memcg: export struct mem_cgroup

mem_cgroup structure is defined in mm/memcontrol.c currently which means
that the code outside of this file has to use external API even for
trivial access stuff.

This patch exports mm_struct with its dependencies and makes some of the
exported functions inlines.  This even helps to reduce the code size a bit
(make defconfig + CONFIG_MEMCG=y)

  text		data    bss     dec     	 hex 	filename
  12355346        1823792 1089536 15268674         e8fb42 vmlinux.before
  12354970        1823792 1089536 15268298         e8f9ca vmlinux.after

This is not much (370B) but better than nothing.

We also save a function call in some hot paths like callers of
mem_cgroup_count_vm_event which is used for accounting.

The patch doesn't introduce any functional changes.

[vdavykov@parallels.com: inline memcg_kmem_is_active]
[vdavykov@parallels.com: do not expose type outside of CONFIG_MEMCG]
[akpm@linux-foundation.org: memcontrol.h needs eventfd.h for eventfd_ctx]
[akpm@linux-foundation.org: export mem_cgroup_from_task() to modules]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Michal Hocko 2015-09-08 15:01:02 -07:00 committed by Linus Torvalds
parent b3d9ed3fd8
commit 33398cf2f3
7 changed files with 351 additions and 378 deletions

View File

@ -23,6 +23,11 @@
#include <linux/vm_event_item.h> #include <linux/vm_event_item.h>
#include <linux/hardirq.h> #include <linux/hardirq.h>
#include <linux/jump_label.h> #include <linux/jump_label.h>
#include <linux/page_counter.h>
#include <linux/vmpressure.h>
#include <linux/eventfd.h>
#include <linux/mmzone.h>
#include <linux/writeback.h>
struct mem_cgroup; struct mem_cgroup;
struct page; struct page;
@ -67,12 +72,221 @@ enum mem_cgroup_events_index {
MEMCG_NR_EVENTS, MEMCG_NR_EVENTS,
}; };
/*
* Per memcg event counter is incremented at every pagein/pageout. With THP,
* it will be incremated by the number of pages. This counter is used for
* for trigger some periodic events. This is straightforward and better
* than using jiffies etc. to handle periodic memcg event.
*/
enum mem_cgroup_events_target {
MEM_CGROUP_TARGET_THRESH,
MEM_CGROUP_TARGET_SOFTLIMIT,
MEM_CGROUP_TARGET_NUMAINFO,
MEM_CGROUP_NTARGETS,
};
/*
* Bits in struct cg_proto.flags
*/
enum cg_proto_flags {
/* Currently active and new sockets should be assigned to cgroups */
MEMCG_SOCK_ACTIVE,
/* It was ever activated; we must disarm static keys on destruction */
MEMCG_SOCK_ACTIVATED,
};
struct cg_proto {
struct page_counter memory_allocated; /* Current allocated memory. */
struct percpu_counter sockets_allocated; /* Current number of sockets. */
int memory_pressure;
long sysctl_mem[3];
unsigned long flags;
/*
* memcg field is used to find which memcg we belong directly
* Each memcg struct can hold more than one cg_proto, so container_of
* won't really cut.
*
* The elegant solution would be having an inverse function to
* proto_cgroup in struct proto, but that means polluting the structure
* for everybody, instead of just for memcg users.
*/
struct mem_cgroup *memcg;
};
#ifdef CONFIG_MEMCG #ifdef CONFIG_MEMCG
struct mem_cgroup_stat_cpu {
long count[MEM_CGROUP_STAT_NSTATS];
unsigned long events[MEMCG_NR_EVENTS];
unsigned long nr_page_events;
unsigned long targets[MEM_CGROUP_NTARGETS];
};
struct mem_cgroup_reclaim_iter {
struct mem_cgroup *position;
/* scan generation, increased every round-trip */
unsigned int generation;
};
/*
* per-zone information in memory controller.
*/
struct mem_cgroup_per_zone {
struct lruvec lruvec;
unsigned long lru_size[NR_LRU_LISTS];
struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
struct rb_node tree_node; /* RB tree node */
unsigned long usage_in_excess;/* Set to the value by which */
/* the soft limit is exceeded*/
bool on_tree;
struct mem_cgroup *memcg; /* Back pointer, we cannot */
/* use container_of */
};
struct mem_cgroup_per_node {
struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};
struct mem_cgroup_threshold {
struct eventfd_ctx *eventfd;
unsigned long threshold;
};
/* For threshold */
struct mem_cgroup_threshold_ary {
/* An array index points to threshold just below or equal to usage. */
int current_threshold;
/* Size of entries[] */
unsigned int size;
/* Array of thresholds */
struct mem_cgroup_threshold entries[0];
};
struct mem_cgroup_thresholds {
/* Primary thresholds array */
struct mem_cgroup_threshold_ary *primary;
/*
* Spare threshold array.
* This is needed to make mem_cgroup_unregister_event() "never fail".
