bpf: expose internal verfier structures

Move verifier's internal structures to a header file and
prefix their names with bpf_ to avoid potential namespace
conflicts.  Those structures will soon be used by external
analyzers.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Jakub Kicinski 2016-09-21 11:43:57 +01:00 committed by David S. Miller
parent 3df126f35f
commit 58e2af8b3a
2 changed files with 182 additions and 163 deletions

View File

@ -0,0 +1,79 @@
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#ifndef _LINUX_BPF_VERIFIER_H
#define _LINUX_BPF_VERIFIER_H 1
#include <linux/bpf.h> /* for enum bpf_reg_type */
#include <linux/filter.h> /* for MAX_BPF_STACK */
struct bpf_reg_state {
enum bpf_reg_type type;
union {
/* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
s64 imm;
/* valid when type == PTR_TO_PACKET* */
struct {
u32 id;
u16 off;
u16 range;
};
/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
* PTR_TO_MAP_VALUE_OR_NULL
*/
struct bpf_map *map_ptr;
};
};
enum bpf_stack_slot_type {
STACK_INVALID, /* nothing was stored in this stack slot */
STACK_SPILL, /* register spilled into stack */
STACK_MISC /* BPF program wrote some data into this slot */
};
#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
/* state of the program:
* type of all registers and stack info
*/
struct bpf_verifier_state {
struct bpf_reg_state regs[MAX_BPF_REG];
u8 stack_slot_type[MAX_BPF_STACK];
struct bpf_reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
};
/* linked list of verifier states used to prune search */
struct bpf_verifier_state_list {
struct bpf_verifier_state state;
struct bpf_verifier_state_list *next;
};
struct bpf_insn_aux_data {
enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
};
#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
/* single container for all structs
* one verifier_env per bpf_check() call
*/
struct bpf_verifier_env {
struct bpf_prog *prog; /* eBPF program being verified */
struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
int stack_size; /* number of states to be processed */
struct bpf_verifier_state cur_state; /* current verifier state */
struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
u32 used_map_cnt; /* number of used maps */
u32 id_gen; /* used to generate unique reg IDs */
bool allow_ptr_leaks;
bool seen_direct_write;
struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
};
#endif /* _LINUX_BPF_VERIFIER_H */

View File

@ -14,6 +14,7 @@
#include <linux/types.h> #include <linux/types.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/bpf.h> #include <linux/bpf.h>
#include <linux/bpf_verifier.h>
#include <linux/filter.h> #include <linux/filter.h>
#include <net/netlink.h> #include <net/netlink.h>
#include <linux/file.h> #include <linux/file.h>
@ -126,82 +127,16 @@
* are set to NOT_INIT to indicate that they are no longer readable. * are set to NOT_INIT to indicate that they are no longer readable.
*/ */
struct reg_state {
enum bpf_reg_type type;
union {
/* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
s64 imm;
/* valid when type == PTR_TO_PACKET* */
struct {
u32 id;
u16 off;
u16 range;
};
/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
* PTR_TO_MAP_VALUE_OR_NULL
*/
struct bpf_map *map_ptr;
};
};
enum bpf_stack_slot_type {
STACK_INVALID, /* nothing was stored in this stack slot */
STACK_SPILL, /* register spilled into stack */
STACK_MISC /* BPF program wrote some data into this slot */
};
#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
/* state of the program:
* type of all registers and stack info
*/
struct verifier_state {
struct reg_state regs[MAX_BPF_REG];
u8 stack_slot_type[MAX_BPF_STACK];
struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
};
/* linked list of verifier states used to prune search */
struct verifier_state_list {
struct verifier_state state;
struct verifier_state_list *next;
};
/* verifier_state + insn_idx are pushed to stack when branch is encountered */ /* verifier_state + insn_idx are pushed to stack when branch is encountered */
struct verifier_stack_elem { struct bpf_verifier_stack_elem {
/* verifer state is 'st' /* verifer state is 'st'
