STAGING: cxt1e1: Indentation fixes

Indentation fixes using Lindent.

Signed-off-by: Michael Welling <mwelling@ieee.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Michael Welling 2014-03-23 11:14:59 -05:00 committed by Greg Kroah-Hartman
parent 9200b4dadb
commit 50fd8b1fa3

View File

@ -44,10 +44,9 @@
* using.
*/
#define EE_MFG (long)0 /* Index to manufacturing record */
#define EE_FIRST 0x28 /* Index to start testing at */
#define EE_LIMIT 128 /* Index to end testing at */
#define EE_MFG (long)0 /* Index to manufacturing record */
#define EE_FIRST 0x28 /* Index to start testing at */
#define EE_LIMIT 128 /* Index to end testing at */
/* Bit Ordering for Instructions
**
@ -55,27 +54,25 @@
**
*/
#define EPROM_EWEN 0x0019 /* Erase/Write enable (reversed) */
#define EPROM_EWDS 0x0001 /* Erase/Write disable (reversed) */
#define EPROM_READ 0x0003 /* Read (reversed) */
#define EPROM_WRITE 0x0005 /* Write (reversed) */
#define EPROM_ERASE 0x0007 /* Erase (reversed) */
#define EPROM_ERAL 0x0009 /* Erase All (reversed) */
#define EPROM_WRAL 0x0011 /* Write All (reversed) */
#define EPROM_EWEN 0x0019 /* Erase/Write enable (reversed) */
#define EPROM_EWDS 0x0001 /* Erase/Write disable (reversed) */
#define EPROM_READ 0x0003 /* Read (reversed) */
#define EPROM_WRITE 0x0005 /* Write (reversed) */
#define EPROM_ERASE 0x0007 /* Erase (reversed) */
#define EPROM_ERAL 0x0009 /* Erase All (reversed) */
#define EPROM_WRAL 0x0011 /* Write All (reversed) */
#define EPROM_ADR_SZ 7 /* Number of bits in offset address */
#define EPROM_OP_SZ 3 /* Number of bits in command */
#define EPROM_ADR_SZ 7 /* Number of bits in offset address */
#define EPROM_OP_SZ 3 /* Number of bits in command */
#define SIZE_ADDR_OP (EPROM_ADR_SZ + EPROM_OP_SZ)
#define LC46A_MAX_OPS 10 /* Number of bits in Instruction */
#define NUM_OF_BITS 8 /* Number of bits in data */
#define LC46A_MAX_OPS 10 /* Number of bits in Instruction */
#define NUM_OF_BITS 8 /* Number of bits in data */
/* EEPROM signal bits */
#define EPROM_ACTIVE_OUT_BIT 0x0001 /* Out data bit */
#define EPROM_ACTIVE_IN_BIT 0x0002 /* In data bit */
#define ACTIVE_IN_BIT_SHIFT 0x0001 /* Shift In data bit to LSB */
#define EPROM_ENCS 0x0004 /* Set EEPROM CS during operation */
#define EPROM_ACTIVE_OUT_BIT 0x0001 /* Out data bit */
#define EPROM_ACTIVE_IN_BIT 0x0002 /* In data bit */
#define ACTIVE_IN_BIT_SHIFT 0x0001 /* Shift In data bit to LSB */
#define EPROM_ENCS 0x0004 /* Set EEPROM CS during operation */
/*------------------------------------------------------------------------
* The ByteReverse table is used to reverses the 8 bits within a byte
@ -83,29 +80,26 @@
*/
static unsigned char ByteReverse[256];
static int ByteReverseBuilt = FALSE;
static int ByteReverseBuilt = FALSE;
/*------------------------------------------------------------------------
* mfg_template - initial serial EEPROM data structure
*------------------------------------------------------------------------
*/
static u8 mfg_template[sizeof(FLD_TYPE2)] =
{
PROM_FORMAT_TYPE2, /* type; */
0x00, 0x1A, /* length[2]; */
0x00, 0x00, 0x00, 0x00, /* Crc32[4]; */
0x11, 0x76, /* Id[2]; */
0x07, 0x05, /* SubId[2] E1; */
