Merge branch 'async-tx-fixes-for-linus' of git://lost.foo-projects.org/~dwillia2/git/iop
* 'async-tx-fixes-for-linus' of git://lost.foo-projects.org/~dwillia2/git/iop: raid5: fix 2 bugs in ops_complete_biofill async_tx: fix dma_wait_for_async_tx async_tx: usage documentation and developer notes (v2)
This commit is contained in:
commit
4f33e21c92
219
Documentation/crypto/async-tx-api.txt
Normal file
219
Documentation/crypto/async-tx-api.txt
Normal file
@ -0,0 +1,219 @@
|
||||
Asynchronous Transfers/Transforms API
|
||||
|
||||
1 INTRODUCTION
|
||||
|
||||
2 GENEALOGY
|
||||
|
||||
3 USAGE
|
||||
3.1 General format of the API
|
||||
3.2 Supported operations
|
||||
3.3 Descriptor management
|
||||
3.4 When does the operation execute?
|
||||
3.5 When does the operation complete?
|
||||
3.6 Constraints
|
||||
3.7 Example
|
||||
|
||||
4 DRIVER DEVELOPER NOTES
|
||||
4.1 Conformance points
|
||||
4.2 "My application needs finer control of hardware channels"
|
||||
|
||||
5 SOURCE
|
||||
|
||||
---
|
||||
|
||||
1 INTRODUCTION
|
||||
|
||||
The async_tx API provides methods for describing a chain of asynchronous
|
||||
bulk memory transfers/transforms with support for inter-transactional
|
||||
dependencies. It is implemented as a dmaengine client that smooths over
|
||||
the details of different hardware offload engine implementations. Code
|
||||
that is written to the API can optimize for asynchronous operation and
|
||||
the API will fit the chain of operations to the available offload
|
||||
resources.
|
||||
|
||||
2 GENEALOGY
|
||||
|
||||
The API was initially designed to offload the memory copy and
|
||||
xor-parity-calculations of the md-raid5 driver using the offload engines
|
||||
present in the Intel(R) Xscale series of I/O processors. It also built
|
||||
on the 'dmaengine' layer developed for offloading memory copies in the
|
||||
network stack using Intel(R) I/OAT engines. The following design
|
||||
features surfaced as a result:
|
||||
1/ implicit synchronous path: users of the API do not need to know if
|
||||
the platform they are running on has offload capabilities. The
|
||||
operation will be offloaded when an engine is available and carried out
|
||||
in software otherwise.
|
||||
2/ cross channel dependency chains: the API allows a chain of dependent
|
||||
operations to be submitted, like xor->copy->xor in the raid5 case. The
|
||||
API automatically handles cases where the transition from one operation
|
||||
to another implies a hardware channel switch.
|
||||
3/ dmaengine extensions to support multiple clients and operation types
|
||||
beyond 'memcpy'
|
||||
|
||||
3 USAGE
|
||||
|
||||
3.1 General format of the API:
|
||||
struct dma_async_tx_descriptor *
|
||||
async_<operation>(<op specific parameters>,
|
||||
enum async_tx_flags flags,
|
||||
struct dma_async_tx_descriptor *dependency,
|
||||
dma_async_tx_callback callback_routine,
|
||||
void *callback_parameter);
|
||||
|
||||
3.2 Supported operations:
|
||||
memcpy - memory copy between a source and a destination buffer
|
||||
memset - fill a destination buffer with a byte value
|
||||
xor - xor a series of source buffers and write the result to a
|
||||
destination buffer
|
||||
xor_zero_sum - xor a series of source buffers and set a flag if the
|
||||
result is zero. The implementation attempts to prevent
|
||||
writes to memory
|
||||
|
||||
3.3 Descriptor management:
|
||||
The return value is non-NULL and points to a 'descriptor' when the operation
|
||||
has been queued to execute asynchronously. Descriptors are recycled
|
||||
resources, under control of the offload engine driver, to be reused as
|
||||
operations complete. When an application needs to submit a chain of
|
||||
operations it must guarantee that the descriptor is not automatically recycled
|
||||
before the dependency is submitted. This requires that all descriptors be
|
||||
acknowledged by the application before the offload engine driver is allowed to
|
||||
recycle (or free) the descriptor. A descriptor can be acked by one of the
|
||||
following methods:
|
||||
1/ setting the ASYNC_TX_ACK flag if no child operations are to be submitted
|
||||
2/ setting the ASYNC_TX_DEP_ACK flag to acknowledge the parent
|
||||
descriptor of a new operation.
|
||||
3/ calling async_tx_ack() on the descriptor.