* before processing instruction 'insn_idx' * before processing instruction 'insn_idx'
* and after processing instruction 'prev_insn_idx' * and after processing instruction 'prev_insn_idx'
*/ */
struct verifier_state st; struct bpf_verifier_state st;
int insn_idx; int insn_idx;
int prev_insn_idx; int prev_insn_idx;
struct verifier_stack_elem *next; struct bpf_verifier_stack_elem *next;
};
struct bpf_insn_aux_data {
enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
};
#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
/* single container for all structs
* one verifier_env per bpf_check() call
*/
struct verifier_env {
struct bpf_prog *prog; /* eBPF program being verified */
struct verifier_stack_elem *head; /* stack of verifier states to be processed */
int stack_size; /* number of states to be processed */
struct verifier_state cur_state; /* current verifier state */
struct verifier_state_list **explored_states; /* search pruning optimization */
struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
u32 used_map_cnt; /* number of used maps */
u32 id_gen; /* used to generate unique reg IDs */
bool allow_ptr_leaks;
bool seen_direct_write;
struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
}; };
#define BPF_COMPLEXITY_LIMIT_INSNS 65536 #define BPF_COMPLEXITY_LIMIT_INSNS 65536
@ -254,9 +189,9 @@ static const char * const reg_type_str[] = {
[PTR_TO_PACKET_END] = "pkt_end", [PTR_TO_PACKET_END] = "pkt_end",
}; };
static void print_verifier_state(struct verifier_state *state) static void print_verifier_state(struct bpf_verifier_state *state)
{ {
struct reg_state *reg; struct bpf_reg_state *reg;
enum bpf_reg_type t; enum bpf_reg_type t;
int i; int i;
@ -432,9 +367,9 @@ static void print_bpf_insn(struct bpf_insn *insn)
} }
} }
static int pop_stack(struct verifier_env *env, int *prev_insn_idx) static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
{ {
struct verifier_stack_elem *elem; struct bpf_verifier_stack_elem *elem;
int insn_idx; int insn_idx;
if (env->head == NULL) if (env->head == NULL)
@ -451,12 +386,12 @@ static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
return insn_idx; return insn_idx;
} }
static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx, static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
int prev_insn_idx) int insn_idx, int prev_insn_idx)
{ {
struct verifier_stack_elem *elem; struct bpf_verifier_stack_elem *elem;
elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL); elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
if (!elem) if (!elem)
goto err; goto err;
@ -482,7 +417,7 @@ static const int caller_saved[CALLER_SAVED_REGS] = {
BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
}; };
static void init_reg_state(struct reg_state *regs) static void init_reg_state(struct bpf_reg_state *regs)
{ {
int i; int i;
@ -498,7 +433,7 @@ static void init_reg_state(struct reg_state *regs)
regs[BPF_REG_1].type = PTR_TO_CTX; regs[BPF_REG_1].type = PTR_TO_CTX;
} }
static void mark_reg_unknown_value(struct reg_state *regs, u32 regno) static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
{ {
BUG_ON(regno >= MAX_BPF_REG); BUG_ON(regno >= MAX_BPF_REG);
regs[regno].type = UNKNOWN_VALUE; regs[regno].type = UNKNOWN_VALUE;
@ -511,7 +446,7 @@ enum reg_arg_type {
DST_OP_NO_MARK /* same as above, check only, don't mark */ DST_OP_NO_MARK /* same as above, check only, don't mark */
}; };
static int check_reg_arg(struct reg_state *regs, u32 regno, static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
enum reg_arg_type t) enum reg_arg_type t)
{ {
if (regno >= MAX_BPF_REG) { if (regno >= MAX_BPF_REG) {
@ -571,8 +506,8 @@ static bool is_spillable_regtype(enum bpf_reg_type type)
/* check_stack_read/write functions track spill/fill of registers, /* check_stack_read/write functions track spill/fill of registers,
* stack boundary and alignment are checked in check_mem_access() * stack boundary and alignment are checked in check_mem_access()
*/ */
static int check_stack_write(struct verifier_state *state, int off, int size, static int check_stack_write(struct bpf_verifier_state *state, int off,
int value_regno) int size, int value_regno)