0x00, 0xA0, 0xD6, 0x00, 0x00, 0x00, /* Serial[6]; */
0x00, 0x00, 0x00, 0x00, /* CreateTime[4]; */
0x00, 0x00, 0x00, 0x00, /* HeatRunTime[4]; */
0x00, 0x00, 0x00, 0x00, /* HeatRunIterations[4]; */
0x00, 0x00, 0x00, 0x00, /* HeatRunErrors[4]; */
static u8 mfg_template[sizeof(FLD_TYPE2)] = {
PROM_FORMAT_TYPE2, /* type; */
0x00, 0x1A, /* length[2]; */
0x00, 0x00, 0x00, 0x00, /* Crc32[4]; */
0x11, 0x76, /* Id[2]; */
0x07, 0x05, /* SubId[2] E1; */
0x00, 0xA0, 0xD6, 0x00, 0x00, 0x00, /* Serial[6]; */
0x00, 0x00, 0x00, 0x00, /* CreateTime[4]; */
0x00, 0x00, 0x00, 0x00, /* HeatRunTime[4]; */
0x00, 0x00, 0x00, 0x00, /* HeatRunIterations[4]; */
0x00, 0x00, 0x00, 0x00, /* HeatRunErrors[4]; */
};
/*------------------------------------------------------------------------
* BuildByteReverse - build the 8-bit reverse table
*------------------------------------------------------------------------
@ -114,39 +108,35 @@ static u8 mfg_template[sizeof(FLD_TYPE2)] =
* (the MSB becomes the LSB etc.).
*/
static void
BuildByteReverse (void)
static void BuildByteReverse(void)
{
long half; /* Used to build by powers to 2 */
int i;
long half; /* Used to build by powers to 2 */
int i;
ByteReverse[0] = 0;
ByteReverse[0] = 0;
for (half = 1; half < sizeof (ByteReverse); half <<= 1)
for (i = 0; i < half; i++)
ByteReverse[half + i] = (char) (ByteReverse[i] | (0x80 / half));
for (half = 1; half < sizeof(ByteReverse); half <<= 1)
for (i = 0; i < half; i++)
ByteReverse[half + i] =
(char)(ByteReverse[i] | (0x80 / half));
ByteReverseBuilt = TRUE;
ByteReverseBuilt = TRUE;
}
/*------------------------------------------------------------------------
* eeprom_delay - small delay for EEPROM timing
*------------------------------------------------------------------------
*/
static void
eeprom_delay (void)
static void eeprom_delay(void)
{
int timeout;
int timeout;
for (timeout = 20; timeout; --timeout)
{
OS_uwait_dummy ();
}
for (timeout = 20; timeout; --timeout) {
OS_uwait_dummy();
}
}
/*------------------------------------------------------------------------
* eeprom_put_byte - Send a byte to the EEPROM serially
*------------------------------------------------------------------------
@ -155,23 +145,20 @@ eeprom_delay (void)
* the data to the EEPROM.
*/
static void
eeprom_put_byte (long addr, long data, int count)
static void eeprom_put_byte(long addr, long data, int count)
{
u_int32_t output;
u_int32_t output;
while (--count >= 0)
{
output = (data & EPROM_ACTIVE_OUT_BIT) ? 1 : 0; /* Get next data bit */
output |= EPROM_ENCS; /* Add Chip Select */
data >>= 1;
while (--count >= 0) {
output = (data & EPROM_ACTIVE_OUT_BIT) ? 1 : 0; /* Get next data bit */
output |= EPROM_ENCS; /* Add Chip Select */
data >>= 1;
eeprom_delay ();
pci_write_32 ((u_int32_t *) addr, output); /* Output it */
}
eeprom_delay();
pci_write_32((u_int32_t *) addr, output); /* Output it */
}
}
/*------------------------------------------------------------------------
* eeprom_get_byte - Receive a byte from the EEPROM serially
*------------------------------------------------------------------------
@ -180,12 +167,11 @@ eeprom_put_byte (long addr, long data, int count)
* from the EEPROM.