|
||||
|
||||
3.4 When does the operation execute?
|
||||
Operations do not immediately issue after return from the
|
||||
async_<operation> call. Offload engine drivers batch operations to
|
||||
improve performance by reducing the number of mmio cycles needed to
|
||||
manage the channel. Once a driver-specific threshold is met the driver
|
||||
automatically issues pending operations. An application can force this
|
||||
event by calling async_tx_issue_pending_all(). This operates on all
|
||||
channels since the application has no knowledge of channel to operation
|
||||
mapping.
|
||||
|
||||
3.5 When does the operation complete?
|
||||
There are two methods for an application to learn about the completion
|
||||
of an operation.
|
||||
1/ Call dma_wait_for_async_tx(). This call causes the CPU to spin while
|
||||
it polls for the completion of the operation. It handles dependency
|
||||
chains and issuing pending operations.
|
||||
2/ Specify a completion callback. The callback routine runs in tasklet
|
||||
context if the offload engine driver supports interrupts, or it is
|
||||
called in application context if the operation is carried out
|
||||
synchronously in software. The callback can be set in the call to
|
||||
async_<operation>, or when the application needs to submit a chain of
|
||||
unknown length it can use the async_trigger_callback() routine to set a
|
||||
completion interrupt/callback at the end of the chain.
|
||||
|
||||
3.6 Constraints:
|
||||
1/ Calls to async_<operation> are not permitted in IRQ context. Other
|
||||
contexts are permitted provided constraint #2 is not violated.
|
||||
2/ Completion callback routines cannot submit new operations. This
|
||||
results in recursion in the synchronous case and spin_locks being
|
||||
acquired twice in the asynchronous case.
|
||||
|
||||
3.7 Example:
|
||||
Perform a xor->copy->xor operation where each operation depends on the
|
||||
result from the previous operation:
|
||||
|
||||
void complete_xor_copy_xor(void *param)
|
||||
{
|
||||
printk("complete\n");
|
||||
}
|
||||
|
||||
int run_xor_copy_xor(struct page **xor_srcs,
|
||||
int xor_src_cnt,
|
||||
struct page *xor_dest,
|
||||
size_t xor_len,
|
||||
struct page *copy_src,
|
||||
struct page *copy_dest,
|
||||
size_t copy_len)
|
||||
{
|
||||
struct dma_async_tx_descriptor *tx;
|
||||
|
||||
tx = async_xor(xor_dest, xor_srcs, 0, xor_src_cnt, xor_len,
|
||||
ASYNC_TX_XOR_DROP_DST, NULL, NULL, NULL);
|
||||
tx = async_memcpy(copy_dest, copy_src, 0, 0, copy_len,
|
||||
ASYNC_TX_DEP_ACK, tx, NULL, NULL);
|
||||
tx = async_xor(xor_dest, xor_srcs, 0, xor_src_cnt, xor_len,
|
||||
ASYNC_TX_XOR_DROP_DST | ASYNC_TX_DEP_ACK | ASYNC_TX_ACK,
|
||||
tx, complete_xor_copy_xor, NULL);
|
||||
|
||||
async_tx_issue_pending_all();
|
||||
}
|
||||
|
||||
See include/linux/async_tx.h for more information on the flags. See the
|
||||
ops_run_* and ops_complete_* routines in drivers/md/raid5.c for more
|
||||
implementation examples.
|
||||
|
||||
4 DRIVER DEVELOPMENT NOTES
|
||||
4.1 Conformance points:
|
||||
There are a few conformance points required in dmaengine drivers to
|
||||
accommodate assumptions made by applications using the async_tx API:
|
||||
1/ Completion callbacks are expected to happen in tasklet context
|
||||
2/ dma_async_tx_descriptor fields are never manipulated in IRQ context
|
||||
3/ Use async_tx_run_dependencies() in the descriptor clean up path to
|
||||
handle submission of dependent operations
|
||||
|
||||
4.2 "My application needs finer control of hardware channels"
|
||||
This requirement seems to arise from cases where a DMA engine driver is
|
||||
trying to support device-to-memory DMA. The dmaengine and async_tx
|
||||
implementations were designed for offloading memory-to-memory
|
||||
operations; however, there are some capabilities of the dmaengine layer
|
||||
that can be used for platform-specific channel management.
|
||||
Platform-specific constraints can be handled by registering the
|
||||
application as a 'dma_client' and implementing a 'dma_event_callback' to
|
||||
apply a filter to the available channels in the system. Before showing
|
||||
how to implement a custom dma_event callback some background of
|
||||
dmaengine's client support is required.
|
||||
|
||||
The following routines in dmaengine support multiple clients requesting
|
||||
use of a channel:
|
||||
- dma_async_client_register(struct dma_client *client)
|
||||
- dma_async_client_chan_request(struct dma_client *client)
|
||||
|
||||
dma_async_client_register takes a pointer to an initialized dma_client
|
||||
structure. It expects that the 'event_callback' and 'cap_mask' fields
|
||||
are already initialized.
