forked from Minki/linux
f2fs: add superblock and major in-memory structure
This adds the following major in-memory structures in f2fs. - f2fs_sb_info: contains f2fs-specific information, two special inode pointers for node and meta address spaces, and orphan inode management. - f2fs_inode_info: contains vfs_inode and other fs-specific information. - f2fs_nm_info: contains node manager information such as NAT entry cache, free nid list, and NAT page management. - f2fs_node_info: represents a node as node id, inode number, block address, and its version. - f2fs_sm_info: contains segment manager information such as SIT entry cache, free segment map, current active logs, dirty segment management, and segment utilization. The specific structures are sit_info, free_segmap_info, dirty_seglist_info, curseg_info. In addition, add F2FS_SUPER_MAGIC in magic.h. Signed-off-by: Chul Lee <chur.lee@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
This commit is contained in:
parent
dd31866b0d
commit
39a53e0ce0
1062
fs/f2fs/f2fs.h
Normal file
1062
fs/f2fs/f2fs.h
Normal file
File diff suppressed because it is too large
Load Diff
353
fs/f2fs/node.h
Normal file
353
fs/f2fs/node.h
Normal file
@ -0,0 +1,353 @@
|
||||
/**
|
||||
* fs/f2fs/node.h
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
/* start node id of a node block dedicated to the given node id */
|
||||
#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
|
||||
|
||||
/* node block offset on the NAT area dedicated to the given start node id */
|
||||
#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
|
||||
|
||||
/* # of pages to perform readahead before building free nids */
|
||||
#define FREE_NID_PAGES 4
|
||||
|
||||
/* maximum # of free node ids to produce during build_free_nids */
|
||||
#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
|
||||
|
||||
/* maximum readahead size for node during getting data blocks */
|
||||
#define MAX_RA_NODE 128
|
||||
|
||||
/* maximum cached nat entries to manage memory footprint */
|
||||
#define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
|
||||
|
||||
/* vector size for gang look-up from nat cache that consists of radix tree */
|
||||
#define NATVEC_SIZE 64
|
||||
|
||||
/*
|
||||
* For node information
|
||||
*/
|
||||
struct node_info {
|
||||
nid_t nid; /* node id */
|
||||
nid_t ino; /* inode number of the node's owner */
|
||||
block_t blk_addr; /* block address of the node */
|
||||
unsigned char version; /* version of the node */
|
||||
};
|
||||
|
||||
struct nat_entry {
|
||||
struct list_head list; /* for clean or dirty nat list */
|
||||
bool checkpointed; /* whether it is checkpointed or not */
|
||||
struct node_info ni; /* in-memory node information */
|
||||
};
|
||||
|
||||
#define nat_get_nid(nat) (nat->ni.nid)
|
||||
#define nat_set_nid(nat, n) (nat->ni.nid = n)
|
||||
#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
|
||||
#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
|
||||
#define nat_get_ino(nat) (nat->ni.ino)
|
||||
#define nat_set_ino(nat, i) (nat->ni.ino = i)
|
||||
#define nat_get_version(nat) (nat->ni.version)
|
||||
#define nat_set_version(nat, v) (nat->ni.version = v)
|
||||
|
||||
#define __set_nat_cache_dirty(nm_i, ne) \
|
||||
list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
|
||||
#define __clear_nat_cache_dirty(nm_i, ne) \
|
||||
list_move_tail(&ne->list, &nm_i->nat_entries);
|
||||
#define inc_node_version(version) (++version)
|
||||
|
||||
static inline void node_info_from_raw_nat(struct node_info *ni,
|
||||
struct f2fs_nat_entry *raw_ne)
|
||||
{
|
||||
ni->ino = le32_to_cpu(raw_ne->ino);
|
||||
ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
|
||||
ni->version = raw_ne->version;
|
||||
}
|
||||
|
||||
/*
|
||||
* For free nid mangement
|
||||
*/
|
||||
enum nid_state {
|
||||
NID_NEW, /* newly added to free nid list */
|
||||
NID_ALLOC /* it is allocated */
|
||||
};
|
||||
|
||||
struct free_nid {
|
||||
struct list_head list; /* for free node id list */
|
||||
