x86/tsc: Remodel cyc2ns to use seqcount_latch()
Replace the custom multi-value scheme with the more regular seqcount_latch() scheme. Along with scrapping a lot of lines, the latch scheme is better documented and used in more places. The immediate benefit however is not being limited on the update side. The current code has a limit where the writers block which is hit by future changes. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
8309f86cd4
commit
59eaef78bf
@ -2255,7 +2255,7 @@ static struct pmu pmu = {
|
||||
void arch_perf_update_userpage(struct perf_event *event,
|
||||
struct perf_event_mmap_page *userpg, u64 now)
|
||||
{
|
||||
struct cyc2ns_data *data;
|
||||
struct cyc2ns_data data;
|
||||
u64 offset;
|
||||
|
||||
userpg->cap_user_time = 0;
|
||||
@ -2267,17 +2267,17 @@ void arch_perf_update_userpage(struct perf_event *event,
|
||||
if (!using_native_sched_clock() || !sched_clock_stable())
|
||||
return;
|
||||
|
||||
data = cyc2ns_read_begin();
|
||||
cyc2ns_read_begin(&data);
|
||||
|
||||
offset = data->cyc2ns_offset + __sched_clock_offset;
|
||||
offset = data.cyc2ns_offset + __sched_clock_offset;
|
||||
|
||||
/*
|
||||
* Internal timekeeping for enabled/running/stopped times
|
||||
* is always in the local_clock domain.
|
||||
*/
|
||||
userpg->cap_user_time = 1;
|
||||
userpg->time_mult = data->cyc2ns_mul;
|
||||
userpg->time_shift = data->cyc2ns_shift;
|
||||
userpg->time_mult = data.cyc2ns_mul;
|
||||
userpg->time_shift = data.cyc2ns_shift;
|
||||
userpg->time_offset = offset - now;
|
||||
|
||||
/*
|
||||
@ -2289,7 +2289,7 @@ void arch_perf_update_userpage(struct perf_event *event,
|
||||
userpg->time_zero = offset;
|
||||
}
|
||||
|
||||
cyc2ns_read_end(data);
|
||||
cyc2ns_read_end();
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -29,11 +29,9 @@ struct cyc2ns_data {
|
||||
u32 cyc2ns_mul;
|
||||
u32 cyc2ns_shift;
|
||||
u64 cyc2ns_offset;
|
||||
u32 __count;
|
||||
/* u32 hole */
|
||||
}; /* 24 bytes -- do not grow */
|
||||
}; /* 16 bytes */
|
||||
|
||||
extern struct cyc2ns_data *cyc2ns_read_begin(void);
|
||||
extern void cyc2ns_read_end(struct cyc2ns_data *);
|
||||
extern void cyc2ns_read_begin(struct cyc2ns_data *);
|
||||
extern void cyc2ns_read_end(void);
|
||||
|
||||
#endif /* _ASM_X86_TIMER_H */
|
||||
|
@ -51,115 +51,34 @@ static u32 art_to_tsc_denominator;
|
||||
static u64 art_to_tsc_offset;
|
||||
struct clocksource *art_related_clocksource;
|
||||
|
||||
/*
|
||||
* Use a ring-buffer like data structure, where a writer advances the head by
|
||||
* writing a new data entry and a reader advances the tail when it observes a
|
||||
* new entry.
|
||||
*
|
||||
* Writers are made to wait on readers until there's space to write a new
|
||||
* entry.
|
||||
*
|
||||
* This means that we can always use an {offset, mul} pair to compute a ns
|
||||
* value that is 'roughly' in the right direction, even if we're writing a new
|
||||
* {offset, mul} pair during the clock read.
|
||||
*
|
||||
* The down-side is that we can no longer guarantee strict monotonicity anymore
|
||||
* (assuming the TSC was that to begin with), because while we compute the
|
||||
* intersection point of the two clock slopes and make sure the time is
|
||||
* continuous at the point of switching; we can no longer guarantee a reader is
|
||||
* strictly before or after the switch point.
|
||||
*
|
||||
* It does mean a reader no longer needs to disable IRQs in order to avoid
|
||||
* CPU-Freq updates messing with his times, and similarly an NMI reader will
|
||||
* no longer run the risk of hitting half-written state.