|
||||
|
||||
dma_async_client_chan_request triggers dmaengine to notify the client of
|
||||
all channels that satisfy the capability mask. It is up to the client's
|
||||
event_callback routine to track how many channels the client needs and
|
||||
how many it is currently using. The dma_event_callback routine returns a
|
||||
dma_state_client code to let dmaengine know the status of the
|
||||
allocation.
|
||||
|
||||
Below is the example of how to extend this functionality for
|
||||
platform-specific filtering of the available channels beyond the
|
||||
standard capability mask:
|
||||
|
||||
static enum dma_state_client
|
||||
my_dma_client_callback(struct dma_client *client,
|
||||
struct dma_chan *chan, enum dma_state state)
|
||||
{
|
||||
struct dma_device *dma_dev;
|
||||
struct my_platform_specific_dma *plat_dma_dev;
|
||||
|
||||
dma_dev = chan->device;
|
||||
plat_dma_dev = container_of(dma_dev,
|
||||
struct my_platform_specific_dma,
|
||||
dma_dev);
|
||||
|
||||
if (!plat_dma_dev->platform_specific_capability)
|
||||
return DMA_DUP;
|
||||
|
||||
. . .
|
||||
}
|
||||
|
||||
5 SOURCE
|
||||
include/linux/dmaengine.h: core header file for DMA drivers and clients
|
||||
drivers/dma/dmaengine.c: offload engine channel management routines
|
||||
drivers/dma/: location for offload engine drivers
|
||||
include/linux/async_tx.h: core header file for the async_tx api
|
||||
crypto/async_tx/async_tx.c: async_tx interface to dmaengine and common code
|
||||
crypto/async_tx/async_memcpy.c: copy offload
|
||||
crypto/async_tx/async_memset.c: memory fill offload
|
||||
crypto/async_tx/async_xor.c: xor and xor zero sum offload
|
@ -80,6 +80,7 @@ dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
|
||||
{
|
||||
enum dma_status status;
|
||||
struct dma_async_tx_descriptor *iter;
|
||||
struct dma_async_tx_descriptor *parent;
|
||||
|
||||
if (!tx)
|
||||
return DMA_SUCCESS;
|
||||
@ -87,8 +88,15 @@ dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
|
||||
/* poll through the dependency chain, return when tx is complete */
|
||||
do {
|
||||
iter = tx;
|
||||
while (iter->cookie == -EBUSY)
|
||||
iter = iter->parent;
|
||||
|
||||
/* find the root of the unsubmitted dependency chain */
|
||||
while (iter->cookie == -EBUSY) {
|
||||
parent = iter->parent;
|
||||
if (parent && parent->cookie == -EBUSY)
|
||||
iter = iter->parent;
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
status = dma_sync_wait(iter->chan, iter->cookie);
|
||||
} while (status == DMA_IN_PROGRESS || (iter != tx));
|
||||
|
@ -514,7 +514,7 @@ static void ops_complete_biofill(void *stripe_head_ref)
|
||||
struct stripe_head *sh = stripe_head_ref;
|
||||
struct bio *return_bi = NULL;
|
||||
raid5_conf_t *conf = sh->raid_conf;
|
||||
int i, more_to_read = 0;
|
||||
int i;
|
||||
|
||||
pr_debug("%s: stripe %llu\n", __FUNCTION__,
|
||||
(unsigned long long)sh->sector);
|
||||
@ -522,16 +522,14 @@ static void ops_complete_biofill(void *stripe_head_ref)
|
||||
/* clear completed biofills */
|
||||
for (i = sh->disks; i--; ) {
|
||||
struct r5dev *dev = &sh->dev[i];
|
||||
/* check if this stripe has new incoming reads */
|
||||
if (dev->toread)
|
||||
more_to_read++;
|
||||
|
||||
/* acknowledge completion of a biofill operation */
|
||||
/* and check if we need to reply to a read request
|
||||
*/
|
||||
if (test_bit(R5_Wantfill, &dev->flags) && !dev->toread) {
|
||||
/* and check if we need to reply to a read request,
|
||||
* new R5_Wantfill requests are held off until
|
||||
* !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
|
||||
*/
|
||||
if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
|
||||
struct bio *rbi, *rbi2;
|
||||
clear_bit(R5_Wantfill, &dev->flags);
|
||||
|
||||
/* The access to dev->read is outside of the
|
||||
* spin_lock_irq(&conf->device_lock), but is protected
|
||||
@ -558,8 +556,7 @@ static void ops_complete_biofill(void *stripe_head_ref)
|
||||
|
||||
return_io(return_bi);
|
||||
|
||||
if (more_to_read)
|
||||
set_bit(STRIPE_HANDLE, &sh->state);
|
||||
set_bit(STRIPE_HANDLE, &sh->state);
|
||||
release_stripe(sh);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user