nid_t nid; /* node id */
|
||||
int state; /* in use or not: NID_NEW or NID_ALLOC */
|
||||
};
|
||||
|
||||
static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
|
||||
{
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
struct free_nid *fnid;
|
||||
|
||||
if (nm_i->fcnt <= 0)
|
||||
return -1;
|
||||
spin_lock(&nm_i->free_nid_list_lock);
|
||||
fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
|
||||
*nid = fnid->nid;
|
||||
spin_unlock(&nm_i->free_nid_list_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* inline functions
|
||||
*/
|
||||
static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
|
||||
{
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
|
||||
}
|
||||
|
||||
static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
|
||||
{
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
pgoff_t block_off;
|
||||
pgoff_t block_addr;
|
||||
int seg_off;
|
||||
|
||||
block_off = NAT_BLOCK_OFFSET(start);
|
||||
seg_off = block_off >> sbi->log_blocks_per_seg;
|
||||
|
||||
block_addr = (pgoff_t)(nm_i->nat_blkaddr +
|
||||
(seg_off << sbi->log_blocks_per_seg << 1) +
|
||||
(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
|
||||
|
||||
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
|
||||
block_addr += sbi->blocks_per_seg;
|
||||
|
||||
return block_addr;
|
||||
}
|
||||
|
||||
static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
|
||||
pgoff_t block_addr)
|
||||
{
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
|
||||
block_addr -= nm_i->nat_blkaddr;
|
||||
if ((block_addr >> sbi->log_blocks_per_seg) % 2)
|
||||
block_addr -= sbi->blocks_per_seg;
|
||||
else
|
||||
block_addr += sbi->blocks_per_seg;
|
||||
|
||||
return block_addr + nm_i->nat_blkaddr;
|
||||
}
|
||||
|
||||
static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
|
||||
{
|
||||
unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
|
||||
|
||||
if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
|
||||
f2fs_clear_bit(block_off, nm_i->nat_bitmap);
|
||||
else
|
||||
f2fs_set_bit(block_off, nm_i->nat_bitmap);
|
||||
}
|
||||
|
||||
static inline void fill_node_footer(struct page *page, nid_t nid,
|
||||
nid_t ino, unsigned int ofs, bool reset)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
if (reset)
|
||||
memset(rn, 0, sizeof(*rn));
|
||||
rn->footer.nid = cpu_to_le32(nid);
|
||||
rn->footer.ino = cpu_to_le32(ino);
|
||||
rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
|
||||
}
|
||||
|
||||
static inline void copy_node_footer(struct page *dst, struct page *src)
|
||||
{
|
||||
void *src_addr = page_address(src);
|
||||
void *dst_addr = page_address(dst);
|
||||
struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
|
||||
struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
|
||||
memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
|
||||
}
|
||||
|
||||
static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
|
||||
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
rn->footer.cp_ver = ckpt->checkpoint_ver;
|
||||
rn->footer.next_blkaddr = blkaddr;
|
||||
}
|
||||
|
||||
static inline nid_t ino_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
return le32_to_cpu(rn->footer.ino);
|
||||
}
|
||||
|
||||
static inline nid_t nid_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
return le32_to_cpu(rn->footer.nid);
|
||||
}
|
||||
|
||||
static inline unsigned int ofs_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned flag = le32_to_cpu(rn->footer.flag);
|
||||
return flag >> OFFSET_BIT_SHIFT;
|
||||
}
|
||||
|
||||
static inline unsigned long long cpver_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
return le64_to_cpu(rn->footer.cp_ver);
|
||||
}
|
||||
|
||||
static inline block_t next_blkaddr_of_node(struct page *node_page)
|
||||
{
|
||||
void *kaddr = page_address(node_page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
return le32_to_cpu(rn->footer.next_blkaddr);
|
||||
}
|
||||
|
||||
/*
|
||||
* f2fs assigns the following node offsets described as (num).