{ {
int i; int i;
/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
@ -597,7 +532,7 @@ static int check_stack_write(struct verifier_state *state, int off, int size,
} else { } else {
/* regular write of data into stack */ /* regular write of data into stack */
state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] = state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
(struct reg_state) {}; (struct bpf_reg_state) {};
for (i = 0; i < size; i++) for (i = 0; i < size; i++)
state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC; state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
@ -605,7 +540,7 @@ static int check_stack_write(struct verifier_state *state, int off, int size,
return 0; return 0;
} }
static int check_stack_read(struct verifier_state *state, int off, int size, static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
int value_regno) int value_regno)
{ {
u8 *slot_type; u8 *slot_type;
@ -646,7 +581,7 @@ static int check_stack_read(struct verifier_state *state, int off, int size,
} }
/* check read/write into map element returned by bpf_map_lookup_elem() */ /* check read/write into map element returned by bpf_map_lookup_elem() */
static int check_map_access(struct verifier_env *env, u32 regno, int off, static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
int size) int size)
{ {
struct bpf_map *map = env->cur_state.regs[regno].map_ptr; struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
@ -661,7 +596,7 @@ static int check_map_access(struct verifier_env *env, u32 regno, int off,
#define MAX_PACKET_OFF 0xffff #define MAX_PACKET_OFF 0xffff
static bool may_access_direct_pkt_data(struct verifier_env *env, static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
const struct bpf_call_arg_meta *meta) const struct bpf_call_arg_meta *meta)
{ {
switch (env->prog->type) { switch (env->prog->type) {
@ -678,11 +613,11 @@ static bool may_access_direct_pkt_data(struct verifier_env *env,
} }
} }
static int check_packet_access(struct verifier_env *env, u32 regno, int off, static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
int size) int size)
{ {
struct reg_state *regs = env->cur_state.regs; struct bpf_reg_state *regs = env->cur_state.regs;
struct reg_state *reg = &regs[regno]; struct bpf_reg_state *reg = &regs[regno];
off += reg->off; off += reg->off;
if (off < 0 || size <= 0 || off + size > reg->range) { if (off < 0 || size <= 0 || off + size > reg->range) {
@ -694,7 +629,7 @@ static int check_packet_access(struct verifier_env *env, u32 regno, int off,
} }
/* check access to 'struct bpf_context' fields */ /* check access to 'struct bpf_context' fields */
static int check_ctx_access(struct verifier_env *env, int off, int size, static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
enum bpf_access_type t, enum bpf_reg_type *reg_type) enum bpf_access_type t, enum bpf_reg_type *reg_type)
{ {
if (env->prog->aux->ops->is_valid_access && if (env->prog->aux->ops->is_valid_access &&
@ -709,7 +644,7 @@ static int check_ctx_access(struct verifier_env *env, int off, int size,
return -EACCES; return -EACCES;
} }
static bool is_pointer_value(struct verifier_env *env, int regno) static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
{ {
if (env->allow_ptr_leaks) if (env->allow_ptr_leaks)
return false; return false;
@ -723,12 +658,13 @@ static bool is_pointer_value(struct verifier_env *env, int regno)
} }
} }
static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg, static int check_ptr_alignment(struct bpf_verifier_env *env,
int off, int size) struct bpf_reg_state *reg, int off, int size)
{ {
if (reg->type != PTR_TO_PACKET) { if (reg->type != PTR_TO_PACKET) {
if (off % size != 0) { if (off % size != 0) {
verbose("misaligned access off %d size %d\n", off, size); verbose("misaligned access off %d size %d\n",
off, size);
return -EACCES; return -EACCES;
} else { } else {
return 0; return 0;
@ -769,12 +705,12 @@ static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg,
* if t==write && value_regno==-1, some unknown value is stored into memory * if t==write && value_regno==-1, some unknown value is stored into memory