*/
static u_int32_t
eeprom_get_byte (long addr)
static u_int32_t eeprom_get_byte(long addr)
{
u_int32_t input;
u_int32_t data;
int count;
u_int32_t input;
u_int32_t data;
int count;
/* Start the Reading of DATA
**
@ -193,24 +179,22 @@ eeprom_get_byte (long addr)
** EPLD and read on the next read access to the EEPROM.
*/
input = pci_read_32 ((u_int32_t *) addr);
input = pci_read_32((u_int32_t *) addr);
data = 0;
count = NUM_OF_BITS;
while (--count >= 0)
{
eeprom_delay ();
input = pci_read_32 ((u_int32_t *) addr);
data = 0;
count = NUM_OF_BITS;
while (--count >= 0) {
eeprom_delay();
input = pci_read_32((u_int32_t *) addr);
data <<= 1; /* Shift data over */
data |= (input & EPROM_ACTIVE_IN_BIT) ? 1 : 0;
data <<= 1; /* Shift data over */
data |= (input & EPROM_ACTIVE_IN_BIT) ? 1 : 0;
}
}
return data;
return data;
}
/*------------------------------------------------------------------------
* disable_pmc_eeprom - Disable writes to the EEPROM
*------------------------------------------------------------------------
@ -218,16 +202,14 @@ eeprom_get_byte (long addr)
* Issue the EEPROM command to disable writes.
*/
static void
disable_pmc_eeprom (long addr)
static void disable_pmc_eeprom(long addr)
{
eeprom_put_byte (addr, EPROM_EWDS, SIZE_ADDR_OP);
eeprom_put_byte(addr, EPROM_EWDS, SIZE_ADDR_OP);
pci_write_32 ((u_int32_t *) addr, 0); /* this removes Chip Select
* from EEPROM */
pci_write_32((u_int32_t *) addr, 0); /* this removes Chip Select
* from EEPROM */
}
/*------------------------------------------------------------------------
* enable_pmc_eeprom - Enable writes to the EEPROM
*------------------------------------------------------------------------
@ -235,16 +217,14 @@ disable_pmc_eeprom (long addr)
* Issue the EEPROM command to enable writes.
*/
static void
enable_pmc_eeprom (long addr)
static void enable_pmc_eeprom(long addr)
{
eeprom_put_byte (addr, EPROM_EWEN, SIZE_ADDR_OP);
eeprom_put_byte(addr, EPROM_EWEN, SIZE_ADDR_OP);
pci_write_32 ((u_int32_t *) addr, 0); /* this removes Chip Select
* from EEPROM */
pci_write_32((u_int32_t *) addr, 0); /* this removes Chip Select
* from EEPROM */
}
/*------------------------------------------------------------------------
* pmc_eeprom_read - EEPROM location read
*------------------------------------------------------------------------
@ -253,35 +233,33 @@ enable_pmc_eeprom (long addr)
* the contents of the specified location to the calling routine.
*/
static u_int32_t
pmc_eeprom_read (long addr, long mem_offset)
static u_int32_t pmc_eeprom_read(long addr, long mem_offset)
{
u_int32_t data; /* Data from chip */
u_int32_t data; /* Data from chip */
if (!ByteReverseBuilt)
BuildByteReverse ();
if (!ByteReverseBuilt)
BuildByteReverse();
mem_offset = ByteReverse[0x7F & mem_offset]; /* Reverse address */
/*
* NOTE: The max offset address is 128 or half the reversal table. So the
* LSB is always zero and counts as a built in shift of one bit. So even
* though we need to shift 3 bits to make room for the command, we only
* need to shift twice more because of the built in shift.