|
||||
* N = NIDS_PER_BLOCK
|
||||
*
|
||||
* Inode block (0)
|
||||
* |- direct node (1)
|
||||
* |- direct node (2)
|
||||
* |- indirect node (3)
|
||||
* | `- direct node (4 => 4 + N - 1)
|
||||
* |- indirect node (4 + N)
|
||||
* | `- direct node (5 + N => 5 + 2N - 1)
|
||||
* `- double indirect node (5 + 2N)
|
||||
* `- indirect node (6 + 2N)
|
||||
* `- direct node (x(N + 1))
|
||||
*/
|
||||
static inline bool IS_DNODE(struct page *node_page)
|
||||
{
|
||||
unsigned int ofs = ofs_of_node(node_page);
|
||||
if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
|
||||
ofs == 5 + 2 * NIDS_PER_BLOCK)
|
||||
return false;
|
||||
if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
|
||||
ofs -= 6 + 2 * NIDS_PER_BLOCK;
|
||||
if ((long int)ofs % (NIDS_PER_BLOCK + 1))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
|
||||
{
|
||||
struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
|
||||
|
||||
wait_on_page_writeback(p);
|
||||
|
||||
if (i)
|
||||
rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
|
||||
else
|
||||
rn->in.nid[off] = cpu_to_le32(nid);
|
||||
set_page_dirty(p);
|
||||
}
|
||||
|
||||
static inline nid_t get_nid(struct page *p, int off, bool i)
|
||||
{
|
||||
struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
|
||||
if (i)
|
||||
return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
|
||||
return le32_to_cpu(rn->in.nid[off]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Coldness identification:
|
||||
* - Mark cold files in f2fs_inode_info
|
||||
* - Mark cold node blocks in their node footer
|
||||
* - Mark cold data pages in page cache
|
||||
*/
|
||||
static inline int is_cold_file(struct inode *inode)
|
||||
{
|
||||
return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
|
||||
}
|
||||
|
||||
static inline int is_cold_data(struct page *page)
|
||||
{
|
||||
return PageChecked(page);
|
||||
}
|
||||
|
||||
static inline void set_cold_data(struct page *page)
|
||||
{
|
||||
SetPageChecked(page);
|
||||
}
|
||||
|
||||
static inline void clear_cold_data(struct page *page)
|
||||
{
|
||||
ClearPageChecked(page);
|
||||
}
|
||||
|
||||
static inline int is_cold_node(struct page *page)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
return flag & (0x1 << COLD_BIT_SHIFT);
|
||||
}
|
||||
|
||||
static inline unsigned char is_fsync_dnode(struct page *page)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
return flag & (0x1 << FSYNC_BIT_SHIFT);
|
||||
}
|
||||
|
||||
static inline unsigned char is_dent_dnode(struct page *page)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
return flag & (0x1 << DENT_BIT_SHIFT);
|
||||
}
|
||||
|
||||
static inline void set_cold_node(struct inode *inode, struct page *page)
|
||||
{
|
||||
struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
|
||||
if (S_ISDIR(inode->i_mode))
|
||||
flag &= ~(0x1 << COLD_BIT_SHIFT);
|
||||
else
|
||||
flag |= (0x1 << COLD_BIT_SHIFT);
|
||||
rn->footer.flag = cpu_to_le32(flag);
|
||||
}
|
||||
|
||||
static inline void set_fsync_mark(struct page *page, int mark)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
if (mark)
|
||||
flag |= (0x1 << FSYNC_BIT_SHIFT);
|
||||
else
|
||||
flag &= ~(0x1 << FSYNC_BIT_SHIFT);
|
||||
rn->footer.flag = cpu_to_le32(flag);
|
||||
}
|
||||
|
||||
static inline void set_dentry_mark(struct page *page, int mark)
|
||||
{
|
||||
void *kaddr = page_address(page);
|
||||
struct f2fs_node *rn = (struct f2fs_node *)kaddr;
|
||||
unsigned int flag = le32_to_cpu(rn->footer.flag);
|
||||
if (mark)
|
||||
flag |= (0x1 << DENT_BIT_SHIFT);
|
||||
else
|
||||
flag &= ~(0x1 << DENT_BIT_SHIFT);
|
||||
rn->footer.flag = cpu_to_le32(flag);
|
||||
}
|
615
fs/f2fs/segment.h
Normal file
615
fs/f2fs/segment.h
Normal file
@ -0,0 +1,615 @@
|
||||
/**
|
||||
* fs/f2fs/segment.h
|
||||
*
|
||||