* It must be able to store at least primary->size - 1 entries.
*/
struct mem_cgroup_threshold_ary *spare;
};
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/* Accounted resources */
struct page_counter memory;
struct page_counter memsw;
struct page_counter kmem;
/* Normal memory consumption range */
unsigned long low;
unsigned long high;
unsigned long soft_limit;
/* vmpressure notifications */
struct vmpressure vmpressure;
/* css_online() has been completed */
int initialized;
/*
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;
/* protected by memcg_oom_lock */
bool oom_lock;
int under_oom;
int swappiness;
/* OOM-Killer disable */
int oom_kill_disable;
/* protect arrays of thresholds */
struct mutex thresholds_lock;
/* thresholds for memory usage. RCU-protected */
struct mem_cgroup_thresholds thresholds;
/* thresholds for mem+swap usage. RCU-protected */
struct mem_cgroup_thresholds memsw_thresholds;
/* For oom notifier event fd */
struct list_head oom_notify;
/*
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
unsigned long move_charge_at_immigrate;
/*
* set > 0 if pages under this cgroup are moving to other cgroup.
*/
atomic_t moving_account;
/* taken only while moving_account > 0 */
spinlock_t move_lock;
struct task_struct *move_lock_task;
unsigned long move_lock_flags;
/*
* percpu counter.
*/
struct mem_cgroup_stat_cpu __percpu *stat;
spinlock_t pcp_counter_lock;
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
struct cg_proto tcp_mem;
#endif
#if defined(CONFIG_MEMCG_KMEM)
/* Index in the kmem_cache->memcg_params.memcg_caches array */
int kmemcg_id;
bool kmem_acct_activated;
bool kmem_acct_active;
#endif
int last_scanned_node;
#if MAX_NUMNODES > 1
nodemask_t scan_nodes;
atomic_t numainfo_events;
atomic_t numainfo_updating;
#endif
#ifdef CONFIG_CGROUP_WRITEBACK
struct list_head cgwb_list;
struct wb_domain cgwb_domain;
#endif
/* List of events which userspace want to receive */
struct list_head event_list;
spinlock_t event_list_lock;
struct mem_cgroup_per_node *nodeinfo[0];
/* WARNING: nodeinfo must be the last member here */
};
extern struct cgroup_subsys_state *mem_cgroup_root_css; extern struct cgroup_subsys_state *mem_cgroup_root_css;
void mem_cgroup_events(struct mem_cgroup *memcg, /**
* mem_cgroup_events - count memory events against a cgroup
* @memcg: the memory cgroup
* @idx: the event index
* @nr: the number of events to account for
*/
static inline void mem_cgroup_events(struct mem_cgroup *memcg,
enum mem_cgroup_events_index idx, enum mem_cgroup_events_index idx,
unsigned int nr); unsigned int nr)
{
this_cpu_add(memcg->stat->events[idx], nr);
}
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg); bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
@ -90,15 +304,31 @@ void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
struct mem_cgroup *root);
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css); static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
return css ? container_of(css, struct mem_cgroup, css) : NULL;
}
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
struct mem_cgroup *,
struct mem_cgroup_reclaim_cookie *);
void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
struct mem_cgroup *root)
{
if (root == memcg)
return true;
if (!root->use_hierarchy)
return false;
return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
}
static inline bool mm_match_cgroup(struct mm_struct *mm, static inline bool mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg) struct mem_cgroup *memcg)
@ -114,22 +344,65 @@ static inline bool mm_match_cgroup(struct mm_struct *mm,
return match; return match;
} }
extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
extern struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); extern struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, static inline bool mem_cgroup_disabled(void)
struct mem_cgroup *, {
struct mem_cgroup_reclaim_cookie *); if (memory_cgrp_subsys.disabled)
void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); return true;
return false;
}
/* /*
* For memory reclaim. * For memory reclaim.
*/ */
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
bool mem_cgroup_lruvec_online(struct lruvec *lruvec);
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
int nr_pages);
static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
struct mem_cgroup_per_zone *mz;
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return true;
mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
memcg = mz->memcg;
return !!(memcg->css.flags & CSS_ONLINE);
}
static inline
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
{
struct mem_cgroup_per_zone *mz;
mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
return mz->lru_size[lru];
}
static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
{
unsigned long inactive_ratio;
unsigned long inactive;
unsigned long active;
unsigned long gb;
inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
gb = (inactive + active) >> (30 - PAGE_SHIFT);
if (gb)
inactive_ratio = int_sqrt(10 * gb);
else
inactive_ratio = 1;
return inactive * inactive_ratio < active;
}
extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
struct task_struct *p); struct task_struct *p);
@ -156,18 +429,26 @@ bool mem_cgroup_oom_synchronize(bool wait);
extern int do_swap_account; extern int do_swap_account;
#endif #endif
static inline bool mem_cgroup_disabled(void)
{
if (memory_cgrp_subsys.disabled)
return true;
return false;
}
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page); struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx, int val);
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg); void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
/**
* mem_cgroup_update_page_stat - update page state statistics
* @memcg: memcg to account against
* @idx: page state item to account
* @val: number of pages (positive or negative)
*
* See mem_cgroup_begin_page_stat() for locking requirements.
*/
static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx, int val)
{
VM_BUG_ON(!rcu_read_lock_held());
if (memcg)
this_cpu_add(memcg->stat->count[idx], val);
}
static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx) enum mem_cgroup_stat_index idx)
{ {
@ -184,13 +465,31 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
gfp_t gfp_mask, gfp_t gfp_mask,
unsigned long *total_scanned); unsigned long *total_scanned);
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
enum vm_event_item idx) enum vm_event_item idx)
{ {
struct mem_cgroup *memcg;
if (mem_cgroup_disabled()) if (mem_cgroup_disabled())
return; return;
__mem_cgroup_count_vm_event(mm, idx);
rcu_read_lock();
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!memcg))
goto out;
switch (idx) {
case PGFAULT:
this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
break;
case PGMAJFAULT:
this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
break;
default:
BUG();
}
out:
rcu_read_unlock();
} }
#ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifdef CONFIG_TRANSPARENT_HUGEPAGE
void mem_cgroup_split_huge_fixup(struct page *head); void mem_cgroup_split_huge_fixup(struct page *head);
@ -275,12 +574,6 @@ static inline bool task_in_mem_cgroup(struct task_struct *task,
return true; return true;
} }
static inline struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup *memcg)
{
return NULL;
}
static inline struct mem_cgroup * static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup *root, mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev, struct mem_cgroup *prev,
@ -444,7 +737,10 @@ static inline bool memcg_kmem_enabled(void)
return static_key_false(&memcg_kmem_enabled_key); return static_key_false(&memcg_kmem_enabled_key);
} }
bool memcg_kmem_is_active(struct mem_cgroup *memcg); static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
return memcg->kmem_acct_active;
}
/* /*
* In general, we'll do everything in our power to not incur in any overhead * In general, we'll do everything in our power to not incur in any overhead
@ -463,7 +759,15 @@ void __memcg_kmem_commit_charge(struct page *page,
struct mem_cgroup *memcg, int order); struct mem_cgroup *memcg, int order);
void __memcg_kmem_uncharge_pages(struct page *page, int order); void __memcg_kmem_uncharge_pages(struct page *page, int order);
int memcg_cache_id(struct mem_cgroup *memcg); /*
* helper for acessing a memcg's index. It will be used as an index in the
* child cache array in kmem_cache, and also to derive its name. This function
* will return -1 when this is not a kmem-limited memcg.
*/
static inline int memcg_cache_id(struct mem_cgroup *memcg)
{
return memcg ? memcg->kmemcg_id : -1;
}
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep); struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
void __memcg_kmem_put_cache(struct kmem_cache *cachep); void __memcg_kmem_put_cache(struct kmem_cache *cachep);

