forked from Minki/linux
sched: Add support for unthrottling group entities
At the start of each period we refresh the global bandwidth pool. At this time we must also unthrottle any cfs_rq entities who are now within bandwidth once more (as quota permits). Unthrottled entities have their corresponding cfs_rq->throttled flag cleared and their entities re-enqueued. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20110721184757.574628950@google.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
85dac906be
commit
671fd9dabe
@ -9192,6 +9192,9 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
|
||||
raw_spin_lock_irq(&rq->lock);
|
||||
cfs_rq->runtime_enabled = runtime_enabled;
|
||||
cfs_rq->runtime_remaining = 0;
|
||||
|
||||
if (cfs_rq_throttled(cfs_rq))
|
||||
unthrottle_cfs_rq(cfs_rq);
|
||||
raw_spin_unlock_irq(&rq->lock);
|
||||
}
|
||||
out_unlock:
|
||||
|
@ -1439,6 +1439,84 @@ static __used void throttle_cfs_rq(struct cfs_rq *cfs_rq)
|
||||
raw_spin_unlock(&cfs_b->lock);
|
||||
}
|
||||
|
||||
static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
|
||||
{
|
||||
struct rq *rq = rq_of(cfs_rq);
|
||||
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
|
||||
struct sched_entity *se;
|
||||
int enqueue = 1;
|
||||
long task_delta;
|
||||
|
||||
se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
|
||||
|
||||
cfs_rq->throttled = 0;
|
||||
raw_spin_lock(&cfs_b->lock);
|
||||
list_del_rcu(&cfs_rq->throttled_list);
|
||||
raw_spin_unlock(&cfs_b->lock);
|
||||
|
||||
if (!cfs_rq->load.weight)
|
||||
return;
|
||||
|
||||
task_delta = cfs_rq->h_nr_running;
|
||||
for_each_sched_entity(se) {
|
||||
if (se->on_rq)
|
||||
enqueue = 0;
|
||||
|
||||
cfs_rq = cfs_rq_of(se);
|
||||
if (enqueue)
|
||||
enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
|
||||
cfs_rq->h_nr_running += task_delta;
|
||||
|
||||
if (cfs_rq_throttled(cfs_rq))
|
||||
break;
|
||||
}
|
||||
|
||||
if (!se)
|
||||
rq->nr_running += task_delta;
|
||||
|
||||
/* determine whether we need to wake up potentially idle cpu */
|
||||
if (rq->curr == rq->idle && rq->cfs.nr_running)
|
||||
resched_task(rq->curr);
|
||||
}
|
||||
|
||||
static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
|
||||
u64 remaining, u64 expires)
|
||||
{
|
||||
struct cfs_rq *cfs_rq;
|
||||
u64 runtime = remaining;
|
||||
|
||||
rcu_read_lock();
|
||||
list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
|
||||
throttled_list) {
|
||||
struct rq *rq = rq_of(cfs_rq);
|
||||
|
||||
raw_spin_lock(&rq->lock);
|
||||
if (!cfs_rq_throttled(cfs_rq))
|
||||
goto next;
|
||||
|
||||
runtime = -cfs_rq->runtime_remaining + 1;
|
||||
if (runtime > remaining)
|
||||
runtime = remaining;
|
||||
remaining -= runtime;
|
||||
|
||||
cfs_rq->runtime_remaining += runtime;
|
||||
cfs_rq->runtime_expires = expires;
|
||||
|
||||
/* we check whether we're throttled above */
|
||||
if (cfs_rq->runtime_remaining > 0)
|
||||
unthrottle_cfs_rq(cfs_rq);
|
||||
|
||||
next:
|
||||
raw_spin_unlock(&rq->lock);
|
||||
|
||||
if (!remaining)
|
||||
break;
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
return remaining;
|
||||
}
|
||||
|
||||
/*
|
||||
* Responsible for refilling a task_group's bandwidth and unthrottling its
|
||||
* cfs_rqs as appropriate. If there has been no activity within the last
|
||||
@ -1447,23 +1525,64 @@ static __used void throttle_cfs_rq(struct cfs_rq *cfs_rq)
|
||||
*/
|
||||
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
|
||||
{
|
||||
int idle = 1;
|
||||
u64 runtime, runtime_expires;
|
||||
int idle = 1, throttled;
|
||||
|
||||
raw_spin_lock(&cfs_b->lock);
|
||||
/* no need to continue the timer with no bandwidth constraint */
|
||||
if (cfs_b->quota == RUNTIME_INF)
|
||||
goto out_unlock;
|
||||
|
||||
idle = cfs_b->idle;
|
||||
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
|
||||
/* idle depends on !throttled (for the case of a large deficit) */
|
||||
idle = cfs_b->idle && !throttled;
|
||||
|
||||
/* if we're going inactive then everything else can be deferred */
|
||||
if (idle)
|
||||
goto out_unlock;
|
||||
|
||||
__refill_cfs_bandwidth_runtime(cfs_b);
|
||||
|
||||
if (!throttled) {
|
||||
/* mark as potentially idle for the upcoming period */
|
||||
cfs_b->idle = 1;
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
/* mark as potentially idle for the upcoming period */
|
||||
cfs_b->idle = 1;
|
||||
/*
|
||||
* There are throttled entities so we must first use the new bandwidth
|
||||
* to unthrottle them before making it generally available. This
|
||||
* ensures that all existing debts will be paid before a new cfs_rq is
|
||||
* allowed to run.
|
||||
*/
|
||||
runtime = cfs_b->runtime;
|
||||
runtime_expires = cfs_b->runtime_expires;
|
||||
cfs_b->runtime = 0;
|
||||
|
||||
/*
|
||||
* This check is repeated as we are holding onto the new bandwidth
|
||||
* while we unthrottle. This can potentially race with an unthrottled
|
||||
* group trying to acquire new bandwidth from the global pool.
|
||||
*/
|
||||
while (throttled && runtime > 0) {
|
||||
raw_spin_unlock(&cfs_b->lock);
|
||||
/* we can't nest cfs_b->lock while distributing bandwidth */
|
||||
runtime = distribute_cfs_runtime(cfs_b, runtime,
|
||||
runtime_expires);
|
||||
raw_spin_lock(&cfs_b->lock);
|
||||
|
||||
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
|
||||
}
|
||||
|
||||
/* return (any) remaining runtime */
|
||||
cfs_b->runtime = runtime;
|
||||
/*
|
||||
* While we are ensured activity in the period following an
|
||||
* unthrottle, this also covers the case in which the new bandwidth is
|
||||
* insufficient to cover the existing bandwidth deficit. (Forcing the
|
||||
* timer to remain active while there are any throttled entities.)
|
||||
*/
|
||||
cfs_b->idle = 0;
|
||||
out_unlock:
|
||||
if (idle)
|
||||
cfs_b->timer_active = 0;
|
||||
|
Loading…
Reference in New Issue
Block a user