forked from Minki/linux
Merge branch 'x86/core' into tracing/ftrace
Semantic merge: kernel/trace/trace_functions_graph.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
commit
8293dd6f86
@ -3,14 +3,4 @@
|
||||
|
||||
#include <asm-generic/percpu.h>
|
||||
|
||||
#ifdef CONFIG_MODULES
|
||||
#define PERCPU_MODULE_RESERVE 8192
|
||||
#else
|
||||
#define PERCPU_MODULE_RESERVE 0
|
||||
#endif
|
||||
|
||||
#define PERCPU_ENOUGH_ROOM \
|
||||
(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
|
||||
PERCPU_MODULE_RESERVE)
|
||||
|
||||
#endif /* __ARCH_BLACKFIN_PERCPU__ */
|
||||
|
@ -4,11 +4,6 @@
|
||||
#undef notrace
|
||||
#define notrace __attribute__((no_instrument_function))
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
#define __ALIGN .p2align 4,,15
|
||||
#define __ALIGN_STR ".p2align 4,,15"
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
#define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))
|
||||
/*
|
||||
@ -50,16 +45,25 @@
|
||||
__asmlinkage_protect_n(ret, "g" (arg1), "g" (arg2), "g" (arg3), \
|
||||
"g" (arg4), "g" (arg5), "g" (arg6))
|
||||
|
||||
#endif
|
||||
#endif /* CONFIG_X86_32 */
|
||||
|
||||
#ifdef __ASSEMBLY__
|
||||
|
||||
#define GLOBAL(name) \
|
||||
.globl name; \
|
||||
name:
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
#define __ALIGN .p2align 4,,15
|
||||
#define __ALIGN_STR ".p2align 4,,15"
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_X86_ALIGNMENT_16
|
||||
#define __ALIGN .align 16,0x90
|
||||
#define __ALIGN_STR ".align 16,0x90"
|
||||
#endif
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* _ASM_X86_LINKAGE_H */
|
||||
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include <asm/io.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/apic.h>
|
||||
#include <asm/cpu.h>
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
# include <asm/numa_64.h>
|
||||
@ -141,6 +142,55 @@ static void __cpuinit init_amd_k6(struct cpuinfo_x86 *c)
|
||||
}
|
||||
}
|
||||
|
||||
static void __cpuinit amd_k7_smp_check(struct cpuinfo_x86 *c)
|
||||
{
|
||||
#ifdef CONFIG_SMP
|
||||
/* calling is from identify_secondary_cpu() ? */
|
||||
if (c->cpu_index == boot_cpu_id)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Certain Athlons might work (for various values of 'work') in SMP
|
||||
* but they are not certified as MP capable.
|
||||
*/
|
||||
/* Athlon 660/661 is valid. */
|
||||
if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
|
||||
(c->x86_mask == 1)))
|
||||
goto valid_k7;
|
||||
|
||||
/* Duron 670 is valid */
|
||||
if ((c->x86_model == 7) && (c->x86_mask == 0))
|
||||
goto valid_k7;
|
||||
|
||||
/*
|
||||
* Athlon 662, Duron 671, and Athlon >model 7 have capability
|
||||
* bit. It's worth noting that the A5 stepping (662) of some
|
||||
* Athlon XP's have the MP bit set.
|
||||
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
|
||||
* more.
|
||||
*/
|
||||
if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
|
||||
((c->x86_model == 7) && (c->x86_mask >= 1)) ||
|
||||
(c->x86_model > 7))
|
||||
if (cpu_has_mp)
|
||||
goto valid_k7;
|
||||
|
||||
/* If we get here, not a certified SMP capable AMD system. */
|
||||
|
||||
/*
|
||||
* Don't taint if we are running SMP kernel on a single non-MP
|
||||
* approved Athlon
|
||||
*/
|
||||
WARN_ONCE(1, "WARNING: This combination of AMD"
|
||||
"processors is not suitable for SMP.\n");
|
||||
if (!test_taint(TAINT_UNSAFE_SMP))
|
||||
add_taint(TAINT_UNSAFE_SMP);
|
||||
|
||||
valid_k7:
|
||||
;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void __cpuinit init_amd_k7(struct cpuinfo_x86 *c)
|
||||
{
|
||||
u32 l, h;
|
||||
@ -175,6 +225,8 @@ static void __cpuinit init_amd_k7(struct cpuinfo_x86 *c)
|
||||
}
|
||||
|
||||
set_cpu_cap(c, X86_FEATURE_K7);
|
||||
|
||||
amd_k7_smp_check(c);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -14,6 +14,7 @@
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/ds.h>
|
||||
#include <asm/bugs.h>
|
||||
#include <asm/cpu.h>
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
#include <asm/topology.h>
|
||||
@ -116,6 +117,28 @@ static void __cpuinit trap_init_f00f_bug(void)
|
||||
}
|
||||
#endif
|
||||
|
||||
static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
|
||||
{
|
||||
#ifdef CONFIG_SMP
|
||||
/* calling is from identify_secondary_cpu() ? */
|
||||
if (c->cpu_index == boot_cpu_id)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Mask B, Pentium, but not Pentium MMX
|
||||
*/
|
||||
if (c->x86 == 5 &&
|
||||
c->x86_mask >= 1 && c->x86_mask <= 4 &&
|
||||
c->x86_model <= 3) {
|
||||
/*
|
||||
* Remember we have B step Pentia with bugs
|
||||
*/
|
||||
WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
|
||||
"with B stepping processors.\n");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
|
||||
{
|
||||
unsigned long lo, hi;
|
||||
@ -192,6 +215,8 @@ static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
|
||||
#ifdef CONFIG_X86_NUMAQ
|
||||
numaq_tsc_disable();
|
||||
#endif
|
||||
|
||||
intel_smp_check(c);
|
||||
}
|
||||
#else
|
||||
static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
|
||||
|
@ -42,6 +42,19 @@ unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
|
||||
};
|
||||
EXPORT_SYMBOL(__per_cpu_offset);
|
||||
|
||||
/*
|
||||
* On x86_64 symbols referenced from code should be reachable using
|
||||
* 32bit relocations. Reserve space for static percpu variables in
|
||||
* modules so that they are always served from the first chunk which
|
||||
* is located at the percpu segment base. On x86_32, anything can
|
||||
* address anywhere. No need to reserve space in the first chunk.
|
||||
*/
|
||||
#ifdef CONFIG_X86_64
|
||||
#define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE
|
||||
#else
|
||||
#define PERCPU_FIRST_CHUNK_RESERVE 0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* pcpu_need_numa - determine percpu allocation needs to consider NUMA
|
||||
*
|
||||
@ -141,7 +154,7 @@ static ssize_t __init setup_pcpu_remap(size_t static_size)
|
||||
{
|
||||
static struct vm_struct vm;
|
||||
pg_data_t *last;
|
||||
size_t ptrs_size;
|
||||
size_t ptrs_size, dyn_size;
|
||||
unsigned int cpu;
|
||||
ssize_t ret;
|
||||
|
||||
@ -169,12 +182,14 @@ proceed:
|
||||
* Currently supports only single page. Supporting multiple
|
||||
* pages won't be too difficult if it ever becomes necessary.
|
||||
*/
|
||||
pcpur_size = PFN_ALIGN(static_size + PERCPU_DYNAMIC_RESERVE);
|
||||
pcpur_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
|
||||
PERCPU_DYNAMIC_RESERVE);
|
||||
if (pcpur_size > PMD_SIZE) {
|
||||
pr_warning("PERCPU: static data is larger than large page, "
|
||||
"can't use large page\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
dyn_size = pcpur_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
|
||||
|
||||
/* allocate pointer array and alloc large pages */
|
||||
ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
|
||||
@ -217,8 +232,9 @@ proceed:
|
||||
pr_info("PERCPU: Remapped at %p with large pages, static data "
|
||||
"%zu bytes\n", vm.addr, static_size);
|
||||
|
||||
ret = pcpu_setup_first_chunk(pcpur_get_page, static_size, PMD_SIZE,
|
||||
pcpur_size - static_size, vm.addr, NULL);
|
||||
ret = pcpu_setup_first_chunk(pcpur_get_page, static_size,
|
||||
PERCPU_FIRST_CHUNK_RESERVE,
|
||||
PMD_SIZE, dyn_size, vm.addr, NULL);
|
||||
goto out_free_ar;
|
||||
|
||||
enomem:
|
||||
@ -241,24 +257,31 @@ static ssize_t __init setup_pcpu_remap(size_t static_size)
|
||||
* Embedding allocator
|
||||
*
|
||||
* The first chunk is sized to just contain the static area plus
|
||||
* PERCPU_DYNAMIC_RESERVE and allocated as a contiguous area using
|
||||
* bootmem allocator and used as-is without being mapped into vmalloc
|
||||
* area. This enables the first chunk to piggy back on the linear
|
||||
* physical PMD mapping and doesn't add any additional pressure to
|
||||
* TLB.
