NFS: Move fs/nfs/iostat.h to include/linux
The fs/nfs/iostat.h header has definitions that were designed to be exposed to user space. Move these definitions under include/linux so user space can use the definitions in applications that read /proc/self/mountstats. Also address a handful of coding style issues called out by checkpatch.pl in fs/nfs/iostat.h. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
This commit is contained in:
parent
46cb650c22
commit
34e8f92831
119
fs/nfs/iostat.h
119
fs/nfs/iostat.h
@ -5,135 +5,41 @@
|
||||
*
|
||||
* Copyright (C) 2005, 2006 Chuck Lever <cel@netapp.com>
|
||||
*
|
||||
* NFS client per-mount statistics provide information about the health of
|
||||
* the NFS client and the health of each NFS mount point. Generally these
|
||||
* are not for detailed problem diagnosis, but simply to indicate that there
|
||||
* is a problem.
|
||||
*
|
||||
* These counters are not meant to be human-readable, but are meant to be
|
||||
* integrated into system monitoring tools such as "sar" and "iostat". As
|
||||
* such, the counters are sampled by the tools over time, and are never
|
||||
* zeroed after a file system is mounted. Moving averages can be computed
|
||||
* by the tools by taking the difference between two instantaneous samples
|
||||
* and dividing that by the time between the samples.
|
||||
*/
|
||||
|
||||
#ifndef _NFS_IOSTAT
|
||||
#define _NFS_IOSTAT
|
||||
|
||||
#define NFS_IOSTAT_VERS "1.0"
|
||||
|
||||
/*
|
||||
* NFS byte counters
|
||||
*
|
||||
* 1. SERVER - the number of payload bytes read from or written to the
|
||||
* server by the NFS client via an NFS READ or WRITE request.
|
||||
*
|
||||
* 2. NORMAL - the number of bytes read or written by applications via
|
||||
* the read(2) and write(2) system call interfaces.
|
||||
*
|
||||
* 3. DIRECT - the number of bytes read or written from files opened
|
||||
* with the O_DIRECT flag.
|
||||
*
|
||||
* These counters give a view of the data throughput into and out of the NFS
|
||||
* client. Comparing the number of bytes requested by an application with the
|
||||
* number of bytes the client requests from the server can provide an
|
||||
* indication of client efficiency (per-op, cache hits, etc).
|
||||
*
|
||||
* These counters can also help characterize which access methods are in
|
||||
* use. DIRECT by itself shows whether there is any O_DIRECT traffic.
|
||||
* NORMAL + DIRECT shows how much data is going through the system call
|
||||
* interface. A large amount of SERVER traffic without much NORMAL or
|
||||
* DIRECT traffic shows that applications are using mapped files.
|
||||
*
|
||||
* NFS page counters
|
||||
*
|
||||
* These count the number of pages read or written via nfs_readpage(),
|
||||
* nfs_readpages(), or their write equivalents.
|
||||
*/
|
||||
enum nfs_stat_bytecounters {
|
||||
NFSIOS_NORMALREADBYTES = 0,
|
||||
NFSIOS_NORMALWRITTENBYTES,
|
||||
NFSIOS_DIRECTREADBYTES,
|
||||
NFSIOS_DIRECTWRITTENBYTES,
|
||||
NFSIOS_SERVERREADBYTES,
|
||||
NFSIOS_SERVERWRITTENBYTES,
|
||||
NFSIOS_READPAGES,
|
||||
NFSIOS_WRITEPAGES,
|
||||
__NFSIOS_BYTESMAX,
|
||||
};
|
||||
|
||||
/*
|
||||
* NFS event counters
|
||||
*
|
||||
* These counters provide a low-overhead way of monitoring client activity
|
||||
* without enabling NFS trace debugging. The counters show the rate at
|
||||
* which VFS requests are made, and how often the client invalidates its
|
||||
* data and attribute caches. This allows system administrators to monitor
|
||||
* such things as how close-to-open is working, and answer questions such
|
||||
* as "why are there so many GETATTR requests on the wire?"
|
||||
*
|
||||
* They also count anamolous events such as short reads and writes, silly
|
||||
* renames due to close-after-delete, and operations that change the size
|
||||
* of a file (such operations can often be the source of data corruption
|
||||
* if applications aren't using file locking properly).