*/
mem_offset <<= 2; /* Shift for command */
mem_offset |= EPROM_READ; /* Add command */
mem_offset = ByteReverse[0x7F & mem_offset]; /* Reverse address */
/*
* NOTE: The max offset address is 128 or half the reversal table. So the
* LSB is always zero and counts as a built in shift of one bit. So even
* though we need to shift 3 bits to make room for the command, we only
* need to shift twice more because of the built in shift.
*/
mem_offset <<= 2; /* Shift for command */
mem_offset |= EPROM_READ; /* Add command */
eeprom_put_byte (addr, mem_offset, SIZE_ADDR_OP); /* Output chip address */
eeprom_put_byte(addr, mem_offset, SIZE_ADDR_OP); /* Output chip address */
data = eeprom_get_byte (addr); /* Read chip data */
data = eeprom_get_byte(addr); /* Read chip data */
pci_write_32 ((u_int32_t *) addr, 0); /* Remove Chip Select from
* EEPROM */
pci_write_32((u_int32_t *) addr, 0); /* Remove Chip Select from
* EEPROM */
return (data & 0x000000FF);
return (data & 0x000000FF);
}
/*------------------------------------------------------------------------
* pmc_eeprom_write - EEPROM location write
*------------------------------------------------------------------------
@ -293,32 +271,31 @@ pmc_eeprom_read (long addr, long mem_offset)
* operation succeeded.
*/
static int
pmc_eeprom_write (long addr, long mem_offset, u_int32_t data)
static int pmc_eeprom_write(long addr, long mem_offset, u_int32_t data)
{
volatile u_int32_t temp;
int count;
volatile u_int32_t temp;
int count;
if (!ByteReverseBuilt)
BuildByteReverse ();
if (!ByteReverseBuilt)
BuildByteReverse();
mem_offset = ByteReverse[0x7F & mem_offset]; /* Reverse address */
/*
* NOTE: The max offset address is 128 or half the reversal table. So the
* LSB is always zero and counts as a built in shift of one bit. So even
* though we need to shift 3 bits to make room for the command, we only
* need to shift twice more because of the built in shift.
*/
mem_offset <<= 2; /* Shift for command */
mem_offset |= EPROM_WRITE; /* Add command */
mem_offset = ByteReverse[0x7F & mem_offset]; /* Reverse address */
/*
* NOTE: The max offset address is 128 or half the reversal table. So the
* LSB is always zero and counts as a built in shift of one bit. So even
* though we need to shift 3 bits to make room for the command, we only
* need to shift twice more because of the built in shift.
*/
mem_offset <<= 2; /* Shift for command */
mem_offset |= EPROM_WRITE; /* Add command */
eeprom_put_byte (addr, mem_offset, SIZE_ADDR_OP); /* Output chip address */
eeprom_put_byte(addr, mem_offset, SIZE_ADDR_OP); /* Output chip address */
data = ByteReverse[0xFF & data];/* Reverse data */
eeprom_put_byte (addr, data, NUM_OF_BITS); /* Output chip data */
data = ByteReverse[0xFF & data]; /* Reverse data */
eeprom_put_byte(addr, data, NUM_OF_BITS); /* Output chip data */
pci_write_32 ((u_int32_t *) addr, 0); /* Remove Chip Select from
* EEPROM */
pci_write_32((u_int32_t *) addr, 0); /* Remove Chip Select from
* EEPROM */
/*
** Must see Data In at a low state before completing this transaction.
@ -326,156 +303,135 @@ pmc_eeprom_write (long addr, long mem_offset, u_int32_t data)