|
||||
* module and dynamic reserves, and allocated as a contiguous area
|
||||
* using bootmem allocator and used as-is without being mapped into
|
||||
* vmalloc area. This enables the first chunk to piggy back on the
|
||||
* linear physical PMD mapping and doesn't add any additional pressure
|
||||
* to TLB. Note that if the needed size is smaller than the minimum
|
||||
* unit size, the leftover is returned to the bootmem allocator.
|
||||
*/
|
||||
static void *pcpue_ptr __initdata;
|
||||
static size_t pcpue_size __initdata;
|
||||
static size_t pcpue_unit_size __initdata;
|
||||
|
||||
static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
|
||||
{
|
||||
return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size
|
||||
+ ((size_t)pageno << PAGE_SHIFT));
|
||||
size_t off = (size_t)pageno << PAGE_SHIFT;
|
||||
|
||||
if (off >= pcpue_size)
|
||||
return NULL;
|
||||
|
||||
return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
|
||||
}
|
||||
|
||||
static ssize_t __init setup_pcpu_embed(size_t static_size)
|
||||
{
|
||||
unsigned int cpu;
|
||||
size_t dyn_size;
|
||||
|
||||
/*
|
||||
* If large page isn't supported, there's no benefit in doing
|
||||
@ -269,25 +292,32 @@ static ssize_t __init setup_pcpu_embed(size_t static_size)
|
||||
return -EINVAL;
|
||||
|
||||
/* allocate and copy */
|
||||
pcpue_unit_size = PFN_ALIGN(static_size + PERCPU_DYNAMIC_RESERVE);
|
||||
pcpue_unit_size = max_t(size_t, pcpue_unit_size, PCPU_MIN_UNIT_SIZE);
|
||||
pcpue_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
|
||||
PERCPU_DYNAMIC_RESERVE);
|
||||
pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
|
||||
dyn_size = pcpue_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
|
||||
|
||||
pcpue_ptr = pcpu_alloc_bootmem(0, num_possible_cpus() * pcpue_unit_size,
|
||||
PAGE_SIZE);
|
||||
if (!pcpue_ptr)
|
||||
return -ENOMEM;
|
||||
|
||||
for_each_possible_cpu(cpu)
|
||||
memcpy(pcpue_ptr + cpu * pcpue_unit_size, __per_cpu_load,
|
||||
static_size);
|
||||
for_each_possible_cpu(cpu) {
|
||||
void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
|
||||
|
||||
free_bootmem(__pa(ptr + pcpue_size),
|
||||
pcpue_unit_size - pcpue_size);
|
||||
memcpy(ptr, __per_cpu_load, static_size);
|
||||
}
|
||||
|
||||
/* we're ready, commit */
|
||||
pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
|
||||
pcpue_unit_size >> PAGE_SHIFT, pcpue_ptr, static_size);
|
||||
pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
|
||||
|
||||
return pcpu_setup_first_chunk(pcpue_get_page, static_size,
|
||||
pcpue_unit_size,
|
||||
pcpue_unit_size - static_size, pcpue_ptr,
|
||||
NULL);
|
||||
PERCPU_FIRST_CHUNK_RESERVE,
|
||||
pcpue_unit_size, dyn_size,
|
||||
pcpue_ptr, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -344,7 +374,8 @@ static ssize_t __init setup_pcpu_4k(size_t static_size)
|
||||
pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n",
|
||||
pcpu4k_nr_static_pages, static_size);
|
||||
|
||||
ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size, 0, 0, NULL,
|
||||
ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size,
|
||||
PERCPU_FIRST_CHUNK_RESERVE, -1, -1, NULL,
|
||||
pcpu4k_populate_pte);
|
||||
goto out_free_ar;
|
||||
|
||||
|
@ -114,10 +114,6 @@ EXPORT_PER_CPU_SYMBOL(cpu_info);
|
||||
|
||||
atomic_t init_deasserted;
|
||||
|
||||
|
||||
/* Set if we find a B stepping CPU */
|
||||
static int __cpuinitdata smp_b_stepping;
|
||||
|
||||
#if defined(CONFIG_NUMA) && defined(CONFIG_X86_32)
|
||||
|
||||
/* which logical CPUs are on which nodes */
|
||||
@ -271,8 +267,6 @@ static void __cpuinit smp_callin(void)
|
||||
cpumask_set_cpu(cpuid, cpu_callin_mask);
|
||||
}
|
||||
|
||||
static int __cpuinitdata unsafe_smp;
|
||||
|
||||
/*
|
||||
* Activate a secondary processor.
|
||||
*/
|
||||
@ -340,76 +334,6 @@ notrace static void __cpuinit start_secondary(void *unused)
|
||||
cpu_idle();
|
||||
}
|
||||
|
||||
static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c)
|
||||
{
|
||||
/*
|
||||
* Mask B, Pentium, but not Pentium MMX
|
||||
*/
|
||||
if (c->x86_vendor == X86_VENDOR_INTEL &&
|
||||
c->x86 == 5 &&
|
||||
c->x86_mask >= 1 && c->x86_mask <= 4 &&
|
||||
c->x86_model <= 3)
|
||||
/*
|
||||
* Remember we have B step Pentia with bugs
|
||||
*/
|
||||
smp_b_stepping = 1;
|
||||
|
||||
/*
|
||||
* Certain Athlons might work (for various values of 'work') in SMP
|
||||
* but they are not certified as MP capable.
|
||||
*/
|
||||
if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
|
||||
|
||||
if (num_possible_cpus() == 1)
|
||||
goto valid_k7;
|
||||
|
||||
/* Athlon 660/661 is valid. */
|
||||
if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
|
||||
(c->x86_mask == 1)))
|
||||
goto valid_k7;
|
||||
|
||||
/* Duron 670 is valid */
|
||||
if ((c->x86_model == 7) && (c->x86_mask == 0))
|
||||
goto valid_k7;
|
||||
|
||||
/*
|
||||
* Athlon 662, Duron 671, and Athlon >model 7 have capability
|
||||
* bit. It's worth noting that the A5 stepping (662) of some
|
||||
* Athlon XP's have the MP bit set.
|
||||
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
|
||||
* more.
