ARM: 7205/2: sched_clock: allow sched_clock to be selected at runtime
sched_clock() is yet another blocker on the road to the single image. This patch implements an idea by Russell King: http://www.spinics.net/lists/linux-omap/msg49561.html Instead of asking the platform to implement both sched_clock() itself and the rollover callback, simply register a read() function, and let the ARM code care about sched_clock() itself, the conversion to ns and the rollover. sched_clock() uses this read() function as an indirection to the platform code. If the platform doesn't provide a read(), the code falls back to the jiffy counter (just like the default sched_clock). This allow some simplifications and possibly some footprint gain when multiple platforms are compiled in. Among the drawbacks, the removal of the *_fixed_sched_clock optimization which could negatively impact some platforms (sa1100, tegra, versatile and omap). Tested on 11MPCore, OMAP4 and Tegra. Cc: Imre Kaloz <kaloz@openwrt.org> Cc: Eric Miao <eric.y.miao@gmail.com> Cc: Colin Cross <ccross@android.com> Cc: Erik Gilling <konkers@android.com> Cc: Olof Johansson <olof@lixom.net> Cc: Sascha Hauer <kernel@pengutronix.de> Cc: Alessandro Rubini <rubini@unipv.it> Cc: STEricsson <STEricsson_nomadik_linux@list.st.com> Cc: Lennert Buytenhek <kernel@wantstofly.org> Cc: Ben Dooks <ben-linux@fluff.org> Tested-by: Jamie Iles <jamie@jamieiles.com> Tested-by: Tony Lindgren <tony@atomide.com> Tested-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: Linus Walleij <linus.walleij@linaro.org> Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Krzysztof Halasa <khc@pm.waw.pl> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This commit is contained in:
parent
3bdc3484e8
commit
2f0778afac
@ -8,113 +8,7 @@
|
||||
#ifndef ASM_SCHED_CLOCK
|
||||
#define ASM_SCHED_CLOCK
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
struct clock_data {
|
||||
u64 epoch_ns;
|
||||
u32 epoch_cyc;
|
||||
u32 epoch_cyc_copy;
|
||||
u32 mult;
|
||||
u32 shift;
|
||||
};
|
||||
|
||||
#define DEFINE_CLOCK_DATA(name) struct clock_data name
|
||||
|
||||
static inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
||||
{
|
||||
return (cyc * mult) >> shift;
|
||||
}
|
||||
|
||||
/*
|
||||
* Atomically update the sched_clock epoch. Your update callback will
|
||||
* be called from a timer before the counter wraps - read the current
|
||||
* counter value, and call this function to safely move the epochs
|
||||
* forward. Only use this from the update callback.
|
||||
*/
|
||||
static inline void update_sched_clock(struct clock_data *cd, u32 cyc, u32 mask)
|
||||
{
|
||||
unsigned long flags;
|
||||
u64 ns = cd->epoch_ns +
|
||||
cyc_to_ns((cyc - cd->epoch_cyc) & mask, cd->mult, cd->shift);
|
||||
|
||||
/*
|
||||
* Write epoch_cyc and epoch_ns in a way that the update is
|
||||
* detectable in cyc_to_fixed_sched_clock().
|
||||
*/
|
||||
raw_local_irq_save(flags);
|
||||
cd->epoch_cyc = cyc;
|
||||
smp_wmb();
|
||||
cd->epoch_ns = ns;
|
||||
smp_wmb();
|
||||
cd->epoch_cyc_copy = cyc;
|
||||
raw_local_irq_restore(flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* If your clock rate is known at compile time, using this will allow
|
||||
* you to optimize the mult/shift loads away. This is paired with
|
||||
* init_fixed_sched_clock() to ensure that your mult/shift are correct.
|
||||
*/
|
||||
static inline unsigned long long cyc_to_fixed_sched_clock(struct clock_data *cd,
|
||||
u32 cyc, u32 mask, u32 mult, u32 shift)
|
||||
{
|
||||
u64 epoch_ns;
|
||||
u32 epoch_cyc;
|
||||
|
||||
/*
|
||||
* Load the epoch_cyc and epoch_ns atomically. We do this by
|
||||
* ensuring that we always write epoch_cyc, epoch_ns and
|
||||
* epoch_cyc_copy in strict order, and read them in strict order.
|
||||
* If epoch_cyc and epoch_cyc_copy are not equal, then we're in
|
||||
* the middle of an update, and we should repeat the load.
|
||||
*/
|
||||
do {
|
||||
epoch_cyc = cd->epoch_cyc;
|
||||
smp_rmb();
|
||||
epoch_ns = cd->epoch_ns;
|
||||
smp_rmb();
|
||||
} while (epoch_cyc != cd->epoch_cyc_copy);
|
||||
|
||||
return epoch_ns + cyc_to_ns((cyc - epoch_cyc) & mask, mult, shift);
|
||||
}
|
||||
|
||||
/*
|
||||
* Otherwise, you need to use this, which will obtain the mult/shift
|
||||
* from the clock_data structure. Use init_sched_clock() with this.