|
||||
*/
|
||||
|
||||
struct cyc2ns {
|
||||
struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
|
||||
struct cyc2ns_data *head; /* 48 + 8 = 56 */
|
||||
struct cyc2ns_data *tail; /* 56 + 8 = 64 */
|
||||
}; /* exactly fits one cacheline */
|
||||
struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
|
||||
seqcount_t seq; /* 32 + 4 = 36 */
|
||||
|
||||
}; /* fits one cacheline */
|
||||
|
||||
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
|
||||
|
||||
struct cyc2ns_data *cyc2ns_read_begin(void)
|
||||
void cyc2ns_read_begin(struct cyc2ns_data *data)
|
||||
{
|
||||
struct cyc2ns_data *head;
|
||||
int seq, idx;
|
||||
|
||||
preempt_disable();
|
||||
preempt_disable_notrace();
|
||||
|
||||
head = this_cpu_read(cyc2ns.head);
|
||||
/*
|
||||
* Ensure we observe the entry when we observe the pointer to it.
|
||||
* matches the wmb from cyc2ns_write_end().
|
||||
*/
|
||||
smp_read_barrier_depends();
|
||||
head->__count++;
|
||||
barrier();
|
||||
do {
|
||||
seq = this_cpu_read(cyc2ns.seq.sequence);
|
||||
idx = seq & 1;
|
||||
|
||||
return head;
|
||||
data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
|
||||
data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
|
||||
data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
|
||||
|
||||
} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
|
||||
}
|
||||
|
||||
void cyc2ns_read_end(struct cyc2ns_data *head)
|
||||
void cyc2ns_read_end(void)
|
||||
{
|
||||
barrier();
|
||||
/*
|
||||
* If we're the outer most nested read; update the tail pointer
|
||||
* when we're done. This notifies possible pending writers
|
||||
* that we've observed the head pointer and that the other
|
||||
* entry is now free.
|
||||
*/
|
||||
if (!--head->__count) {
|
||||
/*
|
||||
* x86-TSO does not reorder writes with older reads;
|
||||
* therefore once this write becomes visible to another
|
||||
* cpu, we must be finished reading the cyc2ns_data.
|
||||
*
|
||||
* matches with cyc2ns_write_begin().
|
||||
*/
|
||||
this_cpu_write(cyc2ns.tail, head);
|
||||
}
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
/*
|
||||
* Begin writing a new @data entry for @cpu.
|
||||
*
|
||||
* Assumes some sort of write side lock; currently 'provided' by the assumption
|
||||
* that cpufreq will call its notifiers sequentially.
|
||||
*/
|
||||
static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
|
||||
{
|
||||
struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
|
||||
struct cyc2ns_data *data = c2n->data;
|
||||
|
||||
if (data == c2n->head)
|
||||
data++;
|
||||
|
||||
/* XXX send an IPI to @cpu in order to guarantee a read? */
|
||||
|
||||
/*
|
||||
* When we observe the tail write from cyc2ns_read_end(),
|
||||
* the cpu must be done with that entry and its safe
|
||||
* to start writing to it.
|
||||
*/
|
||||
while (c2n->tail == data)
|
||||
cpu_relax();
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
|
||||
{
|
||||
struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
|
||||
|
||||
/*
|
||||
* Ensure the @data writes are visible before we publish the
|
||||
* entry. Matches the data-depencency in cyc2ns_read_begin().
|
||||
*/
|
||||
smp_wmb();
|
||||
|
||||
ACCESS_ONCE(c2n->head) = data;
|
||||
preempt_enable_notrace();
|
||||
}
|
||||
|
||||
/*
|
||||
@ -191,7 +110,6 @@ static void cyc2ns_data_init(struct cyc2ns_data *data)
|
||||
data->cyc2ns_mul = 0;
|
||||
data->cyc2ns_shift = 0;
|
||||
data->cyc2ns_offset = 0;
|
||||
data->__count = 0;
|
||||
}
|
||||
|
||||
static void cyc2ns_init(int cpu)
|
||||
@ -201,43 +119,20 @@ static void cyc2ns_init(int cpu)
|
||||
cyc2ns_data_init(&c2n->data[0]);
|
||||
cyc2ns_data_init(&c2n->data[1]);
|
||||
|
||||
c2n->head = c2n->data;
|
||||
c2n->tail = c2n->data;
|
||||
seqcount_init(&c2n->seq);
|
||||
}
|
||||
|
||||
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
|
||||
{
|
||||
struct cyc2ns_data *data, *tail;
|
||||
struct cyc2ns_data data;
|
||||
unsigned long long ns;
|
||||
|
||||
/*
|
||||
* See cyc2ns_read_*() for details; replicated in order to avoid
|
||||
* an extra few instructions that came with the abstraction.
|
||||
* Notable, it allows us to only do the __count and tail update
|
||||
* dance when its actually needed.