* if t==read && value_regno==-1, don't care what we read from memory * if t==read && value_regno==-1, don't care what we read from memory
*/ */
static int check_mem_access(struct verifier_env *env, u32 regno, int off, static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
int bpf_size, enum bpf_access_type t, int bpf_size, enum bpf_access_type t,
int value_regno) int value_regno)
{ {
struct verifier_state *state = &env->cur_state; struct bpf_verifier_state *state = &env->cur_state;
struct reg_state *reg = &state->regs[regno]; struct bpf_reg_state *reg = &state->regs[regno];
int size, err = 0; int size, err = 0;
if (reg->type == PTR_TO_STACK) if (reg->type == PTR_TO_STACK)
@ -860,9 +796,9 @@ static int check_mem_access(struct verifier_env *env, u32 regno, int off,
return err; return err;
} }
static int check_xadd(struct verifier_env *env, struct bpf_insn *insn) static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
{ {
struct reg_state *regs = env->cur_state.regs; struct bpf_reg_state *regs = env->cur_state.regs;
int err; int err;
if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
@ -896,12 +832,12 @@ static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
* bytes from that pointer, make sure that it's within stack boundary * bytes from that pointer, make sure that it's within stack boundary
* and all elements of stack are initialized * and all elements of stack are initialized
*/ */
static int check_stack_boundary(struct verifier_env *env, int regno, static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
int access_size, bool zero_size_allowed, int access_size, bool zero_size_allowed,
struct bpf_call_arg_meta *meta) struct bpf_call_arg_meta *meta)
{ {
struct verifier_state *state = &env->cur_state; struct bpf_verifier_state *state = &env->cur_state;
struct reg_state *regs = state->regs; struct bpf_reg_state *regs = state->regs;
int off, i; int off, i;
if (regs[regno].type != PTR_TO_STACK) { if (regs[regno].type != PTR_TO_STACK) {
@ -940,11 +876,11 @@ static int check_stack_boundary(struct verifier_env *env, int regno,
return 0; return 0;
} }
static int check_func_arg(struct verifier_env *env, u32 regno, static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
enum bpf_arg_type arg_type, enum bpf_arg_type arg_type,
struct bpf_call_arg_meta *meta) struct bpf_call_arg_meta *meta)
{ {
struct reg_state *regs = env->cur_state.regs, *reg = &regs[regno]; struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
enum bpf_reg_type expected_type, type = reg->type; enum bpf_reg_type expected_type, type = reg->type;
int err = 0; int err = 0;
@ -1149,10 +1085,10 @@ static int check_raw_mode(const struct bpf_func_proto *fn)
return count > 1 ? -EINVAL : 0; return count > 1 ? -EINVAL : 0;
} }
static void clear_all_pkt_pointers(struct verifier_env *env) static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
{ {
struct verifier_state *state = &env->cur_state; struct bpf_verifier_state *state = &env->cur_state;
struct reg_state *regs = state->regs, *reg; struct bpf_reg_state *regs = state->regs, *reg;
int i; int i;
for (i = 0; i < MAX_BPF_REG; i++) for (i = 0; i < MAX_BPF_REG; i++)
@ -1172,12 +1108,12 @@ static void clear_all_pkt_pointers(struct verifier_env *env)
} }
} }
static int check_call(struct verifier_env *env, int func_id) static int check_call(struct bpf_verifier_env *env, int func_id)
{ {
struct verifier_state *state = &env->cur_state; struct bpf_verifier_state *state = &env->cur_state;
const struct bpf_func_proto *fn = NULL; const struct bpf_func_proto *fn = NULL;
struct reg_state *regs = state->regs; struct bpf_reg_state *regs = state->regs;
struct reg_state *reg; struct bpf_reg_state *reg;
struct bpf_call_arg_meta meta; struct bpf_call_arg_meta meta;
bool changes_data; bool changes_data;
int i, err; int i, err;
@ -1280,12 +1216,13 @@ static int check_call(struct verifier_env *env, int func_id)
return 0; return 0;
} }
static int check_packet_ptr_add(struct verifier_env *env, struct bpf_insn *insn) static int check_packet_ptr_add(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{ {
struct reg_state *regs = env->cur_state.regs; struct bpf_reg_state *regs = env->cur_state.regs;