|
||||
*/
|
||||
if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
|
||||
((c->x86_model == 7) && (c->x86_mask >= 1)) ||
|
||||
(c->x86_model > 7))
|
||||
if (cpu_has_mp)
|
||||
goto valid_k7;
|
||||
|
||||
/* If we get here, not a certified SMP capable AMD system. */
|
||||
unsafe_smp = 1;
|
||||
}
|
||||
|
||||
valid_k7:
|
||||
;
|
||||
}
|
||||
|
||||
static void __cpuinit smp_checks(void)
|
||||
{
|
||||
if (smp_b_stepping)
|
||||
printk(KERN_WARNING "WARNING: SMP operation may be unreliable"
|
||||
"with B stepping processors.\n");
|
||||
|
||||
/*
|
||||
* Don't taint if we are running SMP kernel on a single non-MP
|
||||
* approved Athlon
|
||||
*/
|
||||
if (unsafe_smp && num_online_cpus() > 1) {
|
||||
printk(KERN_INFO "WARNING: This combination of AMD"
|
||||
"processors is not suitable for SMP.\n");
|
||||
add_taint(TAINT_UNSAFE_SMP);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* The bootstrap kernel entry code has set these up. Save them for
|
||||
* a given CPU
|
||||
@ -423,7 +347,6 @@ void __cpuinit smp_store_cpu_info(int id)
|
||||
c->cpu_index = id;
|
||||
if (id != 0)
|
||||
identify_secondary_cpu(c);
|
||||
smp_apply_quirks(c);
|
||||
}
|
||||
|
||||
|
||||
@ -1193,7 +1116,6 @@ void __init native_smp_cpus_done(unsigned int max_cpus)
|
||||
pr_debug("Boot done.\n");
|
||||
|
||||
impress_friends();
|
||||
smp_checks();
|
||||
#ifdef CONFIG_X86_IO_APIC
|
||||
setup_ioapic_dest();
|
||||
#endif
|
||||
|
@ -314,8 +314,6 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
|
||||
int locals = 0;
|
||||
struct bau_desc *bau_desc;
|
||||
|
||||
WARN_ON(!in_atomic());
|
||||
|
||||
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
|
||||
|
||||
uv_cpu = uv_blade_processor_id();
|
||||
|
@ -134,8 +134,8 @@ unsigned long __init_refok init_memory_mapping(unsigned long start,
|
||||
{
|
||||
unsigned long page_size_mask = 0;
|
||||
unsigned long start_pfn, end_pfn;
|
||||
unsigned long ret = 0;
|
||||
unsigned long pos;
|
||||
unsigned long ret;
|
||||
|
||||
struct map_range mr[NR_RANGE_MR];
|
||||
int nr_range, i;
|
||||
|
@ -806,11 +806,6 @@ static unsigned long __init setup_node_bootmem(int nodeid,
|
||||
{
|
||||
unsigned long bootmap_size;
|
||||
|
||||
if (start_pfn > max_low_pfn)
|
||||
return bootmap;
|
||||
if (end_pfn > max_low_pfn)
|
||||
end_pfn = max_low_pfn;
|
||||
|
||||
/* don't touch min_low_pfn */
|
||||
bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
|
||||
bootmap >> PAGE_SHIFT,
|
||||
@ -843,13 +838,23 @@ void __init setup_bootmem_allocator(void)
|
||||
max_pfn_mapped<<PAGE_SHIFT);
|
||||
printk(KERN_INFO " low ram: 0 - %08lx\n", max_low_pfn<<PAGE_SHIFT);
|
||||
|
||||
for_each_online_node(nodeid) {
|
||||
unsigned long start_pfn, end_pfn;
|
||||
|
||||
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
||||
for_each_online_node(nodeid)
|
||||
bootmap = setup_node_bootmem(nodeid, node_start_pfn[nodeid],
|
||||
node_end_pfn[nodeid], bootmap);
|
||||
start_pfn = node_start_pfn[nodeid];
|
||||
end_pfn = node_end_pfn[nodeid];
|
||||
if (start_pfn > max_low_pfn)
|
||||
continue;
|
||||
if (end_pfn > max_low_pfn)
|
||||
end_pfn = max_low_pfn;
|
||||
#else
|
||||
bootmap = setup_node_bootmem(0, 0, max_low_pfn, bootmap);
|
||||
start_pfn = 0;
|
||||
end_pfn = max_low_pfn;
|
||||
#endif
|
||||
bootmap = setup_node_bootmem(nodeid, start_pfn, end_pfn,
|
||||
bootmap);
|
||||
}
|
||||
|
||||
after_bootmem = 1;
|
||||
}
|
||||
|
@ -85,7 +85,7 @@ early_param("gbpages", parse_direct_gbpages_on);
|
||||
pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
|
||||
EXPORT_SYMBOL_GPL(__supported_pte_mask);
|
||||
|
||||
static int do_not_nx __cpuinitdata;
|
||||
static int disable_nx __cpuinitdata;
|
||||
|
||||
/*
|
||||
* noexec=on|off
|
||||
@ -100,9 +100,9 @@ static int __init nonx_setup(char *str)
|
||||
return -EINVAL;
|
||||
if (!strncmp(str, "on", 2)) {
|
||||
__supported_pte_mask |= _PAGE_NX;
|
||||
do_not_nx = 0;
|
||||
disable_nx = 0;
|
||||
} else if (!strncmp(str, "off", 3)) {
|
||||
do_not_nx = 1;
|
||||
disable_nx = 1;
|
||||
__supported_pte_mask &= ~_PAGE_NX;
|
||||
}
|
||||
return 0;
|
||||
@ -114,7 +114,7 @@ void __cpuinit check_efer(void)
|
||||
unsigned long efer;
|
||||
|
||||
rdmsrl(MSR_EFER, efer);
|
||||
if (!(efer & EFER_NX) || do_not_nx)
|
||||
if (!(efer & EFER_NX) || disable_nx)
|
||||
__supported_pte_mask &= ~_PAGE_NX;
|
||||
}
|
||||
|
||||
|
@ -87,6 +87,8 @@ bool __virt_addr_valid(unsigned long x)
|
||||
return false;
|
||||
if (__vmalloc_start_set && is_vmalloc_addr((void *) x))
|
||||
return false;
|
||||
if (x >= FIXADDR_START)
|
||||
return false;
|
||||
return pfn_valid((x - PAGE_OFFSET) >> PAGE_SHIFT);
|
||||
}
|
||||
EXPORT_SYMBOL(__virt_addr_valid);
|
||||
@ -504,13 +506,19 @@ static inline pte_t * __init early_ioremap_pte(unsigned long addr)
|
||||
return &bm_pte[pte_index(addr)];
|
||||
}
|
||||
|
||||
static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata;
|
||||
|
||||
void __init early_ioremap_init(void)
|
||||
{
|
||||
pmd_t *pmd;
|
||||
int i;
|
||||
|
||||
if (early_ioremap_debug)
|
||||
printk(KERN_INFO "early_ioremap_init()\n");
|
||||
|
||||
for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
|
||||
slot_virt[i] = fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
|
||||
|
||||
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
|
||||
memset(bm_pte, 0, sizeof(bm_pte));
|
||||
pmd_populate_kernel(&init_mm, pmd, bm_pte);
|
||||
@ -577,6 +585,7 @@ static inline void __init early_clear_fixmap(enum fixed_addresses idx)
|
||||
|
||||
static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata;
|
||||
static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata;
|
||||
|
||||
static int __init check_early_ioremap_leak(void)
|
||||
{
|
||||
int count = 0;
|
||||
@ -598,7 +607,8 @@ static int __init check_early_ioremap_leak(void)
|
||||
}
|
||||
late_initcall(check_early_ioremap_leak);
|
||||
|
||||
static void __init __iomem *__early_ioremap(unsigned long phys_addr, unsigned long size, pgprot_t prot)
|
||||
static void __init __iomem *
|
||||
__early_ioremap(unsigned long phys_addr, unsigned long size, pgprot_t prot)
|
||||
{
|
||||
unsigned long offset, last_addr;
|
||||
unsigned int nrpages;
|
||||
@ -664,9 +674,9 @@ static void __init __iomem *__early_ioremap(unsigned long phys_addr, unsigned lo
|
||||
--nrpages;
|
||||
}
|
||||
if (early_ioremap_debug)
|
||||
printk(KERN_CONT "%08lx + %08lx\n", offset, fix_to_virt(idx0));
|
||||
printk(KERN_CONT "%08lx + %08lx\n", offset, slot_virt[slot]);
|
||||
|
||||
prev_map[slot] = (void __iomem *)(offset + fix_to_virt(idx0));
|
||||
prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]);
|
||||
return prev_map[slot];
|
||||
}
|
||||
|
||||
@ -734,8 +744,3 @@ void __init early_iounmap(void __iomem *addr, unsigned long size)
|
||||
}
|
||||
prev_map[slot] = NULL;
|
||||
}
|
||||
|
||||
void __this_fixmap_does_not_exist(void)
|
||||
{
|
||||
WARN_ON(1);
|
||||
}
|
||||
|
@ -451,23 +451,24 @@ static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
|
||||
|
||||
static void remove_kmmio_fault_pages(struct rcu_head *head)
|
||||
{
|
||||
struct kmmio_delayed_release *dr = container_of(
|
||||
head,
|
||||
struct kmmio_delayed_release,
|
||||
rcu);
|
||||
struct kmmio_delayed_release *dr =
|
||||
container_of(head, struct kmmio_delayed_release, rcu);
|
||||
struct kmmio_fault_page *p = dr->release_list;
|
||||
struct kmmio_fault_page **prevp = &dr->release_list;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&kmmio_lock, flags);
|
||||
while (p) {
|
||||
if (!p->count)
|
||||
if (!p->count) {
|
||||
list_del_rcu(&p->list);
|
||||
else
|
||||
prevp = &p->release_next;
|
||||
} else {
|
||||
*prevp = p->release_next;
|
||||
prevp = &p->release_next;
|
||||
}
|
||||
p = p->release_next;
|
||||
}
|
||||
spin_unlock_irqrestore(&kmmio_lock, flags);
|
||||
|
||||
/* This is the real RCU destroy call. */
|
||||
call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
|
||||
}
|
||||
|
@ -100,6 +100,9 @@ static int __init parse_memtest(char *arg)
|
||||
{
|
||||
if (arg)
|
||||
memtest_pattern = simple_strtoul(arg, NULL, 0);
|
||||
else
|
||||
memtest_pattern = ARRAY_SIZE(patterns);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include <linux/slab.h> /* For kmalloc() */
|
||||
#include <linux/smp.h>
|
||||
#include <linux/cpumask.h>
|
||||
#include <linux/pfn.h>
|
||||
|
||||
#include <asm/percpu.h>
|
||||
|
||||
@ -52,17 +53,18 @@
|
||||
#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(per_cpu__##var)
|
||||
#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(per_cpu__##var)
|
||||
|
||||
/* Enough to cover all DEFINE_PER_CPUs in kernel, including modules. */
|
||||
#ifndef PERCPU_ENOUGH_ROOM
|
||||
/* enough to cover all DEFINE_PER_CPUs in modules */
|
||||
#ifdef CONFIG_MODULES
|
||||
#define PERCPU_MODULE_RESERVE 8192
|
||||
#define PERCPU_MODULE_RESERVE (8 << 10)
|
||||
#else
|
||||
#define PERCPU_MODULE_RESERVE 0
|
||||
#define PERCPU_MODULE_RESERVE 0
|
||||
#endif
|
||||
|
||||
#ifndef PERCPU_ENOUGH_ROOM
|
||||
#define PERCPU_ENOUGH_ROOM \
|
||||
(__per_cpu_end - __per_cpu_start + PERCPU_MODULE_RESERVE)
|
||||
#endif /* PERCPU_ENOUGH_ROOM */
|
||||
(ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
|
||||
PERCPU_MODULE_RESERVE)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Must be an lvalue. Since @var must be a simple identifier,
|
||||
@ -79,35 +81,24 @@
|
||||
#ifdef CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
|
||||
|
||||
/* minimum unit size, also is the maximum supported allocation size */
|
||||
#define PCPU_MIN_UNIT_SIZE (16UL << PAGE_SHIFT)
|
||||
#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(64 << 10)
|
||||
|
||||
/*
|
||||
* PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
|
||||
* back on the first chunk if arch is manually allocating and mapping
|
||||
* it for faster access (as a part of large page mapping for example).