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
||||
* http://www.samsung.com/
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
/* constant macro */
|
||||
#define NULL_SEGNO ((unsigned int)(~0))
|
||||
|
||||
/* V: Logical segment # in volume, R: Relative segment # in main area */
|
||||
#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
|
||||
#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
|
||||
|
||||
#define IS_DATASEG(t) \
|
||||
((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
|
||||
(t == CURSEG_WARM_DATA))
|
||||
|
||||
#define IS_NODESEG(t) \
|
||||
((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
|
||||
(t == CURSEG_WARM_NODE))
|
||||
|
||||
#define IS_CURSEG(sbi, segno) \
|
||||
((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
|
||||
(segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
|
||||
|
||||
#define IS_CURSEC(sbi, secno) \
|
||||
((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
|
||||
sbi->segs_per_sec) || \
|
||||
(secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
|
||||
sbi->segs_per_sec)) \
|
||||
|
||||
#define START_BLOCK(sbi, segno) \
|
||||
(SM_I(sbi)->seg0_blkaddr + \
|
||||
(GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
|
||||
#define NEXT_FREE_BLKADDR(sbi, curseg) \
|
||||
(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
|
||||
|
||||
#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
|
||||
|
||||
#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
|
||||
((blk_addr) - SM_I(sbi)->seg0_blkaddr)
|
||||
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
|
||||
(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
|
||||
#define GET_SEGNO(sbi, blk_addr) \
|
||||
(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
|
||||
NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
|
||||
GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
|
||||
#define GET_SECNO(sbi, segno) \
|
||||
((segno) / sbi->segs_per_sec)
|
||||
#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
|
||||
((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
|
||||
|
||||
#define GET_SUM_BLOCK(sbi, segno) \
|
||||
((sbi->sm_info->ssa_blkaddr) + segno)
|
||||
|
||||
#define GET_SUM_TYPE(footer) ((footer)->entry_type)
|
||||
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
|
||||
|
||||
#define SIT_ENTRY_OFFSET(sit_i, segno) \
|
||||
(segno % sit_i->sents_per_block)
|
||||
#define SIT_BLOCK_OFFSET(sit_i, segno) \
|
||||
(segno / SIT_ENTRY_PER_BLOCK)
|
||||
#define START_SEGNO(sit_i, segno) \
|
||||
(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
|
||||
#define f2fs_bitmap_size(nr) \
|
||||
(BITS_TO_LONGS(nr) * sizeof(unsigned long))
|
||||
#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
|
||||
|
||||
/* during checkpoint, bio_private is used to synchronize the last bio */
|
||||
struct bio_private {
|
||||
struct f2fs_sb_info *sbi;
|
||||
bool is_sync;
|
||||
void *wait;
|
||||
};
|
||||
|
||||
/*
|
||||
* indicate a block allocation direction: RIGHT and LEFT.
|
||||
* RIGHT means allocating new sections towards the end of volume.
|
||||
* LEFT means the opposite direction.
|
||||
*/
|
||||
enum {
|
||||
ALLOC_RIGHT = 0,
|
||||
ALLOC_LEFT
|
||||
};
|
||||
|
||||
/*
|
||||
* In the victim_sel_policy->alloc_mode, there are two block allocation modes.
|
||||
* LFS writes data sequentially with cleaning operations.
|
||||
* SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
|
||||
*/
|
||||
enum {
|
||||
LFS = 0,
|
||||
SSR
|
||||
};
|
||||
|
||||
/*
|
||||
* In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
|
||||
* GC_CB is based on cost-benefit algorithm.
|
||||
* GC_GREEDY is based on greedy algorithm.
|
||||
*/
|
||||
enum {
|
||||
GC_CB = 0,
|
||||
GC_GREEDY
|
||||
};
|
||||
|
||||
/*
|
||||
* BG_GC means the background cleaning job.