|
||||
*/
|
||||
enum nfs_stat_eventcounters {
|
||||
NFSIOS_INODEREVALIDATE = 0,
|
||||
NFSIOS_DENTRYREVALIDATE,
|
||||
NFSIOS_DATAINVALIDATE,
|
||||
NFSIOS_ATTRINVALIDATE,
|
||||
NFSIOS_VFSOPEN,
|
||||
NFSIOS_VFSLOOKUP,
|
||||
NFSIOS_VFSACCESS,
|
||||
NFSIOS_VFSUPDATEPAGE,
|
||||
NFSIOS_VFSREADPAGE,
|
||||
NFSIOS_VFSREADPAGES,
|
||||
NFSIOS_VFSWRITEPAGE,
|
||||
NFSIOS_VFSWRITEPAGES,
|
||||
NFSIOS_VFSGETDENTS,
|
||||
NFSIOS_VFSSETATTR,
|
||||
NFSIOS_VFSFLUSH,
|
||||
NFSIOS_VFSFSYNC,
|
||||
NFSIOS_VFSLOCK,
|
||||
NFSIOS_VFSRELEASE,
|
||||
NFSIOS_CONGESTIONWAIT,
|
||||
NFSIOS_SETATTRTRUNC,
|
||||
NFSIOS_EXTENDWRITE,
|
||||
NFSIOS_SILLYRENAME,
|
||||
NFSIOS_SHORTREAD,
|
||||
NFSIOS_SHORTWRITE,
|
||||
NFSIOS_DELAY,
|
||||
__NFSIOS_COUNTSMAX,
|
||||
};
|
||||
|
||||
#ifdef __KERNEL__
|
||||
|
||||
#include <linux/percpu.h>
|
||||
#include <linux/cache.h>
|
||||
#include <linux/nfs_iostat.h>
|
||||
|
||||
struct nfs_iostats {
|
||||
unsigned long long bytes[__NFSIOS_BYTESMAX];
|
||||
unsigned long events[__NFSIOS_COUNTSMAX];
|
||||
} ____cacheline_aligned;
|
||||
|
||||
static inline void nfs_inc_server_stats(struct nfs_server *server, enum nfs_stat_eventcounters stat)
|
||||
static inline void nfs_inc_server_stats(struct nfs_server *server,
|
||||
enum nfs_stat_eventcounters stat)
|
||||
{
|
||||
struct nfs_iostats *iostats;
|
||||
int cpu;
|
||||
|
||||
cpu = get_cpu();
|
||||
iostats = per_cpu_ptr(server->io_stats, cpu);
|
||||
iostats->events[stat] ++;
|
||||
iostats->events[stat]++;
|
||||
put_cpu_no_resched();
|
||||
}
|
||||
|
||||
static inline void nfs_inc_stats(struct inode *inode, enum nfs_stat_eventcounters stat)
|
||||
static inline void nfs_inc_stats(struct inode *inode,
|
||||
enum nfs_stat_eventcounters stat)
|
||||
{
|
||||
nfs_inc_server_stats(NFS_SERVER(inode), stat);
|
||||
}
|
||||
|
||||
static inline void nfs_add_server_stats(struct nfs_server *server, enum nfs_stat_bytecounters stat, unsigned long addend)
|
||||
static inline void nfs_add_server_stats(struct nfs_server *server,
|
||||
enum nfs_stat_bytecounters stat,
|
||||
unsigned long addend)
|
||||
{
|
||||
struct nfs_iostats *iostats;
|
||||
int cpu;
|
||||
@ -144,7 +50,9 @@ static inline void nfs_add_server_stats(struct nfs_server *server, enum nfs_stat
|
||||
put_cpu_no_resched();
|
||||
}
|
||||
|
||||
static inline void nfs_add_stats(struct inode *inode, enum nfs_stat_bytecounters stat, unsigned long addend)
|
||||
static inline void nfs_add_stats(struct inode *inode,
|
||||
enum nfs_stat_bytecounters stat,
|
||||
unsigned long addend)
|
||||
{
|
||||
nfs_add_server_stats(NFS_SERVER(inode), stat, addend);
|
||||
}
|
||||
@ -160,5 +68,4 @@ static inline void nfs_free_iostats(struct nfs_iostats *stats)
|
||||
free_percpu(stats);
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
#endif /* _NFS_IOSTAT */
|
||||
|
119
include/linux/nfs_iostat.h
Normal file
119
include/linux/nfs_iostat.h
Normal file
@ -0,0 +1,119 @@
|
||||
/*
|
||||
* User-space visible declarations for NFS client per-mount
|
||||
* point statistics
|
||||
*
|
||||
* Copyright (C) 2005, 2006 Chuck Lever <cel@netapp.com>
|
||||
*
|
||||
* NFS client per-mount statistics provide information about the
|
||||
* health of the NFS client and the health of each NFS mount point.
|
||||
* Generally these are not for detailed problem diagnosis, but
|
||||
* simply to indicate that there is a problem.
|
||||
*
|
||||
* These counters are not meant to be human-readable, but are meant
|
||||
* to be integrated into system monitoring tools such as "sar" and
|
||||
* "iostat". As such, the counters are sampled by the tools over
|
||||
* time, and are never zeroed after a file system is mounted.
|
||||
* Moving averages can be computed by the tools by taking the
|
||||
* difference between two instantaneous samples and dividing that
|
||||
* by the time between the samples.