struct reg_state *dst_reg = &regs[insn->dst_reg]; struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
struct reg_state *src_reg = &regs[insn->src_reg]; struct bpf_reg_state *src_reg = &regs[insn->src_reg];
struct reg_state tmp_reg; struct bpf_reg_state tmp_reg;
s32 imm; s32 imm;
if (BPF_SRC(insn->code) == BPF_K) { if (BPF_SRC(insn->code) == BPF_K) {
@ -1353,10 +1290,10 @@ add_imm:
return 0; return 0;
} }
static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn) static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
{ {
struct reg_state *regs = env->cur_state.regs; struct bpf_reg_state *regs = env->cur_state.regs;
struct reg_state *dst_reg = &regs[insn->dst_reg]; struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
u8 opcode = BPF_OP(insn->code); u8 opcode = BPF_OP(insn->code);
s64 imm_log2; s64 imm_log2;
@ -1366,7 +1303,7 @@ static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
*/ */
if (BPF_SRC(insn->code) == BPF_X) { if (BPF_SRC(insn->code) == BPF_X) {
struct reg_state *src_reg = &regs[insn->src_reg]; struct bpf_reg_state *src_reg = &regs[insn->src_reg];
if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 && if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
dst_reg->imm && opcode == BPF_ADD) { dst_reg->imm && opcode == BPF_ADD) {
@ -1455,11 +1392,12 @@ static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
return 0; return 0;
} }
static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn) static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
struct bpf_insn *insn)
{ {
struct reg_state *regs = env->cur_state.regs; struct bpf_reg_state *regs = env->cur_state.regs;
struct reg_state *dst_reg = &regs[insn->dst_reg]; struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
struct reg_state *src_reg = &regs[insn->src_reg]; struct bpf_reg_state *src_reg = &regs[insn->src_reg];
u8 opcode = BPF_OP(insn->code); u8 opcode = BPF_OP(insn->code);
/* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn. /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
@ -1476,9 +1414,9 @@ static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn)
} }
/* check validity of 32-bit and 64-bit arithmetic operations */ /* check validity of 32-bit and 64-bit arithmetic operations */
static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn) static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
{ {
struct reg_state *regs = env->cur_state.regs, *dst_reg; struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
u8 opcode = BPF_OP(insn->code); u8 opcode = BPF_OP(insn->code);
int err; int err;
@ -1652,10 +1590,10 @@ static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
return 0; return 0;
} }
static void find_good_pkt_pointers(struct verifier_state *state, static void find_good_pkt_pointers(struct bpf_verifier_state *state,
const struct reg_state *dst_reg) struct bpf_reg_state *dst_reg)
{ {
struct reg_state *regs = state->regs, *reg; struct bpf_reg_state *regs = state->regs, *reg;
int i; int i;
/* LLVM can generate two kind of checks: /* LLVM can generate two kind of checks:
@ -1701,11 +1639,11 @@ static void find_good_pkt_pointers(struct verifier_state *state,
} }
} }
static int check_cond_jmp_op(struct verifier_env *env, static int check_cond_jmp_op(struct bpf_verifier_env *env,
struct bpf_insn *insn, int *insn_idx) struct bpf_insn *insn, int *insn_idx)
{ {
struct verifier_state *other_branch, *this_branch = &env->cur_state; struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
struct reg_state *regs = this_branch->regs, *dst_reg; struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
u8 opcode = BPF_OP(insn->code); u8 opcode = BPF_OP(insn->code);
int err; int err;
@ -1767,7 +1705,7 @@ static int check_cond_jmp_op(struct verifier_env *env,
if (!other_branch) if (!other_branch)
return -EFAULT; return -EFAULT;
/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */ /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
if (BPF_SRC(insn->code) == BPF_K && if (BPF_SRC(insn->code) == BPF_K &&
insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
@ -1809,9 +1747,9 @@ static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