|
||||
* Note that dynamic percpu allocator covers both static and dynamic
|
||||
* areas, so these values are bigger than PERCPU_MODULE_RESERVE.
|
||||
* back on the first chunk for dynamic percpu allocation if arch is
|
||||
* manually allocating and mapping it for faster access (as a part of
|
||||
* large page mapping for example).
|
||||
*
|
||||
* On typical configuration with modules, the following values leave
|
||||
* about 8k of free space on the first chunk after boot on both x86_32
|
||||
* and 64 when module support is enabled. When module support is
|
||||
* disabled, it's much tighter.
|
||||
* The following values give between one and two pages of free space
|
||||
* after typical minimal boot (2-way SMP, single disk and NIC) with
|
||||
* both defconfig and a distro config on x86_64 and 32. More
|
||||
* intelligent way to determine this would be nice.
|
||||
*/
|
||||
#ifndef PERCPU_DYNAMIC_RESERVE
|
||||
# if BITS_PER_LONG > 32
|
||||
# ifdef CONFIG_MODULES
|
||||
# define PERCPU_DYNAMIC_RESERVE (6 << PAGE_SHIFT)
|
||||
# else
|
||||
# define PERCPU_DYNAMIC_RESERVE (4 << PAGE_SHIFT)
|
||||
# endif
|
||||
# else
|
||||
# ifdef CONFIG_MODULES
|
||||
# define PERCPU_DYNAMIC_RESERVE (4 << PAGE_SHIFT)
|
||||
# else
|
||||
# define PERCPU_DYNAMIC_RESERVE (2 << PAGE_SHIFT)
|
||||
# endif
|
||||
# endif
|
||||
#endif /* PERCPU_DYNAMIC_RESERVE */
|
||||
#if BITS_PER_LONG > 32
|
||||
#define PERCPU_DYNAMIC_RESERVE (20 << 10)
|
||||
#else
|
||||
#define PERCPU_DYNAMIC_RESERVE (12 << 10)
|
||||
#endif
|
||||
|
||||
extern void *pcpu_base_addr;
|
||||
|
||||
@ -115,9 +106,10 @@ typedef struct page * (*pcpu_get_page_fn_t)(unsigned int cpu, int pageno);
|
||||
typedef void (*pcpu_populate_pte_fn_t)(unsigned long addr);
|
||||
|
||||
extern size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
|
||||
size_t static_size, size_t unit_size,
|
||||
size_t free_size, void *base_addr,
|
||||
pcpu_populate_pte_fn_t populate_pte_fn);
|
||||
size_t static_size, size_t reserved_size,
|
||||
ssize_t unit_size, ssize_t dyn_size,
|
||||
void *base_addr,
|
||||
pcpu_populate_pte_fn_t populate_pte_fn);
|
||||
|
||||
/*
|
||||
* Use this to get to a cpu's version of the per-cpu object
|
||||
@ -126,6 +118,8 @@ extern size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
|
||||
*/
|
||||
#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
|
||||
|
||||
extern void *__alloc_reserved_percpu(size_t size, size_t align);
|
||||
|
||||
#else /* CONFIG_HAVE_DYNAMIC_PER_CPU_AREA */
|
||||
|
||||
struct percpu_data {
|
||||
|
@ -381,7 +381,7 @@ static void *percpu_modalloc(unsigned long size, unsigned long align,
|
||||
align = PAGE_SIZE;
|
||||
}
|
||||
|
||||
ptr = __alloc_percpu(size, align);
|
||||
ptr = __alloc_reserved_percpu(size, align);
|
||||
if (!ptr)
|
||||
printk(KERN_WARNING
|
||||
"Could not allocate %lu bytes percpu data\n", size);
|
||||
|
@ -837,7 +837,7 @@ static void graph_trace_open(struct trace_iterator *iter)
|
||||
|
||||
static void graph_trace_close(struct trace_iterator *iter)
|
||||
{
|
||||
percpu_free(iter->private);
|
||||
free_percpu(iter->private);
|
||||
}
|
||||
|
||||
static struct tracer graph_trace __read_mostly = {
|
||||
|
587
mm/percpu.c
587
mm/percpu.c
@ -62,7 +62,9 @@
|
||||
#include <linux/pfn.h>
|
||||
#include <linux/rbtree.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/vmalloc.h>
|
||||
#include <linux/workqueue.h>
|
||||
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/tlbflush.h>
|
||||
@ -80,7 +82,8 @@ struct pcpu_chunk {
|
||||
int map_alloc; /* # of map entries allocated */
|
||||
int *map; /* allocation map */
|
||||
bool immutable; /* no [de]population allowed */
|
||||
struct page *page[]; /* #cpus * UNIT_PAGES */
|
||||
struct page **page; /* points to page array */
|
||||
struct page *page_ar[]; /* #cpus * UNIT_PAGES */
|
||||
};
|
||||
|
||||
static int pcpu_unit_pages __read_mostly;
|
||||
@ -93,28 +96,42 @@ static size_t pcpu_chunk_struct_size __read_mostly;
|
||||
void *pcpu_base_addr __read_mostly;
|
||||
EXPORT_SYMBOL_GPL(pcpu_base_addr);
|
||||
|
||||
/* the size of kernel static area */
|
||||
static int pcpu_static_size __read_mostly;
|
||||
/* optional reserved chunk, only accessible for reserved allocations */
|
||||
static struct pcpu_chunk *pcpu_reserved_chunk;
|
||||
/* offset limit of the reserved chunk */
|
||||
static int pcpu_reserved_chunk_limit;
|
||||
|
||||
/*
|
||||
* One mutex to rule them all.
|
||||
* Synchronization rules.
|
||||
*
|
||||
* The following mutex is grabbed in the outermost public alloc/free
|
||||
* interface functions and released only when the operation is
|
||||
* complete. As such, every function in this file other than the
|
||||
* outermost functions are called under pcpu_mutex.
|
||||
* There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
|
||||
* protects allocation/reclaim paths, chunks and chunk->page arrays.
|
||||
* The latter is a spinlock and protects the index data structures -
|
||||
* chunk slots, rbtree, chunks and area maps in chunks.
|
||||
*
|
||||
* It can easily be switched to use spinlock such that only the area
|
||||
* allocation and page population commit are protected with it doing
|
||||
* actual [de]allocation without holding any lock. However, given
|
||||
* what this allocator does, I think it's better to let them run
|
||||
* sequentially.
|
||||
* During allocation, pcpu_alloc_mutex is kept locked all the time and
|
||||
* pcpu_lock is grabbed and released as necessary. All actual memory
|
||||
* allocations are done using GFP_KERNEL with pcpu_lock released.