** Afterwards, the data bit will return to a high state, ~6 ms, terminating
** the operation.
*/
pci_write_32 ((u_int32_t *) addr, EPROM_ENCS); /* Re-enable Chip Select */
temp = pci_read_32 ((u_int32_t *) addr); /* discard first read */
temp = pci_read_32 ((u_int32_t *) addr);
if (temp & EPROM_ACTIVE_IN_BIT)
{
temp = pci_read_32 ((u_int32_t *) addr);
if (temp & EPROM_ACTIVE_IN_BIT)
{
pci_write_32 ((u_int32_t *) addr, 0); /* Remove Chip Select
* from EEPROM */
return (1);
}
}
count = 1000;
while (count--)
{
for (temp = 0; temp < 0x10; temp++)
OS_uwait_dummy ();
pci_write_32((u_int32_t *) addr, EPROM_ENCS); /* Re-enable Chip Select */
temp = pci_read_32((u_int32_t *) addr); /* discard first read */
temp = pci_read_32((u_int32_t *) addr);
if (temp & EPROM_ACTIVE_IN_BIT) {
temp = pci_read_32((u_int32_t *) addr);
if (temp & EPROM_ACTIVE_IN_BIT) {
pci_write_32((u_int32_t *) addr, 0); /* Remove Chip Select
* from EEPROM */
return (1);
}
}
count = 1000;
while (count--) {
for (temp = 0; temp < 0x10; temp++)
OS_uwait_dummy();
if (pci_read_32 ((u_int32_t *) addr) & EPROM_ACTIVE_IN_BIT)
break;
}
if (pci_read_32((u_int32_t *) addr) & EPROM_ACTIVE_IN_BIT)
break;
}
if (count == -1)
return (2);
if (count == -1)
return (2);
return (0);
return (0);
}
/*------------------------------------------------------------------------
* pmcGetBuffValue - read the specified value from buffer
*------------------------------------------------------------------------
*/
static long
pmcGetBuffValue (char *ptr, int size)
static long pmcGetBuffValue(char *ptr, int size)
{
long value = 0;
int index;
long value = 0;
int index;
for (index = 0; index < size; ++index)
{
value <<= 8;
value |= ptr[index] & 0xFF;
}
for (index = 0; index < size; ++index) {
value <<= 8;
value |= ptr[index] & 0xFF;
}
return value;
return value;
}
/*------------------------------------------------------------------------
* pmcSetBuffValue - save the specified value to buffer
*------------------------------------------------------------------------
*/
static void
pmcSetBuffValue (char *ptr, long value, int size)
static void pmcSetBuffValue(char *ptr, long value, int size)
{
int index = size;
int index = size;
while (--index >= 0)
{
ptr[index] = (char) (value & 0xFF);
value >>= 8;
}
while (--index >= 0) {
ptr[index] = (char)(value & 0xFF);
value >>= 8;
}
}
/*------------------------------------------------------------------------
* pmc_eeprom_read_buffer - read EEPROM data into specified buffer
*------------------------------------------------------------------------
*/
void
pmc_eeprom_read_buffer (long addr, long mem_offset, char *dest_ptr, int size)
pmc_eeprom_read_buffer(long addr, long mem_offset, char *dest_ptr, int size)
{
while (--size >= 0)
*dest_ptr++ = (char) pmc_eeprom_read (addr, mem_offset++);
while (--size >= 0)
*dest_ptr++ = (char)pmc_eeprom_read(addr, mem_offset++);
}