|
||||
*/
|
||||
static inline unsigned long long cyc_to_sched_clock(struct clock_data *cd,
|
||||
u32 cyc, u32 mask)
|
||||
{
|
||||
return cyc_to_fixed_sched_clock(cd, cyc, mask, cd->mult, cd->shift);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the clock data - calculate the appropriate multiplier
|
||||
* and shift. Also setup a timer to ensure that the epoch is refreshed
|
||||
* at the appropriate time interval, which will call your update
|
||||
* handler.
|
||||
*/
|
||||
void init_sched_clock(struct clock_data *, void (*)(void),
|
||||
unsigned int, unsigned long);
|
||||
|
||||
/*
|
||||
* Use this initialization function rather than init_sched_clock() if
|
||||
* you're using cyc_to_fixed_sched_clock, which will warn if your
|
||||
* constants are incorrect.
|
||||
*/
|
||||
static inline void init_fixed_sched_clock(struct clock_data *cd,
|
||||
void (*update)(void), unsigned int bits, unsigned long rate,
|
||||
u32 mult, u32 shift)
|
||||
{
|
||||
init_sched_clock(cd, update, bits, rate);
|
||||
if (cd->mult != mult || cd->shift != shift) {
|
||||
pr_crit("sched_clock: wrong multiply/shift: %u>>%u vs calculated %u>>%u\n"
|
||||
"sched_clock: fix multiply/shift to avoid scheduler hiccups\n",
|
||||
mult, shift, cd->mult, cd->shift);
|
||||
}
|
||||
}
|
||||
|
||||
extern void sched_clock_postinit(void);
|
||||
extern void setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate);
|
||||
|
||||
#endif
|
||||
|
@ -14,61 +14,153 @@
|
||||
|
||||
#include <asm/sched_clock.h>
|
||||
|
||||
struct clock_data {
|
||||
u64 epoch_ns;
|
||||
u32 epoch_cyc;
|
||||
u32 epoch_cyc_copy;
|
||||
u32 mult;
|
||||
u32 shift;
|
||||
};
|
||||
|
||||
static void sched_clock_poll(unsigned long wrap_ticks);
|
||||
static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0);
|
||||
static void (*sched_clock_update_fn)(void);
|
||||
|
||||
static struct clock_data cd = {
|
||||
.mult = NSEC_PER_SEC / HZ,
|
||||
};
|
||||
|
||||
static u32 __read_mostly sched_clock_mask = 0xffffffff;
|
||||
|
||||
static u32 notrace jiffy_sched_clock_read(void)
|
||||
{
|
||||
return (u32)(jiffies - INITIAL_JIFFIES);
|
||||
}
|
||||
|
||||
static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
|
||||
|
||||
static inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
||||
{
|
||||
return (cyc * mult) >> shift;
|
||||
}
|
||||
|
||||
static unsigned long long cyc_to_sched_clock(u32 cyc, u32 mask)
|
||||
{
|
||||
u64 epoch_ns;
|
||||
u32 epoch_cyc;
|
||||
|
||||
/*
|
||||
* Load the epoch_cyc and epoch_ns atomically. We do this by
|
||||
* ensuring that we always write epoch_cyc, epoch_ns and
|
||||
* epoch_cyc_copy in strict order, and read them in strict order.
|
||||
* If epoch_cyc and epoch_cyc_copy are not equal, then we're in
|
||||
* the middle of an update, and we should repeat the load.
|
||||
*/
|
||||
do {
|
||||
epoch_cyc = cd.epoch_cyc;
|
||||
smp_rmb();
|
||||
epoch_ns = cd.epoch_ns;
|
||||
smp_rmb();
|
||||
} while (epoch_cyc != cd.epoch_cyc_copy);
|
||||
|
||||
return epoch_ns + cyc_to_ns((cyc - epoch_cyc) & mask, cd.mult, cd.shift);
|
||||
}
|
||||
|
||||
/*
|
||||
* Atomically update the sched_clock epoch.
|
||||
*/
|
||||
static void notrace update_sched_clock(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
u32 cyc;
|
||||
u64 ns;
|
||||
|
||||
cyc = read_sched_clock();
|
||||
ns = cd.epoch_ns +
|
||||
cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
||||
cd.mult, cd.shift);
|
||||
/*
|
||||
* Write epoch_cyc and epoch_ns in a way that the update is
|
||||
* detectable in cyc_to_fixed_sched_clock().