View File

@ -351,7 +351,15 @@ extern void check_move_unevictable_pages(struct page **, int nr_pages);
extern int kswapd_run(int nid); extern int kswapd_run(int nid);
extern void kswapd_stop(int nid); extern void kswapd_stop(int nid);
#ifdef CONFIG_MEMCG #ifdef CONFIG_MEMCG
extern int mem_cgroup_swappiness(struct mem_cgroup *mem); static inline int mem_cgroup_swappiness(struct mem_cgroup *memcg)
{
/* root ? */
if (mem_cgroup_disabled() || !memcg->css.parent)
return vm_swappiness;
return memcg->swappiness;
}
#else #else
static inline int mem_cgroup_swappiness(struct mem_cgroup *mem) static inline int mem_cgroup_swappiness(struct mem_cgroup *mem)
{ {

View File

@ -1042,34 +1042,6 @@ struct proto {
#endif #endif
}; };
/*
* Bits in struct cg_proto.flags
*/
enum cg_proto_flags {
/* Currently active and new sockets should be assigned to cgroups */
MEMCG_SOCK_ACTIVE,
/* It was ever activated; we must disarm static keys on destruction */
MEMCG_SOCK_ACTIVATED,
};
struct cg_proto {
struct page_counter memory_allocated; /* Current allocated memory. */
struct percpu_counter sockets_allocated; /* Current number of sockets. */
int memory_pressure;
long sysctl_mem[3];
unsigned long flags;
/*
* memcg field is used to find which memcg we belong directly
* Each memcg struct can hold more than one cg_proto, so container_of
* won't really cut.
*
* The elegant solution would be having an inverse function to
* proto_cgroup in struct proto, but that means polluting the structure
* for everybody, instead of just for memcg users.
*/
struct mem_cgroup *memcg;
};
int proto_register(struct proto *prot, int alloc_slab); int proto_register(struct proto *prot, int alloc_slab);
void proto_unregister(struct proto *prot); void proto_unregister(struct proto *prot);