|
||||
* FG_GC means the on-demand cleaning job.
|
||||
*/
|
||||
enum {
|
||||
BG_GC = 0,
|
||||
FG_GC
|
||||
};
|
||||
|
||||
/* for a function parameter to select a victim segment */
|
||||
struct victim_sel_policy {
|
||||
int alloc_mode; /* LFS or SSR */
|
||||
int gc_mode; /* GC_CB or GC_GREEDY */
|
||||
unsigned long *dirty_segmap; /* dirty segment bitmap */
|
||||
unsigned int offset; /* last scanned bitmap offset */
|
||||
unsigned int ofs_unit; /* bitmap search unit */
|
||||
unsigned int min_cost; /* minimum cost */
|
||||
unsigned int min_segno; /* segment # having min. cost */
|
||||
};
|
||||
|
||||
struct seg_entry {
|
||||
unsigned short valid_blocks; /* # of valid blocks */
|
||||
unsigned char *cur_valid_map; /* validity bitmap of blocks */
|
||||
/*
|
||||
* # of valid blocks and the validity bitmap stored in the the last
|
||||
* checkpoint pack. This information is used by the SSR mode.
|
||||
*/
|
||||
unsigned short ckpt_valid_blocks;
|
||||
unsigned char *ckpt_valid_map;
|
||||
unsigned char type; /* segment type like CURSEG_XXX_TYPE */
|
||||
unsigned long long mtime; /* modification time of the segment */
|
||||
};
|
||||
|
||||
struct sec_entry {
|
||||
unsigned int valid_blocks; /* # of valid blocks in a section */
|
||||
};
|
||||
|
||||
struct segment_allocation {
|
||||
void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
|
||||
};
|
||||
|
||||
struct sit_info {
|
||||
const struct segment_allocation *s_ops;
|
||||
|
||||
block_t sit_base_addr; /* start block address of SIT area */
|
||||
block_t sit_blocks; /* # of blocks used by SIT area */
|
||||
block_t written_valid_blocks; /* # of valid blocks in main area */
|
||||
char *sit_bitmap; /* SIT bitmap pointer */
|
||||
unsigned int bitmap_size; /* SIT bitmap size */
|
||||
|
||||
unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
|
||||
unsigned int dirty_sentries; /* # of dirty sentries */
|
||||
unsigned int sents_per_block; /* # of SIT entries per block */
|
||||
struct mutex sentry_lock; /* to protect SIT cache */
|
||||
struct seg_entry *sentries; /* SIT segment-level cache */
|
||||
struct sec_entry *sec_entries; /* SIT section-level cache */
|
||||
|
||||
/* for cost-benefit algorithm in cleaning procedure */
|
||||
unsigned long long elapsed_time; /* elapsed time after mount */
|
||||
unsigned long long mounted_time; /* mount time */
|
||||
unsigned long long min_mtime; /* min. modification time */
|
||||
unsigned long long max_mtime; /* max. modification time */
|
||||
};
|
||||
|
||||
struct free_segmap_info {
|
||||
unsigned int start_segno; /* start segment number logically */
|
||||
unsigned int free_segments; /* # of free segments */
|
||||
unsigned int free_sections; /* # of free sections */
|
||||
rwlock_t segmap_lock; /* free segmap lock */
|
||||
unsigned long *free_segmap; /* free segment bitmap */
|
||||
unsigned long *free_secmap; /* free section bitmap */
|
||||
};
|
||||
|
||||
/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
|
||||
enum dirty_type {
|
||||
DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
|
||||
DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
|
||||
DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
|
||||
DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
|
||||
DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
|
||||
DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
|
||||
DIRTY, /* to count # of dirty segments */
|
||||
PRE, /* to count # of entirely obsolete segments */
|
||||
NR_DIRTY_TYPE
|
||||
};
|
||||
|
||||
struct dirty_seglist_info {
|
||||
const struct victim_selection *v_ops; /* victim selction operation */
|
||||
unsigned long *dirty_segmap[NR_DIRTY_TYPE];
|
||||
struct mutex seglist_lock; /* lock for segment bitmaps */
|
||||
int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
|
||||
unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */
|
||||
};
|
||||
|
||||
/* victim selection function for cleaning and SSR */
|
||||
struct victim_selection {
|
||||
int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
|
||||
int, int, char);