|
||||
*/
|
||||
raw_local_irq_save(flags);
|
||||
cd.epoch_cyc = cyc;
|
||||
smp_wmb();
|
||||
cd.epoch_ns = ns;
|
||||
smp_wmb();
|
||||
cd.epoch_cyc_copy = cyc;
|
||||
raw_local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static void sched_clock_poll(unsigned long wrap_ticks)
|
||||
{
|
||||
mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks));
|
||||
sched_clock_update_fn();
|
||||
update_sched_clock();
|
||||
}
|
||||
|
||||
void __init init_sched_clock(struct clock_data *cd, void (*update)(void),
|
||||
unsigned int clock_bits, unsigned long rate)
|
||||
void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
|
||||
{
|
||||
unsigned long r, w;
|
||||
u64 res, wrap;
|
||||
char r_unit;
|
||||
|
||||
sched_clock_update_fn = update;
|
||||
BUG_ON(bits > 32);
|
||||
WARN_ON(!irqs_disabled());
|
||||
WARN_ON(read_sched_clock != jiffy_sched_clock_read);
|
||||
read_sched_clock = read;
|
||||
sched_clock_mask = (1 << bits) - 1;
|
||||
|
||||
/* calculate the mult/shift to convert counter ticks to ns. */
|
||||
clocks_calc_mult_shift(&cd->mult, &cd->shift, rate, NSEC_PER_SEC, 0);
|
||||
clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0);
|
||||
|
||||
r = rate;
|
||||
if (r >= 4000000) {
|
||||
r /= 1000000;
|
||||
r_unit = 'M';
|
||||
} else {
|
||||
} else if (r >= 1000) {
|
||||
r /= 1000;
|
||||
r_unit = 'k';
|
||||
}
|
||||
} else
|
||||
r_unit = ' ';
|
||||
|
||||
/* calculate how many ns until we wrap */
|
||||
wrap = cyc_to_ns((1ULL << clock_bits) - 1, cd->mult, cd->shift);
|
||||
wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift);
|
||||
do_div(wrap, NSEC_PER_MSEC);
|
||||
w = wrap;
|
||||
|
||||
/* calculate the ns resolution of this counter */
|
||||
res = cyc_to_ns(1ULL, cd->mult, cd->shift);
|
||||
res = cyc_to_ns(1ULL, cd.mult, cd.shift);
|
||||
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n",
|
||||
clock_bits, r, r_unit, res, w);
|
||||
bits, r, r_unit, res, w);
|
||||
|
||||
/*
|
||||
* Start the timer to keep sched_clock() properly updated and
|
||||
* sets the initial epoch.
|
||||
*/
|
||||
sched_clock_timer.data = msecs_to_jiffies(w - (w / 10));
|
||||
update();
|
||||
update_sched_clock();
|
||||
|
||||
/*
|
||||
* Ensure that sched_clock() starts off at 0ns
|
||||
*/
|
||||
cd->epoch_ns = 0;
|
||||
cd.epoch_ns = 0;
|
||||
|
||||
pr_debug("Registered %pF as sched_clock source\n", read);
|
||||
}
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
{
|
||||
u32 cyc = read_sched_clock();
|
||||
return cyc_to_sched_clock(cyc, sched_clock_mask);
|
||||
}
|
||||
|
||||
void __init sched_clock_postinit(void)
|
||||
{
|
||||
/*
|
||||
* If no sched_clock function has been provided at that point,
|
||||
* make it the final one one.
|
||||
*/
|
||||
if (read_sched_clock == jiffy_sched_clock_read)
|
||||
setup_sched_clock(jiffy_sched_clock_read, 32, HZ);
|
||||
|
||||
sched_clock_poll(sched_clock_timer.data);
|
||||
}
|
||||
|
@ -17,7 +17,6 @@
|
||||
#include <linux/mm.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/serial.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/tty.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/serial_core.h>
|
||||
@ -403,18 +402,9 @@ void __init ixp4xx_sys_init(void)
|
||||
/*
|
||||
* sched_clock()
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace ixp4xx_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = *IXP4XX_OSTS;
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace ixp4xx_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = *IXP4XX_OSTS;
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return *IXP4XX_OSTS;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -430,7 +420,7 @@ unsigned long ixp4xx_timer_freq = IXP4XX_TIMER_FREQ;
|
||||
EXPORT_SYMBOL(ixp4xx_timer_freq);
|
||||
static void __init ixp4xx_clocksource_init(void)
|
||||
{
|
||||
init_sched_clock(&cd, ixp4xx_update_sched_clock, 32, ixp4xx_timer_freq);
|
||||
setup_sched_clock(ixp4xx_read_sched_clock, 32, ixp4xx_timer_freq);
|
||||
|
||||
clocksource_mmio_init(NULL, "OSTS", ixp4xx_timer_freq, 200, 32,
|
||||
ixp4xx_clocksource_read);
|
||||
|
@ -25,7 +25,6 @@
|
||||
|
||||
#include <linux/io.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
#include <asm/sched_clock.h>