|
||||
*/
|
||||
cyc2ns_read_begin(&data);
|
||||
|
||||
preempt_disable_notrace();
|
||||
data = this_cpu_read(cyc2ns.head);
|
||||
tail = this_cpu_read(cyc2ns.tail);
|
||||
ns = data.cyc2ns_offset;
|
||||
ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
|
||||
|
||||
if (likely(data == tail)) {
|
||||
ns = data->cyc2ns_offset;
|
||||
ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
|
||||
} else {
|
||||
data->__count++;
|
||||
|
||||
barrier();
|
||||
|
||||
ns = data->cyc2ns_offset;
|
||||
ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
|
||||
|
||||
barrier();
|
||||
|
||||
if (!--data->__count)
|
||||
this_cpu_write(cyc2ns.tail, data);
|
||||
}
|
||||
preempt_enable_notrace();
|
||||
cyc2ns_read_end();
|
||||
|
||||
return ns;
|
||||
}
|
||||
@ -245,7 +140,8 @@ static inline unsigned long long cycles_2_ns(unsigned long long cyc)
|
||||
static void set_cyc2ns_scale(unsigned long khz, int cpu)
|
||||
{
|
||||
unsigned long long tsc_now, ns_now;
|
||||
struct cyc2ns_data *data;
|
||||
struct cyc2ns_data data;
|
||||
struct cyc2ns *c2n;
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags);
|
||||
@ -254,8 +150,6 @@ static void set_cyc2ns_scale(unsigned long khz, int cpu)
|
||||
if (!khz)
|
||||
goto done;
|
||||
|
||||
data = cyc2ns_write_begin(cpu);
|
||||
|
||||
tsc_now = rdtsc();
|
||||
ns_now = cycles_2_ns(tsc_now);
|
||||
|
||||
@ -264,7 +158,7 @@ static void set_cyc2ns_scale(unsigned long khz, int cpu)
|
||||
* time function is continuous; see the comment near struct
|
||||
* cyc2ns_data.
|
||||
*/
|
||||
clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
|
||||
clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
|
||||
NSEC_PER_MSEC, 0);
|
||||
|
||||
/*
|
||||
@ -273,15 +167,20 @@ static void set_cyc2ns_scale(unsigned long khz, int cpu)
|
||||
* conversion algorithm shifting a 32-bit value (now specifies a 64-bit
|
||||
* value) - refer perf_event_mmap_page documentation in perf_event.h.
|
||||
*/
|
||||
if (data->cyc2ns_shift == 32) {
|
||||
data->cyc2ns_shift = 31;
|
||||
data->cyc2ns_mul >>= 1;
|
||||
if (data.cyc2ns_shift == 32) {
|
||||
data.cyc2ns_shift = 31;
|
||||
data.cyc2ns_mul >>= 1;
|
||||
}
|
||||
|
||||
data->cyc2ns_offset = ns_now -
|
||||
mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
|
||||
data.cyc2ns_offset = ns_now -
|
||||
mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
|
||||
|
||||
cyc2ns_write_end(cpu, data);
|
||||
c2n = per_cpu_ptr(&cyc2ns, cpu);
|
||||
|
||||
raw_write_seqcount_latch(&c2n->seq);
|
||||
c2n->data[0] = data;
|
||||
raw_write_seqcount_latch(&c2n->seq);
|
||||
c2n->data[1] = data;
|
||||
|
||||
done:
|
||||
sched_clock_idle_wakeup_event(0);
|
||||
|
@ -456,12 +456,13 @@ static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
|
||||
*/
|
||||
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
|
||||
{
|
||||
struct cyc2ns_data *data = cyc2ns_read_begin();
|
||||
struct cyc2ns_data data;
|
||||
unsigned long long ns;
|
||||
|
||||
ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
|
||||
cyc2ns_read_begin(&data);
|
||||
ns = mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
|
||||
cyc2ns_read_end();
|
||||
|
||||
cyc2ns_read_end(data);
|
||||
return ns;
|
||||
}
|
||||
|
||||
@ -470,12 +471,13 @@ static inline unsigned long long cycles_2_ns(unsigned long long cyc)
|
||||
*/
|
||||
static inline unsigned long long ns_2_cycles(unsigned long long ns)
|
||||
{
|
||||
struct cyc2ns_data *data = cyc2ns_read_begin();
|
||||
struct cyc2ns_data data;
|
||||
unsigned long long cyc;
|
||||
|
||||
cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul;
|
||||
cyc2ns_read_begin(&data);
|
||||
cyc = (ns << data.cyc2ns_shift) / data.cyc2ns_mul;
|
||||
cyc2ns_read_end();
|
||||
|
||||
cyc2ns_read_end(data);
|
||||
return cyc;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user