} }
/* verify BPF_LD_IMM64 instruction */ /* verify BPF_LD_IMM64 instruction */
static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn) static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
{ {
struct reg_state *regs = env->cur_state.regs; struct bpf_reg_state *regs = env->cur_state.regs;
int err; int err;
if (BPF_SIZE(insn->code) != BPF_DW) { if (BPF_SIZE(insn->code) != BPF_DW) {
@ -1866,11 +1804,11 @@ static bool may_access_skb(enum bpf_prog_type type)
* Output: * Output:
* R0 - 8/16/32-bit skb data converted to cpu endianness * R0 - 8/16/32-bit skb data converted to cpu endianness
*/ */
static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn) static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
{ {
struct reg_state *regs = env->cur_state.regs; struct bpf_reg_state *regs = env->cur_state.regs;
u8 mode = BPF_MODE(insn->code); u8 mode = BPF_MODE(insn->code);
struct reg_state *reg; struct bpf_reg_state *reg;
int i, err; int i, err;
if (!may_access_skb(env->prog->type)) { if (!may_access_skb(env->prog->type)) {
@ -1956,7 +1894,7 @@ enum {
BRANCH = 2, BRANCH = 2,
}; };
#define STATE_LIST_MARK ((struct verifier_state_list *) -1L) #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
static int *insn_stack; /* stack of insns to process */ static int *insn_stack; /* stack of insns to process */
static int cur_stack; /* current stack index */ static int cur_stack; /* current stack index */
@ -1967,7 +1905,7 @@ static int *insn_state;
* w - next instruction * w - next instruction
* e - edge * e - edge
*/ */
static int push_insn(int t, int w, int e, struct verifier_env *env) static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
{ {
if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
return 0; return 0;
@ -2008,7 +1946,7 @@ static int push_insn(int t, int w, int e, struct verifier_env *env)
/* non-recursive depth-first-search to detect loops in BPF program /* non-recursive depth-first-search to detect loops in BPF program
* loop == back-edge in directed graph * loop == back-edge in directed graph
*/ */
static int check_cfg(struct verifier_env *env) static int check_cfg(struct bpf_verifier_env *env)
{ {
struct bpf_insn *insns = env->prog->insnsi; struct bpf_insn *insns = env->prog->insnsi;
int insn_cnt = env->prog->len; int insn_cnt = env->prog->len;
@ -2117,7 +2055,8 @@ err_free:
/* the following conditions reduce the number of explored insns /* the following conditions reduce the number of explored insns
* from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
*/ */
static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur) static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
struct bpf_reg_state *cur)
{ {
if (old->id != cur->id) if (old->id != cur->id)
return false; return false;
@ -2192,9 +2131,10 @@ static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur)
* whereas register type in current state is meaningful, it means that * whereas register type in current state is meaningful, it means that
* the current state will reach 'bpf_exit' instruction safely * the current state will reach 'bpf_exit' instruction safely
*/ */
static bool states_equal(struct verifier_state *old, struct verifier_state *cur) static bool states_equal(struct bpf_verifier_state *old,
struct bpf_verifier_state *cur)
{ {
struct reg_state *rold, *rcur; struct bpf_reg_state *rold, *rcur;
int i; int i;
for (i = 0; i < MAX_BPF_REG; i++) { for (i = 0; i < MAX_BPF_REG; i++) {
@ -2234,9 +2174,9 @@ static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
* the same, check that stored pointers types * the same, check that stored pointers types
* are the same as well. * are the same as well.
* Ex: explored safe path could have stored * Ex: explored safe path could have stored
* (struct reg_state) {.type = PTR_TO_STACK, .imm = -8} * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
* but current path has stored: * but current path has stored:
* (struct reg_state) {.type = PTR_TO_STACK, .imm = -16} * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
* such verifier states are not equivalent. * such verifier states are not equivalent.