/*------------------------------------------------------------------------
* pmc_eeprom_write_buffer - write EEPROM data from specified buffer
*------------------------------------------------------------------------
*/
void
pmc_eeprom_write_buffer (long addr, long mem_offset, char *dest_ptr, int size)
pmc_eeprom_write_buffer(long addr, long mem_offset, char *dest_ptr, int size)
{
enable_pmc_eeprom (addr);
enable_pmc_eeprom(addr);
while (--size >= 0)
pmc_eeprom_write (addr, mem_offset++, *dest_ptr++);
while (--size >= 0)
pmc_eeprom_write(addr, mem_offset++, *dest_ptr++);
disable_pmc_eeprom (addr);
disable_pmc_eeprom(addr);
}
/*------------------------------------------------------------------------
* pmcCalcCrc - calculate the CRC for the serial EEPROM structure
*------------------------------------------------------------------------
*/
static u_int32_t
pmcCalcCrc_T01 (void *bufp)
static u_int32_t pmcCalcCrc_T01(void *bufp)
{
FLD_TYPE2 *buf = bufp;
u_int32_t crc; /* CRC of the structure */
FLD_TYPE2 *buf = bufp;
u_int32_t crc; /* CRC of the structure */
/* Calc CRC for type and length fields */
sbeCrc (
(u_int8_t *) &buf->type,
(u_int32_t) STRUCT_OFFSET (FLD_TYPE1, Crc32),
(u_int32_t) 0,
(u_int32_t *) &crc);
/* Calc CRC for type and length fields */
sbeCrc((u_int8_t *) & buf->type,
(u_int32_t) STRUCT_OFFSET(FLD_TYPE1, Crc32),
(u_int32_t) 0, (u_int32_t *) & crc);
#ifdef EEPROM_TYPE_DEBUG
pr_info("sbeCrc: crc 1 calculated as %08x\n", crc); /* RLD DEBUG */
pr_info("sbeCrc: crc 1 calculated as %08x\n", crc); /* RLD DEBUG */
#endif
return ~crc;
return ~crc;
}
static u_int32_t
pmcCalcCrc_T02 (void *bufp)
static u_int32_t pmcCalcCrc_T02(void *bufp)
{
FLD_TYPE2 *buf = bufp;
u_int32_t crc; /* CRC of the structure */
FLD_TYPE2 *buf = bufp;
u_int32_t crc; /* CRC of the structure */
/* Calc CRC for type and length fields */
sbeCrc (
(u_int8_t *) &buf->type,
(u_int32_t) STRUCT_OFFSET (FLD_TYPE2, Crc32),
(u_int32_t) 0,
(u_int32_t *) &crc);
/* Calc CRC for type and length fields */
sbeCrc((u_int8_t *) & buf->type,
(u_int32_t) STRUCT_OFFSET(FLD_TYPE2, Crc32),
(u_int32_t) 0, (u_int32_t *) & crc);
/* Calc CRC for remaining fields */
sbeCrc (
(u_int8_t *) &buf->Id[0],
(u_int32_t) (sizeof (FLD_TYPE2) - STRUCT_OFFSET (FLD_TYPE2, Id)),
(u_int32_t) crc,
(u_int32_t *) &crc);
/* Calc CRC for remaining fields */
sbeCrc((u_int8_t *) & buf->Id[0],
(u_int32_t) (sizeof(FLD_TYPE2) - STRUCT_OFFSET(FLD_TYPE2, Id)),
(u_int32_t) crc, (u_int32_t *) & crc);
#ifdef EEPROM_TYPE_DEBUG
pr_info("sbeCrc: crc 2 calculated as %08x\n", crc); /* RLD DEBUG */
pr_info("sbeCrc: crc 2 calculated as %08x\n", crc); /* RLD DEBUG */
#endif
return crc;
return crc;
}
/*------------------------------------------------------------------------
* pmc_init_seeprom - initialize the serial EEPROM structure
*------------------------------------------------------------------------
@ -486,64 +442,61 @@ pmcCalcCrc_T02 (void *bufp)
* serial number field.