|
||||
*
|
||||
* Free path accesses and alters only the index data structures, so it
|
||||
* can be safely called from atomic context. When memory needs to be
|
||||
* returned to the system, free path schedules reclaim_work which
|
||||
* grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
|
||||
* reclaimed, release both locks and frees the chunks. Note that it's
|
||||
* necessary to grab both locks to remove a chunk from circulation as
|
||||
* allocation path might be referencing the chunk with only
|
||||
* pcpu_alloc_mutex locked.
|
||||
*/
|
||||
static DEFINE_MUTEX(pcpu_mutex);
|
||||
static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
|
||||
static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
|
||||
|
||||
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
|
||||
static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
|
||||
|
||||
/* reclaim work to release fully free chunks, scheduled from free path */
|
||||
static void pcpu_reclaim(struct work_struct *work);
|
||||
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
|
||||
|
||||
static int __pcpu_size_to_slot(int size)
|
||||
{
|
||||
int highbit = fls(size); /* size is in bytes */
|
||||
@ -161,39 +178,44 @@ static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
|
||||
}
|
||||
|
||||
/**
|
||||
* pcpu_realloc - versatile realloc
|
||||
* @p: the current pointer (can be NULL for new allocations)
|
||||
* @size: the current size in bytes (can be 0 for new allocations)
|
||||
* @new_size: the wanted new size in bytes (can be 0 for free)
|
||||
* pcpu_mem_alloc - allocate memory
|
||||
* @size: bytes to allocate
|
||||
*
|
||||
* More robust realloc which can be used to allocate, resize or free a
|
||||
* memory area of arbitrary size. If the needed size goes over
|
||||
* PAGE_SIZE, kernel VM is used.
|
||||
* Allocate @size bytes. If @size is smaller than PAGE_SIZE,
|
||||
* kzalloc() is used; otherwise, vmalloc() is used. The returned
|
||||
* memory is always zeroed.
|
||||
*
|
||||
* CONTEXT:
|
||||
* Does GFP_KERNEL allocation.
|
||||
*
|
||||
* RETURNS:
|
||||
* The new pointer on success, NULL on failure.
|
||||
* Pointer to the allocated area on success, NULL on failure.
|
||||
*/
|
||||
static void *pcpu_realloc(void *p, size_t size, size_t new_size)
|
||||
static void *pcpu_mem_alloc(size_t size)
|
||||
{
|
||||
void *new;
|
||||
|
||||
if (new_size <= PAGE_SIZE)
|
||||
new = kmalloc(new_size, GFP_KERNEL);
|
||||
else
|
||||
new = vmalloc(new_size);
|
||||
if (new_size && !new)
|
||||
return NULL;
|
||||
|
||||
memcpy(new, p, min(size, new_size));
|
||||
if (new_size > size)
|
||||
memset(new + size, 0, new_size - size);
|
||||
|
||||
if (size <= PAGE_SIZE)
|
||||
kfree(p);
|
||||
else
|
||||
vfree(p);
|
||||
return kzalloc(size, GFP_KERNEL);
|
||||
else {
|
||||
void *ptr = vmalloc(size);
|
||||
if (ptr)
|
||||
memset(ptr, 0, size);
|
||||
return ptr;
|
||||
}
|
||||
}
|
||||
|
||||
return new;
|
||||
/**
|
||||
* pcpu_mem_free - free memory
|
||||
* @ptr: memory to free
|
||||
* @size: size of the area
|
||||
*
|
||||
* Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
|
||||
*/
|
||||
static void pcpu_mem_free(void *ptr, size_t size)
|
||||
{
|
||||
if (size <= PAGE_SIZE)
|
||||
kfree(ptr);
|
||||
else
|
||||
vfree(ptr);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -203,13 +225,17 @@ static void *pcpu_realloc(void *p, size_t size, size_t new_size)
|
||||
*
|
||||
* This function is called after an allocation or free changed @chunk.
|
||||
* New slot according to the changed state is determined and @chunk is
|
||||
* moved to the slot.
|
||||
* moved to the slot. Note that the reserved chunk is never put on
|
||||
* chunk slots.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_lock.
|
||||
*/
|
||||
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
|
||||
{
|
||||
int nslot = pcpu_chunk_slot(chunk);
|
||||
|
||||
if (oslot != nslot) {
|
||||
if (chunk != pcpu_reserved_chunk && oslot != nslot) {
|
||||
if (oslot < nslot)
|
||||
list_move(&chunk->list, &pcpu_slot[nslot]);
|
||||
else
|
||||
@ -249,6 +275,9 @@ static struct rb_node **pcpu_chunk_rb_search(void *addr,
|
||||
* searchs for the chunk with the highest start address which isn't
|
||||
* beyond @addr.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_lock.
|
||||
*
|
||||
* RETURNS:
|
||||
* The address of the found chunk.
|
||||
*/
|
||||
@ -257,6 +286,15 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
|
||||
struct rb_node *n, *parent;
|
||||
struct pcpu_chunk *chunk;
|
||||
|
||||
/* is it in the reserved chunk? */
|
||||
if (pcpu_reserved_chunk) {
|
||||
void *start = pcpu_reserved_chunk->vm->addr;
|
||||
|
||||
if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
|
||||
return pcpu_reserved_chunk;
|
||||
}
|
||||
|
||||
/* nah... search the regular ones */
|
||||
n = *pcpu_chunk_rb_search(addr, &parent);
|
||||
if (!n) {
|
||||
/* no exactly matching chunk, the parent is the closest */
|
||||
@ -280,6 +318,9 @@ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
|
||||
* @new: chunk to insert
|
||||
*
|
||||
* Insert @new into address rb tree.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_lock.
|
||||
*/
|
||||
static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
|
||||
{
|
||||
@ -291,6 +332,66 @@ static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
|
||||
rb_insert_color(&new->rb_node, &pcpu_addr_root);
|
||||
}
|
||||
|
||||
/**
|
||||
* pcpu_extend_area_map - extend area map for allocation
|
||||
* @chunk: target chunk
|
||||
*
|
||||
* Extend area map of @chunk so that it can accomodate an allocation.
|
||||
* A single allocation can split an area into three areas, so this
|
||||
* function makes sure that @chunk->map has at least two extra slots.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
|
||||
* if area map is extended.
|
||||
*
|
||||
* RETURNS:
|
||||
* 0 if noop, 1 if successfully extended, -errno on failure.
|
||||
*/
|
||||
static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
|
||||
{
|
||||
int new_alloc;
|
||||
int *new;
|
||||
size_t size;
|
||||
|
||||
/* has enough? */
|
||||
if (chunk->map_alloc >= chunk->map_used + 2)
|
||||
return 0;
|
||||
|
||||
spin_unlock_irq(&pcpu_lock);
|
||||
|
||||
new_alloc = PCPU_DFL_MAP_ALLOC;
|
||||
while (new_alloc < chunk->map_used + 2)
|
||||
new_alloc *= 2;
|
||||
|
||||
new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
|
||||
if (!new) {
|
||||
spin_lock_irq(&pcpu_lock);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/*
|
||||
* Acquire pcpu_lock and switch to new area map. Only free
|
||||
* could have happened inbetween, so map_used couldn't have
|
||||
* grown.
|
||||
*/
|
||||
spin_lock_irq(&pcpu_lock);
|
||||
BUG_ON(new_alloc < chunk->map_used + 2);
|
||||
|
||||
size = chunk->map_alloc * sizeof(chunk->map[0]);
|
||||
memcpy(new, chunk->map, size);
|
||||
|
||||
/*
|
||||
* map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
|
||||
* one of the first chunks and still using static map.
|
||||
*/
|
||||
if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
|
||||
pcpu_mem_free(chunk->map, size);
|
||||
|
||||
chunk->map_alloc = new_alloc;
|
||||
chunk->map = new;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* pcpu_split_block - split a map block
|
||||
* @chunk: chunk of interest
|
||||
@ -306,33 +407,19 @@ static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
|
||||
* depending on @head, is reduced by @tail bytes and @tail byte block
|
||||
* is inserted after the target block.
|
||||
*
|
||||
* RETURNS:
|
||||
* 0 on success, -errno on failure.
|
||||
* @chunk->map must have enough free slots to accomodate the split.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_lock.