|
||||
#include <mach/addr-map.h>
|
||||
@ -42,8 +41,6 @@
|
||||
#define MAX_DELTA (0xfffffffe)
|
||||
#define MIN_DELTA (16)
|
||||
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
/*
|
||||
* FIXME: the timer needs some delay to stablize the counter capture
|
||||
*/
|
||||
@ -59,16 +56,9 @@ static inline uint32_t timer_read(void)
|
||||
return __raw_readl(TIMERS_VIRT_BASE + TMR_CVWR(1));
|
||||
}
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace mmp_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = timer_read();
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace mmp_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = timer_read();
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return timer_read();
|
||||
}
|
||||
|
||||
static irqreturn_t timer_interrupt(int irq, void *dev_id)
|
||||
@ -201,7 +191,7 @@ void __init timer_init(int irq)
|
||||
{
|
||||
timer_config();
|
||||
|
||||
init_sched_clock(&cd, mmp_update_sched_clock, 32, CLOCK_TICK_RATE);
|
||||
setup_sched_clock(mmp_read_sched_clock, 32, CLOCK_TICK_RATE);
|
||||
|
||||
ckevt.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, ckevt.shift);
|
||||
ckevt.max_delta_ns = clockevent_delta2ns(MAX_DELTA, &ckevt);
|
||||
|
@ -37,7 +37,6 @@
|
||||
#include <linux/init.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/clk.h>
|
||||
#include <linux/err.h>
|
||||
@ -190,30 +189,9 @@ static __init void omap_init_mpu_timer(unsigned long rate)
|
||||
* ---------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
static inline unsigned long long notrace _omap_mpu_sched_clock(void)
|
||||
static u32 notrace omap_mpu_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = ~omap_mpu_timer_read(1);
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
#ifndef CONFIG_OMAP_32K_TIMER
|
||||
unsigned long long notrace sched_clock(void)
|
||||
{
|
||||
return _omap_mpu_sched_clock();
|
||||
}
|
||||
#else
|
||||
static unsigned long long notrace omap_mpu_sched_clock(void)
|
||||
{
|
||||
return _omap_mpu_sched_clock();
|
||||
}
|
||||
#endif
|
||||
|
||||
static void notrace mpu_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = ~omap_mpu_timer_read(1);
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return ~omap_mpu_timer_read(1);
|
||||
}
|
||||
|
||||
static void __init omap_init_clocksource(unsigned long rate)
|
||||
@ -223,7 +201,7 @@ static void __init omap_init_clocksource(unsigned long rate)
|
||||
"%s: can't register clocksource!\n";
|
||||
|
||||
omap_mpu_timer_start(1, ~0, 1);
|
||||
init_sched_clock(&cd, mpu_update_sched_clock, 32, rate);
|
||||
setup_sched_clock(omap_mpu_read_sched_clock, 32, rate);
|
||||
|
||||
if (clocksource_mmio_init(&timer->read_tim, "mpu_timer2", rate,
|
||||
300, 32, clocksource_mmio_readl_down))
|
||||
@ -254,30 +232,6 @@ static inline void omap_mpu_timer_init(void)
|
||||
}
|
||||
#endif /* CONFIG_OMAP_MPU_TIMER */
|
||||
|
||||
#if defined(CONFIG_OMAP_MPU_TIMER) && defined(CONFIG_OMAP_32K_TIMER)
|
||||
static unsigned long long (*preferred_sched_clock)(void);
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
{
|
||||
if (!preferred_sched_clock)
|
||||
return 0;
|
||||
|
||||
return preferred_sched_clock();
|
||||
}
|
||||
|
||||
static inline void preferred_sched_clock_init(bool use_32k_sched_clock)
|
||||
{
|
||||
if (use_32k_sched_clock)
|
||||
preferred_sched_clock = omap_32k_sched_clock;
|
||||
else
|
||||
preferred_sched_clock = omap_mpu_sched_clock;
|
||||
}
|
||||
#else
|
||||
static inline void preferred_sched_clock_init(bool use_32k_sched_clcok)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
static inline int omap_32k_timer_usable(void)
|
||||
{
|
||||
int res = false;
|
||||
@ -299,12 +253,8 @@ static inline int omap_32k_timer_usable(void)
|
||||
*/
|
||||
static void __init omap1_timer_init(void)
|
||||
{
|
||||
if (omap_32k_timer_usable()) {
|
||||
preferred_sched_clock_init(1);
|
||||
} else {
|
||||
if (!omap_32k_timer_usable())
|
||||
omap_mpu_timer_init();
|
||||
preferred_sched_clock_init(0);
|
||||
}
|
||||
}
|
||||
|
||||
struct sys_timer omap1_timer = {
|
||||
|
@ -254,7 +254,6 @@ static struct omap_dm_timer clksrc;
|
||||
/*
|
||||
* clocksource
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