|
||||
};
|
||||
|
||||
/* for active log information */
|
||||
struct curseg_info {
|
||||
struct mutex curseg_mutex; /* lock for consistency */
|
||||
struct f2fs_summary_block *sum_blk; /* cached summary block */
|
||||
unsigned char alloc_type; /* current allocation type */
|
||||
unsigned int segno; /* current segment number */
|
||||
unsigned short next_blkoff; /* next block offset to write */
|
||||
unsigned int zone; /* current zone number */
|
||||
unsigned int next_segno; /* preallocated segment */
|
||||
};
|
||||
|
||||
/*
|
||||
* inline functions
|
||||
*/
|
||||
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
|
||||
{
|
||||
return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
|
||||
}
|
||||
|
||||
static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
return &sit_i->sentries[segno];
|
||||
}
|
||||
|
||||
static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
|
||||
}
|
||||
|
||||
static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno, int section)
|
||||
{
|
||||
/*
|
||||
* In order to get # of valid blocks in a section instantly from many
|
||||
* segments, f2fs manages two counting structures separately.
|
||||
*/
|
||||
if (section > 1)
|
||||
return get_sec_entry(sbi, segno)->valid_blocks;
|
||||
else
|
||||
return get_seg_entry(sbi, segno)->valid_blocks;
|
||||
}
|
||||
|
||||
static inline void seg_info_from_raw_sit(struct seg_entry *se,
|
||||
struct f2fs_sit_entry *rs)
|
||||
{
|
||||
se->valid_blocks = GET_SIT_VBLOCKS(rs);
|
||||
se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
|
||||
memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
||||
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
||||
se->type = GET_SIT_TYPE(rs);
|
||||
se->mtime = le64_to_cpu(rs->mtime);
|
||||
}
|
||||
|
||||
static inline void seg_info_to_raw_sit(struct seg_entry *se,
|
||||
struct f2fs_sit_entry *rs)
|
||||
{
|
||||
unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
|
||||
se->valid_blocks;
|
||||
rs->vblocks = cpu_to_le16(raw_vblocks);
|
||||
memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
|
||||
memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
|
||||
se->ckpt_valid_blocks = se->valid_blocks;
|
||||
rs->mtime = cpu_to_le64(se->mtime);
|
||||
}
|
||||
|
||||
static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
|
||||
unsigned int max, unsigned int segno)
|
||||
{
|
||||
unsigned int ret;
|
||||
read_lock(&free_i->segmap_lock);
|
||||
ret = find_next_bit(free_i->free_segmap, max, segno);
|
||||
read_unlock(&free_i->segmap_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int secno = segno / sbi->segs_per_sec;
|
||||
unsigned int start_segno = secno * sbi->segs_per_sec;
|
||||
unsigned int next;
|
||||
|
||||
write_lock(&free_i->segmap_lock);
|
||||
clear_bit(segno, free_i->free_segmap);
|
||||
free_i->free_segments++;
|
||||
|
||||
next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
|
||||
if (next >= start_segno + sbi->segs_per_sec) {
|
||||
clear_bit(secno, free_i->free_secmap);
|
||||
free_i->free_sections++;
|
||||
}
|
||||
write_unlock(&free_i->segmap_lock);
|
||||
}
|
||||
|
||||
static inline void __set_inuse(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int secno = segno / sbi->segs_per_sec;
|
||||
set_bit(segno, free_i->free_segmap);
|
||||
free_i->free_segments--;
|
||||
if (!test_and_set_bit(secno, free_i->free_secmap))
|
||||
free_i->free_sections--;
|
||||
}
|
||||
|
||||
static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int secno = segno / sbi->segs_per_sec;
|
||||
unsigned int start_segno = secno * sbi->segs_per_sec;
|
||||
unsigned int next;
|
||||
|
||||
write_lock(&free_i->segmap_lock);
|
||||
if (test_and_clear_bit(segno, free_i->free_segmap)) {
|
||||
free_i->free_segments++;
|
||||
|
||||
next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
|
||||
start_segno);
|
||||
if (next >= start_segno + sbi->segs_per_sec) {
|
||||
if (test_and_clear_bit(secno, free_i->free_secmap))
|
||||
free_i->free_sections++;
|
||||
}
|
||||
}
|
||||
write_unlock(&free_i->segmap_lock);
|
||||
}
|
||||
|
||||