|
||||
*/
|
||||
static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
|
||||
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
|
||||
int head, int tail)
|
||||
{
|
||||
int nr_extra = !!head + !!tail;
|
||||
int target = chunk->map_used + nr_extra;
|
||||
|
||||
/* reallocation required? */
|
||||
if (chunk->map_alloc < target) {
|
||||
int new_alloc = chunk->map_alloc;
|
||||
int *new;
|
||||
BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
|
||||
|
||||
while (new_alloc < target)
|
||||
new_alloc *= 2;
|
||||
|
||||
new = pcpu_realloc(chunk->map,
|
||||
chunk->map_alloc * sizeof(new[0]),
|
||||
new_alloc * sizeof(new[0]));
|
||||
if (!new)
|
||||
return -ENOMEM;
|
||||
|
||||
chunk->map_alloc = new_alloc;
|
||||
chunk->map = new;
|
||||
}
|
||||
|
||||
/* insert a new subblock */
|
||||
/* insert new subblocks */
|
||||
memmove(&chunk->map[i + nr_extra], &chunk->map[i],
|
||||
sizeof(chunk->map[0]) * (chunk->map_used - i));
|
||||
chunk->map_used += nr_extra;
|
||||
@ -345,7 +432,6 @@ static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
|
||||
chunk->map[i++] -= tail;
|
||||
chunk->map[i] = tail;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -358,8 +444,14 @@ static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
|
||||
* Note that this function only allocates the offset. It doesn't
|
||||
* populate or map the area.
|
||||
*
|
||||
* @chunk->map must have at least two free slots.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_lock.
|
||||
*
|
||||
* RETURNS:
|
||||
* Allocated offset in @chunk on success, -errno on failure.
|
||||
* Allocated offset in @chunk on success, -1 if no matching area is
|
||||
* found.
|
||||
*/
|
||||
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
|
||||
{
|
||||
@ -367,22 +459,6 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
|
||||
int max_contig = 0;
|
||||
int i, off;
|
||||
|
||||
/*
|
||||
* The static chunk initially doesn't have map attached
|
||||
* because kmalloc wasn't available during init. Give it one.
|
||||
*/
|
||||
if (unlikely(!chunk->map)) {
|
||||
chunk->map = pcpu_realloc(NULL, 0,
|
||||
PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
|
||||
if (!chunk->map)
|
||||
return -ENOMEM;
|
||||
|
||||
chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
|
||||
chunk->map[chunk->map_used++] = -pcpu_static_size;
|
||||
if (chunk->free_size)
|
||||
chunk->map[chunk->map_used++] = chunk->free_size;
|
||||
}
|
||||
|
||||
for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
|
||||
bool is_last = i + 1 == chunk->map_used;
|
||||
int head, tail;
|
||||
@ -423,8 +499,7 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
|
||||
|
||||
/* split if warranted */
|
||||
if (head || tail) {
|
||||
if (pcpu_split_block(chunk, i, head, tail))
|
||||
return -ENOMEM;
|
||||
pcpu_split_block(chunk, i, head, tail);
|
||||
if (head) {
|
||||
i++;
|
||||
off += head;
|
||||
@ -451,14 +526,8 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
|
||||
chunk->contig_hint = max_contig; /* fully scanned */
|
||||
pcpu_chunk_relocate(chunk, oslot);
|
||||
|
||||
/*
|
||||
* Tell the upper layer that this chunk has no area left.
|
||||
* Note that this is not an error condition but a notification
|
||||
* to upper layer that it needs to look at other chunks.
|
||||
* -ENOSPC is chosen as it isn't used in memory subsystem and
|
||||
* matches the meaning in a way.
|
||||
*/
|
||||
return -ENOSPC;
|
||||
/* tell the upper layer that this chunk has no matching area */
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -469,6 +538,9 @@ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
|
||||
* Free area starting from @freeme to @chunk. Note that this function
|
||||
* only modifies the allocation map. It doesn't depopulate or unmap
|
||||
* the area.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_lock.
|
||||
*/
|
||||
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
|
||||
{
|
||||
@ -554,6 +626,9 @@ static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
|
||||
* For each cpu, depopulate and unmap pages [@page_start,@page_end)
|
||||
* from @chunk. If @flush is true, vcache is flushed before unmapping
|
||||
* and tlb after.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_alloc_mutex.
|
||||
*/
|
||||
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
|
||||
bool flush)
|
||||
@ -632,6 +707,9 @@ static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
|
||||
*
|
||||
* For each cpu, populate and map pages [@page_start,@page_end) into
|
||||
* @chunk. The area is cleared on return.
|
||||
*
|
||||
* CONTEXT:
|
||||
* pcpu_alloc_mutex, does GFP_KERNEL allocation.
|
||||
*/
|
||||
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
|
||||
{
|
||||
@ -686,7 +764,7 @@ static void free_pcpu_chunk(struct pcpu_chunk *chunk)
|
||||
return;
|
||||
if (chunk->vm)
|
||||
free_vm_area(chunk->vm);
|
||||
pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0);
|
||||
pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
|
||||
kfree(chunk);
|
||||
}
|
||||
|
||||
@ -698,10 +776,10 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void)
|
||||
if (!chunk)
|
||||
return NULL;
|
||||
|
||||
chunk->map = pcpu_realloc(NULL, 0,
|
||||
PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
|
||||
chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
|
||||
chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
|
||||
chunk->map[chunk->map_used++] = pcpu_unit_size;
|
||||
chunk->page = chunk->page_ar;
|
||||
|
||||
chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
|
||||
if (!chunk->vm) {
|
||||
@ -717,19 +795,21 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void)
|
||||
}
|
||||
|
||||
/**
|
||||
* __alloc_percpu - allocate percpu area
|
||||
* pcpu_alloc - the percpu allocator
|
||||
* @size: size of area to allocate in bytes
|
||||
* @align: alignment of area (max PAGE_SIZE)
|
||||
* @reserved: allocate from the reserved chunk if available
|
||||
*
|
||||
* Allocate percpu area of @size bytes aligned at @align. Might
|
||||
* sleep. Might trigger writeouts.
|
||||
* Allocate percpu area of @size bytes aligned at @align.
|
||||
*
|
||||
* CONTEXT:
|
||||
* Does GFP_KERNEL allocation.
|
||||
*
|
||||
* RETURNS:
|
||||
* Percpu pointer to the allocated area on success, NULL on failure.
|
||||
*/
|
||||
void *__alloc_percpu(size_t size, size_t align)
|
||||
static void *pcpu_alloc(size_t size, size_t align, bool reserved)
|
||||
{
|
||||
void *ptr = NULL;
|
||||
struct pcpu_chunk *chunk;
|
||||
int slot, off;
|
||||
|
||||
@ -739,90 +819,192 @@ void *__alloc_percpu(size_t size, size_t align)
|
||||
return NULL;
|
||||
}
|
||||
|
||||
mutex_lock(&pcpu_mutex);
|
||||
mutex_lock(&pcpu_alloc_mutex);
|
||||
spin_lock_irq(&pcpu_lock);
|
||||
|
||||
/* allocate area */
|
||||
/* serve reserved allocations from the reserved chunk if available */
|
||||
if (reserved && pcpu_reserved_chunk) {
|
||||
chunk = pcpu_reserved_chunk;
|
||||
if (size > chunk->contig_hint ||
|
||||
pcpu_extend_area_map(chunk) < 0)
|
||||
goto fail_unlock;
|
||||
off = pcpu_alloc_area(chunk, size, align);
|
||||
if (off >= 0)
|
||||
goto area_found;
|
||||
goto fail_unlock;
|
||||
}
|
||||
|
||||
restart:
|
||||
/* search through normal chunks */
|
||||
for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
|
||||
list_for_each_entry(chunk, &pcpu_slot[slot], list) {
|
||||
if (size > chunk->contig_hint)
|
||||
continue;
|
||||
|
||||
switch (pcpu_extend_area_map(chunk)) {
|
||||
case 0:
|
||||
break;
|
||||
case 1:
|
||||
goto restart; /* pcpu_lock dropped, restart */
|
||||
default:
|
||||
goto fail_unlock;
|
||||
}
|
||||
|
||||
off = pcpu_alloc_area(chunk, size, align);
|
||||
if (off >= 0)
|
||||
goto area_found;
|
||||
if (off != -ENOSPC)
|
||||
goto out_unlock;
|
||||
}
|
||||
}
|
||||
|
||||
/* hmmm... no space left, create a new chunk */
|
||||
spin_unlock_irq(&pcpu_lock);
|
||||
|
||||
chunk = alloc_pcpu_chunk();
|
||||
if (!chunk)
|
||||
goto out_unlock;
|
||||
goto fail_unlock_mutex;
|
||||
|
||||
spin_lock_irq(&pcpu_lock);
|
||||
pcpu_chunk_relocate(chunk, -1);
|
||||
pcpu_chunk_addr_insert(chunk);
|
||||
|
||||
off = pcpu_alloc_area(chunk, size, align);
|
||||
if (off < 0)
|
||||
goto out_unlock;
|
||||
goto restart;
|
||||
|
||||
area_found:
|
||||
spin_unlock_irq(&pcpu_lock);
|
||||
|
||||
/* populate, map and clear the area */
|
||||
if (pcpu_populate_chunk(chunk, off, size)) {
|
||||
spin_lock_irq(&pcpu_lock);
|
||||
pcpu_free_area(chunk, off);
|
||||
goto out_unlock;
|
||||
goto fail_unlock;
|
||||
}
|
||||
|
||||
ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
|
||||
out_unlock:
|
||||
mutex_unlock(&pcpu_mutex);
|
||||
return ptr;
|
||||
mutex_unlock(&pcpu_alloc_mutex);
|
||||
|
||||
return __addr_to_pcpu_ptr(chunk->vm->addr + off);
|
||||
|
||||
fail_unlock:
|
||||
spin_unlock_irq(&pcpu_lock);
|
||||
fail_unlock_mutex:
|
||||
mutex_unlock(&pcpu_alloc_mutex);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* __alloc_percpu - allocate dynamic percpu area
|
||||
* @size: size of area to allocate in bytes
|
||||
* @align: alignment of area (max PAGE_SIZE)
|
||||
*
|
||||
* Allocate percpu area of @size bytes aligned at @align. Might
|
||||
* sleep. Might trigger writeouts.