static cycle_t clocksource_read_cycles(struct clocksource *cs)
|
||||
{
|
||||
return (cycle_t)__omap_dm_timer_read_counter(&clksrc, 1);
|
||||
@ -268,23 +267,12 @@ static struct clocksource clocksource_gpt = {
|
||||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||||
};
|
||||
|
||||
static void notrace dmtimer_update_sched_clock(void)
|
||||
static u32 notrace dmtimer_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc;
|
||||
|
||||
cyc = __omap_dm_timer_read_counter(&clksrc, 1);
|
||||
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
{
|
||||
u32 cyc = 0;
|
||||
|
||||
if (clksrc.reserved)
|
||||
cyc = __omap_dm_timer_read_counter(&clksrc, 1);
|
||||
return __omap_dm_timer_read_counter(clksrc.io_base, 1);
|
||||
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Setup free-running counter for clocksource */
|
||||
@ -301,7 +289,7 @@ static void __init omap2_gp_clocksource_init(int gptimer_id,
|
||||
|
||||
__omap_dm_timer_load_start(&clksrc,
|
||||
OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, 0, 1);
|
||||
init_sched_clock(&cd, dmtimer_update_sched_clock, 32, clksrc.rate);
|
||||
setup_sched_clock(dmtimer_read_sched_clock, 32, clksrc.rate);
|
||||
|
||||
if (clocksource_register_hz(&clocksource_gpt, clksrc.rate))
|
||||
pr_err("Could not register clocksource %s\n",
|
||||
|
@ -11,7 +11,6 @@
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/of_irq.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
#include <asm/mach/time.h>
|
||||
#include <asm/sched_clock.h>
|
||||
@ -66,21 +65,11 @@ static void picoxcell_add_clocksource(struct device_node *source_timer)
|
||||
dw_apb_clocksource_register(cs);
|
||||
}
|
||||
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
static void __iomem *sched_io_base;
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
unsigned u32 notrace picoxcell_read_sched_clock(void)
|
||||
{
|
||||
cycle_t cyc = sched_io_base ? __raw_readl(sched_io_base) : 0;
|
||||
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace picoxcell_update_sched_clock(void)
|
||||
{
|
||||
cycle_t cyc = sched_io_base ? __raw_readl(sched_io_base) : 0;
|
||||
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return __raw_readl(sched_io_base);
|
||||
}
|
||||
|
||||
static const struct of_device_id picoxcell_rtc_ids[] __initconst = {
|
||||
@ -100,7 +89,7 @@ static void picoxcell_init_sched_clock(void)
|
||||
timer_get_base_and_rate(sched_timer, &sched_io_base, &rate);
|
||||
of_node_put(sched_timer);
|
||||
|
||||
init_sched_clock(&cd, picoxcell_update_sched_clock, 32, rate);
|
||||
setup_sched_clock(picoxcell_read_sched_clock, 32, rate);
|
||||
}
|
||||
|
||||
static const struct of_device_id picoxcell_timer_ids[] __initconst = {
|
||||
|
@ -16,7 +16,6 @@
|
||||
#include <linux/init.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
#include <asm/div64.h>
|
||||
#include <asm/mach/irq.h>
|
||||
@ -32,18 +31,10 @@
|
||||
* long as there is always less than 582 seconds between successive
|
||||
* calls to sched_clock() which should always be the case in practice.
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace pxa_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = OSCR;
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace pxa_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = OSCR;
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return OSCR;
|
||||
}
|
||||
|
||||
|
||||
@ -119,7 +110,7 @@ static void __init pxa_timer_init(void)
|
||||
OIER = 0;
|
||||
OSSR = OSSR_M0 | OSSR_M1 | OSSR_M2 | OSSR_M3;
|
||||
|
||||
init_sched_clock(&cd, pxa_update_sched_clock, 32, clock_tick_rate);
|
||||
setup_sched_clock(pxa_read_sched_clock, 32, clock_tick_rate);
|
||||
|
||||
clockevents_calc_mult_shift(&ckevt_pxa_osmr0, clock_tick_rate, 4);
|
||||
ckevt_pxa_osmr0.max_delta_ns =
|
||||
|
@ -12,7 +12,6 @@
|
||||
#include <linux/errno.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/sched.h> /* just for sched_clock() - funny that */
|
||||
#include <linux/timex.h>
|
||||
#include <linux/clockchips.h>
|
||||
|
||||
@ -20,29 +19,9 @@
|
||||
#include <asm/sched_clock.h>
|
||||
#include <mach/hardware.h>
|
||||
|
||||
/*
|
||||
* This is the SA11x0 sched_clock implementation.