static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int secno = segno / sbi->segs_per_sec;
|
||||
write_lock(&free_i->segmap_lock);
|
||||
if (!test_and_set_bit(segno, free_i->free_segmap)) {
|
||||
free_i->free_segments--;
|
||||
if (!test_and_set_bit(secno, free_i->free_secmap))
|
||||
free_i->free_sections--;
|
||||
}
|
||||
write_unlock(&free_i->segmap_lock);
|
||||
}
|
||||
|
||||
static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
|
||||
void *dst_addr)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
|
||||
}
|
||||
|
||||
static inline block_t written_block_count(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
block_t vblocks;
|
||||
|
||||
mutex_lock(&sit_i->sentry_lock);
|
||||
vblocks = sit_i->written_valid_blocks;
|
||||
mutex_unlock(&sit_i->sentry_lock);
|
||||
|
||||
return vblocks;
|
||||
}
|
||||
|
||||
static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int free_segs;
|
||||
|
||||
read_lock(&free_i->segmap_lock);
|
||||
free_segs = free_i->free_segments;
|
||||
read_unlock(&free_i->segmap_lock);
|
||||
|
||||
return free_segs;
|
||||
}
|
||||
|
||||
static inline int reserved_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return SM_I(sbi)->reserved_segments;
|
||||
}
|
||||
|
||||
static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int free_secs;
|
||||
|
||||
read_lock(&free_i->segmap_lock);
|
||||
free_secs = free_i->free_sections;
|
||||
read_unlock(&free_i->segmap_lock);
|
||||
|
||||
return free_secs;
|
||||
}
|
||||
|
||||
static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return DIRTY_I(sbi)->nr_dirty[PRE];
|
||||
}
|
||||
|
||||
static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
|
||||
DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
|
||||
}
|
||||
|
||||
static inline int overprovision_segments(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return SM_I(sbi)->ovp_segments;
|
||||
}
|
||||
|
||||
static inline int overprovision_sections(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
|
||||
}
|
||||
|
||||
static inline int reserved_sections(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
|
||||
}
|
||||
|
||||
static inline bool need_SSR(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return (free_sections(sbi) < overprovision_sections(sbi));
|
||||
}
|
||||
|
||||
static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
return DIRTY_I(sbi)->v_ops->get_victim(sbi,
|
||||
&(curseg)->next_segno, BG_GC, type, SSR);
|
||||
}
|
||||
|
||||
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return free_sections(sbi) <= reserved_sections(sbi);
|
||||
}
|
||||
|
||||
static inline int utilization(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return (long int)valid_user_blocks(sbi) * 100 /
|
||||
(long int)sbi->user_block_count;
|
||||
}
|
||||
|
||||
/*
|
||||
* Sometimes f2fs may be better to drop out-of-place update policy.
|
||||
* So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
|
||||
* data in the original place likewise other traditional file systems.
|
||||
* But, currently set 100 in percentage, which means it is disabled.
|
||||
* See below need_inplace_update().
|
||||
*/
|
||||
#define MIN_IPU_UTIL 100
|
||||
static inline bool need_inplace_update(struct inode *inode)
|
||||
{
|
||||
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
|
||||
if (S_ISDIR(inode->i_mode))
|
||||
return false;
|
||||
if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
|
||||
int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
return curseg->segno;
|
||||
}
|
||||
|
||||
static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
|
||||
int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
return curseg->alloc_type;
|
||||
}
|
||||
|
||||
static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
return curseg->next_blkoff;
|
||||
}
|
||||
|
||||
static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
{
|
||||
unsigned int end_segno = SM_I(sbi)->segment_count - 1;
|
||||
BUG_ON(segno > end_segno);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function is used for only debugging.