|
||||
*
|
||||
* CONTEXT:
|
||||
* Does GFP_KERNEL allocation.
|
||||
*
|
||||
* RETURNS:
|
||||
* Percpu pointer to the allocated area on success, NULL on failure.
|
||||
*/
|
||||
void *__alloc_percpu(size_t size, size_t align)
|
||||
{
|
||||
return pcpu_alloc(size, align, false);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(__alloc_percpu);
|
||||
|
||||
static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
|
||||
/**
|
||||
* __alloc_reserved_percpu - allocate reserved percpu area
|
||||
* @size: size of area to allocate in bytes
|
||||
* @align: alignment of area (max PAGE_SIZE)
|
||||
*
|
||||
* Allocate percpu area of @size bytes aligned at @align from reserved
|
||||
* percpu area if arch has set it up; otherwise, allocation is served
|
||||
* from the same dynamic area. Might sleep. Might trigger writeouts.
|
||||
*
|
||||
* CONTEXT:
|
||||
* Does GFP_KERNEL allocation.
|
||||
*
|
||||
* RETURNS:
|
||||
* Percpu pointer to the allocated area on success, NULL on failure.
|
||||
*/
|
||||
void *__alloc_reserved_percpu(size_t size, size_t align)
|
||||
{
|
||||
WARN_ON(chunk->immutable);
|
||||
pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
|
||||
list_del(&chunk->list);
|
||||
rb_erase(&chunk->rb_node, &pcpu_addr_root);
|
||||
free_pcpu_chunk(chunk);
|
||||
return pcpu_alloc(size, align, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* pcpu_reclaim - reclaim fully free chunks, workqueue function
|
||||
* @work: unused
|
||||
*
|
||||
* Reclaim all fully free chunks except for the first one.
|
||||
*
|
||||
* CONTEXT:
|
||||
* workqueue context.
|
||||
*/
|
||||
static void pcpu_reclaim(struct work_struct *work)
|
||||
{
|
||||
LIST_HEAD(todo);
|
||||
struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
|
||||
struct pcpu_chunk *chunk, *next;
|
||||
|
||||
mutex_lock(&pcpu_alloc_mutex);
|
||||
spin_lock_irq(&pcpu_lock);
|
||||
|
||||
list_for_each_entry_safe(chunk, next, head, list) {
|
||||
WARN_ON(chunk->immutable);
|
||||
|
||||
/* spare the first one */
|
||||
if (chunk == list_first_entry(head, struct pcpu_chunk, list))
|
||||
continue;
|
||||
|
||||
rb_erase(&chunk->rb_node, &pcpu_addr_root);
|
||||
list_move(&chunk->list, &todo);
|
||||
}
|
||||
|
||||
spin_unlock_irq(&pcpu_lock);
|
||||
mutex_unlock(&pcpu_alloc_mutex);
|
||||
|
||||
list_for_each_entry_safe(chunk, next, &todo, list) {
|
||||
pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
|
||||
free_pcpu_chunk(chunk);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* free_percpu - free percpu area
|
||||
* @ptr: pointer to area to free
|
||||
*
|
||||
* Free percpu area @ptr. Might sleep.
|
||||
* Free percpu area @ptr.
|
||||
*
|
||||
* CONTEXT:
|
||||
* Can be called from atomic context.
|
||||
*/
|
||||
void free_percpu(void *ptr)
|
||||
{
|
||||
void *addr = __pcpu_ptr_to_addr(ptr);
|
||||
struct pcpu_chunk *chunk;
|
||||
unsigned long flags;
|
||||
int off;
|
||||
|
||||
if (!ptr)
|
||||
return;
|
||||
|
||||
mutex_lock(&pcpu_mutex);
|
||||
spin_lock_irqsave(&pcpu_lock, flags);
|
||||
|
||||
chunk = pcpu_chunk_addr_search(addr);
|
||||
off = addr - chunk->vm->addr;
|
||||
|
||||
pcpu_free_area(chunk, off);
|
||||
|
||||
/* the chunk became fully free, kill one if there are other free ones */
|
||||
/* if there are more than one fully free chunks, wake up grim reaper */
|
||||
if (chunk->free_size == pcpu_unit_size) {
|
||||
struct pcpu_chunk *pos;
|
||||
|
||||
list_for_each_entry(pos,
|
||||
&pcpu_slot[pcpu_chunk_slot(chunk)], list)
|
||||
list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
|
||||
if (pos != chunk) {
|
||||
pcpu_kill_chunk(pos);
|
||||
schedule_work(&pcpu_reclaim_work);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
mutex_unlock(&pcpu_mutex);
|
||||
spin_unlock_irqrestore(&pcpu_lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(free_percpu);
|
||||
|
||||
@ -830,8 +1012,9 @@ EXPORT_SYMBOL_GPL(free_percpu);
|
||||
* pcpu_setup_first_chunk - initialize the first percpu chunk
|
||||
* @get_page_fn: callback to fetch page pointer
|
||||
* @static_size: the size of static percpu area in bytes
|
||||
* @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, 0 for auto
|
||||
* @free_size: free size in bytes, 0 for auto
|
||||
* @reserved_size: the size of reserved percpu area in bytes
|
||||
* @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
|
||||
* @dyn_size: free size for dynamic allocation in bytes, -1 for auto
|
||||
* @base_addr: mapped address, NULL for auto
|
||||
* @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
|
||||
*
|
||||
@ -848,13 +1031,22 @@ EXPORT_SYMBOL_GPL(free_percpu);
|
||||
* indicates end of pages for the cpu. Note that @get_page_fn() must
|
||||
* return the same number of pages for all cpus.
|
||||
*
|
||||
* @unit_size, if non-zero, determines unit size and must be aligned
|
||||
* to PAGE_SIZE and equal to or larger than @static_size + @free_size.
|
||||
* @reserved_size, if non-zero, specifies the amount of bytes to
|
||||
* reserve after the static area in the first chunk. This reserves
|
||||
* the first chunk such that it's available only through reserved
|
||||
* percpu allocation. This is primarily used to serve module percpu
|
||||
* static areas on architectures where the addressing model has
|
||||
* limited offset range for symbol relocations to guarantee module
|
||||
* percpu symbols fall inside the relocatable range.
|
||||
*
|
||||
* @free_size determines the number of free bytes after the static
|
||||
* area in the first chunk. If zero, whatever left is available.
|
||||
* Specifying non-zero value make percpu leave the area after
|
||||
* @static_size + @free_size alone.
|
||||
* @unit_size, if non-negative, specifies unit size and must be
|
||||
* aligned to PAGE_SIZE and equal to or larger than @static_size +
|
||||
* @reserved_size + @dyn_size.
|
||||
*
|
||||
* @dyn_size, if non-negative, limits the number of bytes available
|
||||
* for dynamic allocation in the first chunk. Specifying non-negative
|
||||
* value make percpu leave alone the area beyond @static_size +
|
||||
* @reserved_size + @dyn_size.
|
||||
*
|
||||
* Non-null @base_addr means that the caller already allocated virtual
|
||||
* region for the first chunk and mapped it. percpu must not mess
|
||||
@ -864,41 +1056,58 @@ EXPORT_SYMBOL_GPL(free_percpu);
|
||||
* @populate_pte_fn is used to populate the pagetable. NULL means the
|
||||
* caller already populated the pagetable.