View File

@ -111,56 +111,10 @@ static const char * const mem_cgroup_lru_names[] = {
"unevictable", "unevictable",
}; };
/*
* Per memcg event counter is incremented at every pagein/pageout. With THP,
* it will be incremated by the number of pages. This counter is used for
* for trigger some periodic events. This is straightforward and better
* than using jiffies etc. to handle periodic memcg event.
*/
enum mem_cgroup_events_target {
MEM_CGROUP_TARGET_THRESH,
MEM_CGROUP_TARGET_SOFTLIMIT,
MEM_CGROUP_TARGET_NUMAINFO,
MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET 128 #define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024 #define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET 1024 #define NUMAINFO_EVENTS_TARGET 1024
struct mem_cgroup_stat_cpu {
long count[MEM_CGROUP_STAT_NSTATS];
unsigned long events[MEMCG_NR_EVENTS];
unsigned long nr_page_events;
unsigned long targets[MEM_CGROUP_NTARGETS];
};
struct reclaim_iter {
struct mem_cgroup *position;
/* scan generation, increased every round-trip */
unsigned int generation;
};
/*
* per-zone information in memory controller.
*/
struct mem_cgroup_per_zone {
struct lruvec lruvec;
unsigned long lru_size[NR_LRU_LISTS];
struct reclaim_iter iter[DEF_PRIORITY + 1];
struct rb_node tree_node; /* RB tree node */
unsigned long usage_in_excess;/* Set to the value by which */
/* the soft limit is exceeded*/
bool on_tree;
struct mem_cgroup *memcg; /* Back pointer, we cannot */
/* use container_of */
};
struct mem_cgroup_per_node {
struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};
/* /*
* Cgroups above their limits are maintained in a RB-Tree, independent of * Cgroups above their limits are maintained in a RB-Tree, independent of
* their hierarchy representation * their hierarchy representation
@ -181,32 +135,6 @@ struct mem_cgroup_tree {
static struct mem_cgroup_tree soft_limit_tree __read_mostly; static struct mem_cgroup_tree soft_limit_tree __read_mostly;
struct mem_cgroup_threshold {
struct eventfd_ctx *eventfd;
unsigned long threshold;
};
/* For threshold */
struct mem_cgroup_threshold_ary {
/* An array index points to threshold just below or equal to usage. */
int current_threshold;
/* Size of entries[] */
unsigned int size;
/* Array of thresholds */
struct mem_cgroup_threshold entries[0];
};
struct mem_cgroup_thresholds {
/* Primary thresholds array */
struct mem_cgroup_threshold_ary *primary;
/*
* Spare threshold array.
* This is needed to make mem_cgroup_unregister_event() "never fail".
* It must be able to store at least primary->size - 1 entries.
*/
struct mem_cgroup_threshold_ary *spare;
};
/* for OOM */ /* for OOM */
struct mem_cgroup_eventfd_list { struct mem_cgroup_eventfd_list {
struct list_head list; struct list_head list;
@ -256,113 +184,6 @@ struct mem_cgroup_event {
static void mem_cgroup_threshold(struct mem_cgroup *memcg); static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
/*
* The memory controller data structure. The memory controller controls both
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
/* Accounted resources */
struct page_counter memory;
struct page_counter memsw;
struct page_counter kmem;
/* Normal memory consumption range */
unsigned long low;
unsigned long high;
unsigned long soft_limit;
/* vmpressure notifications */
struct vmpressure vmpressure;
/* css_online() has been completed */
int initialized;
/*
* Should the accounting and control be hierarchical, per subtree?
*/
bool use_hierarchy;
/* protected by memcg_oom_lock */
bool oom_lock;
int under_oom;
int swappiness;
/* OOM-Killer disable */
int oom_kill_disable;
/* protect arrays of thresholds */
struct mutex thresholds_lock;
/* thresholds for memory usage. RCU-protected */
struct mem_cgroup_thresholds thresholds;
/* thresholds for mem+swap usage. RCU-protected */
struct mem_cgroup_thresholds memsw_thresholds;
/* For oom notifier event fd */
struct list_head oom_notify;
/*
* Should we move charges of a task when a task is moved into this
* mem_cgroup ? And what type of charges should we move ?
*/
unsigned long move_charge_at_immigrate;
/*
* set > 0 if pages under this cgroup are moving to other cgroup.
*/
atomic_t moving_account;
/* taken only while moving_account > 0 */
spinlock_t move_lock;
struct task_struct *move_lock_task;
unsigned long move_lock_flags;
/*
* percpu counter.
*/
struct mem_cgroup_stat_cpu __percpu *stat;
spinlock_t pcp_counter_lock;
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
struct cg_proto tcp_mem;
#endif
#if defined(CONFIG_MEMCG_KMEM)
/* Index in the kmem_cache->memcg_params.memcg_caches array */
int kmemcg_id;
bool kmem_acct_activated;
bool kmem_acct_active;
#endif
int last_scanned_node;
#if MAX_NUMNODES > 1
nodemask_t scan_nodes;
atomic_t numainfo_events;
atomic_t numainfo_updating;
#endif
#ifdef CONFIG_CGROUP_WRITEBACK
struct list_head cgwb_list;
struct wb_domain cgwb_domain;
#endif
/* List of events which userspace want to receive */
struct list_head event_list;
spinlock_t event_list_lock;
struct mem_cgroup_per_node *nodeinfo[0];
/* WARNING: nodeinfo must be the last member here */
};
#ifdef CONFIG_MEMCG_KMEM
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
return memcg->kmem_acct_active;
}
#endif
/* Stuffs for move charges at task migration. */ /* Stuffs for move charges at task migration. */
/* /*
* Types of charges to be moved. * Types of charges to be moved.
@ -423,11 +244,6 @@ enum res_type {
*/ */
static DEFINE_MUTEX(memcg_create_mutex); static DEFINE_MUTEX(memcg_create_mutex);
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
return s ? container_of(s, struct mem_cgroup, css) : NULL;
}
/* Some nice accessors for the vmpressure. */ /* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{ {
@ -593,11 +409,6 @@ mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
return &memcg->nodeinfo[nid]->zoneinfo[zid]; return &memcg->nodeinfo[nid]->zoneinfo[zid];
} }
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
{
return &memcg->css;
}
/** /**