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_NFS_IOSTAT
|
||||
#define _LINUX_NFS_IOSTAT
|
||||
|
||||
#define NFS_IOSTAT_VERS "1.0"
|
||||
|
||||
/*
|
||||
* NFS byte counters
|
||||
*
|
||||
* 1. SERVER - the number of payload bytes read from or written
|
||||
* to the server by the NFS client via an NFS READ or WRITE
|
||||
* request.
|
||||
*
|
||||
* 2. NORMAL - the number of bytes read or written by applications
|
||||
* via the read(2) and write(2) system call interfaces.
|
||||
*
|
||||
* 3. DIRECT - the number of bytes read or written from files
|
||||
* opened with the O_DIRECT flag.
|
||||
*
|
||||
* These counters give a view of the data throughput into and out
|
||||
* of the NFS client. Comparing the number of bytes requested by
|
||||
* an application with the number of bytes the client requests from
|
||||
* the server can provide an indication of client efficiency
|
||||
* (per-op, cache hits, etc).
|
||||
*
|
||||
* These counters can also help characterize which access methods
|
||||
* are in use. DIRECT by itself shows whether there is any O_DIRECT
|
||||
* traffic. NORMAL + DIRECT shows how much data is going through
|
||||
* the system call interface. A large amount of SERVER traffic
|
||||
* without much NORMAL or DIRECT traffic shows that applications
|
||||
* are using mapped files.
|
||||
*
|
||||
* NFS page counters
|
||||
*
|
||||
* These count the number of pages read or written via nfs_readpage(),
|
||||
* nfs_readpages(), or their write equivalents.
|
||||
*
|
||||
* NB: When adding new byte counters, please include the measured
|
||||
* units in the name of each byte counter to help users of this
|
||||
* interface determine what exactly is being counted.
|
||||
*/
|
||||
enum nfs_stat_bytecounters {
|
||||
NFSIOS_NORMALREADBYTES = 0,
|
||||
NFSIOS_NORMALWRITTENBYTES,
|
||||
NFSIOS_DIRECTREADBYTES,
|
||||
NFSIOS_DIRECTWRITTENBYTES,
|
||||
NFSIOS_SERVERREADBYTES,
|
||||
NFSIOS_SERVERWRITTENBYTES,
|
||||
NFSIOS_READPAGES,
|
||||
NFSIOS_WRITEPAGES,
|
||||
__NFSIOS_BYTESMAX,
|
||||
};
|
||||
|
||||
/*
|
||||
* NFS event counters
|
||||
*
|
||||
* These counters provide a low-overhead way of monitoring client
|
||||
* activity without enabling NFS trace debugging. The counters
|
||||
* show the rate at which VFS requests are made, and how often the
|
||||
* client invalidates its data and attribute caches. This allows
|
||||
* system administrators to monitor such things as how close-to-open
|
||||
* is working, and answer questions such as "why are there so many
|
||||
* GETATTR requests on the wire?"
|
||||
*
|
||||
* They also count anamolous events such as short reads and writes,
|
||||
* silly renames due to close-after-delete, and operations that
|
||||
* change the size of a file (such operations can often be the
|
||||
* source of data corruption if applications aren't using file
|
||||
* locking properly).
|
||||
*/
|
||||
enum nfs_stat_eventcounters {
|
||||
NFSIOS_INODEREVALIDATE = 0,
|
||||
NFSIOS_DENTRYREVALIDATE,
|
||||
NFSIOS_DATAINVALIDATE,
|
||||
NFSIOS_ATTRINVALIDATE,
|
||||
NFSIOS_VFSOPEN,
|
||||
NFSIOS_VFSLOOKUP,
|
||||
NFSIOS_VFSACCESS,
|
||||
NFSIOS_VFSUPDATEPAGE,
|
||||
NFSIOS_VFSREADPAGE,
|
||||
NFSIOS_VFSREADPAGES,
|
||||
NFSIOS_VFSWRITEPAGE,
|
||||
NFSIOS_VFSWRITEPAGES,
|
||||
NFSIOS_VFSGETDENTS,
|
||||
NFSIOS_VFSSETATTR,
|
||||
NFSIOS_VFSFLUSH,
|
||||
NFSIOS_VFSFSYNC,
|
||||
NFSIOS_VFSLOCK,
|
||||
NFSIOS_VFSRELEASE,
|
||||
NFSIOS_CONGESTIONWAIT,
|
||||
NFSIOS_SETATTRTRUNC,
|
||||
NFSIOS_EXTENDWRITE,
|
||||
NFSIOS_SILLYRENAME,
|
||||
NFSIOS_SHORTREAD,
|
||||
NFSIOS_SHORTWRITE,
|
||||
NFSIOS_DELAY,
|
||||
__NFSIOS_COUNTSMAX,
|
||||
};
|
||||
|
||||
#endif /* _LINUX_NFS_IOSTAT */
|
Loading…
Reference in New Issue
Block a user