsigned long)(dma_addr) & 0x3)
#define LOOP_DMA_BUFA_FILL 1
#define LOOP_DMA_BUFB_FILL 2
#define TX_TRAN_PIO 1
#define TX_TRAN_DMA 2
/* Uart Fifo Level Chk */
#define SIRFUART_TX_FIFO_SC_OFFSET 0
#define SIRFUART_TX_FIFO_LC_OFFSET 10
#define SIRFUART_TX_FIFO_HC_OFFSET 20
#define SIRFUART_TX_FIFO_CHK_SC(line, value) ((((line) == 1) ? (value & 0x3) :\
(value & 0x1f)) << SIRFUART_TX_FIFO_SC_OFFSET)
#define SIRFUART_TX_FIFO_CHK_LC(line, value) ((((line) == 1) ? (value & 0x3) :\
(value & 0x1f)) << SIRFUART_TX_FIFO_LC_OFFSET)
#define SIRFUART_TX_FIFO_CHK_HC(line, value) ((((line) == 1) ? (value & 0x3) :\
(value & 0x1f)) << SIRFUART_TX_FIFO_HC_OFFSET)
#define SIRFUART_RX_FIFO_CHK_SC SIRFUART_TX_FIFO_CHK_SC
#define SIRFUART_RX_FIFO_CHK_LC SIRFUART_TX_FIFO_CHK_LC
#define SIRFUART_RX_FIFO_CHK_HC SIRFUART_TX_FIFO_CHK_HC
/* Indicate how many buffers used */
#define SIRFSOC_RX_LOOP_BUF_CNT 2
/* Indicate if DMA channel valid */
#define IS_DMA_CHAN_VALID(x) ((x) != -1)
#define UNVALID_DMA_CHAN -1
/* For Fast Baud Rate Calculation */ /* For Fast Baud Rate Calculation */
struct sirfsoc_baudrate_to_regv { struct sirfsoc_baudrate_to_regv {
unsigned int baud_rate; unsigned int baud_rate;
unsigned int reg_val; unsigned int reg_val;
}; };
enum sirfsoc_tx_state {
TX_DMA_IDLE,
TX_DMA_RUNNING,
TX_DMA_PAUSE,
};
struct sirfsoc_loop_buffer {
struct circ_buf xmit;
dma_cookie_t cookie;
struct dma_async_tx_descriptor *desc;
dma_addr_t dma_addr;
};
struct sirfsoc_uart_port { struct sirfsoc_uart_port {
bool hw_flow_ctrl; bool hw_flow_ctrl;
bool ms_enabled; bool ms_enabled;
@ -371,8 +417,25 @@ struct sirfsoc_uart_port {
/* for SiRFmarco, there are SET/CLR for UART_INT_EN */ /* for SiRFmarco, there are SET/CLR for UART_INT_EN */
bool is_marco; bool is_marco;
struct sirfsoc_uart_register *uart_reg; struct sirfsoc_uart_register *uart_reg;
int rx_dma_no;
int tx_dma_no;
struct dma_chan *rx_dma_chan;
struct dma_chan *tx_dma_chan;
dma_addr_t tx_dma_addr;
struct dma_async_tx_descriptor *tx_dma_desc;
spinlock_t rx_lock;
spinlock_t tx_lock;
struct tasklet_struct rx_dma_complete_tasklet;
struct tasklet_struct rx_tmo_process_tasklet;
unsigned int rx_io_count;
unsigned long transfer_size;
enum sirfsoc_tx_state tx_dma_state;
unsigned int cts_gpio; unsigned int cts_gpio;
unsigned int rts_gpio; unsigned int rts_gpio;
struct sirfsoc_loop_buffer rx_dma_items[SIRFSOC_RX_LOOP_BUF_CNT];
int rx_completed;
int rx_issued;
}; };
/* Hardware Flow Control */ /* Hardware Flow Control */