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
/*
|
||||
* Constants generated by clocks_calc_mult_shift(m, s, 3.6864MHz,
|
||||
* NSEC_PER_SEC, 60).
|
||||
* This gives a resolution of about 271ns and a wrap period of about 19min.
|
||||
*/
|
||||
#define SC_MULT 2275555556u
|
||||
#define SC_SHIFT 23
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace sa100_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = OSCR;
|
||||
return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT);
|
||||
}
|
||||
|
||||
static void notrace sa1100_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = OSCR;
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return OSCR;
|
||||
}
|
||||
|
||||
#define MIN_OSCR_DELTA 2
|
||||
@ -109,8 +88,7 @@ static void __init sa1100_timer_init(void)
|
||||
OIER = 0;
|
||||
OSSR = OSSR_M0 | OSSR_M1 | OSSR_M2 | OSSR_M3;
|
||||
|
||||
init_fixed_sched_clock(&cd, sa1100_update_sched_clock, 32,
|
||||
3686400, SC_MULT, SC_SHIFT);
|
||||
setup_sched_clock(sa1100_read_sched_clock, 32, 3686400);
|
||||
|
||||
clockevents_calc_mult_shift(&ckevt_sa1100_osmr0, 3686400, 4);
|
||||
ckevt_sa1100_osmr0.max_delta_ns =
|
||||
|
@ -19,7 +19,6 @@
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/irq.h>
|
||||
@ -106,25 +105,9 @@ static struct clock_event_device tegra_clockevent = {
|
||||
.set_mode = tegra_timer_set_mode,
|
||||
};
|
||||
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
/*
|
||||
* Constants generated by clocks_calc_mult_shift(m, s, 1MHz, NSEC_PER_SEC, 60).
|
||||
* This gives a resolution of about 1us and a wrap period of about 1h11min.
|
||||
*/
|
||||
#define SC_MULT 4194304000u
|
||||
#define SC_SHIFT 22
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace tegra_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = timer_readl(TIMERUS_CNTR_1US);
|
||||
return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT);
|
||||
}
|
||||
|
||||
static void notrace tegra_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = timer_readl(TIMERUS_CNTR_1US);
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return timer_readl(TIMERUS_CNTR_1US);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -218,8 +201,7 @@ static void __init tegra_init_timer(void)
|
||||
WARN(1, "Unknown clock rate");
|
||||
}
|
||||
|
||||
init_fixed_sched_clock(&cd, tegra_update_sched_clock, 32,
|
||||
1000000, SC_MULT, SC_SHIFT);
|
||||
setup_sched_clock(tegra_read_sched_clock, 32, 1000000);
|
||||
|
||||
if (clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US,
|
||||
"timer_us", 1000000, 300, 32, clocksource_mmio_readl_up)) {
|
||||
|
@ -9,7 +9,6 @@
|
||||
* Author: Linus Walleij <linus.walleij@stericsson.com>
|
||||
*/
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/timex.h>
|
||||
#include <linux/clockchips.h>
|
||||
@ -337,18 +336,10 @@ static struct irqaction u300_timer_irq = {
|
||||
* this wraps around for now, since it is just a relative time
|
||||
* stamp. (Inspired by OMAP implementation.)
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace u300_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = readl(U300_TIMER_APP_VBASE + U300_TIMER_APP_GPT2CC);
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace u300_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = readl(U300_TIMER_APP_VBASE + U300_TIMER_APP_GPT2CC);
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return readl(U300_TIMER_APP_VBASE + U300_TIMER_APP_GPT2CC);
|
||||
}
|
||||
|
||||
|
||||
@ -366,7 +357,7 @@ static void __init u300_timer_init(void)
|
||||
clk_enable(clk);
|
||||
rate = clk_get_rate(clk);
|
||||
|
||||
init_sched_clock(&cd, u300_update_sched_clock, 32, rate);
|
||||
setup_sched_clock(u300_read_sched_clock, 32, rate);
|
||||
|
||||
/*
|
||||
* Disable the "OS" and "DD" timers - these are designed for Symbian!
|
||||
|
@ -18,7 +18,6 @@
|
||||
#include <linux/time.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/timex.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/clocksource.h>
|
||||
#include <linux/clockchips.h>
|
||||
@ -52,21 +51,12 @@ static struct clocksource iop_clocksource = {
|
||||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||||
};
|
||||
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
/*
|
||||
* IOP sched_clock() implementation via its clocksource.