* mem_cgroup_css_from_page - css of the memcg associated with a page * mem_cgroup_css_from_page - css of the memcg associated with a page
* @page: page of interest * @page: page of interest
@ -876,14 +687,6 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
__this_cpu_add(memcg->stat->nr_page_events, nr_pages); __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
} }
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
{
struct mem_cgroup_per_zone *mz;
mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
return mz->lru_size[lru];
}
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
int nid, int nid,
unsigned int lru_mask) unsigned int lru_mask)
@ -986,6 +789,7 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
} }
EXPORT_SYMBOL(mem_cgroup_from_task);
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
{ {
@ -1031,7 +835,7 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev, struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim) struct mem_cgroup_reclaim_cookie *reclaim)
{ {
struct reclaim_iter *uninitialized_var(iter); struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
struct cgroup_subsys_state *css = NULL; struct cgroup_subsys_state *css = NULL;
struct mem_cgroup *memcg = NULL; struct mem_cgroup *memcg = NULL;
struct mem_cgroup *pos = NULL; struct mem_cgroup *pos = NULL;
@ -1173,30 +977,6 @@ void mem_cgroup_iter_break(struct mem_cgroup *root,
iter != NULL; \ iter != NULL; \
iter = mem_cgroup_iter(NULL, iter, NULL)) iter = mem_cgroup_iter(NULL, iter, NULL))
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
struct mem_cgroup *memcg;
rcu_read_lock();
memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (unlikely(!memcg))
goto out;
switch (idx) {
case PGFAULT:
this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
break;
case PGMAJFAULT:
this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
break;
default:
BUG();
}
out:
rcu_read_unlock();
}
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
/** /**
* mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
* @zone: zone of the wanted lruvec * @zone: zone of the wanted lruvec
@ -1295,15 +1075,6 @@ void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
VM_BUG_ON((long)(*lru_size) < 0); VM_BUG_ON((long)(*lru_size) < 0);
} }
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
{
if (root == memcg)
return true;
if (!root->use_hierarchy)
return false;
return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
}
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
{ {
struct mem_cgroup *task_memcg; struct mem_cgroup *task_memcg;
@ -1330,39 +1101,6 @@ bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
return ret; return ret;
} }
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
{
unsigned long inactive_ratio;
unsigned long inactive;
unsigned long active;
unsigned long gb;
inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
gb = (inactive + active) >> (30 - PAGE_SHIFT);
if (gb)
inactive_ratio = int_sqrt(10 * gb);
else
inactive_ratio = 1;
return inactive * inactive_ratio < active;
}
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
struct mem_cgroup_per_zone *mz;
struct mem_cgroup *memcg;
if (mem_cgroup_disabled())
return true;
mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
memcg = mz->memcg;
return !!(memcg->css.flags & CSS_ONLINE);
}
#define mem_cgroup_from_counter(counter, member) \ #define mem_cgroup_from_counter(counter, member) \
container_of(counter, struct mem_cgroup, member) container_of(counter, struct mem_cgroup, member)
@ -1394,15 +1132,6 @@ static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
return margin; return margin;
} }
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
{
/* root ? */
if (mem_cgroup_disabled() || !memcg->css.parent)
return vm_swappiness;
return memcg->swappiness;
}
/* /*
* A routine for checking "mem" is under move_account() or not. * A routine for checking "mem" is under move_account() or not.
* *
@ -2067,23 +1796,6 @@ void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
} }
EXPORT_SYMBOL(mem_cgroup_end_page_stat); EXPORT_SYMBOL(mem_cgroup_end_page_stat);
/**
* mem_cgroup_update_page_stat - update page state statistics
* @memcg: memcg to account against
* @idx: page state item to account
* @val: number of pages (positive or negative)
*
* See mem_cgroup_begin_page_stat() for locking requirements.
*/
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx, int val)
{
VM_BUG_ON(!rcu_read_lock_held());
if (memcg)
this_cpu_add(memcg->stat->count[idx], val);
}
/* /*
* size of first charge trial. "32" comes from vmscan.c's magic value. * size of first charge trial. "32" comes from vmscan.c's magic value.
* TODO: maybe necessary to use big numbers in big irons. * TODO: maybe necessary to use big numbers in big irons.
@ -2509,16 +2221,6 @@ void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
css_put_many(&memcg->css, nr_pages); css_put_many(&memcg->css, nr_pages);
} }
/*
* helper for acessing a memcg's index. It will be used as an index in the
* child cache array in kmem_cache, and also to derive its name. This function
* will return -1 when this is not a kmem-limited memcg.
*/
int memcg_cache_id(struct mem_cgroup *memcg)
{
return memcg ? memcg->kmemcg_id : -1;
}
static int memcg_alloc_cache_id(void) static int memcg_alloc_cache_id(void)
{ {
int id, size; int id, size;
@ -5525,19 +5227,6 @@ struct cgroup_subsys memory_cgrp_subsys = {
.early_init = 0, .early_init = 0,
}; };
/**
* mem_cgroup_events - count memory events against a cgroup
* @memcg: the memory cgroup
* @idx: the event index
* @nr: the number of events to account for
*/
void mem_cgroup_events(struct mem_cgroup *memcg,
enum mem_cgroup_events_index idx,
unsigned int nr)
{
this_cpu_add(memcg->stat->events[idx], nr);
}
/** /**
* mem_cgroup_low - check if memory consumption is below the normal range * mem_cgroup_low - check if memory consumption is below the normal range
* @root: the highest ancestor to consider * @root: the highest ancestor to consider