|
||||
*
|
||||
* If the first chunk ends up with both reserved and dynamic areas, it
|
||||
* is served by two chunks - one to serve the core static and reserved
|
||||
* areas and the other for the dynamic area. They share the same vm
|
||||
* and page map but uses different area allocation map to stay away
|
||||
* from each other. The latter chunk is circulated in the chunk slots
|
||||
* and available for dynamic allocation like any other chunks.
|
||||
*
|
||||
* RETURNS:
|
||||
* The determined pcpu_unit_size which can be used to initialize
|
||||
* percpu access.
|
||||
*/
|
||||
size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
|
||||
size_t static_size, size_t unit_size,
|
||||
size_t free_size, void *base_addr,
|
||||
size_t static_size, size_t reserved_size,
|
||||
ssize_t unit_size, ssize_t dyn_size,
|
||||
void *base_addr,
|
||||
pcpu_populate_pte_fn_t populate_pte_fn)
|
||||
{
|
||||
static struct vm_struct static_vm;
|
||||
struct pcpu_chunk *static_chunk;
|
||||
static struct vm_struct first_vm;
|
||||
static int smap[2], dmap[2];
|
||||
struct pcpu_chunk *schunk, *dchunk = NULL;
|
||||
unsigned int cpu;
|
||||
int nr_pages;
|
||||
int err, i;
|
||||
|
||||
/* santiy checks */
|
||||
BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
|
||||
ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
|
||||
BUG_ON(!static_size);
|
||||
BUG_ON(!unit_size && free_size);
|
||||
BUG_ON(unit_size && unit_size < static_size + free_size);
|
||||
BUG_ON(unit_size & ~PAGE_MASK);
|
||||
BUG_ON(base_addr && !unit_size);
|
||||
if (unit_size >= 0) {
|
||||
BUG_ON(unit_size < static_size + reserved_size +
|
||||
(dyn_size >= 0 ? dyn_size : 0));
|
||||
BUG_ON(unit_size & ~PAGE_MASK);
|
||||
} else {
|
||||
BUG_ON(dyn_size >= 0);
|
||||
BUG_ON(base_addr);
|
||||
}
|
||||
BUG_ON(base_addr && populate_pte_fn);
|
||||
|
||||
if (unit_size)
|
||||
if (unit_size >= 0)
|
||||
pcpu_unit_pages = unit_size >> PAGE_SHIFT;
|
||||
else
|
||||
pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
|
||||
PFN_UP(static_size));
|
||||
PFN_UP(static_size + reserved_size));
|
||||
|
||||
pcpu_static_size = static_size;
|
||||
pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
|
||||
pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
|
||||
pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
|
||||
+ num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
|
||||
|
||||
if (dyn_size < 0)
|
||||
dyn_size = pcpu_unit_size - static_size - reserved_size;
|
||||
|
||||
/*
|
||||
* Allocate chunk slots. The additional last slot is for
|
||||
* empty chunks.
|
||||
@ -908,33 +1117,66 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
|
||||
for (i = 0; i < pcpu_nr_slots; i++)
|
||||
INIT_LIST_HEAD(&pcpu_slot[i]);
|
||||
|
||||
/* init static_chunk */
|
||||
static_chunk = alloc_bootmem(pcpu_chunk_struct_size);
|
||||
INIT_LIST_HEAD(&static_chunk->list);
|
||||
static_chunk->vm = &static_vm;
|
||||
/*
|
||||
* Initialize static chunk. If reserved_size is zero, the
|
||||
* static chunk covers static area + dynamic allocation area
|
||||
* in the first chunk. If reserved_size is not zero, it
|
||||
* covers static area + reserved area (mostly used for module
|
||||
* static percpu allocation).
|
||||
*/
|
||||
schunk = alloc_bootmem(pcpu_chunk_struct_size);
|
||||
INIT_LIST_HEAD(&schunk->list);
|
||||
schunk->vm = &first_vm;
|
||||
schunk->map = smap;
|
||||
schunk->map_alloc = ARRAY_SIZE(smap);
|
||||
schunk->page = schunk->page_ar;
|
||||
|
||||
if (free_size)
|
||||
static_chunk->free_size = free_size;
|
||||
else
|
||||
static_chunk->free_size = pcpu_unit_size - pcpu_static_size;
|
||||
if (reserved_size) {
|
||||
schunk->free_size = reserved_size;
|
||||
pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
|
||||
} else {
|
||||
schunk->free_size = dyn_size;
|
||||
dyn_size = 0; /* dynamic area covered */
|
||||
}
|
||||
schunk->contig_hint = schunk->free_size;
|
||||
|
||||
static_chunk->contig_hint = static_chunk->free_size;
|
||||
schunk->map[schunk->map_used++] = -static_size;
|
||||
if (schunk->free_size)
|
||||
schunk->map[schunk->map_used++] = schunk->free_size;
|
||||
|
||||
pcpu_reserved_chunk_limit = static_size + schunk->free_size;
|
||||
|
||||
/* init dynamic chunk if necessary */
|
||||
if (dyn_size) {
|
||||
dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
|
||||
INIT_LIST_HEAD(&dchunk->list);
|
||||
dchunk->vm = &first_vm;
|
||||
dchunk->map = dmap;
|
||||
dchunk->map_alloc = ARRAY_SIZE(dmap);
|
||||
dchunk->page = schunk->page_ar; /* share page map with schunk */
|
||||
|
||||
dchunk->contig_hint = dchunk->free_size = dyn_size;
|
||||
dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
|
||||
dchunk->map[dchunk->map_used++] = dchunk->free_size;
|
||||
}
|
||||
|
||||
/* allocate vm address */
|
||||
static_vm.flags = VM_ALLOC;
|
||||
static_vm.size = pcpu_chunk_size;
|
||||
first_vm.flags = VM_ALLOC;
|
||||
first_vm.size = pcpu_chunk_size;
|
||||
|
||||
if (!base_addr)
|
||||
vm_area_register_early(&static_vm, PAGE_SIZE);
|
||||
vm_area_register_early(&first_vm, PAGE_SIZE);
|
||||
else {
|
||||
/*
|
||||
* Pages already mapped. No need to remap into
|
||||
* vmalloc area. In this case the static chunk can't
|
||||
* be mapped or unmapped by percpu and is marked
|
||||
* vmalloc area. In this case the first chunks can't
|
||||
* be mapped or unmapped by percpu and are marked
|
||||
* immutable.
|
||||
*/
|
||||
static_vm.addr = base_addr;
|
||||
static_chunk->immutable = true;
|
||||
first_vm.addr = base_addr;
|
||||
schunk->immutable = true;
|
||||
if (dchunk)
|
||||
dchunk->immutable = true;
|
||||
}
|
||||
|
||||
/* assign pages */
|
||||
@ -945,10 +1187,10 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
|
||||
|
||||
if (!page)
|
||||
break;
|
||||
*pcpu_chunk_pagep(static_chunk, cpu, i) = page;
|
||||
*pcpu_chunk_pagep(schunk, cpu, i) = page;
|
||||
}
|
||||
|
||||
BUG_ON(i < PFN_UP(pcpu_static_size));
|
||||
BUG_ON(i < PFN_UP(static_size));
|
||||
|
||||
if (nr_pages < 0)
|
||||
nr_pages = i;
|
||||
@ -960,20 +1202,25 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
|
||||
if (populate_pte_fn) {
|
||||
for_each_possible_cpu(cpu)
|
||||
for (i = 0; i < nr_pages; i++)
|
||||
populate_pte_fn(pcpu_chunk_addr(static_chunk,
|
||||
populate_pte_fn(pcpu_chunk_addr(schunk,
|
||||
cpu, i));
|
||||
|
||||
err = pcpu_map(static_chunk, 0, nr_pages);
|
||||
err = pcpu_map(schunk, 0, nr_pages);
|
||||
if (err)
|
||||
panic("failed to setup static percpu area, err=%d\n",
|
||||
err);
|
||||
}
|
||||
|
||||
/* link static_chunk in */
|
||||
pcpu_chunk_relocate(static_chunk, -1);
|
||||
pcpu_chunk_addr_insert(static_chunk);
|
||||
/* link the first chunk in */
|
||||
if (!dchunk) {
|
||||
pcpu_chunk_relocate(schunk, -1);
|
||||
pcpu_chunk_addr_insert(schunk);
|
||||
} else {
|
||||
pcpu_chunk_relocate(dchunk, -1);
|
||||
pcpu_chunk_addr_insert(dchunk);
|
||||
}
|
||||
|
||||
/* we're done */
|
||||
pcpu_base_addr = (void *)pcpu_chunk_addr(static_chunk, 0, 0);
|
||||
pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
|
||||
return pcpu_unit_size;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user