|
||||
*/
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace iop_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = 0xffffffffu - read_tcr1();
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace iop_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = 0xffffffffu - read_tcr1();
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return 0xffffffffu - read_tcr1();
|
||||
}
|
||||
|
||||
/*
|
||||
@ -152,7 +142,7 @@ void __init iop_init_time(unsigned long tick_rate)
|
||||
{
|
||||
u32 timer_ctl;
|
||||
|
||||
init_sched_clock(&cd, iop_update_sched_clock, 32, tick_rate);
|
||||
setup_sched_clock(iop_read_sched_clock, 32, tick_rate);
|
||||
|
||||
ticks_per_jiffy = DIV_ROUND_CLOSEST(tick_rate, HZ);
|
||||
iop_tick_rate = tick_rate;
|
||||
|
@ -108,18 +108,9 @@ static void gpt_irq_acknowledge(void)
|
||||
|
||||
static void __iomem *sched_clock_reg;
|
||||
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace mxc_read_sched_clock(void)
|
||||
{
|
||||
cycle_t cyc = sched_clock_reg ? __raw_readl(sched_clock_reg) : 0;
|
||||
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace mxc_update_sched_clock(void)
|
||||
{
|
||||
cycle_t cyc = sched_clock_reg ? __raw_readl(sched_clock_reg) : 0;
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return sched_clock_reg ? __raw_readl(sched_clock_reg) : 0;
|
||||
}
|
||||
|
||||
static int __init mxc_clocksource_init(struct clk *timer_clk)
|
||||
@ -129,7 +120,7 @@ static int __init mxc_clocksource_init(struct clk *timer_clk)
|
||||
|
||||
sched_clock_reg = reg;
|
||||
|
||||
init_sched_clock(&cd, mxc_update_sched_clock, 32, c);
|
||||
setup_sched_clock(mxc_read_sched_clock, 32, c);
|
||||
return clocksource_mmio_init(reg, "mxc_timer1", c, 200, 32,
|
||||
clocksource_mmio_readl_up);
|
||||
}
|
||||
|
@ -17,7 +17,6 @@
|
||||
#include <linux/clk.h>
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/sched.h>
|
||||
#include <asm/mach/time.h>
|
||||
#include <asm/sched_clock.h>
|
||||
|
||||
@ -79,23 +78,12 @@ void __iomem *mtu_base; /* Assigned by machine code */
|
||||
* local implementation which uses the clocksource to get some
|
||||
* better resolution when scheduling the kernel.
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace nomadik_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc;
|
||||
|
||||
if (unlikely(!mtu_base))
|
||||
return 0;
|
||||
|
||||
cyc = -readl(mtu_base + MTU_VAL(0));
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace nomadik_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = -readl(mtu_base + MTU_VAL(0));
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return -readl(mtu_base + MTU_VAL(0));
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -231,9 +219,11 @@ void __init nmdk_timer_init(void)
|
||||
rate, 200, 32, clocksource_mmio_readl_down))
|
||||
pr_err("timer: failed to initialize clock source %s\n",
|
||||
"mtu_0");
|
||||
|
||||
#ifdef CONFIG_NOMADIK_MTU_SCHED_CLOCK
|
||||
init_sched_clock(&cd, nomadik_update_sched_clock, 32, rate);
|
||||
setup_sched_clock(nomadik_read_sched_clock, 32, rate);
|
||||
#endif
|
||||
|
||||
/* Timer 1 is used for events */
|
||||
|
||||
clockevents_calc_mult_shift(&nmdk_clkevt, rate, MTU_MIN_RANGE);
|
||||
|
@ -17,7 +17,6 @@
|
||||
#include <linux/clk.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/clocksource.h>
|
||||
|
||||
#include <asm/sched_clock.h>
|
||||
@ -37,41 +36,9 @@ static void __iomem *timer_32k_base;
|
||||
|
||||
#define OMAP16XX_TIMER_32K_SYNCHRONIZED 0xfffbc410
|
||||
|
||||
/*
|
||||
* Returns current time from boot in nsecs. It's OK for this to wrap
|
||||
* around for now, as it's just a relative time stamp.
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
/*
|
||||
* Constants generated by clocks_calc_mult_shift(m, s, 32768, NSEC_PER_SEC, 60).
|
||||
* This gives a resolution of about 30us and a wrap period of about 36hrs.
|
||||
*/
|
||||
#define SC_MULT 4000000000u
|
||||
#define SC_SHIFT 17
|
||||
|
||||
static inline unsigned long long notrace _omap_32k_sched_clock(void)
|
||||
static u32 notrace omap_32k_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = timer_32k_base ? __raw_readl(timer_32k_base) : 0;
|
||||
return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0, SC_MULT, SC_SHIFT);
|
||||
}
|
||||
|
||||
#if defined(CONFIG_OMAP_32K_TIMER) && !defined(CONFIG_OMAP_MPU_TIMER)
|
||||
unsigned long long notrace sched_clock(void)
|
||||
{
|
||||
return _omap_32k_sched_clock();
|
||||
}
|
||||
#else
|
||||
unsigned long long notrace omap_32k_sched_clock(void)
|
||||
{
|
||||
return _omap_32k_sched_clock();
|
||||
}
|
||||
#endif
|
||||
|
||||
static void notrace omap_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = timer_32k_base ? __raw_readl(timer_32k_base) : 0;
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
return timer_32k_base ? __raw_readl(timer_32k_base) : 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -147,8 +114,7 @@ int __init omap_init_clocksource_32k(void)
|
||||
clocksource_mmio_readl_up))
|
||||
printk(err, "32k_counter");
|
||||
|
||||
init_fixed_sched_clock(&cd, omap_update_sched_clock, 32,
|
||||
32768, SC_MULT, SC_SHIFT);
|
||||
setup_sched_clock(omap_32k_read_sched_clock, 32, 32768);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@ -31,7 +31,6 @@
|
||||
#include <plat/omap_hwmod.h>
|
||||
|
||||
extern int __init omap_init_clocksource_32k(void);
|
||||
extern unsigned long long notrace omap_32k_sched_clock(void);
|
||||
|
||||
extern void omap_reserve(void);
|
||||
extern int omap_dss_reset(struct omap_hwmod *);
|
||||
|
@ -12,7 +12,6 @@
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/timer.h>
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/interrupt.h>
|
||||
@ -60,24 +59,10 @@ static u32 ticks_per_jiffy;
|
||||
* Orion's sched_clock implementation. It has a resolution of
|
||||
* at least 7.5ns (133MHz TCLK).