View File

@ -146,7 +146,7 @@ static int hwpoison_filter_task(struct page *p)
if (!mem) if (!mem)
return -EINVAL; return -EINVAL;
css = mem_cgroup_css(mem); css = &mem->css;
ino = cgroup_ino(css->cgroup); ino = cgroup_ino(css->cgroup);
css_put(css); css_put(css);

View File

@ -500,7 +500,7 @@ void memcg_create_kmem_cache(struct mem_cgroup *memcg,
struct kmem_cache *root_cache) struct kmem_cache *root_cache)
{ {
static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
struct cgroup_subsys_state *css = mem_cgroup_css(memcg); struct cgroup_subsys_state *css = &memcg->css;
struct memcg_cache_array *arr; struct memcg_cache_array *arr;
struct kmem_cache *s = NULL; struct kmem_cache *s = NULL;
char *cache_name; char *cache_name;

View File

@ -175,7 +175,7 @@ static bool sane_reclaim(struct scan_control *sc)
if (!memcg) if (!memcg)
return true; return true;
#ifdef CONFIG_CGROUP_WRITEBACK #ifdef CONFIG_CGROUP_WRITEBACK
if (cgroup_on_dfl(mem_cgroup_css(memcg)->cgroup)) if (memcg->css.cgroup)
return true; return true;
#endif #endif
return false; return false;