*/
void
pmc_init_seeprom (u_int32_t addr, u_int32_t serialNum)
void pmc_init_seeprom(u_int32_t addr, u_int32_t serialNum)
{
PROMFORMAT buffer; /* Memory image of structure */
u_int32_t crc; /* CRC of structure */
time_t createTime;
PROMFORMAT buffer; /* Memory image of structure */
u_int32_t crc; /* CRC of structure */
time_t createTime;
createTime = get_seconds ();
createTime = get_seconds();
/* use template data */
memcpy(&buffer.fldType2, mfg_template, sizeof(buffer.fldType2));
/* use template data */
memcpy(&buffer.fldType2, mfg_template, sizeof(buffer.fldType2));
/* Update serial number field in buffer */
pmcSetBuffValue (&buffer.fldType2.Serial[3], serialNum, 3);
/* Update serial number field in buffer */
pmcSetBuffValue(&buffer.fldType2.Serial[3], serialNum, 3);
/* Update create time field in buffer */
pmcSetBuffValue (&buffer.fldType2.CreateTime[0], createTime, 4);
/* Update create time field in buffer */
pmcSetBuffValue(&buffer.fldType2.CreateTime[0], createTime, 4);
/* Update CRC field in buffer */
crc = pmcCalcCrc_T02 (&buffer);
pmcSetBuffValue (&buffer.fldType2.Crc32[0], crc, 4);
/* Update CRC field in buffer */
crc = pmcCalcCrc_T02(&buffer);
pmcSetBuffValue(&buffer.fldType2.Crc32[0], crc, 4);
#ifdef DEBUG
for (i = 0; i < sizeof (FLD_TYPE2); ++i)
pr_info("[%02X] = %02X\n", i, buffer.bytes[i] & 0xFF);
for (i = 0; i < sizeof(FLD_TYPE2); ++i)
pr_info("[%02X] = %02X\n", i, buffer.bytes[i] & 0xFF);
#endif
/* Write structure to serial EEPROM */
pmc_eeprom_write_buffer (addr, EE_MFG, (char *) &buffer, sizeof (FLD_TYPE2));
/* Write structure to serial EEPROM */
pmc_eeprom_write_buffer(addr, EE_MFG, (char *)&buffer,
sizeof(FLD_TYPE2));
}
char
pmc_verify_cksum (void *bufp)
char pmc_verify_cksum(void *bufp)
{
FLD_TYPE1 *buf1 = bufp;
FLD_TYPE2 *buf2 = bufp;
u_int32_t crc1, crc2; /* CRC read from EEPROM */
FLD_TYPE1 *buf1 = bufp;
FLD_TYPE2 *buf2 = bufp;
u_int32_t crc1, crc2; /* CRC read from EEPROM */
/* Retrieve contents of CRC field */
crc1 = pmcGetBuffValue (&buf1->Crc32[0], sizeof (buf1->Crc32));
/* Retrieve contents of CRC field */
crc1 = pmcGetBuffValue(&buf1->Crc32[0], sizeof(buf1->Crc32));
#ifdef EEPROM_TYPE_DEBUG
pr_info("EEPROM: chksum 1 reads as %08x\n", crc1); /* RLD DEBUG */
pr_info("EEPROM: chksum 1 reads as %08x\n", crc1); /* RLD DEBUG */
#endif
if ((buf1->type == PROM_FORMAT_TYPE1) &&
(pmcCalcCrc_T01 ((void *) buf1) == crc1))
return PROM_FORMAT_TYPE1; /* checksum type 1 verified */
if ((buf1->type == PROM_FORMAT_TYPE1) &&
(pmcCalcCrc_T01((void *)buf1) == crc1))
return PROM_FORMAT_TYPE1; /* checksum type 1 verified */
crc2 = pmcGetBuffValue (&buf2->Crc32[0], sizeof (buf2->Crc32));
crc2 = pmcGetBuffValue(&buf2->Crc32[0], sizeof(buf2->Crc32));
#ifdef EEPROM_TYPE_DEBUG
pr_info("EEPROM: chksum 2 reads as %08x\n", crc2); /* RLD DEBUG */
pr_info("EEPROM: chksum 2 reads as %08x\n", crc2); /* RLD DEBUG */
#endif
if ((buf2->type == PROM_FORMAT_TYPE2) &&
(pmcCalcCrc_T02 ((void *) buf2) == crc2))
return PROM_FORMAT_TYPE2; /* checksum type 2 verified */
if ((buf2->type == PROM_FORMAT_TYPE2) &&
(pmcCalcCrc_T02((void *)buf2) == crc2))
return PROM_FORMAT_TYPE2; /* checksum type 2 verified */
return PROM_FORMAT_Unk; /* failed to validate */
return PROM_FORMAT_Unk; /* failed to validate */
}
/*** End-of-File ***/