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace orion_read_sched_clock(void)
|
||||
{
|
||||
u32 cyc = ~readl(timer_base + TIMER0_VAL_OFF);
|
||||
return cyc_to_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
|
||||
static void notrace orion_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = ~readl(timer_base + TIMER0_VAL_OFF);
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
static void __init setup_sched_clock(unsigned long tclk)
|
||||
{
|
||||
init_sched_clock(&cd, orion_update_sched_clock, 32, tclk);
|
||||
return ~readl(timer_base + TIMER0_VAL_OFF);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -217,7 +202,7 @@ orion_time_init(u32 _bridge_base, u32 _bridge_timer1_clr_mask,
|
||||
/*
|
||||
* Set scale and timer for sched_clock.
|
||||
*/
|
||||
setup_sched_clock(tclk);
|
||||
setup_sched_clock(orion_read_sched_clock, 32, tclk);
|
||||
|
||||
/*
|
||||
* Setup free-running clocksource timer (interrupts
|
||||
|
@ -10,7 +10,6 @@
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/sched.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/err.h>
|
||||
@ -321,26 +320,14 @@ static void __iomem *s5p_timer_reg(void)
|
||||
* this wraps around for now, since it is just a relative time
|
||||
* stamp. (Inspired by U300 implementation.)
|
||||
*/
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace s5p_read_sched_clock(void)
|
||||
{
|
||||
void __iomem *reg = s5p_timer_reg();
|
||||
|
||||
if (!reg)
|
||||
return 0;
|
||||
|
||||
return cyc_to_sched_clock(&cd, ~__raw_readl(reg), (u32)~0);
|
||||
}
|
||||
|
||||
static void notrace s5p_update_sched_clock(void)
|
||||
{
|
||||
void __iomem *reg = s5p_timer_reg();
|
||||
|
||||
if (!reg)
|
||||
return;
|
||||
|
||||
update_sched_clock(&cd, ~__raw_readl(reg), (u32)~0);
|
||||
return ~__raw_readl(reg);
|
||||
}
|
||||
|
||||
static void __init s5p_clocksource_init(void)
|
||||
@ -358,7 +345,7 @@ static void __init s5p_clocksource_init(void)
|
||||
s5p_time_setup(timer_source.source_id, TCNT_MAX);
|
||||
s5p_time_start(timer_source.source_id, PERIODIC);
|
||||
|
||||
init_sched_clock(&cd, s5p_update_sched_clock, 32, clock_rate);
|
||||
setup_sched_clock(s5p_read_sched_clock, 32, clock_rate);
|
||||
|
||||
if (clocksource_mmio_init(s5p_timer_reg(), "s5p_clocksource_timer",
|
||||
clock_rate, 250, 32, clocksource_mmio_readl_down))
|
||||
|
@ -18,41 +18,24 @@
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
*/
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
#include <asm/sched_clock.h>
|
||||
#include <plat/sched_clock.h>
|
||||
|
||||
static DEFINE_CLOCK_DATA(cd);
|
||||
static void __iomem *ctr;
|
||||
|
||||
/*
|
||||
* Constants generated by clocks_calc_mult_shift(m, s, 24MHz, NSEC_PER_SEC, 60).
|
||||
* This gives a resolution of about 41ns and a wrap period of about 178s.
|
||||
*/
|
||||
#define SC_MULT 2796202667u
|
||||
#define SC_SHIFT 26
|
||||
|
||||
unsigned long long notrace sched_clock(void)
|
||||
static u32 notrace versatile_read_sched_clock(void)
|
||||
{
|
||||
if (ctr) {
|
||||
u32 cyc = readl(ctr);
|
||||
return cyc_to_fixed_sched_clock(&cd, cyc, (u32)~0,
|
||||
SC_MULT, SC_SHIFT);
|
||||
} else
|
||||
if (ctr)
|
||||
return readl(ctr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void notrace versatile_update_sched_clock(void)
|
||||
{
|
||||
u32 cyc = readl(ctr);
|
||||
update_sched_clock(&cd, cyc, (u32)~0);
|
||||
}
|
||||
|
||||
void __init versatile_sched_clock_init(void __iomem *reg, unsigned long rate)
|
||||
{
|
||||
ctr = reg;
|
||||
init_fixed_sched_clock(&cd, versatile_update_sched_clock,
|
||||
32, rate, SC_MULT, SC_SHIFT);
|
||||
setup_sched_clock(versatile_read_sched_clock, 32, rate);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user