* return false to continue verification of this path * return false to continue verification of this path
*/ */
@ -2247,10 +2187,10 @@ static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
return true; return true;
} }
static int is_state_visited(struct verifier_env *env, int insn_idx) static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
{ {
struct verifier_state_list *new_sl; struct bpf_verifier_state_list *new_sl;
struct verifier_state_list *sl; struct bpf_verifier_state_list *sl;
sl = env->explored_states[insn_idx]; sl = env->explored_states[insn_idx];
if (!sl) if (!sl)
@ -2274,7 +2214,7 @@ static int is_state_visited(struct verifier_env *env, int insn_idx)
* it will be rejected. Since there are no loops, we won't be * it will be rejected. Since there are no loops, we won't be
* seeing this 'insn_idx' instruction again on the way to bpf_exit * seeing this 'insn_idx' instruction again on the way to bpf_exit
*/ */
new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER); new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
if (!new_sl) if (!new_sl)
return -ENOMEM; return -ENOMEM;
@ -2285,11 +2225,11 @@ static int is_state_visited(struct verifier_env *env, int insn_idx)
return 0; return 0;
} }
static int do_check(struct verifier_env *env) static int do_check(struct bpf_verifier_env *env)
{ {
struct verifier_state *state = &env->cur_state; struct bpf_verifier_state *state = &env->cur_state;
struct bpf_insn *insns = env->prog->insnsi; struct bpf_insn *insns = env->prog->insnsi;
struct reg_state *regs = state->regs; struct bpf_reg_state *regs = state->regs;
int insn_cnt = env->prog->len; int insn_cnt = env->prog->len;
int insn_idx, prev_insn_idx = 0; int insn_idx, prev_insn_idx = 0;
int insn_processed = 0; int insn_processed = 0;
@ -2572,7 +2512,7 @@ static int check_map_prog_compatibility(struct bpf_map *map,
/* look for pseudo eBPF instructions that access map FDs and /* look for pseudo eBPF instructions that access map FDs and
* replace them with actual map pointers * replace them with actual map pointers
*/ */
static int replace_map_fd_with_map_ptr(struct verifier_env *env) static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
{ {
struct bpf_insn *insn = env->prog->insnsi; struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len; int insn_cnt = env->prog->len;
@ -2669,7 +2609,7 @@ next_insn:
} }
/* drop refcnt of maps used by the rejected program */ /* drop refcnt of maps used by the rejected program */
static void release_maps(struct verifier_env *env) static void release_maps(struct bpf_verifier_env *env)
{ {
int i; int i;
@ -2678,7 +2618,7 @@ static void release_maps(struct verifier_env *env)
} }
/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
static void convert_pseudo_ld_imm64(struct verifier_env *env) static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
{ {
struct bpf_insn *insn = env->prog->insnsi; struct bpf_insn *insn = env->prog->insnsi;
int insn_cnt = env->prog->len; int insn_cnt = env->prog->len;
@ -2692,7 +2632,7 @@ static void convert_pseudo_ld_imm64(struct verifier_env *env)
/* convert load instructions that access fields of 'struct __sk_buff' /* convert load instructions that access fields of 'struct __sk_buff'
* into sequence of instructions that access fields of 'struct sk_buff' * into sequence of instructions that access fields of 'struct sk_buff'
*/ */
static int convert_ctx_accesses(struct verifier_env *env) static int convert_ctx_accesses(struct bpf_verifier_env *env)
{ {
const struct bpf_verifier_ops *ops = env->prog->aux->ops; const struct bpf_verifier_ops *ops = env->prog->aux->ops;
const int insn_cnt = env->prog->len; const int insn_cnt = env->prog->len;
@ -2757,9 +2697,9 @@ static int convert_ctx_accesses(struct verifier_env *env)
return 0; return 0;
} }
static void free_states(struct verifier_env *env) static void free_states(struct bpf_verifier_env *env)
{ {
struct verifier_state_list *sl, *sln; struct bpf_verifier_state_list *sl, *sln;
int i; int i;
if (!env->explored_states) if (!env->explored_states)
@ -2782,16 +2722,16 @@ static void free_states(struct verifier_env *env)
int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
{ {
char __user *log_ubuf = NULL; char __user *log_ubuf = NULL;
struct verifier_env *env; struct bpf_verifier_env *env;
int ret = -EINVAL; int ret = -EINVAL;
if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS) if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
return -E2BIG; return -E2BIG;
/* 'struct verifier_env' can be global, but since it's not small, /* 'struct bpf_verifier_env' can be global, but since it's not small,
* allocate/free it every time bpf_check() is called * allocate/free it every time bpf_check() is called
*/ */
env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL); env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
if (!env) if (!env)
return -ENOMEM; return -ENOMEM;
@ -2833,7 +2773,7 @@ int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
goto skip_full_check; goto skip_full_check;
env->explored_states = kcalloc(env->prog->len, env->explored_states = kcalloc(env->prog->len,
sizeof(struct verifier_state_list *), sizeof(struct bpf_verifier_state_list *),
GFP_USER); GFP_USER);
ret = -ENOMEM; ret = -ENOMEM;
if (!env->explored_states) if (!env->explored_states)