|
||||
* NOTE: In future, we have to remove this function.
|
||||
*/
|
||||
static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
|
||||
{
|
||||
struct f2fs_sm_info *sm_info = SM_I(sbi);
|
||||
block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
|
||||
block_t start_addr = sm_info->seg0_blkaddr;
|
||||
block_t end_addr = start_addr + total_blks - 1;
|
||||
BUG_ON(blk_addr < start_addr);
|
||||
BUG_ON(blk_addr > end_addr);
|
||||
}
|
||||
|
||||
/*
|
||||
* Summary block is always treated as invalid block
|
||||
*/
|
||||
static inline void check_block_count(struct f2fs_sb_info *sbi,
|
||||
int segno, struct f2fs_sit_entry *raw_sit)
|
||||
{
|
||||
struct f2fs_sm_info *sm_info = SM_I(sbi);
|
||||
unsigned int end_segno = sm_info->segment_count - 1;
|
||||
int valid_blocks = 0;
|
||||
int i;
|
||||
|
||||
/* check segment usage */
|
||||
BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
|
||||
|
||||
/* check boundary of a given segment number */
|
||||
BUG_ON(segno > end_segno);
|
||||
|
||||
/* check bitmap with valid block count */
|
||||
for (i = 0; i < sbi->blocks_per_seg; i++)
|
||||
if (f2fs_test_bit(i, raw_sit->valid_map))
|
||||
valid_blocks++;
|
||||
BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
|
||||
}
|
||||
|
||||
static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
|
||||
unsigned int start)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
|
||||
block_t blk_addr = sit_i->sit_base_addr + offset;
|
||||
|
||||
check_seg_range(sbi, start);
|
||||
|
||||
/* calculate sit block address */
|
||||
if (f2fs_test_bit(offset, sit_i->sit_bitmap))
|
||||
blk_addr += sit_i->sit_blocks;
|
||||
|
||||
return blk_addr;
|
||||
}
|
||||
|
||||
static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
|
||||
pgoff_t block_addr)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
block_addr -= sit_i->sit_base_addr;
|
||||
if (block_addr < sit_i->sit_blocks)
|
||||
block_addr += sit_i->sit_blocks;
|
||||
else
|
||||
block_addr -= sit_i->sit_blocks;
|
||||
|
||||
return block_addr + sit_i->sit_base_addr;
|
||||
}
|
||||
|
||||
static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
|
||||
{
|
||||
unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
|
||||
|
||||
if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
|
||||
f2fs_clear_bit(block_off, sit_i->sit_bitmap);
|
||||
else
|
||||
f2fs_set_bit(block_off, sit_i->sit_bitmap);
|
||||
}
|
||||
|
||||
static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct sit_info *sit_i = SIT_I(sbi);
|
||||
return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
|
||||
sit_i->mounted_time;
|
||||
}
|
||||
|
||||
static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
|
||||
unsigned int ofs_in_node, unsigned char version)
|
||||
{
|
||||
sum->nid = cpu_to_le32(nid);
|
||||
sum->ofs_in_node = cpu_to_le16(ofs_in_node);
|
||||
sum->version = version;
|
||||
}
|
||||
|
||||
static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return __start_cp_addr(sbi) +
|
||||
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
|
||||
}
|
||||
|
||||
static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
|
||||
{
|
||||
return __start_cp_addr(sbi) +
|
||||
le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
|
||||
- (base + 1) + type;
|
||||
}
|
@ -23,6 +23,7 @@
|
||||
#define EXT4_SUPER_MAGIC 0xEF53
|
||||
#define BTRFS_SUPER_MAGIC 0x9123683E
|
||||
#define NILFS_SUPER_MAGIC 0x3434
|
||||
#define F2FS_SUPER_MAGIC 0xF2F52010
|
||||
#define HPFS_SUPER_MAGIC 0xf995e849
|
||||
#define ISOFS_SUPER_MAGIC 0x9660
|
||||
#define JFFS2_SUPER_MAGIC 0x72b6
|
||||
|
Loading…
Reference in New Issue
Block a user